865 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			865 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implementation of the abstract lowering for the Swift calling convention.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/CodeGen/SwiftCallingConv.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
using namespace swiftcall;
 | 
						|
 | 
						|
static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
 | 
						|
  return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
 | 
						|
}
 | 
						|
 | 
						|
static bool isPowerOf2(unsigned n) {
 | 
						|
  return n == (n & -n);
 | 
						|
}
 | 
						|
 | 
						|
/// Given two types with the same size, try to find a common type.
 | 
						|
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
 | 
						|
  assert(first != second);
 | 
						|
 | 
						|
  // Allow pointers to merge with integers, but prefer the integer type.
 | 
						|
  if (first->isIntegerTy()) {
 | 
						|
    if (second->isPointerTy()) return first;
 | 
						|
  } else if (first->isPointerTy()) {
 | 
						|
    if (second->isIntegerTy()) return second;
 | 
						|
    if (second->isPointerTy()) return first;
 | 
						|
 | 
						|
  // Allow two vectors to be merged (given that they have the same size).
 | 
						|
  // This assumes that we never have two different vector register sets.
 | 
						|
  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
 | 
						|
    if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
 | 
						|
      if (auto commonTy = getCommonType(firstVecTy->getElementType(),
 | 
						|
                                        secondVecTy->getElementType())) {
 | 
						|
        return (commonTy == firstVecTy->getElementType() ? first : second);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
 | 
						|
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
 | 
						|
}
 | 
						|
 | 
						|
static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
 | 
						|
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
 | 
						|
  // Deal with various aggregate types as special cases:
 | 
						|
 | 
						|
  // Record types.
 | 
						|
  if (auto recType = type->getAs<RecordType>()) {
 | 
						|
    addTypedData(recType->getDecl(), begin);
 | 
						|
 | 
						|
  // Array types.
 | 
						|
  } else if (type->isArrayType()) {
 | 
						|
    // Incomplete array types (flexible array members?) don't provide
 | 
						|
    // data to lay out, and the other cases shouldn't be possible.
 | 
						|
    auto arrayType = CGM.getContext().getAsConstantArrayType(type);
 | 
						|
    if (!arrayType) return;
 | 
						|
 | 
						|
    QualType eltType = arrayType->getElementType();
 | 
						|
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
 | 
						|
    for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
 | 
						|
      addTypedData(eltType, begin + i * eltSize);
 | 
						|
    }
 | 
						|
 | 
						|
  // Complex types.
 | 
						|
  } else if (auto complexType = type->getAs<ComplexType>()) {
 | 
						|
    auto eltType = complexType->getElementType();
 | 
						|
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
 | 
						|
    auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
 | 
						|
    addTypedData(eltLLVMType, begin, begin + eltSize);
 | 
						|
    addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
 | 
						|
 | 
						|
  // Member pointer types.
 | 
						|
  } else if (type->getAs<MemberPointerType>()) {
 | 
						|
    // Just add it all as opaque.
 | 
						|
    addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
 | 
						|
 | 
						|
  // Everything else is scalar and should not convert as an LLVM aggregate.
 | 
						|
  } else {
 | 
						|
    // We intentionally convert as !ForMem because we want to preserve
 | 
						|
    // that a type was an i1.
 | 
						|
    auto llvmType = CGM.getTypes().ConvertType(type);
 | 
						|
    addTypedData(llvmType, begin);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
 | 
						|
  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
 | 
						|
                                    const ASTRecordLayout &layout) {
 | 
						|
  // Unions are a special case.
 | 
						|
  if (record->isUnion()) {
 | 
						|
    for (auto field : record->fields()) {
 | 
						|
      if (field->isBitField()) {
 | 
						|
        addBitFieldData(field, begin, 0);
 | 
						|
      } else {
 | 
						|
        addTypedData(field->getType(), begin);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note that correctness does not rely on us adding things in
 | 
						|
  // their actual order of layout; it's just somewhat more efficient
 | 
						|
  // for the builder.
 | 
						|
 | 
						|
  // With that in mind, add "early" C++ data.
