2652 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2652 lines
		
	
	
		
			97 KiB
		
	
	
	
		
			C++
		
	
	
	
//== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a basic region store model. In this model, we do have field
 | 
						|
// sensitivity. But we assume nothing about the heap shape. So recursive data
 | 
						|
// structures are largely ignored. Basically we do 1-limiting analysis.
 | 
						|
// Parameter pointers are assumed with no aliasing. Pointee objects of
 | 
						|
// parameters are created lazily.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/ASTMatchers/ASTMatchFinder.h"
 | 
						|
#include "clang/Analysis/Analyses/LiveVariables.h"
 | 
						|
#include "clang/Analysis/AnalysisDeclContext.h"
 | 
						|
#include "clang/Basic/JsonSupport.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
 | 
						|
#include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
 | 
						|
#include "llvm/ADT/ImmutableMap.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace ento;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Representation of binding keys.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class BindingKey {
 | 
						|
public:
 | 
						|
  enum Kind { Default = 0x0, Direct = 0x1 };
 | 
						|
private:
 | 
						|
  enum { Symbolic = 0x2 };
 | 
						|
 | 
						|
  llvm::PointerIntPair<const MemRegion *, 2> P;
 | 
						|
  uint64_t Data;
 | 
						|
 | 
						|
  /// Create a key for a binding to region \p r, which has a symbolic offset
 | 
						|
  /// from region \p Base.
 | 
						|
  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
 | 
						|
    : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
 | 
						|
    assert(r && Base && "Must have known regions.");
 | 
						|
    assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
 | 
						|
  }
 | 
						|
 | 
						|
  /// Create a key for a binding at \p offset from base region \p r.
 | 
						|
  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
 | 
						|
    : P(r, k), Data(offset) {
 | 
						|
    assert(r && "Must have known regions.");
 | 
						|
    assert(getOffset() == offset && "Failed to store offset");
 | 
						|
    assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r) ||
 | 
						|
            isa <CXXDerivedObjectRegion>(r)) &&
 | 
						|
           "Not a base");
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  bool isDirect() const { return P.getInt() & Direct; }
 | 
						|
  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
 | 
						|
 | 
						|
  const MemRegion *getRegion() const { return P.getPointer(); }
 | 
						|
  uint64_t getOffset() const {
 | 
						|
    assert(!hasSymbolicOffset());
 | 
						|
    return Data;
 | 
						|
  }
 | 
						|
 | 
						|
  const SubRegion *getConcreteOffsetRegion() const {
 | 
						|
    assert(hasSymbolicOffset());
 | 
						|
    return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
 | 
						|
  }
 | 
						|
 | 
						|
  const MemRegion *getBaseRegion() const {
 | 
						|
    if (hasSymbolicOffset())
 | 
						|
      return getConcreteOffsetRegion()->getBaseRegion();
 | 
						|
    return getRegion()->getBaseRegion();
 | 
						|
  }
 | 
						|
 | 
						|
  void Profile(llvm::FoldingSetNodeID& ID) const {
 | 
						|
    ID.AddPointer(P.getOpaqueValue());
 | 
						|
    ID.AddInteger(Data);
 | 
						|
  }
 | 
						|
 | 
						|
  static BindingKey Make(const MemRegion *R, Kind k);
 | 
						|
 | 
						|
  bool operator<(const BindingKey &X) const {
 | 
						|
    if (P.getOpaqueValue() < X.P.getOpaqueValue())
 | 
						|
      return true;
 | 
						|
    if (P.getOpaqueValue() > X.P.getOpaqueValue())
 | 
						|
      return false;
 | 
						|
    return Data < X.Data;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const BindingKey &X) const {
 | 
						|
    return P.getOpaqueValue() == X.P.getOpaqueValue() &&
 | 
						|
           Data == X.Data;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD void dump() const;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
 | 
						|
  const RegionOffset &RO = R->getAsOffset();
 | 
						|
  if (RO.hasSymbolicOffset())
 | 
						|
    return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
 | 
						|
 | 
						|
  return BindingKey(RO.getRegion(), RO.getOffset(), k);
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
