1454 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1454 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file This file defines CallEvent and its subclasses, which represent path-
 | 
						|
/// sensitive instances of different kinds of function and method calls
 | 
						|
/// (C, C++, and Objective-C).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclBase.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/ExprObjC.h"
 | 
						|
#include "clang/AST/ParentMap.h"
 | 
						|
#include "clang/AST/Stmt.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "clang/Analysis/AnalysisDeclContext.h"
 | 
						|
#include "clang/Analysis/CFG.h"
 | 
						|
#include "clang/Analysis/CFGStmtMap.h"
 | 
						|
#include "clang/Analysis/PathDiagnostic.h"
 | 
						|
#include "clang/Analysis/ProgramPoint.h"
 | 
						|
#include "clang/Basic/IdentifierTable.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include "clang/Basic/SourceLocation.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/Specifiers.h"
 | 
						|
#include "clang/CrossTU/CrossTranslationUnit.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/PointerIntPair.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
#define DEBUG_TYPE "static-analyzer-call-event"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
QualType CallEvent::getResultType() const {
 | 
						|
  ASTContext &Ctx = getState()->getStateManager().getContext();
 | 
						|
  const Expr *E = getOriginExpr();
 | 
						|
  if (!E)
 | 
						|
    return Ctx.VoidTy;
 | 
						|
  assert(E);
 | 
						|
 | 
						|
  QualType ResultTy = E->getType();
 | 
						|
 | 
						|
  // A function that returns a reference to 'int' will have a result type
 | 
						|
  // of simply 'int'. Check the origin expr's value kind to recover the
 | 
						|
  // proper type.
 | 
						|
  switch (E->getValueKind()) {
 | 
						|
  case VK_LValue:
 | 
						|
    ResultTy = Ctx.getLValueReferenceType(ResultTy);
 | 
						|
    break;
 | 
						|
  case VK_XValue:
 | 
						|
    ResultTy = Ctx.getRValueReferenceType(ResultTy);
 | 
						|
    break;
 | 
						|
  case VK_RValue:
 | 
						|
    // No adjustment is necessary.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return ResultTy;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCallback(QualType T) {
 | 
						|
  // If a parameter is a block or a callback, assume it can modify pointer.
 | 
						|
  if (T->isBlockPointerType() ||
 | 
						|
      T->isFunctionPointerType() ||
 | 
						|
      T->isObjCSelType())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check if a callback is passed inside a struct (for both, struct passed by
 | 
						|
  // reference and by value). Dig just one level into the struct for now.
 | 
						|
 | 
						|
  if (T->isAnyPointerType() || T->isReferenceType())
 | 
						|
    T = T->getPointeeType();
 | 
						|
 | 
						|
  if (const RecordType *RT = T->getAsStructureType()) {
 | 
						|
    const RecordDecl *RD = RT->getDecl();
 | 
						|
    for (const auto *I : RD->fields()) {
 | 
						|
      QualType FieldT = I->getType();
 | 
						|
      if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isVoidPointerToNonConst(QualType T) {
 | 
						|
  if (const auto *PT = T->getAs<PointerType>()) {
 | 
						|
    QualType PointeeTy = PT->getPointeeType();
 | 
						|
    if (PointeeTy.isConstQualified())
 | 
						|
      return false;
 | 
						|
    return PointeeTy->isVoidType();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
 | 
						|
  unsigned NumOfArgs = getNumArgs();
 | 
						|
 | 
						|
  // If calling using a function pointer, assume the function does not
 | 
						|
  // satisfy the callback.
 | 
						|
  // TODO: We could check the types of the arguments here.
 | 
						|
  if (!getDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (CallEvent::param_type_iterator I = param_type_begin(),
 | 
						|
                                      E = param_type_end();
 | 
						|
       I != E && Idx < NumOfArgs; ++I, ++Idx) {
 | 
						|
    // If the parameter is 0, it's harmless.
 | 
						|
    if (getArgSVal(Idx).isZeroConstant())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Condition(*I))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::hasNonZeroCallbackArg() const {
 | 
						|
  return hasNonNullArgumentsWithType(isCallback);
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::hasVoidPointerToNonConstArg() const {
 | 
						|
  return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
 | 
						|
  const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
 | 
						|
  if (!FD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return CheckerContext::isCLibraryFunction(FD, FunctionName);
 | 
						|
}
 | 
						|
 | 
						|
AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
 | 
						|
  const Decl *D = getDecl();
 | 
						|
  if (!D)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // TODO: For now we skip functions without definitions, even if we have
 | 
						|
  // our own getDecl(), because it's hard to find out which re-declaration
 | 
						|
  // is going to be used, and usually clients don't really care about this
 | 
						|
  // situation because there's a loss of precision anyway because we cannot
 | 
						|
  // inline the call.
 | 
						|
  RuntimeDefinition RD = getRuntimeDefinition();
 | 
						|
  if (!RD.getDecl())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  AnalysisDeclContext *ADC =
 | 
						|
      LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
 | 
						|
 | 
						|
  // TODO: For now we skip virtual functions, because this also rises
 | 
						|
  // the problem of which decl to use, but now it's across different classes.
 | 
						|
  if (RD.mayHaveOtherDefinitions() || RD.getDecl() != ADC->getDecl())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return ADC;
 | 
						|
}
 | 
						|
 | 
						|
const StackFrameContext *
 | 
						|
CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
 | 
						|
  AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
 | 
						|
  if (!ADC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const Expr *E = getOriginExpr();
 | 
						|
  if (!E)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Recover CFG block via reverse lookup.
 | 
						|
  // TODO: If we were to keep CFG element information as part of the CallEvent
 | 
						|
  // instead of doing this reverse lookup, we would be able to build the stack
 | 
						|
  // frame for non-expression-based calls, and also we wouldn't need the reverse
 | 
						|
  // lookup.
 | 
						|
  CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
 | 
						|
  const CFGBlock *B = Map->getBlock(E);
 | 
						|
  assert(B);
 | 
						|
 | 
						|
  // Also recover CFG index by scanning the CFG block.
 | 
						|
  unsigned Idx = 0, Sz = B->size();
 | 
						|
  for (; Idx < Sz; ++Idx)
 | 
						|
    if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
 | 
						|
      if (StmtElem->getStmt() == E)
 | 
						|
        break;
 | 
						|
  assert(Idx < Sz);
 | 
						|
 | 
						|
  return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
 | 
						|
}
 | 
						|
 | 
						|
const VarRegion *CallEvent::getParameterLocation(unsigned Index,
 | 
						|
                                                 unsigned BlockCount) const {
 | 
						|
  const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
 | 
						|
  // We cannot construct a VarRegion without a stack frame.
 | 
						|
  if (!SFC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Retrieve parameters of the definition, which are different from
 | 
						|
  // CallEvent's parameters() because getDecl() isn't necessarily
 | 
						|
  // the definition. SFC contains the definition that would be used
 | 
						|
  // during analysis.
 | 
						|
  const Decl *D = SFC->getDecl();
 | 
						|
 | 
						|
  // TODO: Refactor into a virtual method of CallEvent, like parameters().
