1872 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1872 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the top level handling of macro expansion for the
 | |
| // preprocessor.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Basic/Attributes.h"
 | |
| #include "clang/Basic/Builtins.h"
 | |
| #include "clang/Basic/FileManager.h"
 | |
| #include "clang/Basic/IdentifierTable.h"
 | |
| #include "clang/Basic/LLVM.h"
 | |
| #include "clang/Basic/LangOptions.h"
 | |
| #include "clang/Basic/ObjCRuntime.h"
 | |
| #include "clang/Basic/SourceLocation.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/Lex/CodeCompletionHandler.h"
 | |
| #include "clang/Lex/DirectoryLookup.h"
 | |
| #include "clang/Lex/ExternalPreprocessorSource.h"
 | |
| #include "clang/Lex/HeaderSearch.h"
 | |
| #include "clang/Lex/LexDiagnostic.h"
 | |
| #include "clang/Lex/MacroArgs.h"
 | |
| #include "clang/Lex/MacroInfo.h"
 | |
| #include "clang/Lex/Preprocessor.h"
 | |
| #include "clang/Lex/PreprocessorLexer.h"
 | |
| #include "clang/Lex/PreprocessorOptions.h"
 | |
| #include "clang/Lex/Token.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/Path.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstring>
 | |
| #include <ctime>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace clang;
 | |
| 
 | |
| MacroDirective *
 | |
| Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
 | |
|   if (!II->hadMacroDefinition())
 | |
|     return nullptr;
 | |
|   auto Pos = CurSubmoduleState->Macros.find(II);
 | |
|   return Pos == CurSubmoduleState->Macros.end() ? nullptr
 | |
|                                                 : Pos->second.getLatest();
 | |
| }
 | |
| 
 | |
| void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
 | |
|   assert(MD && "MacroDirective should be non-zero!");
 | |
|   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
 | |
| 
 | |
|   MacroState &StoredMD = CurSubmoduleState->Macros[II];
 | |
|   auto *OldMD = StoredMD.getLatest();
 | |
|   MD->setPrevious(OldMD);
 | |
|   StoredMD.setLatest(MD);
 | |
|   StoredMD.overrideActiveModuleMacros(*this, II);
 | |
| 
 | |
|   if (needModuleMacros()) {
 | |
|     // Track that we created a new macro directive, so we know we should
 | |
|     // consider building a ModuleMacro for it when we get to the end of
 | |
|     // the module.
 | |
|     PendingModuleMacroNames.push_back(II);
 | |
|   }
 | |
| 
 | |
|   // Set up the identifier as having associated macro history.
 | |
|   II->setHasMacroDefinition(true);
 | |
|   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
 | |
|     II->setHasMacroDefinition(false);
 | |
|   if (II->isFromAST())
 | |
|     II->setChangedSinceDeserialization();
 | |
| }
 | |
| 
 | |
| void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
 | |
|                                            MacroDirective *ED,
 | |
|                                            MacroDirective *MD) {
 | |
|   // Normally, when a macro is defined, it goes through appendMacroDirective()
 | |
|   // above, which chains a macro to previous defines, undefs, etc.
 | |
|   // However, in a pch, the whole macro history up to the end of the pch is
 | |
|   // stored, so ASTReader goes through this function instead.
 | |
|   // However, built-in macros are already registered in the Preprocessor
 | |
|   // ctor, and ASTWriter stops writing the macro chain at built-in macros,
 | |
|   // so in that case the chain from the pch needs to be spliced to the existing
 | |
|   // built-in.
 | |
| 
 | |
|   assert(II && MD);
 | |
|   MacroState &StoredMD = CurSubmoduleState->Macros[II];
 | |
| 
 | |
|   if (auto *OldMD = StoredMD.getLatest()) {
 | |
|     // shouldIgnoreMacro() in ASTWriter also stops at macros from the
 | |
|     // predefines buffer in module builds. However, in module builds, modules
 | |
|     // are loaded completely before predefines are processed, so StoredMD
 | |
|     // will be nullptr for them when they're loaded. StoredMD should only be
 | |
|     // non-nullptr for builtins read from a pch file.
 | |
|     assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
 | |
|            "only built-ins should have an entry here");
 | |
|     assert(!OldMD->getPrevious() && "builtin should only have a single entry");
 | |
|     ED->setPrevious(OldMD);
 | |
|     StoredMD.setLatest(MD);
 | |
|   } else {
 | |
|     StoredMD = MD;
 | |
|   }
 | |
| 
 | |
|   // Setup the identifier as having associated macro history.
 | |
|   II->setHasMacroDefinition(true);
 | |
|   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
 | |
|     II->setHasMacroDefinition(false);
 | |
| }
 | |
| 
 | |
| ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
 | |
|                                           MacroInfo *Macro,
 | |
|                                           ArrayRef<ModuleMacro *> Overrides,
 | |
|                                           bool &New) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ModuleMacro::Profile(ID, Mod, II);
 | |
| 
 | |
|   void *InsertPos;
 | |
|   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
 | |
|     New = false;
 | |
|     return MM;
 | |
|   }
 | |
| 
 | |
|   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
 | |
|   ModuleMacros.InsertNode(MM, InsertPos);
 | |
| 
 | |
|   // Each overridden macro is now overridden by one more macro.
 | |
|   bool HidAny = false;
 | |
|   for (auto *O : Overrides) {
 | |
|     HidAny |= (O->NumOverriddenBy == 0);
 | |
|     ++O->NumOverriddenBy;
 | |
|   }
 | |
| 
 | |
|   // If we were the first overrider for any macro, it's no longer a leaf.
 | |
|   auto &LeafMacros = LeafModuleMacros[II];
 | |
|   if (HidAny) {
 | |
|     LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
 | |
|                                     [](ModuleMacro *MM) {
 | |
|                                       return MM->NumOverriddenBy != 0;
 | |
|                                     }),
 | |
|                      LeafMacros.end());
 | |
|   }
 | |
| 
 | |
|   // The new macro is always a leaf macro.
 | |
|   LeafMacros.push_back(MM);
 | |
|   // The identifier now has defined macros (that may or may not be visible).
 | |
|   II->setHasMacroDefinition(true);
 | |
| 
 | |
|   New = true;
 | |
|   return MM;
 | |
| }
 | |
| 
 | |
| ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
 | |
|   llvm::FoldingSetNodeID ID;
 | |
|   ModuleMacro::Profile(ID, Mod, II);
 | |
| 
 | |
|   void *InsertPos;
 | |
|   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
 | |
| }
 | |
| 
 | |
| void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
 | |
|                                          ModuleMacroInfo &Info) {
 | |
|   assert(Info.ActiveModuleMacrosGeneration !=
 | |
|              CurSubmoduleState->VisibleModules.getGeneration() &&
 | |
|          "don't need to update this macro name info");
 | |
|   Info.ActiveModuleMacrosGeneration =
 | |
|       CurSubmoduleState->VisibleModules.getGeneration();
 | |
| 
 | |
|   auto Leaf = LeafModuleMacros.find(II);
 | |
|   if (Leaf == LeafModuleMacros.end()) {
 | |
|     // No imported macros at all: nothing to do.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Info.ActiveModuleMacros.clear();
 | |
| 
 | |
|   // Every macro that's locally overridden is overridden by a visible macro.
 | |
|   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
 | |
|   for (auto *O : Info.OverriddenMacros)
 | |
|     NumHiddenOverrides[O] = -1;
 | |
| 
 | |
|   // Collect all macros that are not overridden by a visible macro.
 | |
|   llvm::SmallVector<ModuleMacro *, 16> Worklist;
 | |
|   for (auto *LeafMM : Leaf->second) {
 | |
|     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
 | |
|     if (NumHiddenOverrides.lookup(LeafMM) == 0)
 | |
|       Worklist.push_back(LeafMM);
 | |
|   }
 | |
|   while (!Worklist.empty()) {
 | |
|     auto *MM = Worklist.pop_back_val();
 | |
|     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
 | |
|       // We only care about collecting definitions; undefinitions only act
 | |
|       // to override other definitions.
 | |
|       if (MM->getMacroInfo())
 | |
|         Info.ActiveModuleMacros.push_back(MM);
 | |
|     } else {
 | |
|       for (auto *O : MM->overrides())
 | |
|         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
 | |
|           Worklist.push_back(O);
 | |
|     }
 | |
|   }
 | |
|   // Our reverse postorder walk found the macros in reverse order.
 | |
|   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
 | |
| 
 | |
|   // Determine whether the macro name is ambiguous.
 | |
|   MacroInfo *MI = nullptr;
 | |
|   bool IsSystemMacro = true;
 | |
|   bool IsAmbiguous = false;
 | |
|   if (auto *MD = Info.MD) {
 | |
|     while (MD && isa<VisibilityMacroDirective>(MD))
 | |
|       MD = MD->getPrevious();
 | |
|     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
 | |
|       MI = DMD->getInfo();
 | |
|       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
 | |
|     }
 | |
|   }
 | |
|   for (auto *Active : Info.ActiveModuleMacros) {
 | |
|     auto *NewMI = Active->getMacroInfo();
 | |
| 
 | |
|     // Before marking the macro as ambiguous, check if this is a case where
 | |
|     // both macros are in system headers. If so, we trust that the system
 | |
|     // did not get it wrong. This also handles cases where Clang's own
 | |
|     // headers have a different spelling of certain system macros:
 | |
|     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
 | |
|     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
 | |
|     //
 | |
|     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
 | |
|     // overrides the system limits.h's macros, so there's no conflict here.
