595 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			595 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- ParseInit.cpp - Initializer Parsing ------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements initializer parsing as specified by C99 6.7.8.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/Basic/TokenKinds.h"
 | |
| #include "clang/Parse/ParseDiagnostic.h"
 | |
| #include "clang/Parse/Parser.h"
 | |
| #include "clang/Parse/RAIIObjectsForParser.h"
 | |
| #include "clang/Sema/Designator.h"
 | |
| #include "clang/Sema/Ownership.h"
 | |
| #include "clang/Sema/Scope.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| using namespace clang;
 | |
| 
 | |
| 
 | |
| /// MayBeDesignationStart - Return true if the current token might be the start
 | |
| /// of a designator.  If we can tell it is impossible that it is a designator,
 | |
| /// return false.
 | |
| bool Parser::MayBeDesignationStart() {
 | |
|   switch (Tok.getKind()) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case tok::period:      // designator: '.' identifier
 | |
|     return true;
 | |
| 
 | |
|   case tok::l_square: {  // designator: array-designator
 | |
|     if (!PP.getLangOpts().CPlusPlus11)
 | |
|       return true;
 | |
| 
 | |
|     // C++11 lambda expressions and C99 designators can be ambiguous all the
 | |
|     // way through the closing ']' and to the next character. Handle the easy
 | |
|     // cases here, and fall back to tentative parsing if those fail.
 | |
|     switch (PP.LookAhead(0).getKind()) {
 | |
|     case tok::equal:
 | |
|     case tok::ellipsis:
 | |
|     case tok::r_square:
 | |
|       // Definitely starts a lambda expression.
 | |
|       return false;
 | |
| 
 | |
|     case tok::amp:
 | |
|     case tok::kw_this:
 | |
|     case tok::star:
 | |
|     case tok::identifier:
 | |
|       // We have to do additional analysis, because these could be the
 | |
|       // start of a constant expression or a lambda capture list.
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       // Anything not mentioned above cannot occur following a '[' in a
 | |
|       // lambda expression.
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Handle the complicated case below.
 | |
|     break;
 | |
|   }
 | |
|   case tok::identifier:  // designation: identifier ':'
 | |
|     return PP.LookAhead(0).is(tok::colon);
 | |
|   }
 | |
| 
 | |
|   // Parse up to (at most) the token after the closing ']' to determine
 | |
|   // whether this is a C99 designator or a lambda.
 | |
|   RevertingTentativeParsingAction Tentative(*this);
 | |
| 
 | |
|   LambdaIntroducer Intro;
 | |
|   LambdaIntroducerTentativeParse ParseResult;
 | |
|   if (ParseLambdaIntroducer(Intro, &ParseResult)) {
 | |
|     // Hit and diagnosed an error in a lambda.
 | |
|     // FIXME: Tell the caller this happened so they can recover.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   switch (ParseResult) {
 | |
|   case LambdaIntroducerTentativeParse::Success:
 | |
|   case LambdaIntroducerTentativeParse::Incomplete:
 | |
|     // Might be a lambda-expression. Keep looking.
 | |
|     // FIXME: If our tentative parse was not incomplete, parse the lambda from
 | |
|     // here rather than throwing away then reparsing the LambdaIntroducer.
 | |
|     break;
 | |
| 
 | |
|   case LambdaIntroducerTentativeParse::MessageSend:
 | |
|   case LambdaIntroducerTentativeParse::Invalid:
 | |
|     // Can't be a lambda-expression. Treat it as a designator.
 | |
|     // FIXME: Should we disambiguate against a message-send?
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Once we hit the closing square bracket, we look at the next
 | |
|   // token. If it's an '=', this is a designator. Otherwise, it's a
 | |
|   // lambda expression. This decision favors lambdas over the older
 | |
|   // GNU designator syntax, which allows one to omit the '=', but is
 | |
|   // consistent with GCC.
 | |
|   return Tok.is(tok::equal);
 | |
| }
 | |
| 
 | |
| static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc,
 | |
|                                        Designation &Desig) {
 | |
|   // If we have exactly one array designator, this used the GNU
 | |
|   // 'designation: array-designator' extension, otherwise there should be no
 | |
|   // designators at all!