 | 
						|
  const ParmVarDecl *PVD = nullptr;
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    PVD = FD->parameters()[Index];
 | 
						|
  else if (const auto *BD = dyn_cast<BlockDecl>(D))
 | 
						|
    PVD = BD->parameters()[Index];
 | 
						|
  else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | 
						|
    PVD = MD->parameters()[Index];
 | 
						|
  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
 | 
						|
    PVD = CD->parameters()[Index];
 | 
						|
  assert(PVD && "Unexpected Decl kind!");
 | 
						|
 | 
						|
  const VarRegion *VR =
 | 
						|
      State->getStateManager().getRegionManager().getVarRegion(PVD, SFC);
 | 
						|
 | 
						|
  // This sanity check would fail if our parameter declaration doesn't
 | 
						|
  // correspond to the stack frame's function declaration.
 | 
						|
  assert(VR->getStackFrame() == SFC);
 | 
						|
 | 
						|
  return VR;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if a type is a pointer-to-const or reference-to-const
 | 
						|
/// with no further indirection.
 | 
						|
static bool isPointerToConst(QualType Ty) {
 | 
						|
  QualType PointeeTy = Ty->getPointeeType();
 | 
						|
  if (PointeeTy == QualType())
 | 
						|
    return false;
 | 
						|
  if (!PointeeTy.isConstQualified())
 | 
						|
    return false;
 | 
						|
  if (PointeeTy->isAnyPointerType())
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Try to retrieve the function declaration and find the function parameter
 | 
						|
// types which are pointers/references to a non-pointer const.
 | 
						|
// We will not invalidate the corresponding argument regions.
 | 
						|
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
 | 
						|
                                 const CallEvent &Call) {
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (CallEvent::param_type_iterator I = Call.param_type_begin(),
 | 
						|
                                      E = Call.param_type_end();
 | 
						|
       I != E; ++I, ++Idx) {
 | 
						|
    if (isPointerToConst(*I))
 | 
						|
      PreserveArgs.insert(Idx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
 | 
						|
                                             ProgramStateRef Orig) const {
 | 
						|
  ProgramStateRef Result = (Orig ? Orig : getState());
 | 
						|
 | 
						|
  // Don't invalidate anything if the callee is marked pure/const.
 | 
						|
  if (const Decl *callee = getDecl())
 | 
						|
    if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
 | 
						|
      return Result;
 | 
						|
 | 
						|
  SmallVector<SVal, 8> ValuesToInvalidate;
 | 
						|
  RegionAndSymbolInvalidationTraits ETraits;
 | 
						|
 | 
						|
  getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
 | 
						|
 | 
						|
  // Indexes of arguments whose values will be preserved by the call.
 | 
						|
  llvm::SmallSet<unsigned, 4> PreserveArgs;
 | 
						|
  if (!argumentsMayEscape())
 | 
						|
    findPtrToConstParams(PreserveArgs, *this);
 | 
						|
 | 
						|
  for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
 | 
						|
    // Mark this region for invalidation.  We batch invalidate regions
 | 
						|
    // below for efficiency.
 | 
						|
    if (PreserveArgs.count(Idx))
 | 
						|
      if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
 | 
						|
        ETraits.setTrait(MR->getBaseRegion(),
 | 
						|
                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | 
						|
        // TODO: Factor this out + handle the lower level const pointers.
 | 
						|
 | 
						|
    ValuesToInvalidate.push_back(getArgSVal(Idx));
 | 
						|
 | 
						|
    // If a function accepts an object by argument (which would of course be a
 | 
						|
    // temporary that isn't lifetime-extended), invalidate the object itself,
 | 
						|
    // not only other objects reachable from it. This is necessary because the
 | 
						|
    // destructor has access to the temporary object after the call.
 | 
						|
    // TODO: Support placement arguments once we start
 | 
						|
    // constructing them directly.
 | 
						|
    // TODO: This is unnecessary when there's no destructor, but that's
 | 
						|
    // currently hard to figure out.
 | 
						|
    if (getKind() != CE_CXXAllocator)
 | 
						|
      if (isArgumentConstructedDirectly(Idx))
 | 
						|
        if (auto AdjIdx = getAdjustedParameterIndex(Idx))
 | 
						|
          if (const VarRegion *VR = getParameterLocation(*AdjIdx, BlockCount))
 | 
						|
            ValuesToInvalidate.push_back(loc::MemRegionVal(VR));
 | 
						|
  }
 | 
						|
 | 
						|
  // Invalidate designated regions using the batch invalidation API.
 | 
						|
  // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
 | 
						|
  //  global variables.
 | 
						|
  return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
 | 
						|
                                   BlockCount, getLocationContext(),
 | 
						|
                                   /*CausedByPointerEscape*/ true,
 | 
						|
                                   /*Symbols=*/nullptr, this, &ETraits);
 | 
						|
}
 | 
						|
 | 
						|
ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
 | 
						|
                                        const ProgramPointTag *Tag) const {
 | 
						|
  if (const Expr *E = getOriginExpr()) {
 | 
						|
    if (IsPreVisit)
 | 
						|
      return PreStmt(E, getLocationContext(), Tag);
 | 
						|
    return PostStmt(E, getLocationContext(), Tag);
 | 
						|
  }
 | 
						|
 | 
						|
  const Decl *D = getDecl();
 | 
						|
  assert(D && "Cannot get a program point without a statement or decl");
 | 
						|
 | 
						|
  SourceLocation Loc = getSourceRange().getBegin();
 | 
						|
  if (IsPreVisit)
 | 
						|
    return PreImplicitCall(D, Loc, getLocationContext(), Tag);
 | 
						|
  return PostImplicitCall(D, Loc, getLocationContext(), Tag);
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::isCalled(const CallDescription &CD) const {
 | 
						|
  // FIXME: Add ObjC Message support.
 | 
						|
  if (getKind() == CE_ObjCMessage)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const IdentifierInfo *II = getCalleeIdentifier();
 | 
						|
  if (!II)
 | 
						|
    return false;
 | 
						|
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
 | 
						|
  if (!FD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (CD.Flags & CDF_MaybeBuiltin) {
 | 
						|
    return CheckerContext::isCLibraryFunction(FD, CD.getFunctionName()) &&
 | 
						|
           (!CD.RequiredArgs || CD.RequiredArgs <= getNumArgs()) &&
 | 
						|
           (!CD.RequiredParams || CD.RequiredParams <= parameters().size());
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CD.IsLookupDone) {
 | 
						|
    CD.IsLookupDone = true;
 | 
						|
    CD.II = &getState()->getStateManager().getContext().Idents.get(
 | 
						|
        CD.getFunctionName());
 | 
						|
  }
 | 
						|
 | 
						|
  if (II != CD.II)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If CallDescription provides prefix names, use them to improve matching
 | 
						|
  // accuracy.
 | 
						|
  if (CD.QualifiedName.size() > 1 && FD) {
 | 
						|
    const DeclContext *Ctx = FD->getDeclContext();
 | 
						|
    // See if we'll be able to match them all.