 | 
						|
  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
 | 
						|
      << "\", \"offset\": ";
 | 
						|
 | 
						|
  if (!K.hasSymbolicOffset())
 | 
						|
    Out << K.getOffset();
 | 
						|
  else
 | 
						|
    Out << "null";
 | 
						|
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void BindingKey::dump() const { llvm::errs() << *this; }
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Actual Store type.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
 | 
						|
typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
 | 
						|
typedef std::pair<BindingKey, SVal> BindingPair;
 | 
						|
 | 
						|
typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
 | 
						|
        RegionBindings;
 | 
						|
 | 
						|
namespace {
 | 
						|
class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
 | 
						|
                                 ClusterBindings> {
 | 
						|
  ClusterBindings::Factory *CBFactory;
 | 
						|
 | 
						|
  // This flag indicates whether the current bindings are within the analysis
 | 
						|
  // that has started from main(). It affects how we perform loads from
 | 
						|
  // global variables that have initializers: if we have observed the
 | 
						|
  // program execution from the start and we know that these variables
 | 
						|
  // have not been overwritten yet, we can be sure that their initializers
 | 
						|
  // are still relevant. This flag never gets changed when the bindings are
 | 
						|
  // updated, so it could potentially be moved into RegionStoreManager
 | 
						|
  // (as if it's the same bindings but a different loading procedure)
 | 
						|
  // however that would have made the manager needlessly stateful.
 | 
						|
  bool IsMainAnalysis;
 | 
						|
 | 
						|
public:
 | 
						|
  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
 | 
						|
          ParentTy;
 | 
						|
 | 
						|
  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
 | 
						|
                    const RegionBindings::TreeTy *T,
 | 
						|
                    RegionBindings::TreeTy::Factory *F,
 | 
						|
                    bool IsMainAnalysis)
 | 
						|
      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
 | 
						|
        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
 | 
						|
 | 
						|
  RegionBindingsRef(const ParentTy &P,
 | 
						|
                    ClusterBindings::Factory &CBFactory,
 | 
						|
                    bool IsMainAnalysis)
 | 
						|
      : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
 | 
						|
        CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
 | 
						|
 | 
						|
  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
 | 
						|
    return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
 | 
						|
                             *CBFactory, IsMainAnalysis);
 | 
						|
  }
 | 
						|
 | 
						|
  RegionBindingsRef remove(key_type_ref K) const {
 | 
						|
    return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
 | 
						|
                             *CBFactory, IsMainAnalysis);
 | 
						|
  }
 | 
						|
 | 
						|
  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
 | 
						|
 | 
						|
  RegionBindingsRef addBinding(const MemRegion *R,
 | 
						|
                               BindingKey::Kind k, SVal V) const;
 | 
						|
 | 
						|
  const SVal *lookup(BindingKey K) const;
 | 
						|
  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
 | 
						|
  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
 | 
						|
 | 
						|
  RegionBindingsRef removeBinding(BindingKey K);
 | 
						|
 | 
						|
  RegionBindingsRef removeBinding(const MemRegion *R,
 | 
						|
                                  BindingKey::Kind k);
 | 
						|
 | 
						|
  RegionBindingsRef removeBinding(const MemRegion *R) {
 | 
						|
    return removeBinding(R, BindingKey::Direct).
 | 
						|
           removeBinding(R, BindingKey::Default);
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<SVal> getDirectBinding(const MemRegion *R) const;
 | 
						|
 | 
						|
  /// getDefaultBinding - Returns an SVal* representing an optional default
 | 
						|
  ///  binding associated with a region and its subregions.
 | 
						|
  Optional<SVal> getDefaultBinding(const MemRegion *R) const;
 | 
						|
 | 
						|
  /// Return the internal tree as a Store.