 | |
|   if (Desig.getNumDesignators() == 1 &&
 | |
|       (Desig.getDesignator(0).isArrayDesignator() ||
 | |
|        Desig.getDesignator(0).isArrayRangeDesignator()))
 | |
|     P.Diag(Loc, diag::ext_gnu_missing_equal_designator);
 | |
|   else if (Desig.getNumDesignators() > 0)
 | |
|     P.Diag(Loc, diag::err_expected_equal_designator);
 | |
| }
 | |
| 
 | |
| /// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production
 | |
| /// checking to see if the token stream starts with a designator.
 | |
| ///
 | |
| /// C99:
 | |
| ///
 | |
| ///       designation:
 | |
| ///         designator-list '='
 | |
| /// [GNU]   array-designator
 | |
| /// [GNU]   identifier ':'
 | |
| ///
 | |
| ///       designator-list:
 | |
| ///         designator
 | |
| ///         designator-list designator
 | |
| ///
 | |
| ///       designator:
 | |
| ///         array-designator
 | |
| ///         '.' identifier
 | |
| ///
 | |
| ///       array-designator:
 | |
| ///         '[' constant-expression ']'
 | |
| /// [GNU]   '[' constant-expression '...' constant-expression ']'
 | |
| ///
 | |
| /// C++20:
 | |
| ///
 | |
| ///       designated-initializer-list:
 | |
| ///         designated-initializer-clause
 | |
| ///         designated-initializer-list ',' designated-initializer-clause
 | |
| ///
 | |
| ///       designated-initializer-clause:
 | |
| ///         designator brace-or-equal-initializer
 | |
| ///
 | |
| ///       designator:
 | |
| ///         '.' identifier
 | |
| ///
 | |
| /// We allow the C99 syntax extensions in C++20, but do not allow the C++20
 | |
| /// extension (a braced-init-list after the designator with no '=') in C99.
 | |
| ///
 | |
| /// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an
 | |
| /// initializer (because it is an expression).  We need to consider this case
 | |
| /// when parsing array designators.
 | |
| ///
 | |
| /// \p CodeCompleteCB is called with Designation parsed so far.
 | |
| ExprResult Parser::ParseInitializerWithPotentialDesignator(
 | |
|     llvm::function_ref<void(const Designation &)> CodeCompleteCB) {
 | |
| 
 | |
|   // If this is the old-style GNU extension:
 | |
|   //   designation ::= identifier ':'
 | |
|   // Handle it as a field designator.  Otherwise, this must be the start of a
 | |
|   // normal expression.
 | |
|   if (Tok.is(tok::identifier)) {
 | |
|     const IdentifierInfo *FieldName = Tok.getIdentifierInfo();
 | |
| 
 | |
|     SmallString<256> NewSyntax;
 | |
|     llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName()
 | |
|                                          << " = ";
 | |
| 
 | |
|     SourceLocation NameLoc = ConsumeToken(); // Eat the identifier.
 | |
| 
 | |
|     assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!");
 | |
|     SourceLocation ColonLoc = ConsumeToken();
 | |
| 
 | |
|     Diag(NameLoc, diag::ext_gnu_old_style_field_designator)
 | |
|       << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc),
 | |
|                                       NewSyntax);
 | |
| 
 | |
|     Designation D;
 | |
|     D.AddDesignator(Designator::getField(FieldName, SourceLocation(), NameLoc));
 | |
|     return Actions.ActOnDesignatedInitializer(D, ColonLoc, true,
 | |
|                                               ParseInitializer());
 | |
|   }
 | |
| 
 | |
|   // Desig - This is initialized when we see our first designator.  We may have
 | |
|   // an objc message send with no designator, so we don't want to create this
 | |
|   // eagerly.
 | |
|   Designation Desig;
 | |
| 
 | |
|   // Parse each designator in the designator list until we find an initializer.
 | |
|   while (Tok.is(tok::period) || Tok.is(tok::l_square)) {
 | |
|     if (Tok.is(tok::period)) {
 | |
|       // designator: '.' identifier
 | |
|       SourceLocation DotLoc = ConsumeToken();
 | |
| 
 | |
|       if (Tok.is(tok::code_completion)) {
 | |
|         CodeCompleteCB(Desig);
 | |
|         cutOffParsing();
 | |
|         return ExprError();
 | |
|       }
 | |
|       if (Tok.isNot(tok::identifier)) {
 | |
|         Diag(Tok.getLocation(), diag::err_expected_field_designator);
 | |
|         return ExprError();
 | |
|       }
 | |
| 
 | |
|       Desig.AddDesignator(Designator::getField(Tok.getIdentifierInfo(), DotLoc,
 | |
|                                                Tok.getLocation()));
 | |
|       ConsumeToken(); // Eat the identifier.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We must have either an array designator now or an objc message send.
