2289 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2289 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C++
		
	
	
	
//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines analysis_warnings::[Policy,Executor].
 | 
						|
// Together they are used by Sema to issue warnings based on inexpensive
 | 
						|
// static analysis algorithms in libAnalysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Sema/AnalysisBasedWarnings.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/ParentMap.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
 | 
						|
#include "clang/Analysis/Analyses/Consumed.h"
 | 
						|
#include "clang/Analysis/Analyses/ReachableCode.h"
 | 
						|
#include "clang/Analysis/Analyses/ThreadSafety.h"
 | 
						|
#include "clang/Analysis/Analyses/UninitializedValues.h"
 | 
						|
#include "clang/Analysis/AnalysisDeclContext.h"
 | 
						|
#include "clang/Analysis/CFG.h"
 | 
						|
#include "clang/Analysis/CFGStmtMap.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <deque>
 | 
						|
#include <iterator>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Unreachable code analysis.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  class UnreachableCodeHandler : public reachable_code::Callback {
 | 
						|
    Sema &S;
 | 
						|
    SourceRange PreviousSilenceableCondVal;
 | 
						|
 | 
						|
  public:
 | 
						|
    UnreachableCodeHandler(Sema &s) : S(s) {}
 | 
						|
 | 
						|
    void HandleUnreachable(reachable_code::UnreachableKind UK,
 | 
						|
                           SourceLocation L,
 | 
						|
                           SourceRange SilenceableCondVal,
 | 
						|
                           SourceRange R1,
 | 
						|
                           SourceRange R2) override {
 | 
						|
      // Avoid reporting multiple unreachable code diagnostics that are
 | 
						|
      // triggered by the same conditional value.
 | 
						|
      if (PreviousSilenceableCondVal.isValid() &&
 | 
						|
          SilenceableCondVal.isValid() &&
 | 
						|
          PreviousSilenceableCondVal == SilenceableCondVal)
 | 
						|
        return;
 | 
						|
      PreviousSilenceableCondVal = SilenceableCondVal;
 | 
						|
 | 
						|
      unsigned diag = diag::warn_unreachable;
 | 
						|
      switch (UK) {
 | 
						|
        case reachable_code::UK_Break:
 | 
						|
          diag = diag::warn_unreachable_break;
 | 
						|
          break;
 | 
						|
        case reachable_code::UK_Return:
 | 
						|
          diag = diag::warn_unreachable_return;
 | 
						|
          break;
 | 
						|
        case reachable_code::UK_Loop_Increment:
 | 
						|
          diag = diag::warn_unreachable_loop_increment;
 | 
						|
          break;
 | 
						|
        case reachable_code::UK_Other:
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      S.Diag(L, diag) << R1 << R2;
 | 
						|
 | 
						|
      SourceLocation Open = SilenceableCondVal.getBegin();
 | 
						|
      if (Open.isValid()) {
 | 
						|
        SourceLocation Close = SilenceableCondVal.getEnd();
 | 
						|
        Close = S.getLocForEndOfToken(Close);
 | 
						|
        if (Close.isValid()) {
 | 
						|
          S.Diag(Open, diag::note_unreachable_silence)
 | 
						|
            << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
 | 
						|
            << FixItHint::CreateInsertion(Close, ")");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
/// CheckUnreachable - Check for unreachable code.
 | 
						|
static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
 | 
						|
  // As a heuristic prune all diagnostics not in the main file.  Currently
 | 
						|
  // the majority of warnings in headers are false positives.  These
 | 
						|
  // are largely caused by configuration state, e.g. preprocessor
 | 
						|
  // defined code, etc.
 | 
						|
  //
 | 
						|
  // Note that this is also a performance optimization.  Analyzing
 | 
						|
  // headers many times can be expensive.
 | 
						|
  if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
 | 
						|
    return;
 | 
						|
 | 
						|
  UnreachableCodeHandler UC(S);
 | 
						|
  reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Warn on logical operator errors in CFGBuilder
 | 
						|
class LogicalErrorHandler : public CFGCallback {
 | 
						|
  Sema &S;
 | 
						|
 | 
						|
public:
 | 
						|
  LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
 | 
						|
 | 
						|
  static bool HasMacroID(const Expr *E) {
 | 
						|
    if (E->getExprLoc().isMacroID())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Recurse to children.
 | 
						|
    for (const Stmt *SubStmt : E->children())
 | 
						|
      if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
 | 
						|
        if (HasMacroID(SubExpr))
 | 
						|
          return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
 | 
						|
    if (HasMacroID(B))
 | 
						|
      return;
 | 
						|
 | 
						|
    SourceRange DiagRange = B->getSourceRange();
 | 
						|
    S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
 | 
						|
        << DiagRange << isAlwaysTrue;
 | 
						|
  }
 | 
						|
 | 
						|
  void compareBitwiseEquality(const BinaryOperator *B,
 | 
						|
                              bool isAlwaysTrue) override {
 | 
						|
    if (HasMacroID(B))
 | 
						|
      return;
 | 
						|
 | 
						|
    SourceRange DiagRange = B->getSourceRange();
 | 
						|
    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
 | 
						|
        << DiagRange << isAlwaysTrue;
 | 
						|
  }
 | 
						|
 | 
						|
  void compareBitwiseOr(const BinaryOperator *B) override {
 | 
						|
    if (HasMacroID(B))
 | 
						|
      return;
 | 
						|
 | 
						|
    SourceRange DiagRange = B->getSourceRange();
 | 
						|
    S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
 | 
						|
  }
 | 
						|
 | 
						|
  static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
 | 
						|
                                   SourceLocation Loc) {
 | 
						|
    return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
 | 
						|
           !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Check for infinite self-recursion in functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Returns true if the function is called anywhere within the CFGBlock.
 | 
						|
// For member functions, the additional condition of being call from the
 | 
						|
// this pointer is required.
 | 
						|
static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
 | 
						|
  // Process all the Stmt's in this block to find any calls to FD.
 | 
						|
  for (const auto &B : Block) {
 | 
						|
    if (B.getKind() != CFGElement::Statement)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
 | 
						|
    if (!CE || !CE->getCalleeDecl() ||
 | 
						|
        CE->getCalleeDecl()->getCanonicalDecl() != FD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip function calls which are qualified with a templated class.
 | 
						|
    if (const DeclRefExpr *DRE =
 | 
						|
            dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
 | 
						|
      if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
 | 
						|
        if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
 | 
						|
            isa<TemplateSpecializationType>(NNS->getAsType())) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
 | 
						|
    if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
 | 
						|
        !MCE->getMethodDecl()->isVirtual())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if every path from the entry block passes through a call to FD.
 | 
						|
static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
 | 
						|
  llvm::SmallPtrSet<CFGBlock *, 16> Visited;
 | 
						|
  llvm::SmallVector<CFGBlock *, 16> WorkList;
 | 
						|
  // Keep track of whether we found at least one recursive path.
 | 
						|
  bool foundRecursion = false;
 | 
						|
 | 
						|
  const unsigned ExitID = cfg->getExit().getBlockID();
 | 
						|
 | 
						|
  // Seed the work list with the entry block.
 | 
						|
  WorkList.push_back(&cfg->getEntry());
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    CFGBlock *Block = WorkList.pop_back_val();
 | 
						|
 | 
						|
    for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
 | 
						|
      if (CFGBlock *SuccBlock = *I) {
 | 
						|
        if (!Visited.insert(SuccBlock).second)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Found a path to the exit node without a recursive call.
 | 
						|
        if (ExitID == SuccBlock->getBlockID())
 | 
						|
          return false;
 | 
						|
 | 
						|
        // If the successor block contains a recursive call, end analysis there.
 | 
						|
        if (hasRecursiveCallInPath(FD, *SuccBlock)) {
 | 
						|
          foundRecursion = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        WorkList.push_back(SuccBlock);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return foundRecursion;
 | 
						|
}
 | 
						|
 | 
						|
static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
 | 
						|
                                   const Stmt *Body, AnalysisDeclContext &AC) {
 | 
						|
  FD = FD->getCanonicalDecl();
 | 
						|
 | 
						|
  // Only run on non-templated functions and non-templated members of
 | 
						|
  // templated classes.
 | 
						|
  if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
 | 
						|
      FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
 | 
						|
    return;
 | 
						|
 | 
						|
  CFG *cfg = AC.getCFG();
 | 
						|
  if (!cfg) return;
 | 
						|
 | 
						|
  // If the exit block is unreachable, skip processing the function.
 | 
						|
  if (cfg->getExit().pred_empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Emit diagnostic if a recursive function call is detected for all paths.
 | 
						|
  if (checkForRecursiveFunctionCall(FD, cfg))
 | 
						|
    S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Check for throw in a non-throwing function.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
 | 
						|
/// can reach ExitBlock.
 | 
						|
static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
 | 
						|
                         CFG *Body) {
 | 
						|
  SmallVector<CFGBlock *, 16> Stack;
 | 
						|
  llvm::BitVector Queued(Body->getNumBlockIDs());
 | 
						|
 | 
						|
  Stack.push_back(&ThrowBlock);
 | 
						|
  Queued[ThrowBlock.getBlockID()] = true;
 | 
						|
 | 
						|
  while (!Stack.empty()) {
 | 
						|
    CFGBlock &UnwindBlock = *Stack.back();
 | 
						|
    Stack.pop_back();
 | 
						|
 | 
						|
    for (auto &Succ : UnwindBlock.succs()) {
 | 
						|
      if (!Succ.isReachable() || Queued[Succ->getBlockID()])
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (Succ->getBlockID() == Body->getExit().getBlockID())
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (auto *Catch =
 | 
						|
              dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
 | 
						|
        QualType Caught = Catch->getCaughtType();
 | 
						|
        if (Caught.isNull() || // catch (...) catches everything
 | 
						|
            !E->getSubExpr() || // throw; is considered cuaght by any handler
 | 
						|
            S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
 | 
						|
          // Exception doesn't escape via this path.