 | 
						|
    size_t NumUnmatched = CD.QualifiedName.size() - 1;
 | 
						|
    for (; Ctx && isa<NamedDecl>(Ctx); Ctx = Ctx->getParent()) {
 | 
						|
      if (NumUnmatched == 0)
 | 
						|
        break;
 | 
						|
 | 
						|
      if (const auto *ND = dyn_cast<NamespaceDecl>(Ctx)) {
 | 
						|
        if (ND->getName() == CD.QualifiedName[NumUnmatched - 1])
 | 
						|
          --NumUnmatched;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (const auto *RD = dyn_cast<RecordDecl>(Ctx)) {
 | 
						|
        if (RD->getName() == CD.QualifiedName[NumUnmatched - 1])
 | 
						|
          --NumUnmatched;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NumUnmatched > 0)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return (!CD.RequiredArgs || CD.RequiredArgs == getNumArgs()) &&
 | 
						|
         (!CD.RequiredParams || CD.RequiredParams == parameters().size());
 | 
						|
}
 | 
						|
 | 
						|
SVal CallEvent::getArgSVal(unsigned Index) const {
 | 
						|
  const Expr *ArgE = getArgExpr(Index);
 | 
						|
  if (!ArgE)
 | 
						|
    return UnknownVal();
 | 
						|
  return getSVal(ArgE);
 | 
						|
}
 | 
						|
 | 
						|
SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
 | 
						|
  const Expr *ArgE = getArgExpr(Index);
 | 
						|
  if (!ArgE)
 | 
						|
    return {};
 | 
						|
  return ArgE->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
SVal CallEvent::getReturnValue() const {
 | 
						|
  const Expr *E = getOriginExpr();
 | 
						|
  if (!E)
 | 
						|
    return UndefinedVal();
 | 
						|
  return getSVal(E);
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
 | 
						|
 | 
						|
void CallEvent::dump(raw_ostream &Out) const {
 | 
						|
  ASTContext &Ctx = getState()->getStateManager().getContext();
 | 
						|
  if (const Expr *E = getOriginExpr()) {
 | 
						|
    E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
 | 
						|
    Out << "\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const Decl *D = getDecl()) {
 | 
						|
    Out << "Call to ";
 | 
						|
    D->print(Out, Ctx.getPrintingPolicy());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: a string representation of the kind would be nice.
 | 
						|
  Out << "Unknown call (type " << getKind() << ")";
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::isCallStmt(const Stmt *S) {
 | 
						|
  return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
 | 
						|
                          || isa<CXXConstructExpr>(S)
 | 
						|
                          || isa<CXXNewExpr>(S);
 | 
						|
}
 | 
						|
 | 
						|
QualType CallEvent::getDeclaredResultType(const Decl *D) {
 | 
						|
  assert(D);
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    return FD->getReturnType();
 | 
						|
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | 
						|
    return MD->getReturnType();
 | 
						|
  if (const auto *BD = dyn_cast<BlockDecl>(D)) {
 | 
						|
    // Blocks are difficult because the return type may not be stored in the
 | 
						|
    // BlockDecl itself. The AST should probably be enhanced, but for now we
 | 
						|
    // just do what we can.
 | 
						|
    // If the block is declared without an explicit argument list, the
 | 
						|
    // signature-as-written just includes the return type, not the entire
 | 
						|
    // function type.
 | 
						|
    // FIXME: All blocks should have signatures-as-written, even if the return
 | 
						|
    // type is inferred. (That's signified with a dependent result type.)
 | 
						|
    if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
 | 
						|
      QualType Ty = TSI->getType();
 | 
						|
      if (const FunctionType *FT = Ty->getAs<FunctionType>())
 | 
						|
        Ty = FT->getReturnType();
 | 
						|
      if (!Ty->isDependentType())
 | 
						|
        return Ty;
 | 
						|
    }
 | 
						|
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown callable kind");
 | 
						|
}
 | 
						|
 | 
						|
bool CallEvent::isVariadic(const Decl *D) {
 | 
						|
  assert(D);
 | 
						|
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    return FD->isVariadic();
 | 
						|
  if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
 | 
						|
    return MD->isVariadic();
 | 
						|
  if (const auto *BD = dyn_cast<BlockDecl>(D))
 | 
						|
    return BD->isVariadic();
 | 
						|
 | 
						|
  llvm_unreachable("unknown callable kind");
 | 
						|
}
 | 
						|
 | 
						|
static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
 | 
						|
                                         CallEvent::BindingsTy &Bindings,
 | 
						|
                                         SValBuilder &SVB,
 | 
						|
                                         const CallEvent &Call,
 | 
						|
                                         ArrayRef<ParmVarDecl*> parameters) {
 | 
						|
  MemRegionManager &MRMgr = SVB.getRegionManager();
 | 
						|
 | 
						|
  // If the function has fewer parameters than the call has arguments, we simply
 | 
						|
  // do not bind any values to them.
 | 
						|
  unsigned NumArgs = Call.getNumArgs();
 | 
						|
  unsigned Idx = 0;
 | 
						|
  ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
 | 
						|
  for (; I != E && Idx < NumArgs; ++I, ++Idx) {
 | 
						|
    const ParmVarDecl *ParamDecl = *I;
 | 
						|
    assert(ParamDecl && "Formal parameter has no decl?");
 | 
						|
 | 
						|
    // TODO: Support allocator calls.
 | 
						|
    if (Call.getKind() != CE_CXXAllocator)
 | 
						|
      if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
 | 
						|
        continue;
 | 
						|
 | 
						|
    // TODO: Allocators should receive the correct size and possibly alignment,
 | 
						|
    // determined in compile-time but not represented as arg-expressions,
 | 
						|
    // which makes getArgSVal() fail and return UnknownVal.
 | 
						|
    SVal ArgVal = Call.getArgSVal(Idx);
 | 
						|
    if (!ArgVal.isUnknown()) {
 | 
						|
      Loc ParamLoc = SVB.makeLoc(MRMgr.getVarRegion(ParamDecl, CalleeCtx));
 | 
						|
      Bindings.push_back(std::make_pair(ParamLoc, ArgVal));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Variadic arguments are not handled at all right now.
 | 
						|
}
 | 
						|
 | 
						|
ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
 | 
						|
  const FunctionDecl *D = getDecl();
 | 
						|
  if (!D)
 | 
						|
    return None;
 | 
						|
  return D->parameters();
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
 | 
						|
  const FunctionDecl *FD = getDecl();
 | 
						|
  if (!FD)
 | 
						|
    return {};
 | 
						|
 | 
						|
  // Note that the AnalysisDeclContext will have the FunctionDecl with
 | 
						|
  // the definition (if one exists).
 | 
						|
  AnalysisDeclContext *AD =
 | 
						|
    getLocationContext()->getAnalysisDeclContext()->
 | 
						|
    getManager()->getContext(FD);
 | 
						|
  bool IsAutosynthesized;
 | 
						|
  Stmt* Body = AD->getBody(IsAutosynthesized);
 | 
						|
  LLVM_DEBUG({
 | 
						|
    if (IsAutosynthesized)
 | 
						|
      llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
 | 
						|
                   << "\n";
 | 
						|
  });
 | 
						|
  if (Body) {
 | 
						|
    const Decl* Decl = AD->getDecl();
 | 
						|
    return RuntimeDefinition(Decl);
 | 
						|
  }
 | 
						|
 | 
						|
  SubEngine &Engine = getState()->getStateManager().getOwningEngine();
 | 
						|
  AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
 | 
						|
 | 
						|
  // Try to get CTU definition only if CTUDir is provided.