 | 
						|
  Store asStore() const {
 | 
						|
    llvm::PointerIntPair<Store, 1, bool> Ptr = {
 | 
						|
        asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
 | 
						|
    return reinterpret_cast<Store>(Ptr.getOpaqueValue());
 | 
						|
  }
 | 
						|
 | 
						|
  bool isMainAnalysis() const {
 | 
						|
    return IsMainAnalysis;
 | 
						|
  }
 | 
						|
 | 
						|
  void printJson(raw_ostream &Out, const char *NL = "\n",
 | 
						|
                 unsigned int Space = 0, bool IsDot = false) const {
 | 
						|
    for (iterator I = begin(); I != end(); ++I) {
 | 
						|
      // TODO: We might need a .printJson for I.getKey() as well.
 | 
						|
      Indent(Out, Space, IsDot)
 | 
						|
          << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
 | 
						|
          << (const void *)I.getKey() << "\", \"items\": [" << NL;
 | 
						|
 | 
						|
      ++Space;
 | 
						|
      const ClusterBindings &CB = I.getData();
 | 
						|
      for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
 | 
						|
        Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
 | 
						|
        CI.getData().printJson(Out, /*AddQuotes=*/true);
 | 
						|
        Out << " }";
 | 
						|
        if (std::next(CI) != CB.end())
 | 
						|
          Out << ',';
 | 
						|
        Out << NL;
 | 
						|
      }
 | 
						|
 | 
						|
      --Space;
 | 
						|
      Indent(Out, Space, IsDot) << "]}";
 | 
						|
      if (std::next(I) != end())
 | 
						|
        Out << ',';
 | 
						|
      Out << NL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
typedef const RegionBindingsRef& RegionBindingsConstRef;
 | 
						|
 | 
						|
Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
 | 
						|
  return Optional<SVal>::create(lookup(R, BindingKey::Direct));
 | 
						|
}
 | 
						|
 | 
						|
Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
 | 
						|
  return Optional<SVal>::create(lookup(R, BindingKey::Default));
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
 | 
						|
  const MemRegion *Base = K.getBaseRegion();
 | 
						|
 | 
						|
  const ClusterBindings *ExistingCluster = lookup(Base);
 | 
						|
  ClusterBindings Cluster =
 | 
						|
      (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
 | 
						|
 | 
						|
  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
 | 
						|
  return add(Base, NewCluster);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
 | 
						|
                                                BindingKey::Kind k,
 | 
						|
                                                SVal V) const {
 | 
						|
  return addBinding(BindingKey::Make(R, k), V);
 | 
						|
}
 | 
						|
 | 
						|
const SVal *RegionBindingsRef::lookup(BindingKey K) const {
 | 
						|
  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
 | 
						|
  if (!Cluster)
 | 
						|
    return nullptr;
 | 
						|
  return Cluster->lookup(K);
 | 
						|
}
 | 
						|
 | 
						|
const SVal *RegionBindingsRef::lookup(const MemRegion *R,
 | 
						|
                                      BindingKey::Kind k) const {
 | 
						|
  return lookup(BindingKey::Make(R, k));
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
 | 
						|
  const MemRegion *Base = K.getBaseRegion();
 | 
						|
  const ClusterBindings *Cluster = lookup(Base);
 | 
						|
  if (!Cluster)
 | 
						|
    return *this;
 | 
						|
 | 
						|
  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
 | 
						|
  if (NewCluster.isEmpty())
 | 
						|
    return remove(Base);
 | 
						|
  return add(Base, NewCluster);
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
 | 
						|
                                                BindingKey::Kind k){
 | 
						|
  return removeBinding(BindingKey::Make(R, k));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Fine-grained control of RegionStoreManager.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
struct minimal_features_tag {};
 | 
						|
struct maximal_features_tag {};
 | 
						|
 | 
						|
class RegionStoreFeatures {
 | 
						|
  bool SupportsFields;
 | 
						|
public:
 | 
						|
  RegionStoreFeatures(minimal_features_tag) :
 | 
						|
    SupportsFields(false) {}
 | 
						|
 | 
						|
  RegionStoreFeatures(maximal_features_tag) :
 | 
						|
    SupportsFields(true) {}
 | 
						|
 | 
						|
  void enableFields(bool t) { SupportsFields = t; }
 | 
						|
 | 
						|
  bool supportsFields() const { return SupportsFields; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Main RegionStore logic.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class InvalidateRegionsWorker;
 | 
						|
 | 
						|
class RegionStoreManager : public StoreManager {
 | 
						|
public:
 | 
						|
  const RegionStoreFeatures Features;
 | 
						|
 | 
						|
  RegionBindings::Factory RBFactory;
 | 
						|
  mutable ClusterBindings::Factory CBFactory;
 | 
						|
 | 
						|
  typedef std::vector<SVal> SValListTy;
 | 
						|
private:
 | 
						|
  typedef llvm::DenseMap<const LazyCompoundValData *,
 | 
						|
                         SValListTy> LazyBindingsMapTy;
 | 
						|
  LazyBindingsMapTy LazyBindingsMap;
 | 
						|
 | 
						|
  /// The largest number of fields a struct can have and still be
 | 
						|
  /// considered "small".