 | 
						|
  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
 | 
						|
  if (cxxRecord) {
 | 
						|
    //   - a v-table pointer, if the class adds its own
 | 
						|
    if (layout.hasOwnVFPtr()) {
 | 
						|
      addTypedData(CGM.Int8PtrTy, begin);
 | 
						|
    }
 | 
						|
 | 
						|
    //   - non-virtual bases
 | 
						|
    for (auto &baseSpecifier : cxxRecord->bases()) {
 | 
						|
      if (baseSpecifier.isVirtual()) continue;
 | 
						|
 | 
						|
      auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
 | 
						|
      addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
 | 
						|
    }
 | 
						|
 | 
						|
    //   - a vbptr if the class adds its own
 | 
						|
    if (layout.hasOwnVBPtr()) {
 | 
						|
      addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add fields.
 | 
						|
  for (auto field : record->fields()) {
 | 
						|
    auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
 | 
						|
    if (field->isBitField()) {
 | 
						|
      addBitFieldData(field, begin, fieldOffsetInBits);
 | 
						|
    } else {
 | 
						|
      addTypedData(field->getType(),
 | 
						|
              begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add "late" C++ data:
 | 
						|
  if (cxxRecord) {
 | 
						|
    //   - virtual bases
 | 
						|
    for (auto &vbaseSpecifier : cxxRecord->vbases()) {
 | 
						|
      auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
 | 
						|
      addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
 | 
						|
                                       CharUnits recordBegin,
 | 
						|
                                       uint64_t bitfieldBitBegin) {
 | 
						|
  assert(bitfield->isBitField());
 | 
						|
  auto &ctx = CGM.getContext();
 | 
						|
  auto width = bitfield->getBitWidthValue(ctx);
 | 
						|
 | 
						|
  // We can ignore zero-width bit-fields.
 | 
						|
  if (width == 0) return;
 | 
						|
 | 
						|
  // toCharUnitsFromBits rounds down.
 | 
						|
  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
 | 
						|
 | 
						|
  // Find the offset of the last byte that is partially occupied by the
 | 
						|
  // bit-field; since we otherwise expect exclusive ends, the end is the
 | 
						|
  // next byte.
 | 
						|
  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
 | 
						|
  CharUnits bitfieldByteEnd =
 | 
						|
    ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
 | 
						|
  addOpaqueData(recordBegin + bitfieldByteBegin,
 | 
						|
                recordBegin + bitfieldByteEnd);
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
 | 
						|
  assert(type && "didn't provide type for typed data");
 | 
						|
  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addTypedData(llvm::Type *type,
 | 
						|
                                    CharUnits begin, CharUnits end) {
 | 
						|
  assert(type && "didn't provide type for typed data");
 | 
						|
  assert(getTypeStoreSize(CGM, type) == end - begin);
 | 
						|
 | 
						|
  // Legalize vector types.
 | 
						|
  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
 | 
						|
    SmallVector<llvm::Type*, 4> componentTys;
 | 
						|
    legalizeVectorType(CGM, end - begin, vecTy, componentTys);
 | 
						|
    assert(componentTys.size() >= 1);
 | 
						|
 | 
						|
    // Walk the initial components.
 | 
						|
    for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
 | 
						|
      llvm::Type *componentTy = componentTys[i];
 | 
						|
      auto componentSize = getTypeStoreSize(CGM, componentTy);
 | 
						|
      assert(componentSize < end - begin);
 | 
						|
      addLegalTypedData(componentTy, begin, begin + componentSize);
 | 
						|
      begin += componentSize;
 | 
						|
    }
 | 
						|
 | 
						|
    return addLegalTypedData(componentTys.back(), begin, end);
 | 
						|
  }
 | 
						|
 | 
						|
  // Legalize integer types.
 | 
						|
  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
 | 
						|
    if (!isLegalIntegerType(CGM, intTy))
 | 
						|
      return addOpaqueData(begin, end);
 | 
						|
  }
 | 
						|
 | 
						|
  // All other types should be legal.
 | 
						|
  return addLegalTypedData(type, begin, end);
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
 | 
						|
                                         CharUnits begin, CharUnits end) {
 | 
						|
  // Require the type to be naturally aligned.
 | 
						|
  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
 | 
						|
 | 
						|
    // Try splitting vector types.