 | 
						|
  if (!Opts.IsNaiveCTUEnabled)
 | 
						|
    return {};
 | 
						|
 | 
						|
  cross_tu::CrossTranslationUnitContext &CTUCtx =
 | 
						|
      *Engine.getCrossTranslationUnitContext();
 | 
						|
  llvm::Expected<const FunctionDecl *> CTUDeclOrError =
 | 
						|
      CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
 | 
						|
                                  Opts.DisplayCTUProgress);
 | 
						|
 | 
						|
  if (!CTUDeclOrError) {
 | 
						|
    handleAllErrors(CTUDeclOrError.takeError(),
 | 
						|
                    [&](const cross_tu::IndexError &IE) {
 | 
						|
                      CTUCtx.emitCrossTUDiagnostics(IE);
 | 
						|
                    });
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  return RuntimeDefinition(*CTUDeclOrError);
 | 
						|
}
 | 
						|
 | 
						|
void AnyFunctionCall::getInitialStackFrameContents(
 | 
						|
                                        const StackFrameContext *CalleeCtx,
 | 
						|
                                        BindingsTy &Bindings) const {
 | 
						|
  const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
 | 
						|
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | 
						|
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
 | 
						|
                               D->parameters());
 | 
						|
}
 | 
						|
 | 
						|
bool AnyFunctionCall::argumentsMayEscape() const {
 | 
						|
  if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
 | 
						|
    return true;
 | 
						|
 | 
						|
  const FunctionDecl *D = getDecl();
 | 
						|
  if (!D)
 | 
						|
    return true;
 | 
						|
 | 
						|
  const IdentifierInfo *II = D->getIdentifier();
 | 
						|
  if (!II)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This set of "escaping" APIs is
 | 
						|
 | 
						|
  // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
 | 
						|
  //   value into thread local storage. The value can later be retrieved with
 | 
						|
  //   'void *ptheread_getspecific(pthread_key)'. So even thought the
 | 
						|
  //   parameter is 'const void *', the region escapes through the call.
 | 
						|
  if (II->isStr("pthread_setspecific"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // - xpc_connection_set_context stores a value which can be retrieved later
 | 
						|
  //   with xpc_connection_get_context.
 | 
						|
  if (II->isStr("xpc_connection_set_context"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // - funopen - sets a buffer for future IO calls.
 | 
						|
  if (II->isStr("funopen"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // - __cxa_demangle - can reallocate memory and can return the pointer to
 | 
						|
  // the input buffer.
 | 
						|
  if (II->isStr("__cxa_demangle"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  StringRef FName = II->getName();
 | 
						|
 | 
						|
  // - CoreFoundation functions that end with "NoCopy" can free a passed-in
 | 
						|
  //   buffer even if it is const.
 | 
						|
  if (FName.endswith("NoCopy"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
 | 
						|
  //   be deallocated by NSMapRemove.
 | 
						|
  if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // - Many CF containers allow objects to escape through custom
 | 
						|
  //   allocators/deallocators upon container construction. (PR12101)
 | 
						|
  if (FName.startswith("CF") || FName.startswith("CG")) {
 | 
						|
    return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
 | 
						|
           StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
 | 
						|
           StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
 | 
						|
           StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
 | 
						|
           StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
 | 
						|
           StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const FunctionDecl *SimpleFunctionCall::getDecl() const {
 | 
						|
  const FunctionDecl *D = getOriginExpr()->getDirectCallee();
 | 
						|
  if (D)
 | 
						|
    return D;
 | 
						|
 | 
						|
  return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
 | 
						|
}
 | 
						|
 | 
						|
const FunctionDecl *CXXInstanceCall::getDecl() const {
 | 
						|
  const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
 | 
						|
  if (!CE)
 | 
						|
    return AnyFunctionCall::getDecl();
 | 
						|
 | 
						|
  const FunctionDecl *D = CE->getDirectCallee();
 | 
						|
  if (D)
 | 
						|
    return D;
 | 
						|
 | 
						|
  return getSVal(CE->getCallee()).getAsFunctionDecl();
 | 
						|
}
 | 
						|
 | 
						|
void CXXInstanceCall::getExtraInvalidatedValues(
 | 
						|
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
 | 
						|
  SVal ThisVal = getCXXThisVal();
 | 
						|
  Values.push_back(ThisVal);
 | 
						|
 | 
						|
  // Don't invalidate if the method is const and there are no mutable fields.
 | 
						|
  if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
 | 
						|
    if (!D->isConst())
 | 
						|
      return;
 | 
						|
    // Get the record decl for the class of 'This'. D->getParent() may return a
 | 
						|
    // base class decl, rather than the class of the instance which needs to be
 | 
						|
    // checked for mutable fields.
 | 
						|
    // TODO: We might as well look at the dynamic type of the object.
 | 
						|
    const Expr *Ex = getCXXThisExpr()->ignoreParenBaseCasts();
 | 
						|
    QualType T = Ex->getType();
 | 
						|
    if (T->isPointerType()) // Arrow or implicit-this syntax?
 | 
						|
      T = T->getPointeeType();
 | 
						|
    const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
 | 
						|
    assert(ParentRecord);
 | 
						|
    if (ParentRecord->hasMutableFields())
 | 
						|
      return;
 | 
						|
    // Preserve CXXThis.
 | 
						|
    const MemRegion *ThisRegion = ThisVal.getAsRegion();
 | 
						|
    if (!ThisRegion)
 | 
						|
      return;
 | 
						|
 | 
						|
    ETraits->setTrait(ThisRegion->getBaseRegion(),
 | 
						|
                      RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SVal CXXInstanceCall::getCXXThisVal() const {
 | 
						|
  const Expr *Base = getCXXThisExpr();
 | 
						|
  // FIXME: This doesn't handle an overloaded ->* operator.
 | 
						|
  if (!Base)
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  SVal ThisVal = getSVal(Base);
 | 
						|
  assert(ThisVal.isUnknownOrUndef() || ThisVal.getAs<Loc>());
 | 
						|
  return ThisVal;
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
 | 
						|
  // Do we have a decl at all?
 | 
						|
  const Decl *D = getDecl();
 | 
						|
  if (!D)
 | 
						|
    return {};
 | 
						|
 | 
						|
  // If the method is non-virtual, we know we can inline it.
 | 
						|
  const auto *MD = cast<CXXMethodDecl>(D);
 | 
						|
  if (!MD->isVirtual())
 | 
						|
    return AnyFunctionCall::getRuntimeDefinition();
 | 
						|
 | 
						|
  // Do we know the implicit 'this' object being called?
 | 
						|
  const MemRegion *R = getCXXThisVal().getAsRegion();
 | 
						|
  if (!R)
 | 
						|
    return {};
 | 
						|
 | 
						|
  // Do we know anything about the type of 'this'?
 | 
						|
  DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
 | 
						|
  if (!DynType.isValid())
 | 
						|
    return {};
 | 
						|
 | 
						|
  // Is the type a C++ class? (This is mostly a defensive check.)
 | 
						|
  QualType RegionType = DynType.getType()->getPointeeType();
 | 
						|
  assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
 | 
						|
 | 
						|
  const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
 | 
						|
  if (!RD || !RD->hasDefinition())
 | 
						|
    return {};
 | 
						|
 | 
						|
  // Find the decl for this method in that class.
 | 
						|
  const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
 | 
						|
  if (!Result) {
 | 
						|
    // We might not even get the original statically-resolved method due to
 | 
						|
    // some particularly nasty casting (e.g. casts to sister classes).