 | 
						|
  ///
 | 
						|
  /// This is currently used to decide whether or not it is worth "forcing" a
 | 
						|
  /// LazyCompoundVal on bind.
 | 
						|
  ///
 | 
						|
  /// This is controlled by 'region-store-small-struct-limit' option.
 | 
						|
  /// To disable all small-struct-dependent behavior, set the option to "0".
 | 
						|
  unsigned SmallStructLimit;
 | 
						|
 | 
						|
  /// A helper used to populate the work list with the given set of
 | 
						|
  /// regions.
 | 
						|
  void populateWorkList(InvalidateRegionsWorker &W,
 | 
						|
                        ArrayRef<SVal> Values,
 | 
						|
                        InvalidatedRegions *TopLevelRegions);
 | 
						|
 | 
						|
public:
 | 
						|
  RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
 | 
						|
    : StoreManager(mgr), Features(f),
 | 
						|
      RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
 | 
						|
      SmallStructLimit(0) {
 | 
						|
    SubEngine &Eng = StateMgr.getOwningEngine();
 | 
						|
    AnalyzerOptions &Options = Eng.getAnalysisManager().options;
 | 
						|
    SmallStructLimit = Options.RegionStoreSmallStructLimit;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /// setImplicitDefaultValue - Set the default binding for the provided
 | 
						|
  ///  MemRegion to the value implicitly defined for compound literals when
 | 
						|
  ///  the value is not specified.
 | 
						|
  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
 | 
						|
                                            const MemRegion *R, QualType T);
 | 
						|
 | 
						|
  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | 
						|
  ///  type.  'Array' represents the lvalue of the array being decayed
 | 
						|
  ///  to a pointer, and the returned SVal represents the decayed
 | 
						|
  ///  version of that lvalue (i.e., a pointer to the first element of
 | 
						|
  ///  the array).  This is called by ExprEngine when evaluating
 | 
						|
  ///  casts from arrays to pointers.
 | 
						|
  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
 | 
						|
 | 
						|
  /// Creates the Store that correctly represents memory contents before
 | 
						|
  /// the beginning of the analysis of the given top-level stack frame.
 | 
						|
  StoreRef getInitialStore(const LocationContext *InitLoc) override {
 | 
						|
    bool IsMainAnalysis = false;
 | 
						|
    if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
 | 
						|
      IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
 | 
						|
    return StoreRef(RegionBindingsRef(
 | 
						|
        RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
 | 
						|
        CBFactory, IsMainAnalysis).asStore(), *this);
 | 
						|
  }
 | 
						|
 | 
						|
  //===-------------------------------------------------------------------===//
 | 
						|
  // Binding values to regions.