 | 
						|
    if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
 | 
						|
      auto split = splitLegalVectorType(CGM, end - begin, vecTy);
 | 
						|
      auto eltTy = split.first;
 | 
						|
      auto numElts = split.second;
 | 
						|
 | 
						|
      auto eltSize = (end - begin) / numElts;
 | 
						|
      assert(eltSize == getTypeStoreSize(CGM, eltTy));
 | 
						|
      for (size_t i = 0, e = numElts; i != e; ++i) {
 | 
						|
        addLegalTypedData(eltTy, begin, begin + eltSize);
 | 
						|
        begin += eltSize;
 | 
						|
      }
 | 
						|
      assert(begin == end);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    return addOpaqueData(begin, end);
 | 
						|
  }
 | 
						|
 | 
						|
  addEntry(type, begin, end);
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::addEntry(llvm::Type *type,
 | 
						|
                                CharUnits begin, CharUnits end) {
 | 
						|
  assert((!type ||
 | 
						|
          (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
 | 
						|
         "cannot add aggregate-typed data");
 | 
						|
  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
 | 
						|
 | 
						|
  // Fast path: we can just add entries to the end.
 | 
						|
  if (Entries.empty() || Entries.back().End <= begin) {
 | 
						|
    Entries.push_back({begin, end, type});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the first existing entry that ends after the start of the new data.
 | 
						|
  // TODO: do a binary search if Entries is big enough for it to matter.
 | 
						|
  size_t index = Entries.size() - 1;
 | 
						|
  while (index != 0) {
 | 
						|
    if (Entries[index - 1].End <= begin) break;
 | 
						|
    --index;
 | 
						|
  }
 | 
						|
 | 
						|
  // The entry ends after the start of the new data.
 | 
						|
  // If the entry starts after the end of the new data, there's no conflict.
 | 
						|
  if (Entries[index].Begin >= end) {
 | 
						|
    // This insertion is potentially O(n), but the way we generally build
 | 
						|
    // these layouts makes that unlikely to matter: we'd need a union of
 | 
						|
    // several very large types.
 | 
						|
    Entries.insert(Entries.begin() + index, {begin, end, type});
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, the ranges overlap.  The new range might also overlap
 | 
						|
  // with later ranges.
 | 
						|
restartAfterSplit:
 | 
						|
 | 
						|
  // Simplest case: an exact overlap.
 | 
						|
  if (Entries[index].Begin == begin && Entries[index].End == end) {
 | 
						|
    // If the types match exactly, great.
 | 
						|
    if (Entries[index].Type == type) return;
 | 
						|
 | 
						|
    // If either type is opaque, make the entry opaque and return.
 | 
						|
    if (Entries[index].Type == nullptr) {
 | 
						|
      return;
 | 
						|
    } else if (type == nullptr) {
 | 
						|
      Entries[index].Type = nullptr;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // If they disagree in an ABI-agnostic way, just resolve the conflict
 | 
						|
    // arbitrarily.
 | 
						|
    if (auto entryType = getCommonType(Entries[index].Type, type)) {
 | 
						|
      Entries[index].Type = entryType;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, make the entry opaque.
 | 
						|
    Entries[index].Type = nullptr;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have an overlapping conflict of some sort.
 | 
						|
 | 
						|
  // If we have a vector type, split it.
 | 
						|
  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
 | 
						|
    auto eltTy = vecTy->getElementType();
 | 
						|
    CharUnits eltSize = (end - begin) / vecTy->getNumElements();
 | 
						|
    assert(eltSize == getTypeStoreSize(CGM, eltTy));
 | 
						|
    for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
 | 
						|
      addEntry(eltTy, begin, begin + eltSize);
 | 
						|
      begin += eltSize;
 | 
						|
    }
 | 
						|
    assert(begin == end);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the entry is a vector type, split it and try again.
 | 
						|
  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
 | 
						|
    splitVectorEntry(index);
 | 
						|
    goto restartAfterSplit;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we have no choice but to make the existing entry opaque.
 | 
						|
 | 
						|
  Entries[index].Type = nullptr;
 | 
						|
 | 
						|
  // Stretch the start of the entry to the beginning of the range.
 | 
						|
  if (begin < Entries[index].Begin) {
 | 
						|
    Entries[index].Begin = begin;
 | 
						|
    assert(index == 0 || begin >= Entries[index - 1].End);
 | 
						|
  }
 | 
						|
 | 
						|
  // Stretch the end of the entry to the end of the range; but if we run
 | 
						|
  // into the start of the next entry, just leave the range there and repeat.