 | |
|     if (MI && NewMI != MI &&
 | |
|         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
 | |
|       IsAmbiguous = true;
 | |
|     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
 | |
|                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
 | |
|     MI = NewMI;
 | |
|   }
 | |
|   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
 | |
| }
 | |
| 
 | |
| void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
 | |
|   ArrayRef<ModuleMacro*> Leaf;
 | |
|   auto LeafIt = LeafModuleMacros.find(II);
 | |
|   if (LeafIt != LeafModuleMacros.end())
 | |
|     Leaf = LeafIt->second;
 | |
|   const MacroState *State = nullptr;
 | |
|   auto Pos = CurSubmoduleState->Macros.find(II);
 | |
|   if (Pos != CurSubmoduleState->Macros.end())
 | |
|     State = &Pos->second;
 | |
| 
 | |
|   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
 | |
|   if (State && State->isAmbiguous(*this, II))
 | |
|     llvm::errs() << " ambiguous";
 | |
|   if (State && !State->getOverriddenMacros().empty()) {
 | |
|     llvm::errs() << " overrides";
 | |
|     for (auto *O : State->getOverriddenMacros())
 | |
|       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
 | |
|   }
 | |
|   llvm::errs() << "\n";
 | |
| 
 | |
|   // Dump local macro directives.
 | |
|   for (auto *MD = State ? State->getLatest() : nullptr; MD;
 | |
|        MD = MD->getPrevious()) {
 | |
|     llvm::errs() << " ";
 | |
|     MD->dump();
 | |
|   }
 | |
| 
 | |
|   // Dump module macros.
 | |
|   llvm::DenseSet<ModuleMacro*> Active;
 | |
|   for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
 | |
|     Active.insert(MM);
 | |
|   llvm::DenseSet<ModuleMacro*> Visited;
 | |
|   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
 | |
|   while (!Worklist.empty()) {
 | |
|     auto *MM = Worklist.pop_back_val();
 | |
|     llvm::errs() << " ModuleMacro " << MM << " "
 | |
|                  << MM->getOwningModule()->getFullModuleName();
 | |
|     if (!MM->getMacroInfo())
 | |
|       llvm::errs() << " undef";
 | |
| 
 | |
|     if (Active.count(MM))
 | |
|       llvm::errs() << " active";
 | |
|     else if (!CurSubmoduleState->VisibleModules.isVisible(
 | |
|                  MM->getOwningModule()))
 | |
|       llvm::errs() << " hidden";
 | |
|     else if (MM->getMacroInfo())
 | |
|       llvm::errs() << " overridden";
 | |
| 
 | |
|     if (!MM->overrides().empty()) {
 | |
|       llvm::errs() << " overrides";
 | |
|       for (auto *O : MM->overrides()) {
 | |
|         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
 | |
|         if (Visited.insert(O).second)
 | |
|           Worklist.push_back(O);
 | |
|       }
 | |
|     }
 | |
|     llvm::errs() << "\n";
 | |
|     if (auto *MI = MM->getMacroInfo()) {
 | |
|       llvm::errs() << "  ";
 | |
|       MI->dump();
 | |
|       llvm::errs() << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RegisterBuiltinMacro - Register the specified identifier in the identifier
 | |
| /// table and mark it as a builtin macro to be expanded.
 | |
| static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
 | |
|   // Get the identifier.
 | |
|   IdentifierInfo *Id = PP.getIdentifierInfo(Name);
 | |
| 
 | |
|   // Mark it as being a macro that is builtin.
 | |
|   MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
 | |
|   MI->setIsBuiltinMacro();
 | |
|   PP.appendDefMacroDirective(Id, MI);
 | |
|   return Id;
 | |
| }
 | |
| 
 | |
| /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
 | |
| /// identifier table.
 | |
| void Preprocessor::RegisterBuiltinMacros() {
 | |
|   Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
 | |
|   Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
 | |
|   Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
 | |
|   Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
 | |
|   Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
 | |
|   Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
 | |
| 
 | |
|   // C++ Standing Document Extensions.
 | |
|   if (LangOpts.CPlusPlus)
 | |
|     Ident__has_cpp_attribute =
 | |
|         RegisterBuiltinMacro(*this, "__has_cpp_attribute");
 | |
|   else
 | |
|     Ident__has_cpp_attribute = nullptr;
 | |
| 
 | |
|   // GCC Extensions.
 | |
|   Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
 | |
|   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
 | |
|   Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
 | |
| 
 | |
|   // Microsoft Extensions.
 | |
|   if (LangOpts.MicrosoftExt) {
 | |
|     Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
 | |
|     Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
 | |
|   } else {
 | |
|     Ident__identifier = nullptr;
 | |
|     Ident__pragma = nullptr;
 | |
|   }
 | |
| 
 | |
|   // Clang Extensions.
 | |
|   Ident__FILE_NAME__      = RegisterBuiltinMacro(*this, "__FILE_NAME__");
 | |
|   Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
 | |
|   Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
 | |
|   Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
 | |
|   Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
 | |
|   if (!LangOpts.CPlusPlus)
 | |
|     Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
 | |
|   else
 | |
|     Ident__has_c_attribute = nullptr;
 | |
| 
 | |
|   Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
 | |
|   Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
 | |
|   Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
 | |
|   Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
 | |
|   Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
 | |
|   Ident__is_target_arch   = RegisterBuiltinMacro(*this, "__is_target_arch");
 | |
|   Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
 | |
|   Ident__is_target_os     = RegisterBuiltinMacro(*this, "__is_target_os");
 | |
|   Ident__is_target_environment =
 | |
|       RegisterBuiltinMacro(*this, "__is_target_environment");
 | |
| 
 | |
|   // Modules.
 | |
|   Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
 | |
|   if (!LangOpts.CurrentModule.empty())
 | |
|     Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
 | |
|   else
 | |
|     Ident__MODULE__ = nullptr;
 | |
| }
 | |
| 
 | |
| /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
 | |
| /// in its expansion, currently expands to that token literally.
 | |
| static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
 | |
|                                           const IdentifierInfo *MacroIdent,
 | |
|                                           Preprocessor &PP) {
 | |
|   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
 | |
| 
 | |
|   // If the token isn't an identifier, it's always literally expanded.
 | |
|   if (!II) return true;
 | |
| 
 | |
|   // If the information about this identifier is out of date, update it from
 | |
|   // the external source.
 | |
|   if (II->isOutOfDate())
 | |
|     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
 | |
| 
 | |
|   // If the identifier is a macro, and if that macro is enabled, it may be
 | |
|   // expanded so it's not a trivial expansion.
 | |
|   if (auto *ExpansionMI = PP.getMacroInfo(II))
 | |
|     if (ExpansionMI->isEnabled() &&
 | |
|         // Fast expanding "#define X X" is ok, because X would be disabled.
 | |
|         II != MacroIdent)
 | |
|       return false;
 | |
| 
 | |
|   // If this is an object-like macro invocation, it is safe to trivially expand
 | |
|   // it.
 | |
|   if (MI->isObjectLike()) return true;
 | |
| 
 | |
|   // If this is a function-like macro invocation, it's safe to trivially expand
 | |
|   // as long as the identifier is not a macro argument.
 | |
|   return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end();
 | |
| }
 | |
| 
 | |
| /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
 | |
| /// lexed is a '('.  If so, consume the token and return true, if not, this
 | |
| /// method should have no observable side-effect on the lexed tokens.
 | |
| bool Preprocessor::isNextPPTokenLParen() {
 | |
|   // Do some quick tests for rejection cases.
 | |
|   unsigned Val;
 | |
|   if (CurLexer)
 | |
|     Val = CurLexer->isNextPPTokenLParen();
 | |
|   else
 | |
|     Val = CurTokenLexer->isNextTokenLParen();
 | |
| 
 | |
|   if (Val == 2) {
 | |
|     // We have run off the end.  If it's a source file we don't
 | |
|     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
 | |
|     // macro stack.
 | |
|     if (CurPPLexer)
 | |
|       return false;
 | |
|     for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
 | |
|       if (Entry.TheLexer)
 | |
|         Val = Entry.TheLexer->isNextPPTokenLParen();
 | |
|       else
 | |
|         Val = Entry.TheTokenLexer->isNextTokenLParen();
 | |
| 
 | |
|       if (Val != 2)
 | |
|         break;
 | |
| 
 | |
|       // Ran off the end of a source file?
 | |
|       if (Entry.ThePPLexer)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
 | |
|   // have found something that isn't a '(' or we found the end of the
 | |
|   // translation unit.  In either case, return false.
 | |
|   return Val == 1;
 | |
| }
 | |
| 
 | |
| /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
 | |
| /// expanded as a macro, handle it and return the next token as 'Identifier'.
 | |
| bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
 | |
|                                                  const MacroDefinition &M) {
 | |
|   MacroInfo *MI = M.getMacroInfo();
 | |
| 
 | |
|   // If this is a macro expansion in the "#if !defined(x)" line for the file,
 | |
|   // then the macro could expand to different things in other contexts, we need
 | |
|   // to disable the optimization in this case.
 | |
|   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
 | |
| 
 | |
|   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
 | |
|   if (MI->isBuiltinMacro()) {
 | |
|     if (Callbacks)
 | |
|       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
 | |
|                               /*Args=*/nullptr);
 | |
|     ExpandBuiltinMacro(Identifier);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Args - If this is a function-like macro expansion, this contains,
 | |
|   /// for each macro argument, the list of tokens that were provided to the
 | |
|   /// invocation.