 | 
						|
  //===-------------------------------------------------------------------===//
 | 
						|
  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
 | 
						|
                                           const Expr *Ex,
 | 
						|
                                           unsigned Count,
 | 
						|
                                           const LocationContext *LCtx,
 | 
						|
                                           RegionBindingsRef B,
 | 
						|
                                           InvalidatedRegions *Invalidated);
 | 
						|
 | 
						|
  StoreRef invalidateRegions(Store store,
 | 
						|
                             ArrayRef<SVal> Values,
 | 
						|
                             const Expr *E, unsigned Count,
 | 
						|
                             const LocationContext *LCtx,
 | 
						|
                             const CallEvent *Call,
 | 
						|
                             InvalidatedSymbols &IS,
 | 
						|
                             RegionAndSymbolInvalidationTraits &ITraits,
 | 
						|
                             InvalidatedRegions *Invalidated,
 | 
						|
                             InvalidatedRegions *InvalidatedTopLevel) override;
 | 
						|
 | 
						|
  bool scanReachableSymbols(Store S, const MemRegion *R,
 | 
						|
                            ScanReachableSymbols &Callbacks) override;
 | 
						|
 | 
						|
  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
 | 
						|
                                            const SubRegion *R);
 | 
						|
 | 
						|
public: // Part of public interface to class.
 | 
						|
 | 
						|
  StoreRef Bind(Store store, Loc LV, SVal V) override {
 | 
						|
    return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
 | 
						|
  }
 | 
						|
 | 
						|
  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
 | 
						|
 | 
						|
  // BindDefaultInitial is only used to initialize a region with
 | 
						|
  // a default value.
 | 
						|
  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
 | 
						|
                              SVal V) override {
 | 
						|
    RegionBindingsRef B = getRegionBindings(store);
 | 
						|
    // Use other APIs when you have to wipe the region that was initialized
 | 
						|
    // earlier.
 | 
						|
    assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
 | 
						|
           "Double initialization!");
 | 
						|
    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
 | 
						|
    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
 | 
						|
  }
 | 
						|
 | 
						|
  // BindDefaultZero is used for zeroing constructors that may accidentally
 | 
						|
  // overwrite existing bindings.
 | 
						|
  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
 | 
						|
    // FIXME: The offsets of empty bases can be tricky because of
 | 
						|
    // of the so called "empty base class optimization".
 | 
						|
    // If a base class has been optimized out
 | 
						|
    // we should not try to create a binding, otherwise we should.
 | 
						|
    // Unfortunately, at the moment ASTRecordLayout doesn't expose
 | 
						|
    // the actual sizes of the empty bases
 | 
						|
    // and trying to infer them from offsets/alignments
 | 
						|
    // seems to be error-prone and non-trivial because of the trailing padding.
 | 
						|
    // As a temporary mitigation we don't create bindings for empty bases.
 | 
						|
    if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
 | 
						|
      if (BR->getDecl()->isEmpty())
 | 
						|
        return StoreRef(store, *this);
 | 
						|
 | 
						|
    RegionBindingsRef B = getRegionBindings(store);
 | 
						|
    SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
 | 
						|
    B = removeSubRegionBindings(B, cast<SubRegion>(R));
 | 
						|
    B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
 | 
						|
    return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Attempt to extract the fields of \p LCV and bind them to the struct region
 | 
						|
  /// \p R.
 | 
						|
  ///
 | 
						|
  /// This path is used when it seems advantageous to "force" loading the values
 | 
						|
  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
 | 
						|
  /// than using a Default binding at the base of the entire region. This is a
 | 
						|
  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
 | 
						|
  ///
 | 
						|
  /// \returns The updated store bindings, or \c None if binding non-lazily
 | 
						|
  ///          would be too expensive.
 | 
						|
  Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
 | 
						|
                                                 const TypedValueRegion *R,
 | 
						|
                                                 const RecordDecl *RD,
 | 
						|
                                                 nonloc::LazyCompoundVal LCV);
 | 
						|
 | 
						|
  /// BindStruct - Bind a compound value to a structure.
 | 
						|
  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
 | 
						|
                               const TypedValueRegion* R, SVal V);
 | 
						|
 | 
						|
  /// BindVector - Bind a compound value to a vector.
 | 
						|
  RegionBindingsRef bindVector(RegionBindingsConstRef B,
 | 
						|
                               const TypedValueRegion* R, SVal V);
 | 
						|
 | 
						|
  RegionBindingsRef bindArray(RegionBindingsConstRef B,
 | 
						|
                              const TypedValueRegion* R,
 | 
						|
                              SVal V);
 | 
						|
 | 
						|
  /// Clears out all bindings in the given region and assigns a new value
 | 
						|
  /// as a Default binding.
