210 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
//== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file defines RangedConstraintManager, a class that provides a
 | 
						|
//  range-based constraint manager interface.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
 | 
						|
 | 
						|
namespace clang {
 | 
						|
 | 
						|
namespace ento {
 | 
						|
 | 
						|
RangedConstraintManager::~RangedConstraintManager() {}
 | 
						|
 | 
						|
ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
 | 
						|
                                                   SymbolRef Sym,
 | 
						|
                                                   bool Assumption) {
 | 
						|
  // Handle SymbolData.
 | 
						|
  if (isa<SymbolData>(Sym)) {
 | 
						|
    return assumeSymUnsupported(State, Sym, Assumption);
 | 
						|
 | 
						|
    // Handle symbolic expression.
 | 
						|
  } else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
 | 
						|
    // We can only simplify expressions whose RHS is an integer.
 | 
						|
 | 
						|
    BinaryOperator::Opcode op = SIE->getOpcode();
 | 
						|
    if (BinaryOperator::isComparisonOp(op) && op != BO_Cmp) {
 | 
						|
      if (!Assumption)
 | 
						|
        op = BinaryOperator::negateComparisonOp(op);
 | 
						|
 | 
						|
      return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
 | 
						|
    // Translate "a != b" to "(b - a) != 0".
 | 
						|
    // We invert the order of the operands as a heuristic for how loop
 | 
						|
    // conditions are usually written ("begin != end") as compared to length
 | 
						|
    // calculations ("end - begin"). The more correct thing to do would be to
 | 
						|
    // canonicalize "a - b" and "b - a", which would allow us to treat
 | 
						|
    // "a != b" and "b != a" the same.
 | 
						|
    SymbolManager &SymMgr = getSymbolManager();
 | 
						|
    BinaryOperator::Opcode Op = SSE->getOpcode();
 | 
						|
    assert(BinaryOperator::isComparisonOp(Op));
 | 
						|
 | 
						|
    // For now, we only support comparing pointers.
 | 
						|
    if (Loc::isLocType(SSE->getLHS()->getType()) &&
 | 
						|
        Loc::isLocType(SSE->getRHS()->getType())) {
 | 
						|
      QualType DiffTy = SymMgr.getContext().getPointerDiffType();
 | 
						|
      SymbolRef Subtraction =
 | 
						|
          SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
 | 
						|
 | 
						|
      const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
 | 
						|
      Op = BinaryOperator::reverseComparisonOp(Op);
 | 
						|
      if (!Assumption)
 | 
						|
        Op = BinaryOperator::negateComparisonOp(Op);
 | 
						|
      return assumeSymRel(State, Subtraction, Op, Zero);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, there's nothing else we can do but treat the symbol as
 | 
						|
  // opaque.
 | 
						|
  return assumeSymUnsupported(State, Sym, Assumption);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
 | 
						|
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
 | 
						|
    const llvm::APSInt &To, bool InRange) {
 | 
						|
  // Get the type used for calculating wraparound.
 | 
						|
  BasicValueFactory &BVF = getBasicVals();
 | 
						|
  APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
 | 
						|
 | 
						|
  llvm::APSInt Adjustment = WraparoundType.getZeroValue();
 | 
						|
  SymbolRef AdjustedSym = Sym;
 | 
						|
  computeAdjustment(AdjustedSym, Adjustment);
 | 
						|
 | 
						|
  // Convert the right-hand side integer as necessary.
 | 
						|
  APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
 | 
						|
  llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
 | 
						|
  llvm::APSInt ConvertedTo = ComparisonType.convert(To);
 | 
						|
 | 
						|
  // Prefer unsigned comparisons.
 | 
						|
  if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
 | 
						|
      ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
 | 
						|
    Adjustment.setIsSigned(false);
 | 
						|
 | 
						|
  if (InRange)
 | 
						|
    return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
 | 
						|
                                         ConvertedTo, Adjustment);
 | 
						|
  return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
 | 
						|
                                        ConvertedTo, Adjustment);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef
 | 
						|
RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
 | 
						|
                                              SymbolRef Sym, bool Assumption) {
 | 
						|
  BasicValueFactory &BVF = getBasicVals();
 | 
						|
  QualType T = Sym->getType();
 | 
						|
 | 
						|
  // Non-integer types are not supported.