 | 
						|
    // However, we should at least be able to search up and down our own class
 | 
						|
    // hierarchy, and some real bugs have been caught by checking this.
 | 
						|
    assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
 | 
						|
 | 
						|
    // FIXME: This is checking that our DynamicTypeInfo is at least as good as
 | 
						|
    // the static type. However, because we currently don't update
 | 
						|
    // DynamicTypeInfo when an object is cast, we can't actually be sure the
 | 
						|
    // DynamicTypeInfo is up to date. This assert should be re-enabled once
 | 
						|
    // this is fixed. <rdar://problem/12287087>
 | 
						|
    //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
 | 
						|
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  // Does the decl that we found have an implementation?
 | 
						|
  const FunctionDecl *Definition;
 | 
						|
  if (!Result->hasBody(Definition)) {
 | 
						|
    if (!DynType.canBeASubClass())
 | 
						|
      return AnyFunctionCall::getRuntimeDefinition();
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  // We found a definition. If we're not sure that this devirtualization is
 | 
						|
  // actually what will happen at runtime, make sure to provide the region so
 | 
						|
  // that ExprEngine can decide what to do with it.
 | 
						|
  if (DynType.canBeASubClass())
 | 
						|
    return RuntimeDefinition(Definition, R->StripCasts());
 | 
						|
  return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void CXXInstanceCall::getInitialStackFrameContents(
 | 
						|
                                            const StackFrameContext *CalleeCtx,
 | 
						|
                                            BindingsTy &Bindings) const {
 | 
						|
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
 | 
						|
 | 
						|
  // Handle the binding of 'this' in the new stack frame.
 | 
						|
  SVal ThisVal = getCXXThisVal();
 | 
						|
  if (!ThisVal.isUnknown()) {
 | 
						|
    ProgramStateManager &StateMgr = getState()->getStateManager();
 | 
						|
    SValBuilder &SVB = StateMgr.getSValBuilder();
 | 
						|
 | 
						|
    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | 
						|
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
 | 
						|
 | 
						|
    // If we devirtualized to a different member function, we need to make sure
 | 
						|
    // we have the proper layering of CXXBaseObjectRegions.
 | 
						|
    if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
 | 
						|
      ASTContext &Ctx = SVB.getContext();
 | 
						|
      const CXXRecordDecl *Class = MD->getParent();
 | 
						|
      QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
 | 
						|
 | 
						|
      // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
 | 
						|
      bool Failed;
 | 
						|
      ThisVal = StateMgr.getStoreManager().attemptDownCast(ThisVal, Ty, Failed);
 | 
						|
      if (Failed) {
 | 
						|
        // We might have suffered some sort of placement new earlier, so
 | 
						|
        // we're constructing in a completely unexpected storage.
 | 
						|
        // Fall back to a generic pointer cast for this-value.
 | 
						|
        const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
 | 
						|
        const CXXRecordDecl *StaticClass = StaticMD->getParent();
 | 
						|
        QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
 | 
						|
        ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ThisVal.isUnknown())
 | 
						|
      Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const Expr *CXXMemberCall::getCXXThisExpr() const {
 | 
						|
  return getOriginExpr()->getImplicitObjectArgument();
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
 | 
						|
  // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
 | 
						|
  // id-expression in the class member access expression is a qualified-id,
 | 
						|
  // that function is called. Otherwise, its final overrider in the dynamic type
 | 
						|
  // of the object expression is called.
 | 
						|
  if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
 | 
						|
    if (ME->hasQualifier())
 | 
						|
      return AnyFunctionCall::getRuntimeDefinition();
 | 
						|
 | 
						|
  return CXXInstanceCall::getRuntimeDefinition();
 | 
						|
}
 | 
						|
 | 
						|
const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
 | 
						|
  return getOriginExpr()->getArg(0);
 | 
						|
}
 | 
						|
 | 
						|
const BlockDataRegion *BlockCall::getBlockRegion() const {
 | 
						|
  const Expr *Callee = getOriginExpr()->getCallee();
 | 
						|
  const MemRegion *DataReg = getSVal(Callee).getAsRegion();
 | 
						|
 | 
						|
  return dyn_cast_or_null<BlockDataRegion>(DataReg);
 | 
						|
}
 | 
						|
 | 
						|
ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
 | 
						|
  const BlockDecl *D = getDecl();
 | 
						|
  if (!D)
 | 
						|
    return None;
 | 
						|
  return D->parameters();
 | 
						|
}
 | 
						|
 | 
						|
void BlockCall::getExtraInvalidatedValues(ValueList &Values,
 | 
						|
                  RegionAndSymbolInvalidationTraits *ETraits) const {
 | 
						|
  // FIXME: This also needs to invalidate captured globals.
 | 
						|
  if (const MemRegion *R = getBlockRegion())
 | 
						|
    Values.push_back(loc::MemRegionVal(R));
 | 
						|
}
 | 
						|
 | 
						|
void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
 | 
						|
                                             BindingsTy &Bindings) const {
 | 
						|
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | 
						|
  ArrayRef<ParmVarDecl*> Params;
 | 
						|
  if (isConversionFromLambda()) {
 | 
						|
    auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | 
						|
    Params = LambdaOperatorDecl->parameters();
 | 
						|
 | 
						|
    // For blocks converted from a C++ lambda, the callee declaration is the
 | 
						|
    // operator() method on the lambda so we bind "this" to
 | 
						|
    // the lambda captured by the block.
 | 
						|
    const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
 | 
						|
    SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
 | 
						|
    Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
 | 
						|
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
 | 
						|
  } else {
 | 
						|
    Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
 | 
						|
  }
 | 
						|
 | 
						|
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
 | 
						|
                               Params);
 | 
						|
}
 | 
						|
 | 
						|
SVal AnyCXXConstructorCall::getCXXThisVal() const {
 | 
						|
  if (Data)
 | 
						|
    return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
 | 
						|
                           RegionAndSymbolInvalidationTraits *ETraits) const {
 | 
						|
  SVal V = getCXXThisVal();
 | 
						|
  if (SymbolRef Sym = V.getAsSymbol(true))
 | 
						|
    ETraits->setTrait(Sym,
 | 
						|
                      RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
 | 
						|
  Values.push_back(V);
 | 
						|
}
 | 
						|
 | 
						|
void AnyCXXConstructorCall::getInitialStackFrameContents(
 | 
						|
                                             const StackFrameContext *CalleeCtx,
 | 
						|
                                             BindingsTy &Bindings) const {
 | 
						|
  AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
 | 
						|
 | 
						|
  SVal ThisVal = getCXXThisVal();
 | 
						|
  if (!ThisVal.isUnknown()) {
 | 
						|
    SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | 
						|
    const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | 
						|
    Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
 | 
						|
    Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const StackFrameContext *
 | 
						|
CXXInheritedConstructorCall::getInheritingStackFrame() const {
 | 
						|
  const StackFrameContext *SFC = getLocationContext()->getStackFrame();
 | 
						|
  while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
 | 
						|
    SFC = SFC->getParent()->getStackFrame();
 | 
						|
  return SFC;
 | 
						|
}
 | 
						|
 | 
						|
SVal CXXDestructorCall::getCXXThisVal() const {
 | 
						|
  if (Data)
 | 
						|
    return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
 | 
						|
  return UnknownVal();
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
 | 
						|
  // Base destructors are always called non-virtually.