 | 
						|
  while (end > Entries[index].End) {
 | 
						|
    assert(Entries[index].Type == nullptr);
 | 
						|
 | 
						|
    // If the range doesn't overlap the next entry, we're done.
 | 
						|
    if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
 | 
						|
      Entries[index].End = end;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, stretch to the start of the next entry.
 | 
						|
    Entries[index].End = Entries[index + 1].Begin;
 | 
						|
 | 
						|
    // Continue with the next entry.
 | 
						|
    index++;
 | 
						|
 | 
						|
    // This entry needs to be made opaque if it is not already.
 | 
						|
    if (Entries[index].Type == nullptr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Split vector entries unless we completely subsume them.
 | 
						|
    if (Entries[index].Type->isVectorTy() &&
 | 
						|
        end < Entries[index].End) {
 | 
						|
      splitVectorEntry(index);
 | 
						|
    }
 | 
						|
 | 
						|
    // Make the entry opaque.
 | 
						|
    Entries[index].Type = nullptr;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Replace the entry of vector type at offset 'index' with a sequence
 | 
						|
/// of its component vectors.
 | 
						|
void SwiftAggLowering::splitVectorEntry(unsigned index) {
 | 
						|
  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
 | 
						|
  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
 | 
						|
 | 
						|
  auto eltTy = split.first;
 | 
						|
  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
 | 
						|
  auto numElts = split.second;
 | 
						|
  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
 | 
						|
 | 
						|
  CharUnits begin = Entries[index].Begin;
 | 
						|
  for (unsigned i = 0; i != numElts; ++i) {
 | 
						|
    Entries[index].Type = eltTy;
 | 
						|
    Entries[index].Begin = begin;
 | 
						|
    Entries[index].End = begin + eltSize;
 | 
						|
    begin += eltSize;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Given a power-of-two unit size, return the offset of the aligned unit
 | 
						|
/// of that size which contains the given offset.
 | 
						|
///
 | 
						|
/// In other words, round down to the nearest multiple of the unit size.
 | 
						|
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
 | 
						|
  assert(isPowerOf2(unitSize.getQuantity()));
 | 
						|
  auto unitMask = ~(unitSize.getQuantity() - 1);
 | 
						|
  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
 | 
						|
}
 | 
						|
 | 
						|
static bool areBytesInSameUnit(CharUnits first, CharUnits second,
 | 
						|
                               CharUnits chunkSize) {
 | 
						|
  return getOffsetAtStartOfUnit(first, chunkSize)
 | 
						|
      == getOffsetAtStartOfUnit(second, chunkSize);
 | 
						|
}
 | 
						|
 | 
						|
static bool isMergeableEntryType(llvm::Type *type) {
 | 
						|
  // Opaquely-typed memory is always mergeable.
 | 
						|
  if (type == nullptr) return true;
 | 
						|
 | 
						|
  // Pointers and integers are always mergeable.  In theory we should not
 | 
						|
  // merge pointers, but (1) it doesn't currently matter in practice because
 | 
						|
  // the chunk size is never greater than the size of a pointer and (2)
 | 
						|
  // Swift IRGen uses integer types for a lot of things that are "really"
 | 
						|
  // just storing pointers (like Optional<SomePointer>).  If we ever have a
 | 
						|
  // target that would otherwise combine pointers, we should put some effort
 | 
						|
  // into fixing those cases in Swift IRGen and then call out pointer types
 | 
						|
  // here.
 | 
						|
 | 
						|
  // Floating-point and vector types should never be merged.
 | 
						|
  // Most such types are too large and highly-aligned to ever trigger merging
 | 
						|
  // in practice, but it's important for the rule to cover at least 'half'
 | 
						|
  // and 'float', as well as things like small vectors of 'i1' or 'i8'.
 | 
						|
  return (!type->isFloatingPointTy() && !type->isVectorTy());
 | 
						|
}
 | 
						|
 | 
						|
bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
 | 
						|
                                          const StorageEntry &second,
 | 
						|
                                          CharUnits chunkSize) {
 | 
						|
  // Only merge entries that overlap the same chunk.  We test this first
 | 
						|
  // despite being a bit more expensive because this is the condition that
 | 
						|
  // tends to prevent merging.