 | 
						|
  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
 | 
						|
                                  const TypedRegion *R,
 | 
						|
                                  SVal DefaultVal);
 | 
						|
 | 
						|
  /// Create a new store with the specified binding removed.
 | 
						|
  /// \param ST the original store, that is the basis for the new store.
 | 
						|
  /// \param L the location whose binding should be removed.
 | 
						|
  StoreRef killBinding(Store ST, Loc L) override;
 | 
						|
 | 
						|
  void incrementReferenceCount(Store store) override {
 | 
						|
    getRegionBindings(store).manualRetain();
 | 
						|
  }
 | 
						|
 | 
						|
  /// If the StoreManager supports it, decrement the reference count of
 | 
						|
  /// the specified Store object.  If the reference count hits 0, the memory
 | 
						|
  /// associated with the object is recycled.
 | 
						|
  void decrementReferenceCount(Store store) override {
 | 
						|
    getRegionBindings(store).manualRelease();
 | 
						|
  }
 | 
						|
 | 
						|
  bool includedInBindings(Store store, const MemRegion *region) const override;
 | 
						|
 | 
						|
  /// Return the value bound to specified location in a given state.
 | 
						|
  ///
 | 
						|
  /// The high level logic for this method is this:
 | 
						|
  /// getBinding (L)
 | 
						|
  ///   if L has binding
 | 
						|
  ///     return L's binding
 | 
						|
  ///   else if L is in killset
 | 
						|
  ///     return unknown
 | 
						|
  ///   else
 | 
						|
  ///     if L is on stack or heap
 | 
						|
  ///       return undefined
 | 
						|
  ///     else
 | 
						|
  ///       return symbolic
 | 
						|
  SVal getBinding(Store S, Loc L, QualType T) override {
 | 
						|
    return getBinding(getRegionBindings(S), L, T);
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
 | 
						|
    RegionBindingsRef B = getRegionBindings(S);
 | 
						|
    // Default bindings are always applied over a base region so look up the
 | 
						|
    // base region's default binding, otherwise the lookup will fail when R
 | 
						|
    // is at an offset from R->getBaseRegion().
 | 
						|
    return B.getDefaultBinding(R->getBaseRegion());
 | 
						|
  }
 | 
						|
 | 
						|
  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
 | 
						|
 | 
						|
  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
 | 
						|
 | 
						|
  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
 | 
						|
 | 
						|
  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
 | 
						|
 | 
						|
  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
 | 
						|
 | 
						|
  SVal getBindingForLazySymbol(const TypedValueRegion *R);
 | 
						|
 | 
						|
  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
 | 
						|
                                         const TypedValueRegion *R,
 | 
						|
                                         QualType Ty);
 | 
						|
 | 
						|
  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
 | 
						|
                      RegionBindingsRef LazyBinding);
 | 
						|
 | 
						|
  /// Get bindings for the values in a struct and return a CompoundVal, used
 | 
						|
  /// when doing struct copy:
 | 
						|
  /// struct s x, y;
 | 
						|
  /// x = y;
 | 
						|
  /// y's value is retrieved by this method.
 | 
						|
  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
 | 
						|
  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
 | 
						|
  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
 | 
						|
 | 
						|
  /// Used to lazily generate derived symbols for bindings that are defined
 | 
						|
  /// implicitly by default bindings in a super region.
 | 
						|
  ///
 | 
						|
  /// Note that callers may need to specially handle LazyCompoundVals, which
 | 
						|
  /// are returned as is in case the caller needs to treat them differently.
 | 
						|
  Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
 | 
						|
                                                  const MemRegion *superR,
 | 
						|
                                                  const TypedValueRegion *R,
 | 
						|
                                                  QualType Ty);
 | 
						|
 | 
						|
  /// Get the state and region whose binding this region \p R corresponds to.
 | 
						|
  ///
 | 
						|
  /// If there is no lazy binding for \p R, the returned value will have a null
 | 
						|
  /// \c second. Note that a null pointer can represents a valid Store.