 | |
|     assert(Tok.is(tok::l_square) && "Unexpected token!");
 | |
| 
 | |
|     // Handle the two forms of array designator:
 | |
|     //   array-designator: '[' constant-expression ']'
 | |
|     //   array-designator: '[' constant-expression '...' constant-expression ']'
 | |
|     //
 | |
|     // Also, we have to handle the case where the expression after the
 | |
|     // designator an an objc message send: '[' objc-message-expr ']'.
 | |
|     // Interesting cases are:
 | |
|     //   [foo bar]         -> objc message send
 | |
|     //   [foo]             -> array designator
 | |
|     //   [foo ... bar]     -> array designator
 | |
|     //   [4][foo bar]      -> obsolete GNU designation with objc message send.
 | |
|     //
 | |
|     // We do not need to check for an expression starting with [[ here. If it
 | |
|     // contains an Objective-C message send, then it is not an ill-formed
 | |
|     // attribute. If it is a lambda-expression within an array-designator, then
 | |
|     // it will be rejected because a constant-expression cannot begin with a
 | |
|     // lambda-expression.
 | |
|     InMessageExpressionRAIIObject InMessage(*this, true);
 | |
| 
 | |
|     BalancedDelimiterTracker T(*this, tok::l_square);
 | |
|     T.consumeOpen();
 | |
|     SourceLocation StartLoc = T.getOpenLocation();
 | |
| 
 | |
|     ExprResult Idx;
 | |
| 
 | |
|     // If Objective-C is enabled and this is a typename (class message
 | |
|     // send) or send to 'super', parse this as a message send
 | |
|     // expression.  We handle C++ and C separately, since C++ requires
 | |
|     // much more complicated parsing.
 | |
|     if  (getLangOpts().ObjC && getLangOpts().CPlusPlus) {
 | |
|       // Send to 'super'.
 | |
|       if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super &&
 | |
|           NextToken().isNot(tok::period) &&
 | |
|           getCurScope()->isInObjcMethodScope()) {
 | |
|         CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
 | |
|         return ParseAssignmentExprWithObjCMessageExprStart(
 | |
|             StartLoc, ConsumeToken(), nullptr, nullptr);
 | |
|       }
 | |
| 
 | |
|       // Parse the receiver, which is either a type or an expression.
 | |
|       bool IsExpr;
 | |
|       void *TypeOrExpr;
 | |
|       if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) {
 | |
|         SkipUntil(tok::r_square, StopAtSemi);
 | |
|         return ExprError();
 | |
|       }
 | |
| 
 | |
|       // If the receiver was a type, we have a class message; parse
 | |
|       // the rest of it.
 | |
|       if (!IsExpr) {
 | |
|         CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
 | |
|         return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
 | |
|                                                            SourceLocation(),
 | |
|                                    ParsedType::getFromOpaquePtr(TypeOrExpr),
 | |
|                                                            nullptr);
 | |
|       }
 | |
| 
 | |
|       // If the receiver was an expression, we still don't know
 | |
|       // whether we have a message send or an array designator; just
 | |
|       // adopt the expression for further analysis below.
 | |
|       // FIXME: potentially-potentially evaluated expression above?
 | |
|       Idx = ExprResult(static_cast<Expr*>(TypeOrExpr));
 | |
|     } else if (getLangOpts().ObjC && Tok.is(tok::identifier)) {
 | |
|       IdentifierInfo *II = Tok.getIdentifierInfo();
 | |
|       SourceLocation IILoc = Tok.getLocation();
 | |
|       ParsedType ReceiverType;
 | |
|       // Three cases. This is a message send to a type: [type foo]
 | |
|       // This is a message send to super:  [super foo]
 | |
|       // This is a message sent to an expr:  [super.bar foo]
 | |
|       switch (Actions.getObjCMessageKind(
 | |
|           getCurScope(), II, IILoc, II == Ident_super,
 | |
|           NextToken().is(tok::period), ReceiverType)) {
 | |
|       case Sema::ObjCSuperMessage:
 | |
|         CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
 | |
|         return ParseAssignmentExprWithObjCMessageExprStart(
 | |
|             StartLoc, ConsumeToken(), nullptr, nullptr);
 | |
| 
 | |
|       case Sema::ObjCClassMessage:
 | |
|         CheckArrayDesignatorSyntax(*this, StartLoc, Desig);
 | |
|         ConsumeToken(); // the identifier
 | |
|         if (!ReceiverType) {
 | |
|           SkipUntil(tok::r_square, StopAtSemi);
 | |
|           return ExprError();
 | |
|         }
 | |
| 
 | |
|         // Parse type arguments and protocol qualifiers.