 | |
|   MacroArgs *Args = nullptr;
 | |
| 
 | |
|   // Remember where the end of the expansion occurred.  For an object-like
 | |
|   // macro, this is the identifier.  For a function-like macro, this is the ')'.
 | |
|   SourceLocation ExpansionEnd = Identifier.getLocation();
 | |
| 
 | |
|   // If this is a function-like macro, read the arguments.
 | |
|   if (MI->isFunctionLike()) {
 | |
|     // Remember that we are now parsing the arguments to a macro invocation.
 | |
|     // Preprocessor directives used inside macro arguments are not portable, and
 | |
|     // this enables the warning.
 | |
|     InMacroArgs = true;
 | |
|     ArgMacro = &Identifier;
 | |
| 
 | |
|     Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
 | |
| 
 | |
|     // Finished parsing args.
 | |
|     InMacroArgs = false;
 | |
|     ArgMacro = nullptr;
 | |
| 
 | |
|     // If there was an error parsing the arguments, bail out.
 | |
|     if (!Args) return true;
 | |
| 
 | |
|     ++NumFnMacroExpanded;
 | |
|   } else {
 | |
|     ++NumMacroExpanded;
 | |
|   }
 | |
| 
 | |
|   // Notice that this macro has been used.
 | |
|   markMacroAsUsed(MI);
 | |
| 
 | |
|   // Remember where the token is expanded.
 | |
|   SourceLocation ExpandLoc = Identifier.getLocation();
 | |
|   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
 | |
| 
 | |
|   if (Callbacks) {
 | |
|     if (InMacroArgs) {
 | |
|       // We can have macro expansion inside a conditional directive while
 | |
|       // reading the function macro arguments. To ensure, in that case, that
 | |
|       // MacroExpands callbacks still happen in source order, queue this
 | |
|       // callback to have it happen after the function macro callback.
 | |
|       DelayedMacroExpandsCallbacks.push_back(
 | |
|           MacroExpandsInfo(Identifier, M, ExpansionRange));
 | |
|     } else {
 | |
|       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
 | |
|       if (!DelayedMacroExpandsCallbacks.empty()) {
 | |
|         for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
 | |
|           // FIXME: We lose macro args info with delayed callback.
 | |
|           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
 | |
|                                   /*Args=*/nullptr);
 | |
|         }
 | |
|         DelayedMacroExpandsCallbacks.clear();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the macro definition is ambiguous, complain.
 | |
|   if (M.isAmbiguous()) {
 | |
|     Diag(Identifier, diag::warn_pp_ambiguous_macro)
 | |
|       << Identifier.getIdentifierInfo();
 | |
|     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
 | |
|       << Identifier.getIdentifierInfo();
 | |
|     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
 | |
|       if (OtherMI != MI)
 | |
|         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
 | |
|           << Identifier.getIdentifierInfo();
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // If we started lexing a macro, enter the macro expansion body.
 | |
| 
 | |
|   // If this macro expands to no tokens, don't bother to push it onto the
 | |
|   // expansion stack, only to take it right back off.
 | |
|   if (MI->getNumTokens() == 0) {
 | |
|     // No need for arg info.
 | |
|     if (Args) Args->destroy(*this);
 | |
| 
 | |
|     // Propagate whitespace info as if we had pushed, then popped,
 | |
|     // a macro context.
 | |
|     Identifier.setFlag(Token::LeadingEmptyMacro);
 | |
|     PropagateLineStartLeadingSpaceInfo(Identifier);
 | |
|     ++NumFastMacroExpanded;
 | |
|     return false;
 | |
|   } else if (MI->getNumTokens() == 1 &&
 | |
|              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
 | |
|                                            *this)) {
 | |
|     // Otherwise, if this macro expands into a single trivially-expanded
 | |
|     // token: expand it now.  This handles common cases like
 | |
|     // "#define VAL 42".
 | |
| 
 | |
|     // No need for arg info.
 | |
|     if (Args) Args->destroy(*this);
 | |
| 
 | |
|     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
 | |
|     // identifier to the expanded token.
 | |
|     bool isAtStartOfLine = Identifier.isAtStartOfLine();
 | |
|     bool hasLeadingSpace = Identifier.hasLeadingSpace();
 | |
| 
 | |
|     // Replace the result token.
 | |
|     Identifier = MI->getReplacementToken(0);
 | |
| 
 | |
|     // Restore the StartOfLine/LeadingSpace markers.
 | |
|     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
 | |
|     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
 | |
| 
 | |
|     // Update the tokens location to include both its expansion and physical
 | |
|     // locations.
 | |
|     SourceLocation Loc =
 | |
|       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
 | |
|                                    ExpansionEnd,Identifier.getLength());
 | |
|     Identifier.setLocation(Loc);
 | |
| 
 | |
|     // If this is a disabled macro or #define X X, we must mark the result as
 | |
|     // unexpandable.
 | |
|     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
 | |
|       if (MacroInfo *NewMI = getMacroInfo(NewII))
 | |
|         if (!NewMI->isEnabled() || NewMI == MI) {
 | |
|           Identifier.setFlag(Token::DisableExpand);
 | |
|           // Don't warn for "#define X X" like "#define bool bool" from
 | |
|           // stdbool.h.
 | |
|           if (NewMI != MI || MI->isFunctionLike())
 | |
|             Diag(Identifier, diag::pp_disabled_macro_expansion);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Since this is not an identifier token, it can't be macro expanded, so
 | |
|     // we're done.
 | |
|     ++NumFastMacroExpanded;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Start expanding the macro.
 | |
|   EnterMacro(Identifier, ExpansionEnd, MI, Args);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| enum Bracket {
 | |
|   Brace,
 | |
|   Paren
 | |
| };
 | |
| 
 | |
| /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
 | |
| /// token vector are properly nested.
 | |
| static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
 | |
|   SmallVector<Bracket, 8> Brackets;
 | |
|   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
 | |
|                                               E = Tokens.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->is(tok::l_paren)) {
 | |
|       Brackets.push_back(Paren);
 | |
|     } else if (I->is(tok::r_paren)) {
 | |
|       if (Brackets.empty() || Brackets.back() == Brace)
 | |
|         return false;
 | |
|       Brackets.pop_back();
 | |
|     } else if (I->is(tok::l_brace)) {
 | |
|       Brackets.push_back(Brace);
 | |
|     } else if (I->is(tok::r_brace)) {
 | |
|       if (Brackets.empty() || Brackets.back() == Paren)
 | |
|         return false;
 | |
|       Brackets.pop_back();
 | |
|     }
 | |
|   }
 | |
|   return Brackets.empty();
 | |
| }
 | |
| 
 | |
| /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
 | |
| /// vector of tokens in NewTokens.  The new number of arguments will be placed
 | |
| /// in NumArgs and the ranges which need to surrounded in parentheses will be
 | |
| /// in ParenHints.
 | |
| /// Returns false if the token stream cannot be changed.  If this is because
 | |
| /// of an initializer list starting a macro argument, the range of those
 | |
| /// initializer lists will be place in InitLists.
 | |
| static bool GenerateNewArgTokens(Preprocessor &PP,
 | |
|                                  SmallVectorImpl<Token> &OldTokens,
 | |
|                                  SmallVectorImpl<Token> &NewTokens,
 | |
|                                  unsigned &NumArgs,
 | |
|                                  SmallVectorImpl<SourceRange> &ParenHints,
 | |
|                                  SmallVectorImpl<SourceRange> &InitLists) {
 | |
|   if (!CheckMatchedBrackets(OldTokens))
 | |
|     return false;
 | |
| 
 | |
|   // Once it is known that the brackets are matched, only a simple count of the
 | |
|   // braces is needed.
 | |
|   unsigned Braces = 0;
 | |
| 
 | |
|   // First token of a new macro argument.
 | |
|   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
 | |
| 
 | |
|   // First closing brace in a new macro argument.  Used to generate
 | |
|   // SourceRanges for InitLists.
 | |
|   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
 | |
|   NumArgs = 0;
 | |
|   Token TempToken;
 | |
|   // Set to true when a macro separator token is found inside a braced list.
 | |
|   // If true, the fixed argument spans multiple old arguments and ParenHints
 | |
|   // will be updated.
 | |
|   bool FoundSeparatorToken = false;
 | |
|   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
 | |
|                                         E = OldTokens.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->is(tok::l_brace)) {
 | |
|       ++Braces;
 | |
|     } else if (I->is(tok::r_brace)) {
 | |
|       --Braces;
 | |
|       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
 | |
|         ClosingBrace = I;
 | |
|     } else if (I->is(tok::eof)) {
 | |
|       // EOF token is used to separate macro arguments
 | |
|       if (Braces != 0) {
 | |
|         // Assume comma separator is actually braced list separator and change
 | |
|         // it back to a comma.
 | |
|         FoundSeparatorToken = true;
 | |
|         I->setKind(tok::comma);
 | |
|         I->setLength(1);
 | |
|       } else { // Braces == 0
 | |
|         // Separator token still separates arguments.
 | |
|         ++NumArgs;
 | |
| 
 | |
|         // If the argument starts with a brace, it can't be fixed with
 | |
|         // parentheses.  A different diagnostic will be given.