 | 
						|
  std::pair<Store, const SubRegion *>
 | 
						|
  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
 | 
						|
                  const SubRegion *originalRegion);
 | 
						|
 | 
						|
  /// Returns the cached set of interesting SVals contained within a lazy
 | 
						|
  /// binding.
 | 
						|
  ///
 | 
						|
  /// The precise value of "interesting" is determined for the purposes of
 | 
						|
  /// RegionStore's internal analysis. It must always contain all regions and
 | 
						|
  /// symbols, but may omit constants and other kinds of SVal.
 | 
						|
  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
 | 
						|
 | 
						|
  //===------------------------------------------------------------------===//
 | 
						|
  // State pruning.
 | 
						|
  //===------------------------------------------------------------------===//
 | 
						|
 | 
						|
  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
 | 
						|
  ///  It returns a new Store with these values removed.
 | 
						|
  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
 | 
						|
                              SymbolReaper& SymReaper) override;
 | 
						|
 | 
						|
  //===------------------------------------------------------------------===//
 | 
						|
  // Utility methods.
 | 
						|
  //===------------------------------------------------------------------===//
 | 
						|
 | 
						|
  RegionBindingsRef getRegionBindings(Store store) const {
 | 
						|
    llvm::PointerIntPair<Store, 1, bool> Ptr;
 | 
						|
    Ptr.setFromOpaqueValue(const_cast<void *>(store));
 | 
						|
    return RegionBindingsRef(
 | 
						|
        CBFactory,
 | 
						|
        static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
 | 
						|
        RBFactory.getTreeFactory(),
 | 
						|
        Ptr.getInt());
 | 
						|
  }
 | 
						|
 | 
						|
  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
 | 
						|
                 unsigned int Space = 0, bool IsDot = false) const override;
 | 
						|
 | 
						|
  void iterBindings(Store store, BindingsHandler& f) override {
 | 
						|
    RegionBindingsRef B = getRegionBindings(store);
 | 
						|
    for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
      const ClusterBindings &Cluster = I.getData();
 | 
						|
      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
 | 
						|
           CI != CE; ++CI) {
 | 
						|
        const BindingKey &K = CI.getKey();
 | 
						|
        if (!K.isDirect())
 | 
						|
          continue;
 | 
						|
        if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
 | 
						|
          // FIXME: Possibly incorporate the offset?
 | 
						|
          if (!f.HandleBinding(*this, store, R, CI.getData()))
 | 
						|
            return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RegionStore creation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
std::unique_ptr<StoreManager>
 | 
						|
ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
 | 
						|
  RegionStoreFeatures F = maximal_features_tag();
 | 
						|
  return std::make_unique<RegionStoreManager>(StMgr, F);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<StoreManager>
 | 
						|
ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
 | 
						|
  RegionStoreFeatures F = minimal_features_tag();
 | 
						|
  F.enableFields(true);
 | 
						|
  return std::make_unique<RegionStoreManager>(StMgr, F);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Region Cluster analysis.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Used to determine which global regions are automatically included in the
 | 
						|
/// initial worklist of a ClusterAnalysis.
 | 
						|
enum GlobalsFilterKind {
 | 
						|
  /// Don't include any global regions.
 | 
						|
  GFK_None,
 | 
						|
  /// Only include system globals.
 | 
						|
  GFK_SystemOnly,
 | 
						|
  /// Include all global regions.
 | 
						|
  GFK_All
 | 
						|
};
 | 
						|
 | 
						|
template <typename DERIVED>
 | 
						|
class ClusterAnalysis  {
 | 
						|
protected:
 | 
						|
  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
 | 
						|
  typedef const MemRegion * WorkListElement;
 | 
						|
  typedef SmallVector<WorkListElement, 10> WorkList;
 | 
						|
 | 
						|
  llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
 | 
						|
 | 
						|
  WorkList WL;
 | 
						|
 | 
						|
  RegionStoreManager &RM;
 | 
						|
  ASTContext &Ctx;
 | 
						|
  SValBuilder &svalBuilder;
 | 
						|
 | 
						|
  RegionBindingsRef B;
 | 
						|
 | 
						|
 | 
						|
protected:
 | 
						|
  const ClusterBindings *getCluster(const MemRegion *R) {
 | 
						|
    return B.lookup(R);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns true if all clusters in the given memspace should be initially
 | 
						|
  /// included in the cluster analysis. Subclasses may provide their
 | 
						|
  /// own implementation.