 | |
|         if (Tok.is(tok::less)) {
 | |
|           SourceLocation NewEndLoc;
 | |
|           TypeResult NewReceiverType
 | |
|             = parseObjCTypeArgsAndProtocolQualifiers(IILoc, ReceiverType,
 | |
|                                                      /*consumeLastToken=*/true,
 | |
|                                                      NewEndLoc);
 | |
|           if (!NewReceiverType.isUsable()) {
 | |
|             SkipUntil(tok::r_square, StopAtSemi);
 | |
|             return ExprError();
 | |
|           }
 | |
| 
 | |
|           ReceiverType = NewReceiverType.get();
 | |
|         }
 | |
| 
 | |
|         return ParseAssignmentExprWithObjCMessageExprStart(StartLoc,
 | |
|                                                            SourceLocation(),
 | |
|                                                            ReceiverType,
 | |
|                                                            nullptr);
 | |
| 
 | |
|       case Sema::ObjCInstanceMessage:
 | |
|         // Fall through; we'll just parse the expression and
 | |
|         // (possibly) treat this like an Objective-C message send
 | |
|         // later.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Parse the index expression, if we haven't already gotten one
 | |
|     // above (which can only happen in Objective-C++).
 | |
|     // Note that we parse this as an assignment expression, not a constant
 | |
|     // expression (allowing *=, =, etc) to handle the objc case.  Sema needs
 | |
|     // to validate that the expression is a constant.
 | |
|     // FIXME: We also need to tell Sema that we're in a
 | |
|     // potentially-potentially evaluated context.
 | |
|     if (!Idx.get()) {
 | |
|       Idx = ParseAssignmentExpression();
 | |
|       if (Idx.isInvalid()) {
 | |
|         SkipUntil(tok::r_square, StopAtSemi);
 | |
|         return Idx;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Given an expression, we could either have a designator (if the next
 | |
|     // tokens are '...' or ']' or an objc message send.  If this is an objc
 | |
|     // message send, handle it now.  An objc-message send is the start of
 | |
|     // an assignment-expression production.
 | |
|     if (getLangOpts().ObjC && Tok.isNot(tok::ellipsis) &&
 | |
|         Tok.isNot(tok::r_square)) {
 | |
|       CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig);
 | |
|       return ParseAssignmentExprWithObjCMessageExprStart(
 | |
|           StartLoc, SourceLocation(), nullptr, Idx.get());
 | |
|     }
 | |
| 
 | |
|     // If this is a normal array designator, remember it.
 | |
|     if (Tok.isNot(tok::ellipsis)) {
 | |
|       Desig.AddDesignator(Designator::getArray(Idx.get(), StartLoc));
 | |
|     } else {
 | |
|       // Handle the gnu array range extension.
 | |
|       Diag(Tok, diag::ext_gnu_array_range);
 | |
|       SourceLocation EllipsisLoc = ConsumeToken();
 | |
| 
 | |
|       ExprResult RHS(ParseConstantExpression());
 | |
|       if (RHS.isInvalid()) {
 | |
|         SkipUntil(tok::r_square, StopAtSemi);
 | |
|         return RHS;
 | |
|       }
 | |
|       Desig.AddDesignator(Designator::getArrayRange(Idx.get(),
 | |
|                                                     RHS.get(),
 | |
|                                                     StartLoc, EllipsisLoc));
 | |
|     }
 | |
| 
 | |
|     T.consumeClose();
 | |
|     Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc(
 | |
|                                                         T.getCloseLocation());
 | |
|   }
 | |
| 
 | |
|   // Okay, we're done with the designator sequence.  We know that there must be
 | |
|   // at least one designator, because the only case we can get into this method
 | |
|   // without a designator is when we have an objc message send.  That case is
 | |
|   // handled and returned from above.
 | |
|   assert(!Desig.empty() && "Designator is empty?");
 | |
| 
 | |
|   // Handle a normal designator sequence end, which is an equal.