 | |
|         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
 | |
|           InitLists.push_back(
 | |
|               SourceRange(ArgStartIterator->getLocation(),
 | |
|                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
 | |
|           ClosingBrace = E;
 | |
|         }
 | |
| 
 | |
|         // Add left paren
 | |
|         if (FoundSeparatorToken) {
 | |
|           TempToken.startToken();
 | |
|           TempToken.setKind(tok::l_paren);
 | |
|           TempToken.setLocation(ArgStartIterator->getLocation());
 | |
|           TempToken.setLength(0);
 | |
|           NewTokens.push_back(TempToken);
 | |
|         }
 | |
| 
 | |
|         // Copy over argument tokens
 | |
|         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
 | |
| 
 | |
|         // Add right paren and store the paren locations in ParenHints
 | |
|         if (FoundSeparatorToken) {
 | |
|           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
 | |
|           TempToken.startToken();
 | |
|           TempToken.setKind(tok::r_paren);
 | |
|           TempToken.setLocation(Loc);
 | |
|           TempToken.setLength(0);
 | |
|           NewTokens.push_back(TempToken);
 | |
|           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
 | |
|                                            Loc));
 | |
|         }
 | |
| 
 | |
|         // Copy separator token
 | |
|         NewTokens.push_back(*I);
 | |
| 
 | |
|         // Reset values
 | |
|         ArgStartIterator = I + 1;
 | |
|         FoundSeparatorToken = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return !ParenHints.empty() && InitLists.empty();
 | |
| }
 | |
| 
 | |
| /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
 | |
| /// token is the '(' of the macro, this method is invoked to read all of the
 | |
| /// actual arguments specified for the macro invocation.  This returns null on
 | |
| /// error.
 | |
| MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
 | |
|                                                    MacroInfo *MI,
 | |
|                                                    SourceLocation &MacroEnd) {
 | |
|   // The number of fixed arguments to parse.
 | |
|   unsigned NumFixedArgsLeft = MI->getNumParams();
 | |
|   bool isVariadic = MI->isVariadic();
 | |
| 
 | |
|   // Outer loop, while there are more arguments, keep reading them.
 | |
|   Token Tok;
 | |
| 
 | |
|   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
 | |
|   // an argument value in a macro could expand to ',' or '(' or ')'.
 | |
|   LexUnexpandedToken(Tok);
 | |
|   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
 | |
| 
 | |
|   // ArgTokens - Build up a list of tokens that make up each argument.  Each
 | |
|   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
 | |
|   // heap allocations in the common case.
 | |
|   SmallVector<Token, 64> ArgTokens;
 | |
|   bool ContainsCodeCompletionTok = false;
 | |
|   bool FoundElidedComma = false;
 | |
| 
 | |
|   SourceLocation TooManyArgsLoc;
 | |
| 
 | |
|   unsigned NumActuals = 0;
 | |
|   while (Tok.isNot(tok::r_paren)) {
 | |
|     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
 | |
|       break;
 | |
| 
 | |
|     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
 | |
|            "only expect argument separators here");
 | |
| 
 | |
|     size_t ArgTokenStart = ArgTokens.size();
 | |
|     SourceLocation ArgStartLoc = Tok.getLocation();
 | |
| 
 | |
|     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
 | |
|     // that we already consumed the first one.
 | |
|     unsigned NumParens = 0;
 | |
| 
 | |
|     while (true) {
 | |
|       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
 | |
|       // an argument value in a macro could expand to ',' or '(' or ')'.
 | |
|       LexUnexpandedToken(Tok);
 | |
| 
 | |
|       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
 | |
|         if (!ContainsCodeCompletionTok) {
 | |
|           Diag(MacroName, diag::err_unterm_macro_invoc);
 | |
|           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | |
|             << MacroName.getIdentifierInfo();
 | |
|           // Do not lose the EOF/EOD.  Return it to the client.
 | |
|           MacroName = Tok;
 | |
|           return nullptr;
 | |
|         }
 | |
|         // Do not lose the EOF/EOD.
 | |
|         auto Toks = std::make_unique<Token[]>(1);
 | |
|         Toks[0] = Tok;
 | |
|         EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
 | |
|         break;
 | |
|       } else if (Tok.is(tok::r_paren)) {
 | |
|         // If we found the ) token, the macro arg list is done.
 | |
|         if (NumParens-- == 0) {
 | |
|           MacroEnd = Tok.getLocation();
 | |
|           if (!ArgTokens.empty() &&
 | |
|               ArgTokens.back().commaAfterElided()) {
 | |
|             FoundElidedComma = true;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       } else if (Tok.is(tok::l_paren)) {
 | |
|         ++NumParens;
 | |
|       } else if (Tok.is(tok::comma)) {
 | |
|         // In Microsoft-compatibility mode, single commas from nested macro
 | |
|         // expansions should not be considered as argument separators. We test
 | |
|         // for this with the IgnoredComma token flag.
 | |
|         if (Tok.getFlags() & Token::IgnoredComma) {
 | |
|           // However, in MSVC's preprocessor, subsequent expansions do treat
 | |
|           // these commas as argument separators. This leads to a common
 | |
|           // workaround used in macros that need to work in both MSVC and
 | |
|           // compliant preprocessors. Therefore, the IgnoredComma flag can only
 | |
|           // apply once to any given token.
 | |
|           Tok.clearFlag(Token::IgnoredComma);
 | |
|         } else if (NumParens == 0) {
 | |
|           // Comma ends this argument if there are more fixed arguments
 | |
|           // expected. However, if this is a variadic macro, and this is part of
 | |
|           // the variadic part, then the comma is just an argument token.
 | |
|           if (!isVariadic)
 | |
|             break;
 | |
|           if (NumFixedArgsLeft > 1)
 | |
|             break;
 | |
|         }
 | |
|       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
 | |
|         // If this is a comment token in the argument list and we're just in
 | |
|         // -C mode (not -CC mode), discard the comment.
 | |
|         continue;
 | |
|       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
 | |
|         // Reading macro arguments can cause macros that we are currently
 | |
|         // expanding from to be popped off the expansion stack.  Doing so causes
 | |
|         // them to be reenabled for expansion.  Here we record whether any
 | |
|         // identifiers we lex as macro arguments correspond to disabled macros.
 | |
|         // If so, we mark the token as noexpand.  This is a subtle aspect of
 | |
|         // C99 6.10.3.4p2.
 | |
|         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
 | |
|           if (!MI->isEnabled())
 | |
|             Tok.setFlag(Token::DisableExpand);
 | |
|       } else if (Tok.is(tok::code_completion)) {
 | |
|         ContainsCodeCompletionTok = true;
 | |
|         if (CodeComplete)
 | |
|           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
 | |
|                                                   MI, NumActuals);
 | |
|         // Don't mark that we reached the code-completion point because the
 | |
|         // parser is going to handle the token and there will be another
 | |
|         // code-completion callback.
 | |
|       }
 | |
| 
 | |
|       ArgTokens.push_back(Tok);
 | |
|     }
 | |
| 
 | |
|     // If this was an empty argument list foo(), don't add this as an empty
 | |
|     // argument.
 | |
|     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
 | |
|       break;
 | |
| 
 | |
|     // If this is not a variadic macro, and too many args were specified, emit
 | |
|     // an error.
 | |
|     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
 | |
|       if (ArgTokens.size() != ArgTokenStart)
 | |
|         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
 | |
|       else
 | |
|         TooManyArgsLoc = ArgStartLoc;
 | |
|     }
 | |
| 
 | |
|     // Empty arguments are standard in C99 and C++0x, and are supported as an
 | |
|     // extension in other modes.
 | |
|     if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
 | |
|       Diag(Tok, LangOpts.CPlusPlus11 ?
 | |
|            diag::warn_cxx98_compat_empty_fnmacro_arg :
 | |
|            diag::ext_empty_fnmacro_arg);
 | |
| 
 | |
|     // Add a marker EOF token to the end of the token list for this argument.
 | |
|     Token EOFTok;
 | |
|     EOFTok.startToken();
 | |
|     EOFTok.setKind(tok::eof);
 | |
|     EOFTok.setLocation(Tok.getLocation());
 | |
|     EOFTok.setLength(0);
 | |
|     ArgTokens.push_back(EOFTok);
 | |
|     ++NumActuals;
 | |
|     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
 | |
|       --NumFixedArgsLeft;
 | |
|   }
 | |
| 
 | |
|   // Okay, we either found the r_paren.  Check to see if we parsed too few
 | |
|   // arguments.
 | |
|   unsigned MinArgsExpected = MI->getNumParams();
 | |
| 
 | |
|   // If this is not a variadic macro, and too many args were specified, emit
 | |
|   // an error.
 | |
|   if (!isVariadic && NumActuals > MinArgsExpected &&
 | |
|       !ContainsCodeCompletionTok) {
 | |
|     // Emit the diagnostic at the macro name in case there is a missing ).
 | |
|     // Emitting it at the , could be far away from the macro name.
 | |
|     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
 | |
|     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | |
|       << MacroName.getIdentifierInfo();
 | |
| 
 | |
|     // Commas from braced initializer lists will be treated as argument
 | |
|     // separators inside macros.  Attempt to correct for this with parentheses.
 | |
|     // TODO: See if this can be generalized to angle brackets for templates
 | |
|     // inside macro arguments.
 | |
| 
 | |
|     SmallVector<Token, 4> FixedArgTokens;
 | |
|     unsigned FixedNumArgs = 0;
 | |
|     SmallVector<SourceRange, 4> ParenHints, InitLists;
 | |
|     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
 | |
|                               ParenHints, InitLists)) {
 | |
|       if (!InitLists.empty()) {
 | |
|         DiagnosticBuilder DB =
 | |
|             Diag(MacroName,
 | |
|                  diag::note_init_list_at_beginning_of_macro_argument);
 | |
|         for (SourceRange Range : InitLists)
 | |
|           DB << Range;
 | |
|       }
 | |
|       return nullptr;
 | |
|     }
 | |
|     if (FixedNumArgs != MinArgsExpected)
 | |
|       return nullptr;
 | |
| 
 | |
|     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
 | |
|     for (SourceRange ParenLocation : ParenHints) {
 | |
|       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
 | |
|       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
 | |
|     }
 | |
|     ArgTokens.swap(FixedArgTokens);
 | |
|     NumActuals = FixedNumArgs;
 | |
|   }
 | |
| 
 | |
|   // See MacroArgs instance var for description of this.