 | 
						|
          break;
 | 
						|
      } else {
 | 
						|
        Stack.push_back(Succ);
 | 
						|
        Queued[Succ->getBlockID()] = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void visitReachableThrows(
 | 
						|
    CFG *BodyCFG,
 | 
						|
    llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
 | 
						|
  llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
 | 
						|
  clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
 | 
						|
  for (CFGBlock *B : *BodyCFG) {
 | 
						|
    if (!Reachable[B->getBlockID()])
 | 
						|
      continue;
 | 
						|
    for (CFGElement &E : *B) {
 | 
						|
      Optional<CFGStmt> S = E.getAs<CFGStmt>();
 | 
						|
      if (!S)
 | 
						|
        continue;
 | 
						|
      if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
 | 
						|
        Visit(Throw, *B);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
 | 
						|
                                                 const FunctionDecl *FD) {
 | 
						|
  if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
 | 
						|
      FD->getTypeSourceInfo()) {
 | 
						|
    S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
 | 
						|
    if (S.getLangOpts().CPlusPlus11 &&
 | 
						|
        (isa<CXXDestructorDecl>(FD) ||
 | 
						|
         FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
 | 
						|
         FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
 | 
						|
      if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
 | 
						|
                                         getAs<FunctionProtoType>())
 | 
						|
        S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
 | 
						|
            << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
 | 
						|
            << FD->getExceptionSpecSourceRange();
 | 
						|
    } else
 | 
						|
      S.Diag(FD->getLocation(), diag::note_throw_in_function)
 | 
						|
          << FD->getExceptionSpecSourceRange();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
 | 
						|
                                        AnalysisDeclContext &AC) {
 | 
						|
  CFG *BodyCFG = AC.getCFG();
 | 
						|
  if (!BodyCFG)
 | 
						|
    return;
 | 
						|
  if (BodyCFG->getExit().pred_empty())
 | 
						|
    return;
 | 
						|
  visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
 | 
						|
    if (throwEscapes(S, Throw, Block, BodyCFG))
 | 
						|
      EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
static bool isNoexcept(const FunctionDecl *FD) {
 | 
						|
  const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
 | 
						|
  if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Check for missing return value.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
enum ControlFlowKind {
 | 
						|
  UnknownFallThrough,
 | 
						|
  NeverFallThrough,
 | 
						|
  MaybeFallThrough,
 | 
						|
  AlwaysFallThrough,
 | 
						|
  NeverFallThroughOrReturn
 | 
						|
};
 | 
						|
 | 
						|
/// CheckFallThrough - Check that we don't fall off the end of a
 | 
						|
/// Statement that should return a value.
 | 
						|
///
 | 
						|
/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
 | 
						|
/// MaybeFallThrough iff we might or might not fall off the end,
 | 
						|
/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
 | 
						|
/// return.  We assume NeverFallThrough iff we never fall off the end of the
 | 
						|
/// statement but we may return.  We assume that functions not marked noreturn
 | 
						|
/// will return.
 | 
						|
static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
 | 
						|
  CFG *cfg = AC.getCFG();
 | 
						|
  if (!cfg) return UnknownFallThrough;
 | 
						|
 | 
						|
  // The CFG leaves in dead things, and we don't want the dead code paths to
 | 
						|
  // confuse us, so we mark all live things first.
 | 
						|
  llvm::BitVector live(cfg->getNumBlockIDs());
 | 
						|
  unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
 | 
						|
                                                          live);
 | 
						|
 | 
						|
  bool AddEHEdges = AC.getAddEHEdges();
 | 
						|
  if (!AddEHEdges && count != cfg->getNumBlockIDs())
 | 
						|
    // When there are things remaining dead, and we didn't add EH edges
 | 
						|
    // from CallExprs to the catch clauses, we have to go back and
 | 
						|
    // mark them as live.
 | 
						|
    for (const auto *B : *cfg) {
 | 
						|
      if (!live[B->getBlockID()]) {
 | 
						|
        if (B->pred_begin() == B->pred_end()) {
 | 
						|
          const Stmt *Term = B->getTerminatorStmt();
 | 
						|
          if (Term && isa<CXXTryStmt>(Term))
 | 
						|
            // When not adding EH edges from calls, catch clauses
 | 
						|
            // can otherwise seem dead.  Avoid noting them as dead.
 | 
						|
            count += reachable_code::ScanReachableFromBlock(B, live);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Now we know what is live, we check the live precessors of the exit block
 | 
						|
  // and look for fall through paths, being careful to ignore normal returns,
 | 
						|
  // and exceptional paths.
 | 
						|
  bool HasLiveReturn = false;
 | 
						|
  bool HasFakeEdge = false;
 | 
						|
  bool HasPlainEdge = false;
 | 
						|
  bool HasAbnormalEdge = false;
 | 
						|
 | 
						|
  // Ignore default cases that aren't likely to be reachable because all
 | 
						|
  // enums in a switch(X) have explicit case statements.
 | 
						|
  CFGBlock::FilterOptions FO;
 | 
						|
  FO.IgnoreDefaultsWithCoveredEnums = 1;
 | 
						|
 | 
						|
  for (CFGBlock::filtered_pred_iterator I =
 | 
						|
           cfg->getExit().filtered_pred_start_end(FO);
 | 
						|
       I.hasMore(); ++I) {
 | 
						|
    const CFGBlock &B = **I;
 | 
						|
    if (!live[B.getBlockID()])
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip blocks which contain an element marked as no-return. They don't
 | 
						|
    // represent actually viable edges into the exit block, so mark them as
 | 
						|
    // abnormal.
 | 
						|
    if (B.hasNoReturnElement()) {
 | 
						|
      HasAbnormalEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Destructors can appear after the 'return' in the CFG.  This is
 | 
						|
    // normal.  We need to look pass the destructors for the return
 | 
						|
    // statement (if it exists).
 | 
						|
    CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
 | 
						|
 | 
						|
    for ( ; ri != re ; ++ri)
 | 
						|
      if (ri->getAs<CFGStmt>())
 | 
						|
        break;
 | 
						|
 | 
						|
    // No more CFGElements in the block?
 | 
						|
    if (ri == re) {
 | 
						|
      const Stmt *Term = B.getTerminatorStmt();
 | 
						|
      if (Term && isa<CXXTryStmt>(Term)) {
 | 
						|
        HasAbnormalEdge = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // A labeled empty statement, or the entry block...
 | 
						|
      HasPlainEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    CFGStmt CS = ri->castAs<CFGStmt>();
 | 
						|
    const Stmt *S = CS.getStmt();
 | 
						|
    if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
 | 
						|
      HasLiveReturn = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<ObjCAtThrowStmt>(S)) {
 | 
						|
      HasFakeEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<CXXThrowExpr>(S)) {
 | 
						|
      HasFakeEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<MSAsmStmt>(S)) {
 | 
						|
      // TODO: Verify this is correct.
 | 
						|
      HasFakeEdge = true;
 | 
						|
      HasLiveReturn = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (isa<CXXTryStmt>(S)) {
 | 
						|
      HasAbnormalEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
 | 
						|
        == B.succ_end()) {
 | 
						|
      HasAbnormalEdge = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    HasPlainEdge = true;
 | 
						|
  }
 | 
						|
  if (!HasPlainEdge) {
 | 
						|
    if (HasLiveReturn)
 | 
						|
      return NeverFallThrough;
 | 
						|
    return NeverFallThroughOrReturn;
 | 
						|
  }
 | 
						|
  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
 | 
						|
    return MaybeFallThrough;
 | 
						|
  // This says AlwaysFallThrough for calls to functions that are not marked
 | 
						|
  // noreturn, that don't return.  If people would like this warning to be more
 | 
						|
  // accurate, such functions should be marked as noreturn.
 | 
						|
  return AlwaysFallThrough;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct CheckFallThroughDiagnostics {
 | 
						|
  unsigned diag_MaybeFallThrough_HasNoReturn;
 | 
						|
  unsigned diag_MaybeFallThrough_ReturnsNonVoid;
 | 
						|
  unsigned diag_AlwaysFallThrough_HasNoReturn;
 | 
						|
  unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
 | 
						|
  unsigned diag_NeverFallThroughOrReturn;
 | 
						|
  enum { Function, Block, Lambda, Coroutine } funMode;
 | 
						|
  SourceLocation FuncLoc;
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.FuncLoc = Func->getLocation();
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn =
 | 
						|
      diag::warn_falloff_noreturn_function;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_maybe_falloff_nonvoid_function;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn =
 | 
						|
      diag::warn_falloff_noreturn_function;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_falloff_nonvoid_function;
 | 
						|
 | 
						|
    // Don't suggest that virtual functions be marked "noreturn", since they
 | 
						|
    // might be overridden by non-noreturn functions.
 | 
						|
    bool isVirtualMethod = false;
 | 
						|
    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
 | 
						|
      isVirtualMethod = Method->isVirtual();
 | 
						|
 | 
						|
    // Don't suggest that template instantiations be marked "noreturn"
 | 
						|
    bool isTemplateInstantiation = false;
 | 
						|
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
 | 
						|
      isTemplateInstantiation = Function->isTemplateInstantiation();
 | 
						|
 | 
						|
    if (!isVirtualMethod && !isTemplateInstantiation)
 | 
						|
      D.diag_NeverFallThroughOrReturn =
 | 
						|
        diag::warn_suggest_noreturn_function;
 | 
						|
    else
 | 
						|
      D.diag_NeverFallThroughOrReturn = 0;
 | 
						|
 | 
						|
    D.funMode = Function;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.FuncLoc = Func->getLocation();
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn = 0;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
        diag::warn_maybe_falloff_nonvoid_coroutine;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn = 0;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
        diag::warn_falloff_nonvoid_coroutine;
 | 
						|
    D.funMode = Coroutine;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForBlock() {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_block_has_return_expr;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
      diag::err_maybe_falloff_nonvoid_block;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_block_has_return_expr;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
      diag::err_falloff_nonvoid_block;
 | 
						|
    D.diag_NeverFallThroughOrReturn = 0;
 | 
						|
    D.funMode = Block;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  static CheckFallThroughDiagnostics MakeForLambda() {
 | 
						|
    CheckFallThroughDiagnostics D;
 | 
						|
    D.diag_MaybeFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_lambda_has_return_expr;
 | 
						|
    D.diag_MaybeFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_maybe_falloff_nonvoid_lambda;
 | 
						|
    D.diag_AlwaysFallThrough_HasNoReturn =
 | 
						|
      diag::err_noreturn_lambda_has_return_expr;
 | 
						|
    D.diag_AlwaysFallThrough_ReturnsNonVoid =
 | 
						|
      diag::warn_falloff_nonvoid_lambda;
 | 
						|
    D.diag_NeverFallThroughOrReturn = 0;
 | 
						|
    D.funMode = Lambda;
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
 | 
						|
                        bool HasNoReturn) const {
 | 
						|
    if (funMode == Function) {
 | 
						|
      return (ReturnsVoid ||
 | 
						|
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
 | 
						|
                          FuncLoc)) &&
 | 
						|
             (!HasNoReturn ||
 | 
						|
              D.isIgnored(diag::warn_noreturn_function_has_return_expr,
 | 
						|
                          FuncLoc)) &&
 | 
						|
             (!ReturnsVoid ||
 | 
						|
              D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
 | 
						|
    }
 | 
						|
    if (funMode == Coroutine) {
 | 
						|
      return (ReturnsVoid ||
 | 
						|
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
 | 
						|
              D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
 | 
						|
                          FuncLoc)) &&
 | 
						|
             (!HasNoReturn);
 | 
						|
    }
 | 
						|
    // For blocks / lambdas.