 | 
						|
  if (!T->isIntegralOrEnumerationType())
 | 
						|
    return State;
 | 
						|
 | 
						|
  // Reverse the operation and add directly to state.
 | 
						|
  const llvm::APSInt &Zero = BVF.getValue(0, T);
 | 
						|
  if (Assumption)
 | 
						|
    return assumeSymNE(State, Sym, Zero, Zero);
 | 
						|
  else
 | 
						|
    return assumeSymEQ(State, Sym, Zero, Zero);
 | 
						|
}
 | 
						|
 | 
						|
ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
 | 
						|
                                                      SymbolRef Sym,
 | 
						|
                                                      BinaryOperator::Opcode Op,
 | 
						|
                                                      const llvm::APSInt &Int) {
 | 
						|
  assert(BinaryOperator::isComparisonOp(Op) &&
 | 
						|
         "Non-comparison ops should be rewritten as comparisons to zero.");
 | 
						|
 | 
						|
  // Simplification: translate an assume of a constraint of the form
 | 
						|
  // "(exp comparison_op expr) != 0" to true into an assume of
 | 
						|
  // "exp comparison_op expr" to true. (And similarly, an assume of the form
 | 
						|
  // "(exp comparison_op expr) == 0" to true into an assume of
 | 
						|
  // "exp comparison_op expr" to false.)
 | 
						|
  if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
 | 
						|
    if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
 | 
						|
      if (BinaryOperator::isComparisonOp(SE->getOpcode()))
 | 
						|
        return assumeSym(State, Sym, (Op == BO_NE ? true : false));
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the type used for calculating wraparound.
 | 
						|
  BasicValueFactory &BVF = getBasicVals();
 | 
						|
  APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
 | 
						|
 | 
						|
  // We only handle simple comparisons of the form "$sym == constant"
 | 
						|
  // or "($sym+constant1) == constant2".
 | 
						|
  // The adjustment is "constant1" in the above expression. It's used to
 | 
						|
  // "slide" the solution range around for modular arithmetic. For example,
 | 
						|
  // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
 | 
						|
  // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
 | 
						|
  // the subclasses of SimpleConstraintManager to handle the adjustment.
 | 
						|
  llvm::APSInt Adjustment = WraparoundType.getZeroValue();
 | 
						|
  computeAdjustment(Sym, Adjustment);
 | 
						|
 | 
						|
  // Convert the right-hand side integer as necessary.
 | 
						|
  APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
 | 
						|
  llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
 | 
						|
 | 
						|
  // Prefer unsigned comparisons.
 | 
						|
  if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
 | 
						|
      ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
 | 
						|
    Adjustment.setIsSigned(false);
 | 
						|
 | 
						|
  switch (Op) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("invalid operation not caught by assertion above");
 | 
						|
 | 
						|
  case BO_EQ:
 | 
						|
    return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_NE:
 | 
						|
    return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_GT:
 | 
						|
    return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_GE:
 | 
						|
    return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_LT:
 | 
						|
    return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
 | 
						|
 | 
						|
  case BO_LE:
 | 
						|
    return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
 | 
						|
  } // end switch
 | 
						|
}
 | 
						|
 | 
						|
void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
 | 
						|
                                                llvm::APSInt &Adjustment) {
 | 
						|
  // Is it a "($sym+constant1)" expression?
 | 
						|
  if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
 | 
						|
    BinaryOperator::Opcode Op = SE->getOpcode();
 | 
						|
    if (Op == BO_Add || Op == BO_Sub) {
 | 
						|
      Sym = SE->getLHS();
 | 
						|
      Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
 | 
						|
 | 
						|
      // Don't forget to negate the adjustment if it's being subtracted.
 | 
						|
      // This should happen /after/ promotion, in case the value being
 | 
						|
      // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
 | 
						|
      if (Op == BO_Sub)
 | 
						|
        Adjustment = -Adjustment;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void *ProgramStateTrait<ConstraintRange>::GDMIndex() {
 | 
						|
  static int Index;
 | 
						|
  return &Index;
 | 
						|
}
 | 
						|
 | 
						|
} // end of namespace ento
 | 
						|
 | 
						|
} // end of namespace clang
 |