 | 
						|
  if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
 | 
						|
                          chunkSize))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return (isMergeableEntryType(first.Type) &&
 | 
						|
          isMergeableEntryType(second.Type));
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::finish() {
 | 
						|
  if (Entries.empty()) {
 | 
						|
    Finished = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We logically split the layout down into a series of chunks of this size,
 | 
						|
  // which is generally the size of a pointer.
 | 
						|
  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
 | 
						|
 | 
						|
  // First pass: if two entries should be merged, make them both opaque
 | 
						|
  // and stretch one to meet the next.
 | 
						|
  // Also, remember if there are any opaque entries.
 | 
						|
  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
 | 
						|
  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
 | 
						|
    if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
 | 
						|
      Entries[i - 1].Type = nullptr;
 | 
						|
      Entries[i].Type = nullptr;
 | 
						|
      Entries[i - 1].End = Entries[i].Begin;
 | 
						|
      hasOpaqueEntries = true;
 | 
						|
 | 
						|
    } else if (Entries[i].Type == nullptr) {
 | 
						|
      hasOpaqueEntries = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The rest of the algorithm leaves non-opaque entries alone, so if we
 | 
						|
  // have no opaque entries, we're done.
 | 
						|
  if (!hasOpaqueEntries) {
 | 
						|
    Finished = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, move the entries to a temporary and rebuild Entries.
 | 
						|
  auto orig = std::move(Entries);
 | 
						|
  assert(Entries.empty());
 | 
						|
 | 
						|
  for (size_t i = 0, e = orig.size(); i != e; ++i) {
 | 
						|
    // Just copy over non-opaque entries.
 | 
						|
    if (orig[i].Type != nullptr) {
 | 
						|
      Entries.push_back(orig[i]);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Scan forward to determine the full extent of the next opaque range.
 | 
						|
    // We know from the first pass that only contiguous ranges will overlap
 | 
						|
    // the same aligned chunk.
 | 
						|
    auto begin = orig[i].Begin;
 | 
						|
    auto end = orig[i].End;
 | 
						|
    while (i + 1 != e &&
 | 
						|
           orig[i + 1].Type == nullptr &&
 | 
						|
           end == orig[i + 1].Begin) {
 | 
						|
      end = orig[i + 1].End;
 | 
						|
      i++;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add an entry per intersected chunk.
 | 
						|
    do {
 | 
						|
      // Find the smallest aligned storage unit in the maximal aligned
 | 
						|
      // storage unit containing 'begin' that contains all the bytes in
 | 
						|
      // the intersection between the range and this chunk.
 | 
						|
      CharUnits localBegin = begin;
 | 
						|
      CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
 | 
						|
      CharUnits chunkEnd = chunkBegin + chunkSize;
 | 
						|
      CharUnits localEnd = std::min(end, chunkEnd);
 | 
						|
 | 
						|
      // Just do a simple loop over ever-increasing unit sizes.
 | 
						|
      CharUnits unitSize = CharUnits::One();
 | 
						|
      CharUnits unitBegin, unitEnd;
 | 
						|
      for (; ; unitSize *= 2) {
 | 
						|
        assert(unitSize <= chunkSize);
 | 
						|
        unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
 | 
						|
        unitEnd = unitBegin + unitSize;
 | 
						|
        if (unitEnd >= localEnd) break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add an entry for this unit.
 | 
						|
      auto entryTy =
 | 
						|
        llvm::IntegerType::get(CGM.getLLVMContext(),
 | 
						|
                               CGM.getContext().toBits(unitSize));
 | 
						|
      Entries.push_back({unitBegin, unitEnd, entryTy});
 | 
						|
 | 
						|
      // The next chunk starts where this chunk left off.
 | 
						|
      begin = localEnd;
 | 
						|
    } while (begin != end);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, finally finished.