 | 
						|
    return ReturnsVoid && !HasNoReturn;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
/// CheckFallThroughForBody - Check that we don't fall off the end of a
 | 
						|
/// function that should return a value.  Check that we don't fall off the end
 | 
						|
/// of a noreturn function.  We assume that functions and blocks not marked
 | 
						|
/// noreturn will return.
 | 
						|
static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
 | 
						|
                                    QualType BlockType,
 | 
						|
                                    const CheckFallThroughDiagnostics &CD,
 | 
						|
                                    AnalysisDeclContext &AC,
 | 
						|
                                    sema::FunctionScopeInfo *FSI) {
 | 
						|
 | 
						|
  bool ReturnsVoid = false;
 | 
						|
  bool HasNoReturn = false;
 | 
						|
  bool IsCoroutine = FSI->isCoroutine();
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
 | 
						|
      ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
 | 
						|
    else
 | 
						|
      ReturnsVoid = FD->getReturnType()->isVoidType();
 | 
						|
    HasNoReturn = FD->isNoReturn();
 | 
						|
  }
 | 
						|
  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
    ReturnsVoid = MD->getReturnType()->isVoidType();
 | 
						|
    HasNoReturn = MD->hasAttr<NoReturnAttr>();
 | 
						|
  }
 | 
						|
  else if (isa<BlockDecl>(D)) {
 | 
						|
    if (const FunctionType *FT =
 | 
						|
          BlockType->getPointeeType()->getAs<FunctionType>()) {
 | 
						|
      if (FT->getReturnType()->isVoidType())
 | 
						|
        ReturnsVoid = true;
 | 
						|
      if (FT->getNoReturnAttr())
 | 
						|
        HasNoReturn = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnosticsEngine &Diags = S.getDiagnostics();
 | 
						|
 | 
						|
  // Short circuit for compilation speed.
 | 
						|
  if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
 | 
						|
      return;
 | 
						|
  SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
 | 
						|
  auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
 | 
						|
    if (IsCoroutine)
 | 
						|
      S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
 | 
						|
    else
 | 
						|
      S.Diag(Loc, DiagID);
 | 
						|
  };
 | 
						|
 | 
						|
  // cpu_dispatch functions permit empty function bodies for ICC compatibility.
 | 
						|
  if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Either in a function body compound statement, or a function-try-block.
 | 
						|
  switch (CheckFallThrough(AC)) {
 | 
						|
    case UnknownFallThrough:
 | 
						|
      break;
 | 
						|
 | 
						|
    case MaybeFallThrough:
 | 
						|
      if (HasNoReturn)
 | 
						|
        EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
 | 
						|
      else if (!ReturnsVoid)
 | 
						|
        EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
 | 
						|
      break;
 | 
						|
    case AlwaysFallThrough:
 | 
						|
      if (HasNoReturn)
 | 
						|
        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
 | 
						|
      else if (!ReturnsVoid)
 | 
						|
        EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
 | 
						|
      break;
 | 
						|
    case NeverFallThroughOrReturn:
 | 
						|
      if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
 | 
						|
        if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
 | 
						|
        } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
 | 
						|
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
 | 
						|
        } else {
 | 
						|
          S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case NeverFallThrough:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// -Wuninitialized
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ContainsReference - A visitor class to search for references to
 | 
						|
/// a particular declaration (the needle) within any evaluated component of an
 | 
						|
/// expression (recursively).
 | 
						|
class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
 | 
						|
  bool FoundReference;
 | 
						|
  const DeclRefExpr *Needle;
 | 
						|
 | 
						|
public:
 | 
						|
  typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
 | 
						|
 | 
						|
  ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
 | 
						|
    : Inherited(Context), FoundReference(false), Needle(Needle) {}
 | 
						|
 | 
						|
  void VisitExpr(const Expr *E) {
 | 
						|
    // Stop evaluating if we already have a reference.
 | 
						|
    if (FoundReference)
 | 
						|
      return;
 | 
						|
 | 
						|
    Inherited::VisitExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitDeclRefExpr(const DeclRefExpr *E) {
 | 
						|
    if (E == Needle)
 | 
						|
      FoundReference = true;
 | 
						|
    else
 | 
						|
      Inherited::VisitDeclRefExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool doesContainReference() const { return FoundReference; }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
 | 
						|
  QualType VariableTy = VD->getType().getCanonicalType();
 | 
						|
  if (VariableTy->isBlockPointerType() &&
 | 
						|
      !VD->hasAttr<BlocksAttr>()) {
 | 
						|
    S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
 | 
						|
        << VD->getDeclName()
 | 
						|
        << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't issue a fixit if there is already an initializer.
 | 
						|
  if (VD->getInit())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't suggest a fixit inside macros.
 | 
						|
  if (VD->getEndLoc().isMacroID())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
 | 
						|
 | 
						|
  // Suggest possible initialization (if any).
 | 
						|
  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
 | 
						|
  if (Init.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
 | 
						|
    << FixItHint::CreateInsertion(Loc, Init);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a fixit to remove an if-like statement, on the assumption that its
 | 
						|
/// condition is CondVal.
 | 
						|
static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
 | 
						|
                          const Stmt *Else, bool CondVal,
 | 
						|
                          FixItHint &Fixit1, FixItHint &Fixit2) {
 | 
						|
  if (CondVal) {
 | 
						|
    // If condition is always true, remove all but the 'then'.
 | 
						|
    Fixit1 = FixItHint::CreateRemoval(
 | 
						|
        CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
 | 
						|
    if (Else) {
 | 
						|
      SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
 | 
						|
      Fixit2 =
 | 
						|
          FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // If condition is always false, remove all but the 'else'.
 | 
						|
    if (Else)
 | 
						|
      Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
 | 
						|
          If->getBeginLoc(), Else->getBeginLoc()));
 | 
						|
    else
 | 
						|
      Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DiagUninitUse -- Helper function to produce a diagnostic for an
 | 
						|
/// uninitialized use of a variable.
 | 
						|
static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
 | 
						|
                          bool IsCapturedByBlock) {
 | 
						|
  bool Diagnosed = false;
 | 
						|
 | 
						|
  switch (Use.getKind()) {
 | 
						|
  case UninitUse::Always:
 | 
						|
    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
 | 
						|
        << VD->getDeclName() << IsCapturedByBlock
 | 
						|
        << Use.getUser()->getSourceRange();
 | 
						|
    return;
 | 
						|
 | 
						|
  case UninitUse::AfterDecl:
 | 
						|
  case UninitUse::AfterCall:
 | 
						|
    S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
 | 
						|
      << VD->getDeclName() << IsCapturedByBlock
 | 
						|
      << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
 | 
						|
      << const_cast<DeclContext*>(VD->getLexicalDeclContext())
 | 
						|
      << VD->getSourceRange();
 | 
						|
    S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
 | 
						|
        << IsCapturedByBlock << Use.getUser()->getSourceRange();
 | 
						|
    return;
 | 
						|
 | 
						|
  case UninitUse::Maybe:
 | 
						|
  case UninitUse::Sometimes:
 | 
						|
    // Carry on to report sometimes-uninitialized branches, if possible,
 | 
						|
    // or a 'may be used uninitialized' diagnostic otherwise.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose each branch which leads to a sometimes-uninitialized use.
 | 
						|
  for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    assert(Use.getKind() == UninitUse::Sometimes);
 | 
						|
 | 
						|
    const Expr *User = Use.getUser();
 | 
						|
    const Stmt *Term = I->Terminator;
 | 
						|
 | 
						|
    // Information used when building the diagnostic.
 | 
						|
    unsigned DiagKind;
 | 
						|
    StringRef Str;
 | 
						|
    SourceRange Range;
 | 
						|
 | 
						|
    // FixIts to suppress the diagnostic by removing the dead condition.
 | 
						|
    // For all binary terminators, branch 0 is taken if the condition is true,
 | 
						|
    // and branch 1 is taken if the condition is false.
 | 
						|
    int RemoveDiagKind = -1;
 | 
						|
    const char *FixitStr =
 | 
						|
        S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
 | 
						|
                                  : (I->Output ? "1" : "0");
 | 
						|
    FixItHint Fixit1, Fixit2;
 | 
						|
 | 
						|
    switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
 | 
						|
    default:
 | 
						|
      // Don't know how to report this. Just fall back to 'may be used
 | 
						|
      // uninitialized'. FIXME: Can this happen?
 | 
						|
      continue;
 | 
						|
 | 
						|
    // "condition is true / condition is false".
 | 
						|
    case Stmt::IfStmtClass: {
 | 
						|
      const IfStmt *IS = cast<IfStmt>(Term);
 | 
						|
      DiagKind = 0;
 | 
						|
      Str = "if";
 | 
						|
      Range = IS->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 0;
 | 
						|
      CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
 | 
						|
                    I->Output, Fixit1, Fixit2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Stmt::ConditionalOperatorClass: {
 | 
						|
      const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
 | 
						|
      DiagKind = 0;
 | 
						|
      Str = "?:";
 | 
						|
      Range = CO->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 0;
 | 
						|
      CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
 | 
						|
                    I->Output, Fixit1, Fixit2);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Stmt::BinaryOperatorClass: {
 | 
						|
      const BinaryOperator *BO = cast<BinaryOperator>(Term);
 | 
						|
      if (!BO->isLogicalOp())
 | 
						|
        continue;
 | 
						|
      DiagKind = 0;
 | 
						|
      Str = BO->getOpcodeStr();
 | 
						|
      Range = BO->getLHS()->getSourceRange();
 | 
						|
      RemoveDiagKind = 0;
 | 
						|
      if ((BO->getOpcode() == BO_LAnd && I->Output) ||
 | 
						|
          (BO->getOpcode() == BO_LOr && !I->Output))
 | 
						|
        // true && y -> y, false || y -> y.
 | 
						|
        Fixit1 = FixItHint::CreateRemoval(
 | 
						|
            SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
 | 
						|
      else
 | 
						|
        // false && y -> false, true || y -> true.
 | 
						|
        Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // "loop is entered / loop is exited".
 | 
						|
    case Stmt::WhileStmtClass:
 | 
						|
      DiagKind = 1;
 | 
						|
      Str = "while";
 | 
						|
      Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 1;
 | 
						|
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | 
						|
      break;
 | 
						|
    case Stmt::ForStmtClass:
 | 
						|
      DiagKind = 1;
 | 
						|
      Str = "for";
 | 
						|
      Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 1;
 | 
						|
      if (I->Output)
 | 
						|
        Fixit1 = FixItHint::CreateRemoval(Range);
 | 
						|
      else
 | 
						|
        Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | 
						|
      break;
 | 
						|
    case Stmt::CXXForRangeStmtClass:
 | 
						|
      if (I->Output == 1) {
 | 
						|
        // The use occurs if a range-based for loop's body never executes.