 | |
|   bool isVarargsElided = false;
 | |
| 
 | |
|   if (ContainsCodeCompletionTok) {
 | |
|     // Recover from not-fully-formed macro invocation during code-completion.
 | |
|     Token EOFTok;
 | |
|     EOFTok.startToken();
 | |
|     EOFTok.setKind(tok::eof);
 | |
|     EOFTok.setLocation(Tok.getLocation());
 | |
|     EOFTok.setLength(0);
 | |
|     for (; NumActuals < MinArgsExpected; ++NumActuals)
 | |
|       ArgTokens.push_back(EOFTok);
 | |
|   }
 | |
| 
 | |
|   if (NumActuals < MinArgsExpected) {
 | |
|     // There are several cases where too few arguments is ok, handle them now.
 | |
|     if (NumActuals == 0 && MinArgsExpected == 1) {
 | |
|       // #define A(X)  or  #define A(...)   ---> A()
 | |
| 
 | |
|       // If there is exactly one argument, and that argument is missing,
 | |
|       // then we have an empty "()" argument empty list.  This is fine, even if
 | |
|       // the macro expects one argument (the argument is just empty).
 | |
|       isVarargsElided = MI->isVariadic();
 | |
|     } else if ((FoundElidedComma || MI->isVariadic()) &&
 | |
|                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
 | |
|                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
 | |
|       // Varargs where the named vararg parameter is missing: OK as extension.
 | |
|       //   #define A(x, ...)
 | |
|       //   A("blah")
 | |
|       //
 | |
|       // If the macro contains the comma pasting extension, the diagnostic
 | |
|       // is suppressed; we know we'll get another diagnostic later.
 | |
|       if (!MI->hasCommaPasting()) {
 | |
|         Diag(Tok, diag::ext_missing_varargs_arg);
 | |
|         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | |
|           << MacroName.getIdentifierInfo();
 | |
|       }
 | |
| 
 | |
|       // Remember this occurred, allowing us to elide the comma when used for
 | |
|       // cases like:
 | |
|       //   #define A(x, foo...) blah(a, ## foo)
 | |
|       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
 | |
|       //   #define C(...) blah(a, ## __VA_ARGS__)
 | |
|       //  A(x) B(x) C()
 | |
|       isVarargsElided = true;
 | |
|     } else if (!ContainsCodeCompletionTok) {
 | |
|       // Otherwise, emit the error.
 | |
|       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
 | |
|       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | |
|         << MacroName.getIdentifierInfo();
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // Add a marker EOF token to the end of the token list for this argument.
 | |
|     SourceLocation EndLoc = Tok.getLocation();
 | |
|     Tok.startToken();
 | |
|     Tok.setKind(tok::eof);
 | |
|     Tok.setLocation(EndLoc);
 | |
|     Tok.setLength(0);
 | |
|     ArgTokens.push_back(Tok);
 | |
| 
 | |
|     // If we expect two arguments, add both as empty.
 | |
|     if (NumActuals == 0 && MinArgsExpected == 2)
 | |
|       ArgTokens.push_back(Tok);
 | |
| 
 | |
|   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
 | |
|              !ContainsCodeCompletionTok) {
 | |
|     // Emit the diagnostic at the macro name in case there is a missing ).
 | |
|     // Emitting it at the , could be far away from the macro name.
 | |
|     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
 | |
|     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
 | |
|       << MacroName.getIdentifierInfo();
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
 | |
| }
 | |
| 
 | |
| /// Keeps macro expanded tokens for TokenLexers.
 | |
| //
 | |
| /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
 | |
| /// going to lex in the cache and when it finishes the tokens are removed
 | |
| /// from the end of the cache.
 | |
| Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
 | |
|                                               ArrayRef<Token> tokens) {
 | |
|   assert(tokLexer);
 | |
|   if (tokens.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   size_t newIndex = MacroExpandedTokens.size();
 | |
|   bool cacheNeedsToGrow = tokens.size() >
 | |
|                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
 | |
|   MacroExpandedTokens.append(tokens.begin(), tokens.end());
 | |
| 
 | |
|   if (cacheNeedsToGrow) {
 | |
|     // Go through all the TokenLexers whose 'Tokens' pointer points in the
 | |
|     // buffer and update the pointers to the (potential) new buffer array.
 | |
|     for (const auto &Lexer : MacroExpandingLexersStack) {
 | |
|       TokenLexer *prevLexer;
 | |
|       size_t tokIndex;
 | |
|       std::tie(prevLexer, tokIndex) = Lexer;
 | |
|       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
 | |
|   return MacroExpandedTokens.data() + newIndex;
 | |
| }
 | |
| 
 | |
| void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
 | |
|   assert(!MacroExpandingLexersStack.empty());
 | |
|   size_t tokIndex = MacroExpandingLexersStack.back().second;
 | |
|   assert(tokIndex < MacroExpandedTokens.size());
 | |
|   // Pop the cached macro expanded tokens from the end.
 | |
|   MacroExpandedTokens.resize(tokIndex);
 | |
|   MacroExpandingLexersStack.pop_back();
 | |
| }
 | |
| 
 | |
| /// ComputeDATE_TIME - Compute the current time, enter it into the specified
 | |
| /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
 | |
| /// the identifier tokens inserted.
 | |
| static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
 | |
|                              Preprocessor &PP) {
 | |
|   time_t TT = time(nullptr);
 | |
|   struct tm *TM = localtime(&TT);
 | |
| 
 | |
|   static const char * const Months[] = {
 | |
|     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
 | |
|   };
 | |
| 
 | |
|   {
 | |
|     SmallString<32> TmpBuffer;
 | |
|     llvm::raw_svector_ostream TmpStream(TmpBuffer);
 | |
|     TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
 | |
|                               TM->tm_mday, TM->tm_year + 1900);
 | |
|     Token TmpTok;
 | |
|     TmpTok.startToken();
 | |
|     PP.CreateString(TmpStream.str(), TmpTok);
 | |
|     DATELoc = TmpTok.getLocation();
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     SmallString<32> TmpBuffer;
 | |
|     llvm::raw_svector_ostream TmpStream(TmpBuffer);
 | |
|     TmpStream << llvm::format("\"%02d:%02d:%02d\"",
 | |
|                               TM->tm_hour, TM->tm_min, TM->tm_sec);
 | |
|     Token TmpTok;
 | |
|     TmpTok.startToken();
 | |
|     PP.CreateString(TmpStream.str(), TmpTok);
 | |
|     TIMELoc = TmpTok.getLocation();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HasFeature - Return true if we recognize and implement the feature
 | |
| /// specified by the identifier as a standard language feature.
 | |
| static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
 | |
|   const LangOptions &LangOpts = PP.getLangOpts();
 | |
| 
 | |
|   // Normalize the feature name, __foo__ becomes foo.
 | |
|   if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
 | |
|     Feature = Feature.substr(2, Feature.size() - 4);
 | |
| 
 | |
| #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
 | |
|   return llvm::StringSwitch<bool>(Feature)
 | |
| #include "clang/Basic/Features.def"
 | |
|       .Default(false);
 | |
| #undef FEATURE
 | |
| }
 | |
| 
 | |
| /// HasExtension - Return true if we recognize and implement the feature
 | |
| /// specified by the identifier, either as an extension or a standard language
 | |
| /// feature.
 | |
| static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
 | |
|   if (HasFeature(PP, Extension))
 | |
|     return true;
 | |
| 
 | |
|   // If the use of an extension results in an error diagnostic, extensions are
 | |
|   // effectively unavailable, so just return false here.
 | |
|   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
 | |
|       diag::Severity::Error)
 | |
|     return false;
 | |
| 
 | |
|   const LangOptions &LangOpts = PP.getLangOpts();
 | |
| 
 | |
|   // Normalize the extension name, __foo__ becomes foo.
 | |
|   if (Extension.startswith("__") && Extension.endswith("__") &&
 | |
|       Extension.size() >= 4)
 | |
|     Extension = Extension.substr(2, Extension.size() - 4);
 | |
| 
 | |
|     // Because we inherit the feature list from HasFeature, this string switch
 | |
|     // must be less restrictive than HasFeature's.
 | |
| #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
 | |
|   return llvm::StringSwitch<bool>(Extension)
 | |
| #include "clang/Basic/Features.def"
 | |
|       .Default(false);
 | |
| #undef EXTENSION
 | |
| }
 | |
| 
 | |
| /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
 | |
| /// or '__has_include_next("path")' expression.
 | |
| /// Returns true if successful.
 | |
| static bool EvaluateHasIncludeCommon(Token &Tok,
 | |
|                                      IdentifierInfo *II, Preprocessor &PP,
 | |
|                                      const DirectoryLookup *LookupFrom,
 | |
|                                      const FileEntry *LookupFromFile) {
 | |
|   // Save the location of the current token.  If a '(' is later found, use
 | |
|   // that location.  If not, use the end of this location instead.
 | |
|   SourceLocation LParenLoc = Tok.getLocation();
 | |
| 
 | |
|   // These expressions are only allowed within a preprocessor directive.