 | 
						|
  Finished = true;
 | 
						|
}
 | 
						|
 | 
						|
void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
 | 
						|
  assert(Finished && "haven't yet finished lowering");
 | 
						|
 | 
						|
  for (auto &entry : Entries) {
 | 
						|
    callback(entry.Begin, entry.End, entry.Type);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::pair<llvm::StructType*, llvm::Type*>
 | 
						|
SwiftAggLowering::getCoerceAndExpandTypes() const {
 | 
						|
  assert(Finished && "haven't yet finished lowering");
 | 
						|
 | 
						|
  auto &ctx = CGM.getLLVMContext();
 | 
						|
 | 
						|
  if (Entries.empty()) {
 | 
						|
    auto type = llvm::StructType::get(ctx);
 | 
						|
    return { type, type };
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<llvm::Type*, 8> elts;
 | 
						|
  CharUnits lastEnd = CharUnits::Zero();
 | 
						|
  bool hasPadding = false;
 | 
						|
  bool packed = false;
 | 
						|
  for (auto &entry : Entries) {
 | 
						|
    if (entry.Begin != lastEnd) {
 | 
						|
      auto paddingSize = entry.Begin - lastEnd;
 | 
						|
      assert(!paddingSize.isNegative());
 | 
						|
 | 
						|
      auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
 | 
						|
                                          paddingSize.getQuantity());
 | 
						|
      elts.push_back(padding);
 | 
						|
      hasPadding = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!packed && !entry.Begin.isMultipleOf(
 | 
						|
          CharUnits::fromQuantity(
 | 
						|
            CGM.getDataLayout().getABITypeAlignment(entry.Type))))
 | 
						|
      packed = true;
 | 
						|
 | 
						|
    elts.push_back(entry.Type);
 | 
						|
 | 
						|
    lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
 | 
						|
    assert(entry.End <= lastEnd);
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't need to adjust 'packed' to deal with possible tail padding
 | 
						|
  // because we never do that kind of access through the coercion type.
 | 
						|
  auto coercionType = llvm::StructType::get(ctx, elts, packed);
 | 
						|
 | 
						|
  llvm::Type *unpaddedType = coercionType;
 | 
						|
  if (hasPadding) {
 | 
						|
    elts.clear();
 | 
						|
    for (auto &entry : Entries) {
 | 
						|
      elts.push_back(entry.Type);
 | 
						|
    }
 | 
						|
    if (elts.size() == 1) {
 | 
						|
      unpaddedType = elts[0];
 | 
						|
    } else {
 | 
						|
      unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
 | 
						|
    }
 | 
						|
  } else if (Entries.size() == 1) {
 | 
						|
    unpaddedType = Entries[0].Type;
 | 
						|
  }
 | 
						|
 | 
						|
  return { coercionType, unpaddedType };
 | 
						|
}
 | 
						|
 | 
						|
bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
 | 
						|
  assert(Finished && "haven't yet finished lowering");
 | 
						|
 | 
						|
  // Empty types don't need to be passed indirectly.
 | 
						|
  if (Entries.empty()) return false;
 | 
						|
 | 
						|
  // Avoid copying the array of types when there's just a single element.
 | 
						|
  if (Entries.size() == 1) {
 | 
						|
    return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
 | 
						|
                                                           Entries.back().Type,
 | 
						|
                                                             asReturnValue);
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<llvm::Type*, 8> componentTys;
 | 
						|
  componentTys.reserve(Entries.size());
 | 
						|
  for (auto &entry : Entries) {
 | 
						|
    componentTys.push_back(entry.Type);
 | 
						|
  }
 | 
						|
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
 | 
						|
                                                           asReturnValue);
 | 
						|
}
 | 
						|
 | 
						|
bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
 | 
						|
                                     ArrayRef<llvm::Type*> componentTys,
 | 
						|
                                     bool asReturnValue) {
 | 
						|
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
 | 
						|
                                                           asReturnValue);
 | 
						|
}
 | 
						|
 | 
						|
CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
 | 
						|
  // Currently always the size of an ordinary pointer.
 | 
						|
  return CGM.getContext().toCharUnitsFromBits(
 | 
						|
           CGM.getContext().getTargetInfo().getPointerWidth(0));
 | 
						|
}
 | 
						|
 | 
						|
CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
 | 
						|
  // For Swift's purposes, this is always just the store size of the type
 | 
						|
  // rounded up to a power of 2.