 | 
						|
        // That may be impossible, and there's no syntactic fix for this,
 | 
						|
        // so treat it as a 'may be uninitialized' case.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DiagKind = 1;
 | 
						|
      Str = "for";
 | 
						|
      Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
 | 
						|
      break;
 | 
						|
 | 
						|
    // "condition is true / loop is exited".
 | 
						|
    case Stmt::DoStmtClass:
 | 
						|
      DiagKind = 2;
 | 
						|
      Str = "do";
 | 
						|
      Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
 | 
						|
      RemoveDiagKind = 1;
 | 
						|
      Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
 | 
						|
      break;
 | 
						|
 | 
						|
    // "switch case is taken".
 | 
						|
    case Stmt::CaseStmtClass:
 | 
						|
      DiagKind = 3;
 | 
						|
      Str = "case";
 | 
						|
      Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
 | 
						|
      break;
 | 
						|
    case Stmt::DefaultStmtClass:
 | 
						|
      DiagKind = 3;
 | 
						|
      Str = "default";
 | 
						|
      Range = cast<DefaultStmt>(Term)->getDefaultLoc();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
 | 
						|
      << VD->getDeclName() << IsCapturedByBlock << DiagKind
 | 
						|
      << Str << I->Output << Range;
 | 
						|
    S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
 | 
						|
        << IsCapturedByBlock << User->getSourceRange();
 | 
						|
    if (RemoveDiagKind != -1)
 | 
						|
      S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
 | 
						|
        << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
 | 
						|
 | 
						|
    Diagnosed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Diagnosed)
 | 
						|
    S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
 | 
						|
        << VD->getDeclName() << IsCapturedByBlock
 | 
						|
        << Use.getUser()->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
 | 
						|
/// uninitialized variable. This manages the different forms of diagnostic
 | 
						|
/// emitted for particular types of uses. Returns true if the use was diagnosed
 | 
						|
/// as a warning. If a particular use is one we omit warnings for, returns
 | 
						|
/// false.
 | 
						|
static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
 | 
						|
                                     const UninitUse &Use,
 | 
						|
                                     bool alwaysReportSelfInit = false) {
 | 
						|
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
 | 
						|
    // Inspect the initializer of the variable declaration which is
 | 
						|
    // being referenced prior to its initialization. We emit
 | 
						|
    // specialized diagnostics for self-initialization, and we
 | 
						|
    // specifically avoid warning about self references which take the
 | 
						|
    // form of:
 | 
						|
    //
 | 
						|
    //   int x = x;
 | 
						|
    //
 | 
						|
    // This is used to indicate to GCC that 'x' is intentionally left
 | 
						|
    // uninitialized. Proven code paths which access 'x' in
 | 
						|
    // an uninitialized state after this will still warn.
 | 
						|
    if (const Expr *Initializer = VD->getInit()) {
 | 
						|
      if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
 | 
						|
        return false;
 | 
						|
 | 
						|
      ContainsReference CR(S.Context, DRE);
 | 
						|
      CR.Visit(Initializer);
 | 
						|
      if (CR.doesContainReference()) {
 | 
						|
        S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
 | 
						|
            << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DiagUninitUse(S, VD, Use, false);
 | 
						|
  } else {
 | 
						|
    const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
 | 
						|
    if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
 | 
						|
      S.Diag(BE->getBeginLoc(),
 | 
						|
             diag::warn_uninit_byref_blockvar_captured_by_block)
 | 
						|
          << VD->getDeclName()
 | 
						|
          << VD->getType().getQualifiers().hasObjCLifetime();
 | 
						|
    else
 | 
						|
      DiagUninitUse(S, VD, Use, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Report where the variable was declared when the use wasn't within
 | 
						|
  // the initializer of that declaration & we didn't already suggest
 | 
						|
  // an initialization fixit.
 | 
						|
  if (!SuggestInitializationFixit(S, VD))
 | 
						|
    S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
 | 
						|
        << VD->getDeclName();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
 | 
						|
  public:
 | 
						|
    FallthroughMapper(Sema &S)
 | 
						|
      : FoundSwitchStatements(false),
 | 
						|
        S(S) {
 | 
						|
    }
 | 
						|
 | 
						|
    bool foundSwitchStatements() const { return FoundSwitchStatements; }
 | 
						|
 | 
						|
    void markFallthroughVisited(const AttributedStmt *Stmt) {
 | 
						|
      bool Found = FallthroughStmts.erase(Stmt);
 | 
						|
      assert(Found);
 | 
						|
      (void)Found;
 | 
						|
    }
 | 
						|
 | 
						|
    typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
 | 
						|
 | 
						|
    const AttrStmts &getFallthroughStmts() const {
 | 
						|
      return FallthroughStmts;
 | 
						|
    }
 | 
						|
 | 
						|
    void fillReachableBlocks(CFG *Cfg) {
 | 
						|
      assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
 | 
						|
      std::deque<const CFGBlock *> BlockQueue;
 | 
						|
 | 
						|
      ReachableBlocks.insert(&Cfg->getEntry());
 | 
						|
      BlockQueue.push_back(&Cfg->getEntry());
 | 
						|
      // Mark all case blocks reachable to avoid problems with switching on
 | 
						|
      // constants, covered enums, etc.
 | 
						|
      // These blocks can contain fall-through annotations, and we don't want to
 | 
						|
      // issue a warn_fallthrough_attr_unreachable for them.
 | 
						|
      for (const auto *B : *Cfg) {
 | 
						|
        const Stmt *L = B->getLabel();
 | 
						|
        if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
 | 
						|
          BlockQueue.push_back(B);
 | 
						|
      }
 | 
						|
 | 
						|
      while (!BlockQueue.empty()) {
 | 
						|
        const CFGBlock *P = BlockQueue.front();
 | 
						|
        BlockQueue.pop_front();
 | 
						|
        for (CFGBlock::const_succ_iterator I = P->succ_begin(),
 | 
						|
                                           E = P->succ_end();
 | 
						|
             I != E; ++I) {
 | 
						|
          if (*I && ReachableBlocks.insert(*I).second)
 | 
						|
            BlockQueue.push_back(*I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
 | 
						|
                                   bool IsTemplateInstantiation) {
 | 
						|
      assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
 | 
						|
 | 
						|
      int UnannotatedCnt = 0;
 | 
						|
      AnnotatedCnt = 0;
 | 
						|
 | 
						|
      std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
 | 
						|
      while (!BlockQueue.empty()) {
 | 
						|
        const CFGBlock *P = BlockQueue.front();
 | 
						|
        BlockQueue.pop_front();
 | 
						|
        if (!P) continue;
 | 
						|
 | 
						|
        const Stmt *Term = P->getTerminatorStmt();
 | 
						|
        if (Term && isa<SwitchStmt>(Term))
 | 
						|
          continue; // Switch statement, good.
 | 
						|
 | 
						|
        const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
 | 
						|
        if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
 | 
						|
          continue; // Previous case label has no statements, good.
 | 
						|
 | 
						|
        const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
 | 
						|
        if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
 | 
						|
          continue; // Case label is preceded with a normal label, good.
 | 
						|
 | 
						|
        if (!ReachableBlocks.count(P)) {
 | 
						|
          for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
 | 
						|
                                                ElemEnd = P->rend();
 | 
						|
               ElemIt != ElemEnd; ++ElemIt) {
 | 
						|
            if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
 | 
						|
              if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
 | 
						|
                // Don't issue a warning for an unreachable fallthrough
 | 
						|
                // attribute in template instantiations as it may not be
 | 
						|
                // unreachable in all instantiations of the template.
 | 
						|
                if (!IsTemplateInstantiation)
 | 
						|
                  S.Diag(AS->getBeginLoc(),
 | 
						|
                         diag::warn_fallthrough_attr_unreachable);
 | 
						|
                markFallthroughVisited(AS);
 | 
						|
                ++AnnotatedCnt;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
              // Don't care about other unreachable statements.
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If there are no unreachable statements, this may be a special
 | 
						|
          // case in CFG:
 | 
						|
          // case X: {
 | 
						|
          //    A a;  // A has a destructor.
 | 
						|
          //    break;
 | 
						|
          // }
 | 
						|
          // // <<<< This place is represented by a 'hanging' CFG block.
 | 
						|
          // case Y:
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        const Stmt *LastStmt = getLastStmt(*P);
 | 
						|
        if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
 | 
						|
          markFallthroughVisited(AS);
 | 
						|
          ++AnnotatedCnt;
 | 
						|
          continue; // Fallthrough annotation, good.
 | 
						|
        }
 | 
						|
 | 
						|
        if (!LastStmt) { // This block contains no executable statements.
 | 
						|
          // Traverse its predecessors.
 | 
						|
          std::copy(P->pred_begin(), P->pred_end(),
 | 
						|
                    std::back_inserter(BlockQueue));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        ++UnannotatedCnt;
 | 
						|
      }
 | 
						|
      return !!UnannotatedCnt;
 | 
						|
    }
 | 
						|
 | 
						|
    // RecursiveASTVisitor setup.
 | 
						|
    bool shouldWalkTypesOfTypeLocs() const { return false; }
 | 
						|
 | 
						|
    bool VisitAttributedStmt(AttributedStmt *S) {
 | 
						|
      if (asFallThroughAttr(S))
 | 
						|
        FallthroughStmts.insert(S);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    bool VisitSwitchStmt(SwitchStmt *S) {
 | 
						|
      FoundSwitchStatements = true;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to traverse local type declarations. We analyze their
 | 
						|
    // methods separately.
 | 
						|
    bool TraverseDecl(Decl *D) { return true; }
 | 
						|
 | 
						|
    // We analyze lambda bodies separately. Skip them here.
 | 
						|
    bool TraverseLambdaExpr(LambdaExpr *LE) {
 | 
						|
      // Traverse the captures, but not the body.