 | |
|   if (Tok.is(tok::equal)) {
 | |
|     SourceLocation EqualLoc = ConsumeToken();
 | |
|     return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false,
 | |
|                                               ParseInitializer());
 | |
|   }
 | |
| 
 | |
|   // Handle a C++20 braced designated initialization, which results in
 | |
|   // direct-list-initialization of the aggregate element. We allow this as an
 | |
|   // extension from C++11 onwards (when direct-list-initialization was added).
 | |
|   if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
 | |
|     return Actions.ActOnDesignatedInitializer(Desig, SourceLocation(), false,
 | |
|                                               ParseBraceInitializer());
 | |
|   }
 | |
| 
 | |
|   // We read some number of designators and found something that isn't an = or
 | |
|   // an initializer.  If we have exactly one array designator, this
 | |
|   // is the GNU 'designation: array-designator' extension.  Otherwise, it is a
 | |
|   // parse error.
 | |
|   if (Desig.getNumDesignators() == 1 &&
 | |
|       (Desig.getDesignator(0).isArrayDesignator() ||
 | |
|        Desig.getDesignator(0).isArrayRangeDesignator())) {
 | |
|     Diag(Tok, diag::ext_gnu_missing_equal_designator)
 | |
|       << FixItHint::CreateInsertion(Tok.getLocation(), "= ");
 | |
|     return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(),
 | |
|                                               true, ParseInitializer());
 | |
|   }
 | |
| 
 | |
|   Diag(Tok, diag::err_expected_equal_designator);
 | |
|   return ExprError();
 | |
| }
 | |
| 
 | |
| /// ParseBraceInitializer - Called when parsing an initializer that has a
 | |
| /// leading open brace.
 | |
| ///
 | |
| ///       initializer: [C99 6.7.8]
 | |
| ///         '{' initializer-list '}'
 | |
| ///         '{' initializer-list ',' '}'
 | |
| /// [GNU]   '{' '}'
 | |
| ///
 | |
| ///       initializer-list:
 | |
| ///         designation[opt] initializer ...[opt]
 | |
| ///         initializer-list ',' designation[opt] initializer ...[opt]
 | |
| ///
 | |
| ExprResult Parser::ParseBraceInitializer() {
 | |
|   InMessageExpressionRAIIObject InMessage(*this, false);
 | |
| 
 | |
|   BalancedDelimiterTracker T(*this, tok::l_brace);
 | |
|   T.consumeOpen();
 | |
|   SourceLocation LBraceLoc = T.getOpenLocation();
 | |
| 
 | |
|   /// InitExprs - This is the actual list of expressions contained in the
 | |
|   /// initializer.
 | |
|   ExprVector InitExprs;
 | |
| 
 | |
|   if (Tok.is(tok::r_brace)) {
 | |
|     // Empty initializers are a C++ feature and a GNU extension to C.
 | |
|     if (!getLangOpts().CPlusPlus)
 | |
|       Diag(LBraceLoc, diag::ext_gnu_empty_initializer);
 | |
|     // Match the '}'.
 | |
|     return Actions.ActOnInitList(LBraceLoc, None, ConsumeBrace());
 | |
|   }
 | |
| 
 | |
|   // Enter an appropriate expression evaluation context for an initializer list.
 | |
|   EnterExpressionEvaluationContext EnterContext(
 | |
|       Actions, EnterExpressionEvaluationContext::InitList);
 | |
| 
 | |
|   bool InitExprsOk = true;
 | |
|   auto CodeCompleteDesignation = [&](const Designation &D) {
 | |
|     Actions.CodeCompleteDesignator(PreferredType.get(T.getOpenLocation()),
 | |
|                                    InitExprs, D);
 | |
|   };
 | |
| 
 | |
|   while (1) {
 | |
|     // Handle Microsoft __if_exists/if_not_exists if necessary.
 | |
|     if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
 | |
|         Tok.is(tok::kw___if_not_exists))) {
 | |
|       if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) {
 | |
|         if (Tok.isNot(tok::comma)) break;
 | |
|         ConsumeToken();
 | |
|       }
 | |
|       if (Tok.is(tok::r_brace)) break;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Parse: designation[opt] initializer
 | |
| 
 | |
|     // If we know that this cannot be a designation, just parse the nested
 | |
|     // initializer directly.
 | |
|     ExprResult SubElt;
 | |
|     if (MayBeDesignationStart())
 | |
|       SubElt = ParseInitializerWithPotentialDesignator(CodeCompleteDesignation);
 | |
|     else
 | |
|       SubElt = ParseInitializer();
 | |
| 
 | |
|     if (Tok.is(tok::ellipsis))
 | |
|       SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
 | |
| 
 | |
|     SubElt = Actions.CorrectDelayedTyposInExpr(SubElt.get());
 | |
| 
 | |
|     // If we couldn't parse the subelement, bail out.