 | 
						|
  // Skip CXXInstanceCall's devirtualization logic in this case.
 | 
						|
  if (isBaseDestructor())
 | 
						|
    return AnyFunctionCall::getRuntimeDefinition();
 | 
						|
 | 
						|
  return CXXInstanceCall::getRuntimeDefinition();
 | 
						|
}
 | 
						|
 | 
						|
ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
 | 
						|
  const ObjCMethodDecl *D = getDecl();
 | 
						|
  if (!D)
 | 
						|
    return None;
 | 
						|
  return D->parameters();
 | 
						|
}
 | 
						|
 | 
						|
void ObjCMethodCall::getExtraInvalidatedValues(
 | 
						|
    ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
 | 
						|
 | 
						|
  // If the method call is a setter for property known to be backed by
 | 
						|
  // an instance variable, don't invalidate the entire receiver, just
 | 
						|
  // the storage for that instance variable.
 | 
						|
  if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
 | 
						|
    if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
 | 
						|
      SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
 | 
						|
      if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
 | 
						|
        ETraits->setTrait(
 | 
						|
          IvarRegion,
 | 
						|
          RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | 
						|
        ETraits->setTrait(
 | 
						|
          IvarRegion,
 | 
						|
          RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
 | 
						|
        Values.push_back(IvarLVal);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Values.push_back(getReceiverSVal());
 | 
						|
}
 | 
						|
 | 
						|
SVal ObjCMethodCall::getSelfSVal() const {
 | 
						|
  const LocationContext *LCtx = getLocationContext();
 | 
						|
  const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
 | 
						|
  if (!SelfDecl)
 | 
						|
    return SVal();
 | 
						|
  return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
 | 
						|
}
 | 
						|
 | 
						|
SVal ObjCMethodCall::getReceiverSVal() const {
 | 
						|
  // FIXME: Is this the best way to handle class receivers?
 | 
						|
  if (!isInstanceMessage())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
 | 
						|
    return getSVal(RecE);
 | 
						|
 | 
						|
  // An instance message with no expression means we are sending to super.
 | 
						|
  // In this case the object reference is the same as 'self'.
 | 
						|
  assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
 | 
						|
  SVal SelfVal = getSelfSVal();
 | 
						|
  assert(SelfVal.isValid() && "Calling super but not in ObjC method");
 | 
						|
  return SelfVal;
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCMethodCall::isReceiverSelfOrSuper() const {
 | 
						|
  if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
 | 
						|
      getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (!isInstanceMessage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
 | 
						|
 | 
						|
  return (RecVal == getSelfSVal());
 | 
						|
}
 | 
						|
 | 
						|
SourceRange ObjCMethodCall::getSourceRange() const {
 | 
						|
  switch (getMessageKind()) {
 | 
						|
  case OCM_Message:
 | 
						|
    return getOriginExpr()->getSourceRange();
 | 
						|
  case OCM_PropertyAccess:
 | 
						|
  case OCM_Subscript:
 | 
						|
    return getContainingPseudoObjectExpr()->getSourceRange();
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown message kind");
 | 
						|
}
 | 
						|
 | 
						|
using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
 | 
						|
 | 
						|
const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
 | 
						|
  assert(Data && "Lazy lookup not yet performed.");
 | 
						|
  assert(getMessageKind() != OCM_Message && "Explicit message send.");
 | 
						|
  return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
 | 
						|
}
 | 
						|
 | 
						|
static const Expr *
 | 
						|
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
 | 
						|
  const Expr *Syntactic = POE->getSyntacticForm();
 | 
						|
 | 
						|
  // This handles the funny case of assigning to the result of a getter.
 | 
						|
  // This can happen if the getter returns a non-const reference.
 | 
						|
  if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
 | 
						|
    Syntactic = BO->getLHS();
 | 
						|
 | 
						|
  return Syntactic;
 | 
						|
}
 | 
						|
 | 
						|
ObjCMessageKind ObjCMethodCall::getMessageKind() const {
 | 
						|
  if (!Data) {
 | 
						|
    // Find the parent, ignoring implicit casts.
 | 
						|
    const ParentMap &PM = getLocationContext()->getParentMap();
 | 
						|
    const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
 | 
						|
 | 
						|
    // Check if parent is a PseudoObjectExpr.
 | 
						|
    if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
 | 
						|
      const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
 | 
						|
 | 
						|
      ObjCMessageKind K;
 | 
						|
      switch (Syntactic->getStmtClass()) {
 | 
						|
      case Stmt::ObjCPropertyRefExprClass:
 | 
						|
        K = OCM_PropertyAccess;
 | 
						|
        break;
 | 
						|
      case Stmt::ObjCSubscriptRefExprClass:
 | 
						|
        K = OCM_Subscript;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        // FIXME: Can this ever happen?
 | 
						|
        K = OCM_Message;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (K != OCM_Message) {
 | 
						|
        const_cast<ObjCMethodCall *>(this)->Data
 | 
						|
          = ObjCMessageDataTy(POE, K).getOpaqueValue();
 | 
						|
        assert(getMessageKind() == K);
 | 
						|
        return K;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const_cast<ObjCMethodCall *>(this)->Data
 | 
						|
      = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
 | 
						|
    assert(getMessageKind() == OCM_Message);
 | 
						|
    return OCM_Message;
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
 | 
						|
  if (!Info.getPointer())
 | 
						|
    return OCM_Message;
 | 
						|
  return static_cast<ObjCMessageKind>(Info.getInt());
 | 
						|
}
 | 
						|
 | 
						|
const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
 | 
						|
  // Look for properties accessed with property syntax (foo.bar = ...)
 | 
						|
  if (getMessageKind() == OCM_PropertyAccess) {
 | 
						|
    const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
 | 
						|
    assert(POE && "Property access without PseudoObjectExpr?");
 | 
						|
 | 
						|
    const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
 | 
						|
    auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
 | 
						|
 | 
						|
    if (RefExpr->isExplicitProperty())
 | 
						|
      return RefExpr->getExplicitProperty();
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for properties accessed with method syntax ([foo setBar:...]).
 | 
						|
  const ObjCMethodDecl *MD = getDecl();
 | 
						|
  if (!MD || !MD->isPropertyAccessor())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Note: This is potentially quite slow.
 | 
						|
  return MD->findPropertyDecl();
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
 | 
						|
                                             Selector Sel) const {
 | 
						|
  assert(IDecl);
 | 
						|
  AnalysisManager &AMgr =
 | 
						|
      getState()->getStateManager().getOwningEngine().getAnalysisManager();
 | 
						|
  // If the class interface is declared inside the main file, assume it is not
 | 
						|
  // subcassed.
 | 
						|
  // TODO: It could actually be subclassed if the subclass is private as well.
 | 
						|
  // This is probably very rare.
 | 
						|
  SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
 | 
						|
  if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Assume that property accessors are not overridden.
 | 
						|
  if (getMessageKind() == OCM_PropertyAccess)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We assume that if the method is public (declared outside of main file) or
 | 
						|
  // has a parent which publicly declares the method, the method could be
 | 
						|
  // overridden in a subclass.