 | 
						|
      for (const auto C : zip(LE->captures(), LE->capture_inits()))
 | 
						|
        TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
 | 
						|
      if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
 | 
						|
        if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
 | 
						|
          return AS;
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    static const Stmt *getLastStmt(const CFGBlock &B) {
 | 
						|
      if (const Stmt *Term = B.getTerminatorStmt())
 | 
						|
        return Term;
 | 
						|
      for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
 | 
						|
                                            ElemEnd = B.rend();
 | 
						|
                                            ElemIt != ElemEnd; ++ElemIt) {
 | 
						|
        if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
 | 
						|
          return CS->getStmt();
 | 
						|
      }
 | 
						|
      // Workaround to detect a statement thrown out by CFGBuilder:
 | 
						|
      //   case X: {} case Y:
 | 
						|
      //   case X: ; case Y:
 | 
						|
      if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
 | 
						|
        if (!isa<SwitchCase>(SW->getSubStmt()))
 | 
						|
          return SW->getSubStmt();
 | 
						|
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    bool FoundSwitchStatements;
 | 
						|
    AttrStmts FallthroughStmts;
 | 
						|
    Sema &S;
 | 
						|
    llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
 | 
						|
  };
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
 | 
						|
                                            SourceLocation Loc) {
 | 
						|
  TokenValue FallthroughTokens[] = {
 | 
						|
    tok::l_square, tok::l_square,
 | 
						|
    PP.getIdentifierInfo("fallthrough"),
 | 
						|
    tok::r_square, tok::r_square
 | 
						|
  };
 | 
						|
 | 
						|
  TokenValue ClangFallthroughTokens[] = {
 | 
						|
    tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
 | 
						|
    tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
 | 
						|
    tok::r_square, tok::r_square
 | 
						|
  };
 | 
						|
 | 
						|
  bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;
 | 
						|
 | 
						|
  StringRef MacroName;
 | 
						|
  if (PreferClangAttr)
 | 
						|
    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
 | 
						|
  if (MacroName.empty())
 | 
						|
    MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
 | 
						|
  if (MacroName.empty() && !PreferClangAttr)
 | 
						|
    MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
 | 
						|
  if (MacroName.empty()) {
 | 
						|
    if (!PreferClangAttr)
 | 
						|
      MacroName = "[[fallthrough]]";
 | 
						|
    else if (PP.getLangOpts().CPlusPlus)
 | 
						|
      MacroName = "[[clang::fallthrough]]";
 | 
						|
    else
 | 
						|
      MacroName = "__attribute__((fallthrough))";
 | 
						|
  }
 | 
						|
  return MacroName;
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
 | 
						|
                                            bool PerFunction) {
 | 
						|
  FallthroughMapper FM(S);
 | 
						|
  FM.TraverseStmt(AC.getBody());
 | 
						|
 | 
						|
  if (!FM.foundSwitchStatements())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (PerFunction && FM.getFallthroughStmts().empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  CFG *Cfg = AC.getCFG();
 | 
						|
 | 
						|
  if (!Cfg)
 | 
						|
    return;
 | 
						|
 | 
						|
  FM.fillReachableBlocks(Cfg);
 | 
						|
 | 
						|
  for (const CFGBlock *B : llvm::reverse(*Cfg)) {
 | 
						|
    const Stmt *Label = B->getLabel();
 | 
						|
 | 
						|
    if (!Label || !isa<SwitchCase>(Label))
 | 
						|
      continue;
 | 
						|
 | 
						|
    int AnnotatedCnt;
 | 
						|
 | 
						|
    bool IsTemplateInstantiation = false;
 | 
						|
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
 | 
						|
      IsTemplateInstantiation = Function->isTemplateInstantiation();
 | 
						|
    if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
 | 
						|
                                      IsTemplateInstantiation))
 | 
						|
      continue;
 | 
						|
 | 
						|
    S.Diag(Label->getBeginLoc(),
 | 
						|
           PerFunction ? diag::warn_unannotated_fallthrough_per_function
 | 
						|
                       : diag::warn_unannotated_fallthrough);
 | 
						|
 | 
						|
    if (!AnnotatedCnt) {
 | 
						|
      SourceLocation L = Label->getBeginLoc();
 | 
						|
      if (L.isMacroID())
 | 
						|
        continue;
 | 
						|
 | 
						|
      const Stmt *Term = B->getTerminatorStmt();
 | 
						|
      // Skip empty cases.
 | 
						|
      while (B->empty() && !Term && B->succ_size() == 1) {
 | 
						|
        B = *B->succ_begin();
 | 
						|
        Term = B->getTerminatorStmt();
 | 
						|
      }
 | 
						|
      if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
 | 
						|
        Preprocessor &PP = S.getPreprocessor();
 | 
						|
        StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
 | 
						|
        SmallString<64> TextToInsert(AnnotationSpelling);
 | 
						|
        TextToInsert += "; ";
 | 
						|
        S.Diag(L, diag::note_insert_fallthrough_fixit)
 | 
						|
            << AnnotationSpelling
 | 
						|
            << FixItHint::CreateInsertion(L, TextToInsert);
 | 
						|
      }
 | 
						|
      S.Diag(L, diag::note_insert_break_fixit)
 | 
						|
          << FixItHint::CreateInsertion(L, "break; ");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto *F : FM.getFallthroughStmts())
 | 
						|
    S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
 | 
						|
}
 | 
						|
 | 
						|
static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
 | 
						|
                     const Stmt *S) {
 | 
						|
  assert(S);
 | 
						|
 | 
						|
  do {
 | 
						|
    switch (S->getStmtClass()) {
 | 
						|
    case Stmt::ForStmtClass:
 | 
						|
    case Stmt::WhileStmtClass:
 | 
						|
    case Stmt::CXXForRangeStmtClass:
 | 
						|
    case Stmt::ObjCForCollectionStmtClass:
 | 
						|
      return true;
 | 
						|
    case Stmt::DoStmtClass: {
 | 
						|
      Expr::EvalResult Result;
 | 
						|
      if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
 | 
						|
        return true;
 | 
						|
      return Result.Val.getInt().getBoolValue();
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  } while ((S = PM.getParent(S)));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void diagnoseRepeatedUseOfWeak(Sema &S,
 | 
						|
                                      const sema::FunctionScopeInfo *CurFn,
 | 
						|
                                      const Decl *D,
 | 
						|
                                      const ParentMap &PM) {
 | 
						|
  typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
 | 
						|
  typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
 | 
						|
  typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
 | 
						|
  typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
 | 
						|
  StmtUsesPair;
 | 
						|
 | 
						|
  ASTContext &Ctx = S.getASTContext();
 | 
						|
 | 
						|
  const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
 | 
						|
 | 
						|
  // Extract all weak objects that are referenced more than once.
 | 
						|
  SmallVector<StmtUsesPair, 8> UsesByStmt;
 | 
						|
  for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    const WeakUseVector &Uses = I->second;
 | 
						|
 | 
						|
    // Find the first read of the weak object.
 | 
						|
    WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
 | 
						|
    for ( ; UI != UE; ++UI) {
 | 
						|
      if (UI->isUnsafe())
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If there were only writes to this object, don't warn.
 | 
						|
    if (UI == UE)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If there was only one read, followed by any number of writes, and the
 | 
						|
    // read is not within a loop, don't warn. Additionally, don't warn in a
 | 
						|
    // loop if the base object is a local variable -- local variables are often
 | 
						|
    // changed in loops.
 | 
						|
    if (UI == Uses.begin()) {
 | 
						|
      WeakUseVector::const_iterator UI2 = UI;
 | 
						|
      for (++UI2; UI2 != UE; ++UI2)
 | 
						|
        if (UI2->isUnsafe())
 | 
						|
          break;
 | 
						|
 | 
						|
      if (UI2 == UE) {
 | 
						|
        if (!isInLoop(Ctx, PM, UI->getUseExpr()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        const WeakObjectProfileTy &Profile = I->first;
 | 
						|
        if (!Profile.isExactProfile())
 | 
						|
          continue;
 | 
						|
 | 
						|
        const NamedDecl *Base = Profile.getBase();
 | 
						|
        if (!Base)
 | 
						|
          Base = Profile.getProperty();
 | 
						|
        assert(Base && "A profile always has a base or property.");
 | 
						|
 | 
						|
        if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
 | 
						|
          if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
 | 
						|
            continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
 | 
						|
  }
 | 
						|
 | 
						|
  if (UsesByStmt.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Sort by first use so that we emit the warnings in a deterministic order.
 | 
						|
  SourceManager &SM = S.getSourceManager();
 | 
						|
  llvm::sort(UsesByStmt,
 | 
						|
             [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
 | 
						|
               return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
 | 
						|
                                                   RHS.first->getBeginLoc());
 | 
						|
             });
 | 
						|
 | 
						|
  // Classify the current code body for better warning text.
 | 
						|
  // This enum should stay in sync with the cases in
 | 
						|
  // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
 | 
						|
  // FIXME: Should we use a common classification enum and the same set of
 | 
						|
  // possibilities all throughout Sema?
 | 
						|
  enum {
 | 
						|
    Function,
 | 
						|
    Method,
 | 
						|
    Block,
 | 
						|
    Lambda
 | 
						|
  } FunctionKind;
 | 
						|
 | 
						|
  if (isa<sema::BlockScopeInfo>(CurFn))
 | 
						|
    FunctionKind = Block;
 | 
						|
  else if (isa<sema::LambdaScopeInfo>(CurFn))
 | 
						|
    FunctionKind = Lambda;
 | 
						|
  else if (isa<ObjCMethodDecl>(D))
 | 
						|
    FunctionKind = Method;
 | 
						|
  else
 | 
						|
    FunctionKind = Function;
 | 
						|
 | 
						|
  // Iterate through the sorted problems and emit warnings for each.
 | 
						|
  for (const auto &P : UsesByStmt) {
 | 
						|
    const Stmt *FirstRead = P.first;
 | 
						|
    const WeakObjectProfileTy &Key = P.second->first;
 | 
						|
    const WeakUseVector &Uses = P.second->second;
 | 
						|
 | 
						|
    // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
 | 
						|
    // may not contain enough information to determine that these are different
 | 
						|
    // properties. We can only be 100% sure of a repeated use in certain cases,
 | 
						|
    // and we adjust the diagnostic kind accordingly so that the less certain
 | 
						|
    // case can be turned off if it is too noisy.
 | 
						|
    unsigned DiagKind;
 | 
						|
    if (Key.isExactProfile())
 | 
						|
      DiagKind = diag::warn_arc_repeated_use_of_weak;
 | 
						|
    else
 | 
						|
      DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
 | 
						|
 | 
						|
    // Classify the weak object being accessed for better warning text.