 | 
						|
  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
 | 
						|
  if (!isPowerOf2(size)) {
 | 
						|
    size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
 | 
						|
  }
 | 
						|
  assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
 | 
						|
  return CharUnits::fromQuantity(size);
 | 
						|
}
 | 
						|
 | 
						|
bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
 | 
						|
                                   llvm::IntegerType *intTy) {
 | 
						|
  auto size = intTy->getBitWidth();
 | 
						|
  switch (size) {
 | 
						|
  case 1:
 | 
						|
  case 8:
 | 
						|
  case 16:
 | 
						|
  case 32:
 | 
						|
  case 64:
 | 
						|
    // Just assume that the above are always legal.
 | 
						|
    return true;
 | 
						|
 | 
						|
  case 128:
 | 
						|
    return CGM.getContext().getTargetInfo().hasInt128Type();
 | 
						|
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
 | 
						|
                                  llvm::VectorType *vectorTy) {
 | 
						|
  return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
 | 
						|
                           vectorTy->getNumElements());
 | 
						|
}
 | 
						|
 | 
						|
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
 | 
						|
                                  llvm::Type *eltTy, unsigned numElts) {
 | 
						|
  assert(numElts > 1 && "illegal vector length");
 | 
						|
  return getSwiftABIInfo(CGM)
 | 
						|
           .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<llvm::Type*, unsigned>
 | 
						|
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
 | 
						|
                                llvm::VectorType *vectorTy) {
 | 
						|
  auto numElts = vectorTy->getNumElements();
 | 
						|
  auto eltTy = vectorTy->getElementType();
 | 
						|
 | 
						|
  // Try to split the vector type in half.
 | 
						|
  if (numElts >= 4 && isPowerOf2(numElts)) {
 | 
						|
    if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
 | 
						|
      return {llvm::VectorType::get(eltTy, numElts / 2), 2};
 | 
						|
  }
 | 
						|
 | 
						|
  return {eltTy, numElts};
 | 
						|
}
 | 
						|
 | 
						|
void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
 | 
						|
                                   llvm::VectorType *origVectorTy,
 | 
						|
                             llvm::SmallVectorImpl<llvm::Type*> &components) {
 | 
						|
  // If it's already a legal vector type, use it.
 | 
						|
  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
 | 
						|
    components.push_back(origVectorTy);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to split the vector into legal subvectors.
 | 
						|
  auto numElts = origVectorTy->getNumElements();
 | 
						|
  auto eltTy = origVectorTy->getElementType();
 | 
						|
  assert(numElts != 1);
 | 
						|
 | 
						|
  // The largest size that we're still considering making subvectors of.
 | 
						|
  // Always a power of 2.
 | 
						|
  unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
 | 
						|
  unsigned candidateNumElts = 1U << logCandidateNumElts;
 | 
						|
  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
 | 
						|
 | 
						|
  // Minor optimization: don't check the legality of this exact size twice.
 | 
						|
  if (candidateNumElts == numElts) {
 | 
						|
    logCandidateNumElts--;
 | 
						|
    candidateNumElts >>= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  CharUnits eltSize = (origVectorSize / numElts);
 | 
						|
  CharUnits candidateSize = eltSize * candidateNumElts;
 | 
						|
 | 
						|
  // The sensibility of this algorithm relies on the fact that we never
 | 
						|
  // have a legal non-power-of-2 vector size without having the power of 2
 | 
						|
  // also be legal.
 | 
						|
  while (logCandidateNumElts > 0) {
 | 
						|
    assert(candidateNumElts == 1U << logCandidateNumElts);
 | 
						|
    assert(candidateNumElts <= numElts);
 | 
						|
    assert(candidateSize == eltSize * candidateNumElts);
 | 
						|
 | 
						|
    // Skip illegal vector sizes.
 | 
						|
    if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
 | 
						|
      logCandidateNumElts--;
 | 
						|
      candidateNumElts /= 2;
 | 
						|
      candidateSize /= 2;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the right number of vectors of this size.
 | 
						|
    auto numVecs = numElts >> logCandidateNumElts;
 | 
						|
    components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
 | 
						|
    numElts -= (numVecs << logCandidateNumElts);
 | 
						|
 | 
						|
    if (numElts == 0) return;
 | 
						|
 | 
						|
    // It's possible that the number of elements remaining will be legal.