 | |
|   if (!PP.isParsingIfOrElifDirective()) {
 | |
|     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
 | |
|     // Return a valid identifier token.
 | |
|     assert(Tok.is(tok::identifier));
 | |
|     Tok.setIdentifierInfo(II);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Get '('. If we don't have a '(', try to form a header-name token.
 | |
|   do {
 | |
|     if (PP.LexHeaderName(Tok))
 | |
|       return false;
 | |
|   } while (Tok.getKind() == tok::comment);
 | |
| 
 | |
|   // Ensure we have a '('.
 | |
|   if (Tok.isNot(tok::l_paren)) {
 | |
|     // No '(', use end of last token.
 | |
|     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
 | |
|     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
 | |
|     // If the next token looks like a filename or the start of one,
 | |
|     // assume it is and process it as such.
 | |
|     if (Tok.isNot(tok::header_name))
 | |
|       return false;
 | |
|   } else {
 | |
|     // Save '(' location for possible missing ')' message.
 | |
|     LParenLoc = Tok.getLocation();
 | |
|     if (PP.LexHeaderName(Tok))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (Tok.isNot(tok::header_name)) {
 | |
|     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Reserve a buffer to get the spelling.
 | |
|   SmallString<128> FilenameBuffer;
 | |
|   bool Invalid = false;
 | |
|   StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
 | |
|   if (Invalid)
 | |
|     return false;
 | |
| 
 | |
|   SourceLocation FilenameLoc = Tok.getLocation();
 | |
| 
 | |
|   // Get ')'.
 | |
|   PP.LexNonComment(Tok);
 | |
| 
 | |
|   // Ensure we have a trailing ).
 | |
|   if (Tok.isNot(tok::r_paren)) {
 | |
|     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
 | |
|         << II << tok::r_paren;
 | |
|     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
 | |
|   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
 | |
|   // error.
 | |
|   if (Filename.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Search include directories.
 | |
|   const DirectoryLookup *CurDir;
 | |
|   Optional<FileEntryRef> File =
 | |
|       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
 | |
|                     CurDir, nullptr, nullptr, nullptr, nullptr, nullptr);
 | |
| 
 | |
|   if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
 | |
|     SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
 | |
|     if (File)
 | |
|       FileType =
 | |
|           PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry());
 | |
|     Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
 | |
|   }
 | |
| 
 | |
|   // Get the result value.  A result of true means the file exists.
 | |
|   return File.hasValue();
 | |
| }
 | |
| 
 | |
| /// EvaluateHasInclude - Process a '__has_include("path")' expression.
 | |
| /// Returns true if successful.
 | |
| static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
 | |
|                                Preprocessor &PP) {
 | |
|   return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
 | |
| }
 | |
| 
 | |
| /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
 | |
| /// Returns true if successful.
 | |
| static bool EvaluateHasIncludeNext(Token &Tok,
 | |
|                                    IdentifierInfo *II, Preprocessor &PP) {
 | |
|   // __has_include_next is like __has_include, except that we start
 | |
|   // searching after the current found directory.  If we can't do this,
 | |
|   // issue a diagnostic.
 | |
|   // FIXME: Factor out duplication with
 | |
|   // Preprocessor::HandleIncludeNextDirective.
 | |
|   const DirectoryLookup *Lookup = PP.GetCurDirLookup();
 | |
|   const FileEntry *LookupFromFile = nullptr;
 | |
|   if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) {
 | |
|     // If the main file is a header, then it's either for PCH/AST generation,
 | |
|     // or libclang opened it. Either way, handle it as a normal include below
 | |
|     // and do not complain about __has_include_next.
 | |
|   } else if (PP.isInPrimaryFile()) {
 | |
|     Lookup = nullptr;
 | |
|     PP.Diag(Tok, diag::pp_include_next_in_primary);
 | |
|   } else if (PP.getCurrentLexerSubmodule()) {
 | |
|     // Start looking up in the directory *after* the one in which the current
 | |
|     // file would be found, if any.
 | |
|     assert(PP.getCurrentLexer() && "#include_next directive in macro?");
 | |
|     LookupFromFile = PP.getCurrentLexer()->getFileEntry();
 | |
|     Lookup = nullptr;
 | |
|   } else if (!Lookup) {
 | |
|     PP.Diag(Tok, diag::pp_include_next_absolute_path);
 | |
|   } else {
 | |
|     // Start looking up in the next directory.
 | |
|     ++Lookup;
 | |
|   }
 | |
| 
 | |
|   return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
 | |
| }
 | |
| 
 | |
| /// Process single-argument builtin feature-like macros that return
 | |
| /// integer values.
 | |
| static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
 | |
|                                             Token &Tok, IdentifierInfo *II,
 | |
|                                             Preprocessor &PP,
 | |
|                                             llvm::function_ref<
 | |
|                                               int(Token &Tok,
 | |
|                                                   bool &HasLexedNextTok)> Op) {
 | |
|   // Parse the initial '('.
 | |
|   PP.LexUnexpandedToken(Tok);
 | |
|   if (Tok.isNot(tok::l_paren)) {
 | |
|     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
 | |
|                                                             << tok::l_paren;
 | |
| 
 | |
|     // Provide a dummy '0' value on output stream to elide further errors.
 | |
|     if (!Tok.isOneOf(tok::eof, tok::eod)) {
 | |
|       OS << 0;
 | |
|       Tok.setKind(tok::numeric_constant);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned ParenDepth = 1;
 | |
|   SourceLocation LParenLoc = Tok.getLocation();
 | |
|   llvm::Optional<int> Result;
 | |
| 
 | |
|   Token ResultTok;
 | |
|   bool SuppressDiagnostic = false;
 | |
|   while (true) {
 | |
|     // Parse next token.
 | |
|     PP.LexUnexpandedToken(Tok);
 | |
| 
 | |
| already_lexed:
 | |
|     switch (Tok.getKind()) {
 | |
|       case tok::eof:
 | |
|       case tok::eod:
 | |
|         // Don't provide even a dummy value if the eod or eof marker is
 | |
|         // reached.  Simply provide a diagnostic.
 | |
|         PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
 | |
|         return;
 | |
| 
 | |
|       case tok::comma:
 | |
|         if (!SuppressDiagnostic) {
 | |
|           PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
 | |
|           SuppressDiagnostic = true;
 | |
|         }
 | |
|         continue;
 | |
| 
 | |
|       case tok::l_paren:
 | |
|         ++ParenDepth;
 | |
|         if (Result.hasValue())
 | |
|           break;
 | |
|         if (!SuppressDiagnostic) {
 | |
|           PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
 | |
|           SuppressDiagnostic = true;
 | |
|         }
 | |
|         continue;
 | |
| 
 | |
|       case tok::r_paren:
 | |
|         if (--ParenDepth > 0)
 | |
|           continue;
 | |
| 
 | |
|         // The last ')' has been reached; return the value if one found or
 | |
|         // a diagnostic and a dummy value.
 | |
|         if (Result.hasValue()) {
 | |
|           OS << Result.getValue();
 | |
|           // For strict conformance to __has_cpp_attribute rules, use 'L'
 | |
|           // suffix for dated literals.
 | |
|           if (Result.getValue() > 1)
 | |
|             OS << 'L';
 | |
|         } else {
 | |
|           OS << 0;
 | |
|           if (!SuppressDiagnostic)
 | |
|             PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
 | |
|         }
 | |
|         Tok.setKind(tok::numeric_constant);
 | |
|         return;
 | |
| 
 | |
|       default: {
 | |
|         // Parse the macro argument, if one not found so far.
 | |
|         if (Result.hasValue())
 | |
|           break;
 | |
| 
 | |
|         bool HasLexedNextToken = false;
 | |
|         Result = Op(Tok, HasLexedNextToken);
 | |
|         ResultTok = Tok;
 | |
|         if (HasLexedNextToken)
 | |
|           goto already_lexed;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Diagnose missing ')'.
 | |
|     if (!SuppressDiagnostic) {
 | |
|       if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
 | |
|         if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
 | |
|           Diag << LastII;
 | |
|         else
 | |
|           Diag << ResultTok.getKind();
 | |
|         Diag << tok::r_paren << ResultTok.getLocation();
 | |
|       }
 | |
|       PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
 | |
|       SuppressDiagnostic = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Helper function to return the IdentifierInfo structure of a Token
 | |
| /// or generate a diagnostic if none available.
 | |
| static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
 | |
|                                                    Preprocessor &PP,
 | |
|                                                    signed DiagID) {
 | |
|   IdentifierInfo *II;
 | |
|   if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
 | |
|     return II;
 | |
| 
 | |
|   PP.Diag(Tok.getLocation(), DiagID);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Implements the __is_target_arch builtin macro.
 | |
| static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
 | |
|   std::string ArchName = II->getName().lower() + "--";
 | |
|   llvm::Triple Arch(ArchName);
 | |
|   const llvm::Triple &TT = TI.getTriple();
 | |
|   if (TT.isThumb()) {
 | |
|     // arm matches thumb or thumbv7. armv7 matches thumbv7.
 | |
|     if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
 | |
|          Arch.getSubArch() == TT.getSubArch()) &&
 | |
|         ((TT.getArch() == llvm::Triple::thumb &&
 | |
|           Arch.getArch() == llvm::Triple::arm) ||
 | |
|          (TT.getArch() == llvm::Triple::thumbeb &&
 | |
|           Arch.getArch() == llvm::Triple::armeb)))
 | |
|       return true;
 | |
|   }
 | |
|   // Check the parsed arch when it has no sub arch to allow Clang to
 | |
|   // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
 | |
|   return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
 | |
|           Arch.getSubArch() == TT.getSubArch()) &&
 | |
|          Arch.getArch() == TT.getArch();
 | |
| }
 | |
| 
 | |
| /// Implements the __is_target_vendor builtin macro.