 | 
						|
    // This enum should stay in sync with the cases in
 | 
						|
    // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
 | 
						|
    enum {
 | 
						|
      Variable,
 | 
						|
      Property,
 | 
						|
      ImplicitProperty,
 | 
						|
      Ivar
 | 
						|
    } ObjectKind;
 | 
						|
 | 
						|
    const NamedDecl *KeyProp = Key.getProperty();
 | 
						|
    if (isa<VarDecl>(KeyProp))
 | 
						|
      ObjectKind = Variable;
 | 
						|
    else if (isa<ObjCPropertyDecl>(KeyProp))
 | 
						|
      ObjectKind = Property;
 | 
						|
    else if (isa<ObjCMethodDecl>(KeyProp))
 | 
						|
      ObjectKind = ImplicitProperty;
 | 
						|
    else if (isa<ObjCIvarDecl>(KeyProp))
 | 
						|
      ObjectKind = Ivar;
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unexpected weak object kind!");
 | 
						|
 | 
						|
    // Do not warn about IBOutlet weak property receivers being set to null
 | 
						|
    // since they are typically only used from the main thread.
 | 
						|
    if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
 | 
						|
      if (Prop->hasAttr<IBOutletAttr>())
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Show the first time the object was read.
 | 
						|
    S.Diag(FirstRead->getBeginLoc(), DiagKind)
 | 
						|
        << int(ObjectKind) << KeyProp << int(FunctionKind)
 | 
						|
        << FirstRead->getSourceRange();
 | 
						|
 | 
						|
    // Print all the other accesses as notes.
 | 
						|
    for (const auto &Use : Uses) {
 | 
						|
      if (Use.getUseExpr() == FirstRead)
 | 
						|
        continue;
 | 
						|
      S.Diag(Use.getUseExpr()->getBeginLoc(),
 | 
						|
             diag::note_arc_weak_also_accessed_here)
 | 
						|
          << Use.getUseExpr()->getSourceRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class UninitValsDiagReporter : public UninitVariablesHandler {
 | 
						|
  Sema &S;
 | 
						|
  typedef SmallVector<UninitUse, 2> UsesVec;
 | 
						|
  typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
 | 
						|
  // Prefer using MapVector to DenseMap, so that iteration order will be
 | 
						|
  // the same as insertion order. This is needed to obtain a deterministic
 | 
						|
  // order of diagnostics when calling flushDiagnostics().
 | 
						|
  typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
 | 
						|
  UsesMap uses;
 | 
						|
 | 
						|
public:
 | 
						|
  UninitValsDiagReporter(Sema &S) : S(S) {}
 | 
						|
  ~UninitValsDiagReporter() override { flushDiagnostics(); }
 | 
						|
 | 
						|
  MappedType &getUses(const VarDecl *vd) {
 | 
						|
    MappedType &V = uses[vd];
 | 
						|
    if (!V.getPointer())
 | 
						|
      V.setPointer(new UsesVec());
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  void handleUseOfUninitVariable(const VarDecl *vd,
 | 
						|
                                 const UninitUse &use) override {
 | 
						|
    getUses(vd).getPointer()->push_back(use);
 | 
						|
  }
 | 
						|
 | 
						|
  void handleSelfInit(const VarDecl *vd) override {
 | 
						|
    getUses(vd).setInt(true);
 | 
						|
  }
 | 
						|
 | 
						|
  void flushDiagnostics() {
 | 
						|
    for (const auto &P : uses) {
 | 
						|
      const VarDecl *vd = P.first;
 | 
						|
      const MappedType &V = P.second;
 | 
						|
 | 
						|
      UsesVec *vec = V.getPointer();
 | 
						|
      bool hasSelfInit = V.getInt();
 | 
						|
 | 
						|
      // Specially handle the case where we have uses of an uninitialized
 | 
						|
      // variable, but the root cause is an idiomatic self-init.  We want
 | 
						|
      // to report the diagnostic at the self-init since that is the root cause.
 | 
						|
      if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
 | 
						|
        DiagnoseUninitializedUse(S, vd,
 | 
						|
                                 UninitUse(vd->getInit()->IgnoreParenCasts(),
 | 
						|
                                           /* isAlwaysUninit */ true),
 | 
						|
                                 /* alwaysReportSelfInit */ true);
 | 
						|
      else {
 | 
						|
        // Sort the uses by their SourceLocations.  While not strictly
 | 
						|
        // guaranteed to produce them in line/column order, this will provide
 | 
						|
        // a stable ordering.
 | 
						|
        llvm::sort(vec->begin(), vec->end(),
 | 
						|
                   [](const UninitUse &a, const UninitUse &b) {
 | 
						|
          // Prefer a more confident report over a less confident one.
 | 
						|
          if (a.getKind() != b.getKind())
 | 
						|
            return a.getKind() > b.getKind();
 | 
						|
          return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
 | 
						|
        });
 | 
						|
 | 
						|
        for (const auto &U : *vec) {
 | 
						|
          // If we have self-init, downgrade all uses to 'may be uninitialized'.
 | 
						|
          UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
 | 
						|
 | 
						|
          if (DiagnoseUninitializedUse(S, vd, Use))
 | 
						|
            // Skip further diagnostics for this variable. We try to warn only
 | 
						|
            // on the first point at which a variable is used uninitialized.
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Release the uses vector.
 | 
						|
      delete vec;
 | 
						|
    }
 | 
						|
 | 
						|
    uses.clear();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
 | 
						|
    return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
 | 
						|
      return U.getKind() == UninitUse::Always ||
 | 
						|
             U.getKind() == UninitUse::AfterCall ||
 | 
						|
             U.getKind() == UninitUse::AfterDecl;
 | 
						|
    });
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace {
 | 
						|
typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
 | 
						|
typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
 | 
						|
typedef std::list<DelayedDiag> DiagList;
 | 
						|
 | 
						|
struct SortDiagBySourceLocation {
 | 
						|
  SourceManager &SM;
 | 
						|
  SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
 | 
						|
 | 
						|
  bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
 | 
						|
    // Although this call will be slow, this is only called when outputting
 | 
						|
    // multiple warnings.
 | 
						|
    return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
} // namespace clang
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// -Wthread-safety
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace clang {
 | 
						|
namespace threadSafety {
 | 
						|
namespace {
 | 
						|
class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
 | 
						|
  Sema &S;
 | 
						|
  DiagList Warnings;
 | 
						|
  SourceLocation FunLocation, FunEndLocation;
 | 
						|
 | 
						|
  const FunctionDecl *CurrentFunction;
 | 
						|
  bool Verbose;
 | 
						|
 | 
						|
  OptionalNotes getNotes() const {
 | 
						|
    if (Verbose && CurrentFunction) {
 | 
						|
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
 | 
						|
                                S.PDiag(diag::note_thread_warning_in_fun)
 | 
						|
                                    << CurrentFunction);
 | 
						|
      return OptionalNotes(1, FNote);
 | 
						|
    }
 | 
						|
    return OptionalNotes();
 | 
						|
  }
 | 
						|
 | 
						|
  OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
 | 
						|
    OptionalNotes ONS(1, Note);
 | 
						|
    if (Verbose && CurrentFunction) {
 | 
						|
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
 | 
						|
                                S.PDiag(diag::note_thread_warning_in_fun)
 | 
						|
                                    << CurrentFunction);
 | 
						|
      ONS.push_back(std::move(FNote));
 | 
						|
    }
 | 
						|
    return ONS;
 | 
						|
  }
 | 
						|
 | 
						|
  OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
 | 
						|
                         const PartialDiagnosticAt &Note2) const {
 | 
						|
    OptionalNotes ONS;
 | 
						|
    ONS.push_back(Note1);
 | 
						|
    ONS.push_back(Note2);
 | 
						|
    if (Verbose && CurrentFunction) {
 | 
						|
      PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
 | 
						|
                                S.PDiag(diag::note_thread_warning_in_fun)
 | 
						|
                                    << CurrentFunction);
 | 
						|
      ONS.push_back(std::move(FNote));
 | 
						|
    }
 | 
						|
    return ONS;
 | 
						|
  }
 | 
						|
 | 
						|
  OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
 | 
						|
    return LocLocked.isValid()
 | 
						|
               ? getNotes(PartialDiagnosticAt(
 | 
						|
                     LocLocked, S.PDiag(diag::note_locked_here) << Kind))
 | 
						|
               : getNotes();
 | 
						|
  }
 | 
						|
 | 
						|
 public:
 | 
						|
  ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
 | 
						|
    : S(S), FunLocation(FL), FunEndLocation(FEL),
 | 
						|
      CurrentFunction(nullptr), Verbose(false) {}
 | 
						|
 | 
						|
  void setVerbose(bool b) { Verbose = b; }
 | 
						|
 | 
						|
  /// Emit all buffered diagnostics in order of sourcelocation.
 | 
						|
  /// We need to output diagnostics produced while iterating through
 | 
						|
  /// the lockset in deterministic order, so this function orders diagnostics
 | 
						|
  /// and outputs them.
 | 
						|
  void emitDiagnostics() {
 | 
						|
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
 | 
						|
    for (const auto &Diag : Warnings) {
 | 
						|
      S.Diag(Diag.first.first, Diag.first.second);
 | 
						|
      for (const auto &Note : Diag.second)
 | 
						|
        S.Diag(Note.first, Note.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
 | 
						|
                                         << Loc);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void handleUnmatchedUnlock(StringRef Kind, Name LockName,
 | 
						|
                             SourceLocation Loc) override {
 | 
						|
    if (Loc.isInvalid())
 | 
						|
      Loc = FunLocation;
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
 | 
						|
                                         << Kind << LockName);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
 | 
						|
                                 LockKind Expected, LockKind Received,
 | 
						|
                                 SourceLocation LocLocked,
 | 
						|
                                 SourceLocation LocUnlock) override {
 | 
						|
    if (LocUnlock.isInvalid())
 | 
						|
      LocUnlock = FunLocation;
 | 
						|
    PartialDiagnosticAt Warning(
 | 
						|
        LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
 | 
						|
                       << Kind << LockName << Received << Expected);
 | 
						|
    Warnings.emplace_back(std::move(Warning),
 | 
						|
                          makeLockedHereNote(LocLocked, Kind));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
 | 
						|
                        SourceLocation LocDoubleLock) override {
 | 
						|
    if (LocDoubleLock.isInvalid())
 | 
						|
      LocDoubleLock = FunLocation;
 | 
						|
    PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
 | 
						|
                                                   << Kind << LockName);
 | 
						|
    Warnings.emplace_back(std::move(Warning),
 | 
						|
                          makeLockedHereNote(LocLocked, Kind));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
 | 
						|
                                 SourceLocation LocLocked,
 | 
						|
                                 SourceLocation LocEndOfScope,
 | 
						|
                                 LockErrorKind LEK) override {
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    switch (LEK) {
 | 
						|
      case LEK_LockedSomePredecessors:
 | 
						|
        DiagID = diag::warn_lock_some_predecessors;
 | 
						|
        break;
 | 
						|
      case LEK_LockedSomeLoopIterations:
 | 
						|
        DiagID = diag::warn_expecting_lock_held_on_loop;
 | 
						|
        break;
 | 
						|
      case LEK_LockedAtEndOfFunction:
 | 
						|
        DiagID = diag::warn_no_unlock;
 | 
						|
        break;
 | 
						|
      case LEK_NotLockedAtEndOfFunction:
 | 
						|
        DiagID = diag::warn_expecting_locked;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (LocEndOfScope.isInvalid())
 | 
						|
      LocEndOfScope = FunEndLocation;
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
 | 
						|
                                                               << LockName);
 | 
						|
    Warnings.emplace_back(std::move(Warning),
 | 
						|
                          makeLockedHereNote(LocLocked, Kind));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleExclusiveAndShared(StringRef Kind, Name LockName,
 | 
						|
                                SourceLocation Loc1,
 | 
						|
                                SourceLocation Loc2) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc1,
 | 
						|
                                S.PDiag(diag::warn_lock_exclusive_and_shared)
 | 
						|
                                    << Kind << LockName);
 | 
						|
    PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
 | 
						|
                                       << Kind << LockName);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
 | 
						|
                         ProtectedOperationKind POK, AccessKind AK,
 | 
						|
                         SourceLocation Loc) override {
 | 
						|
    assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
 | 
						|
           "Only works for variables");
 | 
						|
    unsigned DiagID = POK == POK_VarAccess?