 | |
|     if (SubElt.isUsable()) {
 | |
|       InitExprs.push_back(SubElt.get());
 | |
|     } else {
 | |
|       InitExprsOk = false;
 | |
| 
 | |
|       // We have two ways to try to recover from this error: if the code looks
 | |
|       // grammatically ok (i.e. we have a comma coming up) try to continue
 | |
|       // parsing the rest of the initializer.  This allows us to emit
 | |
|       // diagnostics for later elements that we find.  If we don't see a comma,
 | |
|       // assume there is a parse error, and just skip to recover.
 | |
|       // FIXME: This comment doesn't sound right. If there is a r_brace
 | |
|       // immediately, it can't be an error, since there is no other way of
 | |
|       // leaving this loop except through this if.
 | |
|       if (Tok.isNot(tok::comma)) {
 | |
|         SkipUntil(tok::r_brace, StopBeforeMatch);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we don't have a comma continued list, we're done.
 | |
|     if (Tok.isNot(tok::comma)) break;
 | |
| 
 | |
|     // TODO: save comma locations if some client cares.
 | |
|     ConsumeToken();
 | |
| 
 | |
|     // Handle trailing comma.
 | |
|     if (Tok.is(tok::r_brace)) break;
 | |
|   }
 | |
| 
 | |
|   bool closed = !T.consumeClose();
 | |
| 
 | |
|   if (InitExprsOk && closed)
 | |
|     return Actions.ActOnInitList(LBraceLoc, InitExprs,
 | |
|                                  T.getCloseLocation());
 | |
| 
 | |
|   return ExprError(); // an error occurred.
 | |
| }
 | |
| 
 | |
| 
 | |
| // Return true if a comma (or closing brace) is necessary after the
 | |
| // __if_exists/if_not_exists statement.
 | |
| bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs,
 | |
|                                                     bool &InitExprsOk) {
 | |
|   bool trailingComma = false;
 | |
|   IfExistsCondition Result;
 | |
|   if (ParseMicrosoftIfExistsCondition(Result))
 | |
|     return false;
 | |
| 
 | |
|   BalancedDelimiterTracker Braces(*this, tok::l_brace);
 | |
|   if (Braces.consumeOpen()) {
 | |
|     Diag(Tok, diag::err_expected) << tok::l_brace;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   switch (Result.Behavior) {
 | |
|   case IEB_Parse:
 | |
|     // Parse the declarations below.
 | |
|     break;
 | |
| 
 | |
|   case IEB_Dependent:
 | |
|     Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
 | |
|       << Result.IsIfExists;
 | |
|     // Fall through to skip.
 | |
|     LLVM_FALLTHROUGH;
 | |
| 
 | |
|   case IEB_Skip:
 | |
|     Braces.skipToEnd();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   auto CodeCompleteDesignation = [&](const Designation &D) {
 | |
|     Actions.CodeCompleteDesignator(PreferredType.get(Braces.getOpenLocation()),
 | |
|                                    InitExprs, D);
 | |
|   };
 | |
|   while (!isEofOrEom()) {
 | |
|     trailingComma = false;
 | |
|     // If we know that this cannot be a designation, just parse the nested
 | |
|     // initializer directly.
 | |
|     ExprResult SubElt;
 | |
|     if (MayBeDesignationStart())
 | |
|       SubElt = ParseInitializerWithPotentialDesignator(CodeCompleteDesignation);
 | |
|     else
 | |
|       SubElt = ParseInitializer();
 | |
| 
 | |
|     if (Tok.is(tok::ellipsis))
 | |
|       SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken());
 | |
| 
 | |
|     // If we couldn't parse the subelement, bail out.
 | |
|     if (!SubElt.isInvalid())
 | |
|       InitExprs.push_back(SubElt.get());
 | |
|     else
 | |
|       InitExprsOk = false;
 | |
| 
 | |
|     if (Tok.is(tok::comma)) {
 | |
|       ConsumeToken();
 | |
|       trailingComma = true;
 | |
|     }
 | |
| 
 | |
|     if (Tok.is(tok::r_brace))
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   Braces.consumeClose();
 | |
| 
 | |
|   return !trailingComma;
 | |
| }
 |