 | |
| static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
 | |
|   StringRef VendorName = TI.getTriple().getVendorName();
 | |
|   if (VendorName.empty())
 | |
|     VendorName = "unknown";
 | |
|   return VendorName.equals_lower(II->getName());
 | |
| }
 | |
| 
 | |
| /// Implements the __is_target_os builtin macro.
 | |
| static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
 | |
|   std::string OSName =
 | |
|       (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
 | |
|   llvm::Triple OS(OSName);
 | |
|   if (OS.getOS() == llvm::Triple::Darwin) {
 | |
|     // Darwin matches macos, ios, etc.
 | |
|     return TI.getTriple().isOSDarwin();
 | |
|   }
 | |
|   return TI.getTriple().getOS() == OS.getOS();
 | |
| }
 | |
| 
 | |
| /// Implements the __is_target_environment builtin macro.
 | |
| static bool isTargetEnvironment(const TargetInfo &TI,
 | |
|                                 const IdentifierInfo *II) {
 | |
|   std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
 | |
|   llvm::Triple Env(EnvName);
 | |
|   return TI.getTriple().getEnvironment() == Env.getEnvironment();
 | |
| }
 | |
| 
 | |
| static void remapMacroPath(
 | |
|     SmallString<256> &Path,
 | |
|     const std::map<std::string, std::string, std::greater<std::string>>
 | |
|         &MacroPrefixMap) {
 | |
|   for (const auto &Entry : MacroPrefixMap)
 | |
|     if (Path.startswith(Entry.first)) {
 | |
|       Path = (Twine(Entry.second) + Path.substr(Entry.first.size())).str();
 | |
|       break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
 | |
| /// as a builtin macro, handle it and return the next token as 'Tok'.
 | |
| void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
 | |
|   // Figure out which token this is.
 | |
|   IdentifierInfo *II = Tok.getIdentifierInfo();
 | |
|   assert(II && "Can't be a macro without id info!");
 | |
| 
 | |
|   // If this is an _Pragma or Microsoft __pragma directive, expand it,
 | |
|   // invoke the pragma handler, then lex the token after it.
 | |
|   if (II == Ident_Pragma)
 | |
|     return Handle_Pragma(Tok);
 | |
|   else if (II == Ident__pragma) // in non-MS mode this is null
 | |
|     return HandleMicrosoft__pragma(Tok);
 | |
| 
 | |
|   ++NumBuiltinMacroExpanded;
 | |
| 
 | |
|   SmallString<128> TmpBuffer;
 | |
|   llvm::raw_svector_ostream OS(TmpBuffer);
 | |
| 
 | |
|   // Set up the return result.
 | |
|   Tok.setIdentifierInfo(nullptr);
 | |
|   Tok.clearFlag(Token::NeedsCleaning);
 | |
|   bool IsAtStartOfLine = Tok.isAtStartOfLine();
 | |
|   bool HasLeadingSpace = Tok.hasLeadingSpace();
 | |
| 
 | |
|   if (II == Ident__LINE__) {
 | |
|     // C99 6.10.8: "__LINE__: The presumed line number (within the current
 | |
|     // source file) of the current source line (an integer constant)".  This can
 | |
|     // be affected by #line.
 | |
|     SourceLocation Loc = Tok.getLocation();
 | |
| 
 | |
|     // Advance to the location of the first _, this might not be the first byte
 | |
|     // of the token if it starts with an escaped newline.
 | |
|     Loc = AdvanceToTokenCharacter(Loc, 0);
 | |
| 
 | |
|     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
 | |
|     // a macro expansion.  This doesn't matter for object-like macros, but
 | |
|     // can matter for a function-like macro that expands to contain __LINE__.
 | |
|     // Skip down through expansion points until we find a file loc for the
 | |
|     // end of the expansion history.
 | |
|     Loc = SourceMgr.getExpansionRange(Loc).getEnd();
 | |
|     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
 | |
| 
 | |
|     // __LINE__ expands to a simple numeric value.
 | |
|     OS << (PLoc.isValid()? PLoc.getLine() : 1);
 | |
|     Tok.setKind(tok::numeric_constant);
 | |
|   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
 | |
|              II == Ident__FILE_NAME__) {
 | |
|     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
 | |
|     // character string literal)". This can be affected by #line.
 | |
|     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
 | |
| 
 | |
|     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
 | |
|     // #include stack instead of the current file.
 | |
|     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
 | |
|       SourceLocation NextLoc = PLoc.getIncludeLoc();
 | |
|       while (NextLoc.isValid()) {
 | |
|         PLoc = SourceMgr.getPresumedLoc(NextLoc);
 | |
|         if (PLoc.isInvalid())
 | |
|           break;
 | |
| 
 | |
|         NextLoc = PLoc.getIncludeLoc();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
 | |
|     SmallString<256> FN;
 | |
|     if (PLoc.isValid()) {
 | |
|       // __FILE_NAME__ is a Clang-specific extension that expands to the
 | |
|       // the last part of __FILE__.
 | |
|       if (II == Ident__FILE_NAME__) {
 | |
|         // Try to get the last path component, failing that return the original
 | |
|         // presumed location.
 | |
|         StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
 | |
|         if (PLFileName != "")
 | |
|           FN += PLFileName;
 | |
|         else
 | |
|           FN += PLoc.getFilename();
 | |
|       } else {
 | |
|         FN += PLoc.getFilename();
 | |
|       }
 | |
|       Lexer::Stringify(FN);
 | |
|       remapMacroPath(FN, PPOpts->MacroPrefixMap);
 | |
|       OS << '"' << FN << '"';
 | |
|     }
 | |
|     Tok.setKind(tok::string_literal);
 | |
|   } else if (II == Ident__DATE__) {
 | |
|     Diag(Tok.getLocation(), diag::warn_pp_date_time);
 | |
|     if (!DATELoc.isValid())
 | |
|       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
 | |
|     Tok.setKind(tok::string_literal);
 | |
|     Tok.setLength(strlen("\"Mmm dd yyyy\""));
 | |
|     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
 | |
|                                                  Tok.getLocation(),
 | |
|                                                  Tok.getLength()));
 | |
|     return;
 | |
|   } else if (II == Ident__TIME__) {
 | |
|     Diag(Tok.getLocation(), diag::warn_pp_date_time);
 | |
|     if (!TIMELoc.isValid())
 | |
|       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
 | |
|     Tok.setKind(tok::string_literal);
 | |
|     Tok.setLength(strlen("\"hh:mm:ss\""));
 | |
|     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
 | |
|                                                  Tok.getLocation(),
 | |
|                                                  Tok.getLength()));
 | |
|     return;
 | |
|   } else if (II == Ident__INCLUDE_LEVEL__) {
 | |
|     // Compute the presumed include depth of this token.  This can be affected
 | |
|     // by GNU line markers.
 | |
|     unsigned Depth = 0;
 | |
| 
 | |
|     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
 | |
|     if (PLoc.isValid()) {
 | |
|       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
 | |
|       for (; PLoc.isValid(); ++Depth)
 | |
|         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
 | |
|     }
 | |
| 
 | |
|     // __INCLUDE_LEVEL__ expands to a simple numeric value.
 | |
|     OS << Depth;
 | |
|     Tok.setKind(tok::numeric_constant);
 | |
|   } else if (II == Ident__TIMESTAMP__) {
 | |
|     Diag(Tok.getLocation(), diag::warn_pp_date_time);
 | |
|     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
 | |
|     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
 | |
| 
 | |
|     // Get the file that we are lexing out of.  If we're currently lexing from
 | |
|     // a macro, dig into the include stack.
 | |
|     const FileEntry *CurFile = nullptr;
 | |
|     PreprocessorLexer *TheLexer = getCurrentFileLexer();
 | |
| 
 | |
|     if (TheLexer)
 | |
|       CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
 | |
| 
 | |
|     const char *Result;
 | |
|     if (CurFile) {
 | |
|       time_t TT = CurFile->getModificationTime();
 | |
|       struct tm *TM = localtime(&TT);
 | |
|       Result = asctime(TM);
 | |
|     } else {
 | |
|       Result = "??? ??? ?? ??:??:?? ????\n";
 | |
|     }
 | |
|     // Surround the string with " and strip the trailing newline.
 | |
|     OS << '"' << StringRef(Result).drop_back() << '"';
 | |
|     Tok.setKind(tok::string_literal);
 | |
|   } else if (II == Ident__COUNTER__) {
 | |
|     // __COUNTER__ expands to a simple numeric value.