 | 
						|
                        diag::warn_variable_requires_any_lock:
 | 
						|
                        diag::warn_var_deref_requires_any_lock;
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
 | 
						|
      << D << getLockKindFromAccessKind(AK));
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
 | 
						|
                          ProtectedOperationKind POK, Name LockName,
 | 
						|
                          LockKind LK, SourceLocation Loc,
 | 
						|
                          Name *PossibleMatch) override {
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    if (PossibleMatch) {
 | 
						|
      switch (POK) {
 | 
						|
        case POK_VarAccess:
 | 
						|
          DiagID = diag::warn_variable_requires_lock_precise;
 | 
						|
          break;
 | 
						|
        case POK_VarDereference:
 | 
						|
          DiagID = diag::warn_var_deref_requires_lock_precise;
 | 
						|
          break;
 | 
						|
        case POK_FunctionCall:
 | 
						|
          DiagID = diag::warn_fun_requires_lock_precise;
 | 
						|
          break;
 | 
						|
        case POK_PassByRef:
 | 
						|
          DiagID = diag::warn_guarded_pass_by_reference;
 | 
						|
          break;
 | 
						|
        case POK_PtPassByRef:
 | 
						|
          DiagID = diag::warn_pt_guarded_pass_by_reference;
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
 | 
						|
                                                       << D
 | 
						|
                                                       << LockName << LK);
 | 
						|
      PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
 | 
						|
                                        << *PossibleMatch);
 | 
						|
      if (Verbose && POK == POK_VarAccess) {
 | 
						|
        PartialDiagnosticAt VNote(D->getLocation(),
 | 
						|
                                 S.PDiag(diag::note_guarded_by_declared_here)
 | 
						|
                                     << D->getNameAsString());
 | 
						|
        Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
 | 
						|
      } else
 | 
						|
        Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | 
						|
    } else {
 | 
						|
      switch (POK) {
 | 
						|
        case POK_VarAccess:
 | 
						|
          DiagID = diag::warn_variable_requires_lock;
 | 
						|
          break;
 | 
						|
        case POK_VarDereference:
 | 
						|
          DiagID = diag::warn_var_deref_requires_lock;
 | 
						|
          break;
 | 
						|
        case POK_FunctionCall:
 | 
						|
          DiagID = diag::warn_fun_requires_lock;
 | 
						|
          break;
 | 
						|
        case POK_PassByRef:
 | 
						|
          DiagID = diag::warn_guarded_pass_by_reference;
 | 
						|
          break;
 | 
						|
        case POK_PtPassByRef:
 | 
						|
          DiagID = diag::warn_pt_guarded_pass_by_reference;
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
 | 
						|
                                                       << D
 | 
						|
                                                       << LockName << LK);
 | 
						|
      if (Verbose && POK == POK_VarAccess) {
 | 
						|
        PartialDiagnosticAt Note(D->getLocation(),
 | 
						|
                                 S.PDiag(diag::note_guarded_by_declared_here));
 | 
						|
        Warnings.emplace_back(std::move(Warning), getNotes(Note));
 | 
						|
      } else
 | 
						|
        Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
 | 
						|
                             SourceLocation Loc) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc,
 | 
						|
        S.PDiag(diag::warn_acquire_requires_negative_cap)
 | 
						|
        << Kind << LockName << Neg);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
 | 
						|
                             SourceLocation Loc) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
 | 
						|
                                         << Kind << FunName << LockName);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
 | 
						|
                                SourceLocation Loc) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc,
 | 
						|
      S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc,
 | 
						|
      S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
 | 
						|
    Warnings.emplace_back(std::move(Warning), getNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void enterFunction(const FunctionDecl* FD) override {
 | 
						|
    CurrentFunction = FD;
 | 
						|
  }
 | 
						|
 | 
						|
  void leaveFunction(const FunctionDecl* FD) override {
 | 
						|
    CurrentFunction = nullptr;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
} // namespace threadSafety
 | 
						|
} // namespace clang
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// -Wconsumed
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace clang {
 | 
						|
namespace consumed {
 | 
						|
namespace {
 | 
						|
class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
 | 
						|
 | 
						|
  Sema &S;
 | 
						|
  DiagList Warnings;
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  ConsumedWarningsHandler(Sema &S) : S(S) {}
 | 
						|
 | 
						|
  void emitDiagnostics() override {
 | 
						|
    Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
 | 
						|
    for (const auto &Diag : Warnings) {
 | 
						|
      S.Diag(Diag.first.first, Diag.first.second);
 | 
						|
      for (const auto &Note : Diag.second)
 | 
						|
        S.Diag(Note.first, Note.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void warnLoopStateMismatch(SourceLocation Loc,
 | 
						|
                             StringRef VariableName) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
 | 
						|
      VariableName);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void warnParamReturnTypestateMismatch(SourceLocation Loc,
 | 
						|
                                        StringRef VariableName,
 | 
						|
                                        StringRef ExpectedState,
 | 
						|
                                        StringRef ObservedState) override {
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(
 | 
						|
      diag::warn_param_return_typestate_mismatch) << VariableName <<
 | 
						|
        ExpectedState << ObservedState);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
 | 
						|
                                  StringRef ObservedState) override {
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(
 | 
						|
      diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
 | 
						|
                                              StringRef TypeName) override {
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(
 | 
						|
      diag::warn_return_typestate_for_unconsumable_type) << TypeName);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
 | 
						|
                                   StringRef ObservedState) override {
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(
 | 
						|
      diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
 | 
						|
                                   SourceLocation Loc) override {
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(
 | 
						|
      diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
 | 
						|
  void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
 | 
						|
                             StringRef State, SourceLocation Loc) override {
 | 
						|
 | 
						|
    PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
 | 
						|
                                MethodName << VariableName << State);
 | 
						|
 | 
						|
    Warnings.emplace_back(std::move(Warning), OptionalNotes());
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
} // namespace consumed
 | 
						|
} // namespace clang
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
 | 
						|
//  warnings on a function, method, or block.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
clang::sema::AnalysisBasedWarnings::Policy::Policy() {
 | 
						|
  enableCheckFallThrough = 1;
 | 
						|
  enableCheckUnreachable = 0;
 | 
						|
  enableThreadSafetyAnalysis = 0;
 | 
						|
  enableConsumedAnalysis = 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
 | 
						|
  return (unsigned)!D.isIgnored(diag, SourceLocation());
 | 
						|
}
 | 
						|
 | 
						|
clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
 | 
						|
  : S(s),
 | 
						|
    NumFunctionsAnalyzed(0),
 | 
						|
    NumFunctionsWithBadCFGs(0),
 | 
						|
    NumCFGBlocks(0),
 | 
						|
    MaxCFGBlocksPerFunction(0),
 | 
						|
    NumUninitAnalysisFunctions(0),
 | 
						|
    NumUninitAnalysisVariables(0),
 | 
						|
    MaxUninitAnalysisVariablesPerFunction(0),
 | 
						|
    NumUninitAnalysisBlockVisits(0),
 | 
						|
    MaxUninitAnalysisBlockVisitsPerFunction(0) {
 | 
						|
 | 
						|
  using namespace diag;
 | 
						|
  DiagnosticsEngine &D = S.getDiagnostics();
 | 
						|
 | 
						|
  DefaultPolicy.enableCheckUnreachable =
 | 
						|
    isEnabled(D, warn_unreachable) ||
 | 
						|
    isEnabled(D, warn_unreachable_break) ||
 | 
						|
    isEnabled(D, warn_unreachable_return) ||
 | 
						|
    isEnabled(D, warn_unreachable_loop_increment);
 | 
						|
 | 
						|
  DefaultPolicy.enableThreadSafetyAnalysis =
 | 
						|
    isEnabled(D, warn_double_lock);
 | 
						|
 | 
						|
  DefaultPolicy.enableConsumedAnalysis =
 | 
						|
    isEnabled(D, warn_use_in_invalid_state);
 | 
						|
}
 | 
						|
 | 
						|
static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
 | 
						|
  for (const auto &D : fscope->PossiblyUnreachableDiags)
 | 
						|
    S.Diag(D.Loc, D.PD);
 | 
						|
}
 | 
						|
 | 
						|
void clang::sema::
 | 
						|
AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
 | 
						|
                                     sema::FunctionScopeInfo *fscope,
 | 
						|
                                     const Decl *D, QualType BlockType) {
 | 
						|
 | 
						|
  // We avoid doing analysis-based warnings when there are errors for
 | 
						|
  // two reasons:
 | 
						|
  // (1) The CFGs often can't be constructed (if the body is invalid), so
 | 
						|
  //     don't bother trying.
 | 
						|
  // (2) The code already has problems; running the analysis just takes more
 | 
						|
  //     time.
 | 
						|
  DiagnosticsEngine &Diags = S.getDiagnostics();
 | 
						|
 | 
						|
  // Do not do any analysis if we are going to just ignore them.
 | 
						|
  if (Diags.getIgnoreAllWarnings() ||
 | 
						|
      (Diags.getSuppressSystemWarnings() &&
 | 
						|
       S.SourceMgr.isInSystemHeader(D->getLocation())))
 | 
						|
    return;
 | 
						|
 | 
						|
  // For code in dependent contexts, we'll do this at instantiation time.
 | 
						|
  if (cast<DeclContext>(D)->isDependentContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Diags.hasUncompilableErrorOccurred()) {
 | 
						|
    // Flush out any possibly unreachable diagnostics.