 | 
						|
    // This can happen with e.g. <7 x float> when <3 x float> is legal.
 | 
						|
    // This only needs to be separately checked if it's not a power of 2.
 | 
						|
    if (numElts > 2 && !isPowerOf2(numElts) &&
 | 
						|
        isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
 | 
						|
      components.push_back(llvm::VectorType::get(eltTy, numElts));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Bring vecSize down to something no larger than numElts.
 | 
						|
    do {
 | 
						|
      logCandidateNumElts--;
 | 
						|
      candidateNumElts /= 2;
 | 
						|
      candidateSize /= 2;
 | 
						|
    } while (candidateNumElts > numElts);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, just append a bunch of individual elements.
 | 
						|
  components.append(numElts, eltTy);
 | 
						|
}
 | 
						|
 | 
						|
bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
 | 
						|
                                         const RecordDecl *record) {
 | 
						|
  // FIXME: should we not rely on the standard computation in Sema, just in
 | 
						|
  // case we want to diverge from the platform ABI (e.g. on targets where
 | 
						|
  // that uses the MSVC rule)?
 | 
						|
  return !record->canPassInRegisters();
 | 
						|
}
 | 
						|
 | 
						|
static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
 | 
						|
                                       bool forReturn,
 | 
						|
                                       CharUnits alignmentForIndirect) {
 | 
						|
  if (lowering.empty()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  } else if (lowering.shouldPassIndirectly(forReturn)) {
 | 
						|
    return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
 | 
						|
  } else {
 | 
						|
    auto types = lowering.getCoerceAndExpandTypes();
 | 
						|
    return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
 | 
						|
                               bool forReturn) {
 | 
						|
  if (auto recordType = dyn_cast<RecordType>(type)) {
 | 
						|
    auto record = recordType->getDecl();
 | 
						|
    auto &layout = CGM.getContext().getASTRecordLayout(record);
 | 
						|
 | 
						|
    if (mustPassRecordIndirectly(CGM, record))
 | 
						|
      return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
 | 
						|
 | 
						|
    SwiftAggLowering lowering(CGM);
 | 
						|
    lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
 | 
						|
    lowering.finish();
 | 
						|
 | 
						|
    return classifyExpandedType(lowering, forReturn, layout.getAlignment());
 | 
						|
  }
 | 
						|
 | 
						|
  // Just assume that all of our target ABIs can support returning at least
 | 
						|
  // two integer or floating-point values.
 | 
						|
  if (isa<ComplexType>(type)) {
 | 
						|
    return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
 | 
						|
  }
 | 
						|
 | 
						|
  // Vector types may need to be legalized.
 | 
						|
  if (isa<VectorType>(type)) {
 | 
						|
    SwiftAggLowering lowering(CGM);
 | 
						|
    lowering.addTypedData(type, CharUnits::Zero());
 | 
						|
    lowering.finish();
 | 
						|
 | 
						|
    CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
 | 
						|
    return classifyExpandedType(lowering, forReturn, alignment);
 | 
						|
  }
 | 
						|
 | 
						|
  // Member pointer types need to be expanded, but it's a simple form of
 | 
						|
  // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
 | 
						|
  // true for this to work.
 | 
						|
 | 
						|
  // 'void' needs to be ignored.
 | 
						|
  if (type->isVoidType()) {
 | 
						|
    return ABIArgInfo::getIgnore();
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything else can be passed directly.
 | 
						|
  return ABIArgInfo::getDirect();
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
 | 
						|
  return classifyType(CGM, type, /*forReturn*/ true);
 | 
						|
}
 | 
						|
 | 
						|
ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
 | 
						|
                                           CanQualType type) {
 | 
						|
  return classifyType(CGM, type, /*forReturn*/ false);
 | 
						|
}
 | 
						|
 | 
						|
void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
 | 
						|
  auto &retInfo = FI.getReturnInfo();
 | 
						|
  retInfo = classifyReturnType(CGM, FI.getReturnType());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
 | 
						|
    auto &argInfo = FI.arg_begin()[i];
 | 
						|
    argInfo.info = classifyArgumentType(CGM, argInfo.type);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Is swifterror lowered to a register by the target ABI.
 | 
						|
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
 | 
						|
  return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
 | 
						|
}
 |