 | |
|     OS << CounterValue++;
 | |
|     Tok.setKind(tok::numeric_constant);
 | |
|   } else if (II == Ident__has_feature) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                            diag::err_feature_check_malformed);
 | |
|         return II && HasFeature(*this, II->getName());
 | |
|       });
 | |
|   } else if (II == Ident__has_extension) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                            diag::err_feature_check_malformed);
 | |
|         return II && HasExtension(*this, II->getName());
 | |
|       });
 | |
|   } else if (II == Ident__has_builtin) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                            diag::err_feature_check_malformed);
 | |
|         const LangOptions &LangOpts = getLangOpts();
 | |
|         if (!II)
 | |
|           return false;
 | |
|         else if (II->getBuiltinID() != 0) {
 | |
|           switch (II->getBuiltinID()) {
 | |
|           case Builtin::BI__builtin_operator_new:
 | |
|           case Builtin::BI__builtin_operator_delete:
 | |
|             // denotes date of behavior change to support calling arbitrary
 | |
|             // usual allocation and deallocation functions. Required by libc++
 | |
|             return 201802;
 | |
|           default:
 | |
|             return true;
 | |
|           }
 | |
|           return true;
 | |
|         } else if (II->getTokenID() != tok::identifier ||
 | |
|                    II->hasRevertedTokenIDToIdentifier()) {
 | |
|           // Treat all keywords that introduce a custom syntax of the form
 | |
|           //
 | |
|           //   '__some_keyword' '(' [...] ')'
 | |
|           //
 | |
|           // as being "builtin functions", even if the syntax isn't a valid
 | |
|           // function call (for example, because the builtin takes a type
 | |
|           // argument).
 | |
|           if (II->getName().startswith("__builtin_") ||
 | |
|               II->getName().startswith("__is_") ||
 | |
|               II->getName().startswith("__has_"))
 | |
|             return true;
 | |
|           return llvm::StringSwitch<bool>(II->getName())
 | |
|               .Case("__array_rank", true)
 | |
|               .Case("__array_extent", true)
 | |
|               .Case("__reference_binds_to_temporary", true)
 | |
|               .Case("__underlying_type", true)
 | |
|               .Default(false);
 | |
|         } else {
 | |
|           return llvm::StringSwitch<bool>(II->getName())
 | |
|               // Report builtin templates as being builtins.
 | |
|               .Case("__make_integer_seq", LangOpts.CPlusPlus)
 | |
|               .Case("__type_pack_element", LangOpts.CPlusPlus)
 | |
|               // Likewise for some builtin preprocessor macros.
 | |
|               // FIXME: This is inconsistent; we usually suggest detecting
 | |
|               // builtin macros via #ifdef. Don't add more cases here.
 | |
|               .Case("__is_target_arch", true)
 | |
|               .Case("__is_target_vendor", true)
 | |
|               .Case("__is_target_os", true)
 | |
|               .Case("__is_target_environment", true)
 | |
|               .Default(false);
 | |
|         }
 | |
|       });
 | |
|   } else if (II == Ident__is_identifier) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         return Tok.is(tok::identifier);
 | |
|       });
 | |
|   } else if (II == Ident__has_attribute) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                            diag::err_feature_check_malformed);
 | |
|         return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
 | |
|                                  getTargetInfo(), getLangOpts()) : 0;
 | |
|       });
 | |
|   } else if (II == Ident__has_declspec) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                            diag::err_feature_check_malformed);
 | |
|         return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II,
 | |
|                                  getTargetInfo(), getLangOpts()) : 0;
 | |
|       });
 | |
|   } else if (II == Ident__has_cpp_attribute ||
 | |
|              II == Ident__has_c_attribute) {
 | |
|     bool IsCXX = II == Ident__has_cpp_attribute;
 | |
|     EvaluateFeatureLikeBuiltinMacro(
 | |
|         OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|           IdentifierInfo *ScopeII = nullptr;
 | |
|           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | |
|               Tok, *this, diag::err_feature_check_malformed);
 | |
|           if (!II)
 | |
|             return false;
 | |
| 
 | |
|           // It is possible to receive a scope token.  Read the "::", if it is
 | |
|           // available, and the subsequent identifier.
 | |
|           LexUnexpandedToken(Tok);
 | |
|           if (Tok.isNot(tok::coloncolon))
 | |
|             HasLexedNextToken = true;
 | |
|           else {
 | |
|             ScopeII = II;
 | |
|             LexUnexpandedToken(Tok);
 | |
|             II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                              diag::err_feature_check_malformed);
 | |
|           }
 | |
| 
 | |
|           AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C;
 | |
|           return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
 | |
|                                    getLangOpts())
 | |
|                     : 0;
 | |
|         });
 | |
|   } else if (II == Ident__has_include ||
 | |
|              II == Ident__has_include_next) {
 | |
|     // The argument to these two builtins should be a parenthesized
 | |
|     // file name string literal using angle brackets (<>) or
 | |
|     // double-quotes ("").
 | |
|     bool Value;
 | |
|     if (II == Ident__has_include)
 | |
|       Value = EvaluateHasInclude(Tok, II, *this);
 | |
|     else
 | |
|       Value = EvaluateHasIncludeNext(Tok, II, *this);
 | |
| 
 | |
|     if (Tok.isNot(tok::r_paren))
 | |
|       return;
 | |
|     OS << (int)Value;
 | |
|     Tok.setKind(tok::numeric_constant);
 | |
|   } else if (II == Ident__has_warning) {
 | |
|     // The argument should be a parenthesized string literal.
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         std::string WarningName;
 | |
|         SourceLocation StrStartLoc = Tok.getLocation();
 | |
| 
 | |
|         HasLexedNextToken = Tok.is(tok::string_literal);
 | |
|         if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
 | |
|                                     /*AllowMacroExpansion=*/false))
 | |
|           return false;
 | |
| 
 | |
|         // FIXME: Should we accept "-R..." flags here, or should that be
 | |
|         // handled by a separate __has_remark?
 | |
|         if (WarningName.size() < 3 || WarningName[0] != '-' ||
 | |
|             WarningName[1] != 'W') {
 | |
|           Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // Finally, check if the warning flags maps to a diagnostic group.
 | |
|         // We construct a SmallVector here to talk to getDiagnosticIDs().
 | |
|         // Although we don't use the result, this isn't a hot path, and not
 | |
|         // worth special casing.
 | |
|         SmallVector<diag::kind, 10> Diags;
 | |
|         return !getDiagnostics().getDiagnosticIDs()->
 | |
|                 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
 | |
|                                       WarningName.substr(2), Diags);
 | |
|       });
 | |
|   } else if (II == Ident__building_module) {
 | |
|     // The argument to this builtin should be an identifier. The
 | |
|     // builtin evaluates to 1 when that identifier names the module we are
 | |
|     // currently building.
 | |
|     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
 | |
|       [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
 | |
|                                        diag::err_expected_id_building_module);
 | |
|         return getLangOpts().isCompilingModule() && II &&
 | |
|                (II->getName() == getLangOpts().CurrentModule);
 | |
|       });
 | |
|   } else if (II == Ident__MODULE__) {
 | |
|     // The current module as an identifier.
 | |
|     OS << getLangOpts().CurrentModule;
 | |
|     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
 | |
|     Tok.setIdentifierInfo(ModuleII);
 | |
|     Tok.setKind(ModuleII->getTokenID());
 | |
|   } else if (II == Ident__identifier) {
 | |
|     SourceLocation Loc = Tok.getLocation();
 | |
| 
 | |
|     // We're expecting '__identifier' '(' identifier ')'. Try to recover
 | |
|     // if the parens are missing.
 | |
|     LexNonComment(Tok);
 | |
|     if (Tok.isNot(tok::l_paren)) {
 | |
|       // No '(', use end of last token.
 | |
|       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
 | |
|         << II << tok::l_paren;
 | |
|       // If the next token isn't valid as our argument, we can't recover.
 | |
|       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
 | |
|         Tok.setKind(tok::identifier);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SourceLocation LParenLoc = Tok.getLocation();
 | |
|     LexNonComment(Tok);
 | |
| 
 | |
|     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
 | |
|       Tok.setKind(tok::identifier);
 | |
|     else {
 | |
|       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
 | |
|         << Tok.getKind();
 | |
|       // Don't walk past anything that's not a real token.
 | |
|       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Discard the ')', preserving 'Tok' as our result.
 | |
|     Token RParen;
 | |
|     LexNonComment(RParen);
 | |
|     if (RParen.isNot(tok::r_paren)) {
 | |
|       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
 | |
|         << Tok.getKind() << tok::r_paren;
 | |
|       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
 | |
|     }
 | |
|     return;
 | |
|   } else if (II == Ident__is_target_arch) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(
 | |
|         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | |
|               Tok, *this, diag::err_feature_check_malformed);
 | |
|           return II && isTargetArch(getTargetInfo(), II);
 | |
|         });
 | |
|   } else if (II == Ident__is_target_vendor) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(
 | |
|         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | |
|               Tok, *this, diag::err_feature_check_malformed);
 | |
|           return II && isTargetVendor(getTargetInfo(), II);
 | |
|         });
 | |
|   } else if (II == Ident__is_target_os) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(
 | |
|         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | |
|               Tok, *this, diag::err_feature_check_malformed);
 | |
|           return II && isTargetOS(getTargetInfo(), II);
 | |
|         });
 | |
|   } else if (II == Ident__is_target_environment) {
 | |
|     EvaluateFeatureLikeBuiltinMacro(
 | |
|         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
 | |
|           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
 | |
|               Tok, *this, diag::err_feature_check_malformed);
 | |
|           return II && isTargetEnvironment(getTargetInfo(), II);
 | |
|         });
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown identifier!");
 | |
|   }
 | |
|   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
 | |
|   Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
 | |
|   Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
 | |
| }
 | |
| 
 | |
| void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
 | |
|   // If the 'used' status changed, and the macro requires 'unused' warning,
 | |
|   // remove its SourceLocation from the warn-for-unused-macro locations.
 | |
|   if (MI->isWarnIfUnused() && !MI->isUsed())
 | |
|     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
 | |
|   MI->setIsUsed(true);
 | |
| }
 |