 | 
						|
    flushDiagnostics(S, fscope);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const Stmt *Body = D->getBody();
 | 
						|
  assert(Body);
 | 
						|
 | 
						|
  // Construct the analysis context with the specified CFG build options.
 | 
						|
  AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
 | 
						|
 | 
						|
  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
 | 
						|
  // explosion for destructors that can result and the compile time hit.
 | 
						|
  AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
 | 
						|
  AC.getCFGBuildOptions().AddEHEdges = false;
 | 
						|
  AC.getCFGBuildOptions().AddInitializers = true;
 | 
						|
  AC.getCFGBuildOptions().AddImplicitDtors = true;
 | 
						|
  AC.getCFGBuildOptions().AddTemporaryDtors = true;
 | 
						|
  AC.getCFGBuildOptions().AddCXXNewAllocator = false;
 | 
						|
  AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
 | 
						|
 | 
						|
  // Force that certain expressions appear as CFGElements in the CFG.  This
 | 
						|
  // is used to speed up various analyses.
 | 
						|
  // FIXME: This isn't the right factoring.  This is here for initial
 | 
						|
  // prototyping, but we need a way for analyses to say what expressions they
 | 
						|
  // expect to always be CFGElements and then fill in the BuildOptions
 | 
						|
  // appropriately.  This is essentially a layering violation.
 | 
						|
  if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
 | 
						|
      P.enableConsumedAnalysis) {
 | 
						|
    // Unreachable code analysis and thread safety require a linearized CFG.
 | 
						|
    AC.getCFGBuildOptions().setAllAlwaysAdd();
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    AC.getCFGBuildOptions()
 | 
						|
      .setAlwaysAdd(Stmt::BinaryOperatorClass)
 | 
						|
      .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
 | 
						|
      .setAlwaysAdd(Stmt::BlockExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::CStyleCastExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::DeclRefExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::ImplicitCastExprClass)
 | 
						|
      .setAlwaysAdd(Stmt::UnaryOperatorClass)
 | 
						|
      .setAlwaysAdd(Stmt::AttributedStmtClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Install the logical handler.
 | 
						|
  llvm::Optional<LogicalErrorHandler> LEH;
 | 
						|
  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
 | 
						|
    LEH.emplace(S);
 | 
						|
    AC.getCFGBuildOptions().Observer = &*LEH;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit delayed diagnostics.
 | 
						|
  if (!fscope->PossiblyUnreachableDiags.empty()) {
 | 
						|
    bool analyzed = false;
 | 
						|
 | 
						|
    // Register the expressions with the CFGBuilder.
 | 
						|
    for (const auto &D : fscope->PossiblyUnreachableDiags) {
 | 
						|
      for (const Stmt *S : D.Stmts)
 | 
						|
        AC.registerForcedBlockExpression(S);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AC.getCFG()) {
 | 
						|
      analyzed = true;
 | 
						|
      for (const auto &D : fscope->PossiblyUnreachableDiags) {
 | 
						|
        bool AllReachable = true;
 | 
						|
        for (const Stmt *S : D.Stmts) {
 | 
						|
          const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
 | 
						|
          CFGReverseBlockReachabilityAnalysis *cra =
 | 
						|
              AC.getCFGReachablityAnalysis();
 | 
						|
          // FIXME: We should be able to assert that block is non-null, but
 | 
						|
          // the CFG analysis can skip potentially-evaluated expressions in
 | 
						|
          // edge cases; see test/Sema/vla-2.c.
 | 
						|
          if (block && cra) {
 | 
						|
            // Can this block be reached from the entrance?
 | 
						|
            if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
 | 
						|
              AllReachable = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If we cannot map to a basic block, assume the statement is
 | 
						|
          // reachable.
 | 
						|
        }
 | 
						|
 | 
						|
        if (AllReachable)
 | 
						|
          S.Diag(D.Loc, D.PD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!analyzed)
 | 
						|
      flushDiagnostics(S, fscope);
 | 
						|
  }
 | 
						|
 | 
						|
  // Warning: check missing 'return'
 | 
						|
  if (P.enableCheckFallThrough) {
 | 
						|
    const CheckFallThroughDiagnostics &CD =
 | 
						|
        (isa<BlockDecl>(D)
 | 
						|
             ? CheckFallThroughDiagnostics::MakeForBlock()
 | 
						|
             : (isa<CXXMethodDecl>(D) &&
 | 
						|
                cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
 | 
						|
                cast<CXXMethodDecl>(D)->getParent()->isLambda())
 | 
						|
                   ? CheckFallThroughDiagnostics::MakeForLambda()
 | 
						|
                   : (fscope->isCoroutine()
 | 
						|
                          ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
 | 
						|
                          : CheckFallThroughDiagnostics::MakeForFunction(D)));
 | 
						|
    CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
 | 
						|
  }
 | 
						|
 | 
						|
  // Warning: check for unreachable code
 | 
						|
  if (P.enableCheckUnreachable) {
 | 
						|
    // Only check for unreachable code on non-template instantiations.
 | 
						|
    // Different template instantiations can effectively change the control-flow
 | 
						|
    // and it is very difficult to prove that a snippet of code in a template
 | 
						|
    // is unreachable for all instantiations.
 | 
						|
    bool isTemplateInstantiation = false;
 | 
						|
    if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | 
						|
      isTemplateInstantiation = Function->isTemplateInstantiation();
 | 
						|
    if (!isTemplateInstantiation)
 | 
						|
      CheckUnreachable(S, AC);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for thread safety violations
 | 
						|
  if (P.enableThreadSafetyAnalysis) {
 | 
						|
    SourceLocation FL = AC.getDecl()->getLocation();
 | 
						|
    SourceLocation FEL = AC.getDecl()->getEndLoc();
 | 
						|
    threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
 | 
						|
    if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
 | 
						|
      Reporter.setIssueBetaWarnings(true);
 | 
						|
    if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
 | 
						|
      Reporter.setVerbose(true);
 | 
						|
 | 
						|
    threadSafety::runThreadSafetyAnalysis(AC, Reporter,
 | 
						|
                                          &S.ThreadSafetyDeclCache);
 | 
						|
    Reporter.emitDiagnostics();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for violations of consumed properties.
 | 
						|
  if (P.enableConsumedAnalysis) {
 | 
						|
    consumed::ConsumedWarningsHandler WarningHandler(S);
 | 
						|
    consumed::ConsumedAnalyzer Analyzer(WarningHandler);
 | 
						|
    Analyzer.run(AC);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
 | 
						|
      !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
 | 
						|
      !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc())) {
 | 
						|
    if (CFG *cfg = AC.getCFG()) {
 | 
						|
      UninitValsDiagReporter reporter(S);
 | 
						|
      UninitVariablesAnalysisStats stats;
 | 
						|
      std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
 | 
						|
      runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
 | 
						|
                                        reporter, stats);
 | 
						|
 | 
						|
      if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
 | 
						|
        ++NumUninitAnalysisFunctions;
 | 
						|
        NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
 | 
						|
        NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
 | 
						|
        MaxUninitAnalysisVariablesPerFunction =
 | 
						|
            std::max(MaxUninitAnalysisVariablesPerFunction,
 | 
						|
                     stats.NumVariablesAnalyzed);
 | 
						|
        MaxUninitAnalysisBlockVisitsPerFunction =
 | 
						|
            std::max(MaxUninitAnalysisBlockVisitsPerFunction,
 | 
						|
                     stats.NumBlockVisits);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool FallThroughDiagFull =
 | 
						|
      !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
 | 
						|
  bool FallThroughDiagPerFunction = !Diags.isIgnored(
 | 
						|
      diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
 | 
						|
  if (FallThroughDiagFull || FallThroughDiagPerFunction ||
 | 
						|
      fscope->HasFallthroughStmt) {
 | 
						|
    DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.getLangOpts().ObjCWeak &&
 | 
						|
      !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
 | 
						|
    diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
 | 
						|
 | 
						|
 | 
						|
  // Check for infinite self-recursion in functions
 | 
						|
  if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
 | 
						|
                       D->getBeginLoc())) {
 | 
						|
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
      checkRecursiveFunction(S, FD, Body, AC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for throw out of non-throwing function.
 | 
						|
  if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
 | 
						|
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
      if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
 | 
						|
        checkThrowInNonThrowingFunc(S, FD, AC);
 | 
						|
 | 
						|
  // If none of the previous checks caused a CFG build, trigger one here
 | 
						|
  // for the logical error handler.
 | 
						|
  if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
 | 
						|
    AC.getCFG();
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect statistics about the CFG if it was built.
 | 
						|
  if (S.CollectStats && AC.isCFGBuilt()) {
 | 
						|
    ++NumFunctionsAnalyzed;
 | 
						|
    if (CFG *cfg = AC.getCFG()) {
 | 
						|
      // If we successfully built a CFG for this context, record some more
 | 
						|
      // detail information about it.
 | 
						|
      NumCFGBlocks += cfg->getNumBlockIDs();
 | 
						|
      MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
 | 
						|
                                         cfg->getNumBlockIDs());
 | 
						|
    } else {
 | 
						|
      ++NumFunctionsWithBadCFGs;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void clang::sema::AnalysisBasedWarnings::PrintStats() const {
 | 
						|
  llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
 | 
						|
 | 
						|
  unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
 | 
						|
  unsigned AvgCFGBlocksPerFunction =
 | 
						|
      !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
 | 
						|
  llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
 | 
						|
               << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
 | 
						|
               << "  " << NumCFGBlocks << " CFG blocks built.\n"
 | 
						|
               << "  " << AvgCFGBlocksPerFunction
 | 
						|
               << " average CFG blocks per function.\n"
 | 
						|
               << "  " << MaxCFGBlocksPerFunction
 | 
						|
               << " max CFG blocks per function.\n";
 | 
						|
 | 
						|
  unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
 | 
						|
      : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
 | 
						|
  unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
 | 
						|
      : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
 | 
						|
  llvm::errs() << NumUninitAnalysisFunctions
 | 
						|
               << " functions analyzed for uninitialiazed variables\n"
 | 
						|
               << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
 | 
						|
               << "  " << AvgUninitVariablesPerFunction
 | 
						|
               << " average variables per function.\n"
 | 
						|
               << "  " << MaxUninitAnalysisVariablesPerFunction
 | 
						|
               << " max variables per function.\n"
 | 
						|
               << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
 | 
						|
               << "  " << AvgUninitBlockVisitsPerFunction
 | 
						|
               << " average block visits per function.\n"
 | 
						|
               << "  " << MaxUninitAnalysisBlockVisitsPerFunction
 | 
						|
               << " max block visits per function.\n";
 | 
						|
}
 |