 | 
						|
 | 
						|
  // Find the first declaration in the class hierarchy that declares
 | 
						|
  // the selector.
 | 
						|
  ObjCMethodDecl *D = nullptr;
 | 
						|
  while (true) {
 | 
						|
    D = IDecl->lookupMethod(Sel, true);
 | 
						|
 | 
						|
    // Cannot find a public definition.
 | 
						|
    if (!D)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If outside the main file,
 | 
						|
    if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (D->isOverriding()) {
 | 
						|
      // Search in the superclass on the next iteration.
 | 
						|
      IDecl = D->getClassInterface();
 | 
						|
      if (!IDecl)
 | 
						|
        return false;
 | 
						|
 | 
						|
      IDecl = IDecl->getSuperClass();
 | 
						|
      if (!IDecl)
 | 
						|
        return false;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  llvm_unreachable("The while loop should always terminate.");
 | 
						|
}
 | 
						|
 | 
						|
static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
 | 
						|
  if (!MD)
 | 
						|
    return MD;
 | 
						|
 | 
						|
  // Find the redeclaration that defines the method.
 | 
						|
  if (!MD->hasBody()) {
 | 
						|
    for (auto I : MD->redecls())
 | 
						|
      if (I->hasBody())
 | 
						|
        MD = cast<ObjCMethodDecl>(I);
 | 
						|
  }
 | 
						|
  return MD;
 | 
						|
}
 | 
						|
 | 
						|
static bool isCallToSelfClass(const ObjCMessageExpr *ME) {
 | 
						|
  const Expr* InstRec = ME->getInstanceReceiver();
 | 
						|
  if (!InstRec)
 | 
						|
    return false;
 | 
						|
  const auto *InstRecIg = dyn_cast<DeclRefExpr>(InstRec->IgnoreParenImpCasts());
 | 
						|
 | 
						|
  // Check that receiver is called 'self'.
 | 
						|
  if (!InstRecIg || !InstRecIg->getFoundDecl() ||
 | 
						|
      !InstRecIg->getFoundDecl()->getName().equals("self"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the method name is 'class'.
 | 
						|
  if (ME->getSelector().getNumArgs() != 0 ||
 | 
						|
      !ME->getSelector().getNameForSlot(0).equals("class"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
 | 
						|
  const ObjCMessageExpr *E = getOriginExpr();
 | 
						|
  assert(E);
 | 
						|
  Selector Sel = E->getSelector();
 | 
						|
 | 
						|
  if (E->isInstanceMessage()) {
 | 
						|
    // Find the receiver type.
 | 
						|
    const ObjCObjectPointerType *ReceiverT = nullptr;
 | 
						|
    bool CanBeSubClassed = false;
 | 
						|
    QualType SupersType = E->getSuperType();
 | 
						|
    const MemRegion *Receiver = nullptr;
 | 
						|
 | 
						|
    if (!SupersType.isNull()) {
 | 
						|
      // The receiver is guaranteed to be 'super' in this case.
 | 
						|
      // Super always means the type of immediate predecessor to the method
 | 
						|
      // where the call occurs.
 | 
						|
      ReceiverT = cast<ObjCObjectPointerType>(SupersType);
 | 
						|
    } else {
 | 
						|
      Receiver = getReceiverSVal().getAsRegion();
 | 
						|
      if (!Receiver)
 | 
						|
        return {};
 | 
						|
 | 
						|
      DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
 | 
						|
      if (!DTI.isValid()) {
 | 
						|
        assert(isa<AllocaRegion>(Receiver) &&
 | 
						|
               "Unhandled untyped region class!");
 | 
						|
        return {};
 | 
						|
      }
 | 
						|
 | 
						|
      QualType DynType = DTI.getType();
 | 
						|
      CanBeSubClassed = DTI.canBeASubClass();
 | 
						|
      ReceiverT = dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
 | 
						|
 | 
						|
      if (ReceiverT && CanBeSubClassed)
 | 
						|
        if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl())
 | 
						|
          if (!canBeOverridenInSubclass(IDecl, Sel))
 | 
						|
            CanBeSubClassed = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle special cases of '[self classMethod]' and
 | 
						|
    // '[[self class] classMethod]', which are treated by the compiler as
 | 
						|
    // instance (not class) messages. We will statically dispatch to those.
 | 
						|
    if (auto *PT = dyn_cast_or_null<ObjCObjectPointerType>(ReceiverT)) {
 | 
						|
      // For [self classMethod], return the compiler visible declaration.
 | 
						|
      if (PT->getObjectType()->isObjCClass() &&
 | 
						|
          Receiver == getSelfSVal().getAsRegion())
 | 
						|
        return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
 | 
						|
 | 
						|
      // Similarly, handle [[self class] classMethod].
 | 
						|
      // TODO: We are currently doing a syntactic match for this pattern with is
 | 
						|
      // limiting as the test cases in Analysis/inlining/InlineObjCClassMethod.m
 | 
						|
      // shows. A better way would be to associate the meta type with the symbol
 | 
						|
      // using the dynamic type info tracking and use it here. We can add a new
 | 
						|
      // SVal for ObjC 'Class' values that know what interface declaration they
 | 
						|
      // come from. Then 'self' in a class method would be filled in with
 | 
						|
      // something meaningful in ObjCMethodCall::getReceiverSVal() and we could
 | 
						|
      // do proper dynamic dispatch for class methods just like we do for
 | 
						|
      // instance methods now.
 | 
						|
      if (E->getInstanceReceiver())
 | 
						|
        if (const auto *M = dyn_cast<ObjCMessageExpr>(E->getInstanceReceiver()))
 | 
						|
          if (isCallToSelfClass(M))
 | 
						|
            return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Lookup the instance method implementation.
 | 
						|
    if (ReceiverT)
 | 
						|
      if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterfaceDecl()) {
 | 
						|
        // Repeatedly calling lookupPrivateMethod() is expensive, especially
 | 
						|
        // when in many cases it returns null.  We cache the results so
 | 
						|
        // that repeated queries on the same ObjCIntefaceDecl and Selector
 | 
						|
        // don't incur the same cost.  On some test cases, we can see the
 | 
						|
        // same query being issued thousands of times.
 | 
						|
        //
 | 
						|
        // NOTE: This cache is essentially a "global" variable, but it
 | 
						|
        // only gets lazily created when we get here.  The value of the
 | 
						|
        // cache probably comes from it being global across ExprEngines,
 | 
						|
        // where the same queries may get issued.  If we are worried about
 | 
						|
        // concurrency, or possibly loading/unloading ASTs, etc., we may
 | 
						|
        // need to revisit this someday.  In terms of memory, this table
 | 
						|
        // stays around until clang quits, which also may be bad if we
 | 
						|
        // need to release memory.
 | 
						|
        using PrivateMethodKey = std::pair<const ObjCInterfaceDecl *, Selector>;
 | 
						|
        using PrivateMethodCache =
 | 
						|
            llvm::DenseMap<PrivateMethodKey, Optional<const ObjCMethodDecl *>>;
 | 
						|
 | 
						|
        static PrivateMethodCache PMC;
 | 
						|
        Optional<const ObjCMethodDecl *> &Val = PMC[std::make_pair(IDecl, Sel)];
 | 
						|
 | 
						|
        // Query lookupPrivateMethod() if the cache does not hit.
 | 
						|
        if (!Val.hasValue()) {
 | 
						|
          Val = IDecl->lookupPrivateMethod(Sel);
 | 
						|
 | 
						|
          // If the method is a property accessor, we should try to "inline" it
 | 
						|
          // even if we don't actually have an implementation.
 | 
						|
          if (!*Val)
 | 
						|
            if (const ObjCMethodDecl *CompileTimeMD = E->getMethodDecl())
 | 
						|
              if (CompileTimeMD->isPropertyAccessor()) {
 | 
						|
                if (!CompileTimeMD->getSelfDecl() &&
 | 
						|
                    isa<ObjCCategoryDecl>(CompileTimeMD->getDeclContext())) {
 | 
						|
                  // If the method is an accessor in a category, and it doesn't
 | 
						|
                  // have a self declaration, first
 | 
						|
                  // try to find the method in a class extension. This
 | 
						|
                  // works around a bug in Sema where multiple accessors
 | 
						|
                  // are synthesized for properties in class
 | 
						|
                  // extensions that are redeclared in a category and the
 | 
						|
                  // the implicit parameters are not filled in for
 | 
						|
                  // the method on the category.
 | 
						|
                  // This ensures we find the accessor in the extension, which
 | 
						|
                  // has the implicit parameters filled in.
 | 
						|
                  auto *ID = CompileTimeMD->getClassInterface();
 | 
						|
                  for (auto *CatDecl : ID->visible_extensions()) {
 | 
						|
                    Val = CatDecl->getMethod(Sel,
 | 
						|
                                             CompileTimeMD->isInstanceMethod());
 | 
						|
                    if (*Val)
 | 
						|
                      break;
 | 
						|
                  }
 | 
						|
                }
 | 
						|
                if (!*Val)
 | 
						|
                  Val = IDecl->lookupInstanceMethod(Sel);
 | 
						|
              }
 | 
						|
        }
 | 
						|
 | 
						|
        const ObjCMethodDecl *MD = Val.getValue();
 | 
						|
        if (MD && !MD->hasBody())
 | 
						|
          MD = MD->getCanonicalDecl();
 | 
						|
        if (CanBeSubClassed)
 | 
						|
          return RuntimeDefinition(MD, Receiver);
 | 
						|
        else
 | 
						|
          return RuntimeDefinition(MD, nullptr);
 | 
						|
      }
 | 
						|
  } else {
 | 
						|
    // This is a class method.
 | 
						|
    // If we have type info for the receiver class, we are calling via
 | 
						|
    // class name.
 | 
						|
    if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
 | 
						|
      // Find/Return the method implementation.
 | 
						|
      return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCMethodCall::argumentsMayEscape() const {
 | 
						|
  if (isInSystemHeader() && !isInstanceMessage()) {
 | 
						|
    Selector Sel = getSelector();
 | 
						|
    if (Sel.getNumArgs() == 1 &&
 | 
						|
        Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return CallEvent::argumentsMayEscape();
 | 
						|
}
 | 
						|
 | 
						|
void ObjCMethodCall::getInitialStackFrameContents(
 | 
						|
                                             const StackFrameContext *CalleeCtx,
 | 
						|
                                             BindingsTy &Bindings) const {
 | 
						|
  const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
 | 
						|
  SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
 | 
						|
  addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
 | 
						|
                               D->parameters());
 | 
						|
 | 
						|
  SVal SelfVal = getReceiverSVal();
 | 
						|
  if (!SelfVal.isUnknown()) {
 | 
						|
    const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
 | 
						|
    MemRegionManager &MRMgr = SVB.getRegionManager();
 | 
						|
    Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
 | 
						|
    Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CallEventRef<>
 | 
						|
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
 | 
						|
                                const LocationContext *LCtx) {
 | 
						|
  if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
 | 
						|
    return create<CXXMemberCall>(MCE, State, LCtx);
 | 
						|
 | 
						|
  if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
 | 
						|
    const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
 | 
						|
    if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
 | 
						|
      if (MD->isInstance())
 | 
						|
        return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
 | 
						|
 | 
						|
  } else if (CE->getCallee()->getType()->isBlockPointerType()) {
 | 
						|
    return create<BlockCall>(CE, State, LCtx);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it's a normal function call, static member function call, or
 | 
						|
  // something we can't reason about.
 | 
						|
  return create<SimpleFunctionCall>(CE, State, LCtx);
 | 
						|
}
 | 
						|
 | 
						|
CallEventRef<>
 | 
						|
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
 | 
						|
                            ProgramStateRef State) {
 | 
						|
  const LocationContext *ParentCtx = CalleeCtx->getParent();
 | 
						|
  const LocationContext *CallerCtx = ParentCtx->getStackFrame();
 | 
						|
  assert(CallerCtx && "This should not be used for top-level stack frames");
 | 
						|
 | 
						|
  const Stmt *CallSite = CalleeCtx->getCallSite();
 | 
						|
 | 
						|
  if (CallSite) {
 | 
						|
    if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
 | 
						|
      return Out;
 | 
						|
 | 
						|
    SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | 
						|
    const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
 | 
						|
    Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
 | 
						|
    SVal ThisVal = State->getSVal(ThisPtr);
 | 
						|
 | 
						|
    if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
 | 
						|
      return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
 | 
						|
    else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
 | 
						|
      return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
 | 
						|
                                            CallerCtx);
 | 
						|
    else {
 | 
						|
      // All other cases are handled by getCall.
 | 
						|
      llvm_unreachable("This is not an inlineable statement");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fall back to the CFG. The only thing we haven't handled yet is
 | 
						|
  // destructors, though this could change in the future.
 | 
						|
  const CFGBlock *B = CalleeCtx->getCallSiteBlock();
 | 
						|
  CFGElement E = (*B)[CalleeCtx->getIndex()];
 | 
						|
  assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
 | 
						|
         "All other CFG elements should have exprs");
 | 
						|
 | 
						|
  SValBuilder &SVB = State->getStateManager().getSValBuilder();
 | 
						|
  const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
 | 
						|
  Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
 | 
						|
  SVal ThisVal = State->getSVal(ThisPtr);
 | 
						|
 | 
						|
  const Stmt *Trigger;
 | 
						|
  if (Optional<CFGAutomaticObjDtor> AutoDtor = E.getAs<CFGAutomaticObjDtor>())
 | 
						|
    Trigger = AutoDtor->getTriggerStmt();
 | 
						|
  else if (Optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
 | 
						|
    Trigger = DeleteDtor->getDeleteExpr();
 | 
						|
  else
 | 
						|
    Trigger = Dtor->getBody();
 | 
						|
 | 
						|
  return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
 | 
						|
                              E.getAs<CFGBaseDtor>().hasValue(), State,
 | 
						|
                              CallerCtx);
 | 
						|
}
 | 
						|
 | 
						|
CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
 | 
						|
                                         const LocationContext *LC) {
 | 
						|
  if (const auto *CE = dyn_cast<CallExpr>(S)) {
 | 
						|
    return getSimpleCall(CE, State, LC);
 | 
						|
  } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
 | 
						|
    return getCXXAllocatorCall(NE, State, LC);
 | 
						|
  } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
 | 
						|
    return getObjCMethodCall(ME, State, LC);
 | 
						|
  } else {
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
}
 |