 | 
						|
  bool includeEntireMemorySpace(const MemRegion *Base) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
 | 
						|
                  RegionBindingsRef b)
 | 
						|
      : RM(rm), Ctx(StateMgr.getContext()),
 | 
						|
        svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
 | 
						|
 | 
						|
  RegionBindingsRef getRegionBindings() const { return B; }
 | 
						|
 | 
						|
  bool isVisited(const MemRegion *R) {
 | 
						|
    return Visited.count(getCluster(R));
 | 
						|
  }
 | 
						|
 | 
						|
  void GenerateClusters() {
 | 
						|
    // Scan the entire set of bindings and record the region clusters.
 | 
						|
    for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
 | 
						|
         RI != RE; ++RI){
 | 
						|
      const MemRegion *Base = RI.getKey();
 | 
						|
 | 
						|
      const ClusterBindings &Cluster = RI.getData();
 | 
						|
      assert(!Cluster.isEmpty() && "Empty clusters should be removed");
 | 
						|
      static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
 | 
						|
 | 
						|
      // If the base's memspace should be entirely invalidated, add the cluster
 | 
						|
      // to the workspace up front.
 | 
						|
      if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
 | 
						|
        AddToWorkList(WorkListElement(Base), &Cluster);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
 | 
						|
    if (C && !Visited.insert(C).second)
 | 
						|
      return false;
 | 
						|
    WL.push_back(E);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool AddToWorkList(const MemRegion *R) {
 | 
						|
    return static_cast<DERIVED*>(this)->AddToWorkList(R);
 | 
						|
  }
 | 
						|
 | 
						|
  void RunWorkList() {
 | 
						|
    while (!WL.empty()) {
 | 
						|
      WorkListElement E = WL.pop_back_val();
 | 
						|
      const MemRegion *BaseR = E;
 | 
						|
 | 
						|
      static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
 | 
						|
  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
 | 
						|
 | 
						|
  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
 | 
						|
                    bool Flag) {
 | 
						|
    static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Binding invalidation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
 | 
						|
                                              ScanReachableSymbols &Callbacks) {
 | 
						|
  assert(R == R->getBaseRegion() && "Should only be called for base regions");
 | 
						|
  RegionBindingsRef B = getRegionBindings(S);
 | 
						|
  const ClusterBindings *Cluster = B.lookup(R);
 | 
						|
 | 
						|
  if (!Cluster)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
 | 
						|
       RI != RE; ++RI) {
 | 
						|
    if (!Callbacks.scan(RI.getData()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isUnionField(const FieldRegion *FR) {
 | 
						|
  return FR->getDecl()->getParent()->isUnion();
 | 
						|
}
 | 
						|
 | 
						|
typedef SmallVector<const FieldDecl *, 8> FieldVector;
 | 
						|
 | 
						|
static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
 | 
						|
  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
 | 
						|
 | 
						|
  const MemRegion *Base = K.getConcreteOffsetRegion();
 | 
						|
  const MemRegion *R = K.getRegion();
 | 
						|
 | 
						|
  while (R != Base) {
 | 
						|
    if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
 | 
						|
      if (!isUnionField(FR))
 | 
						|
        Fields.push_back(FR->getDecl());
 | 
						|
 | 
						|
    R = cast<SubRegion>(R)->getSuperRegion();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
 | 
						|
  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
 | 
						|
 | 
						|
  if (Fields.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  FieldVector FieldsInBindingKey;
 | 
						|
  getSymbolicOffsetFields(K, FieldsInBindingKey);
 | 
						|
 | 
						|
  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
 | 
						|
  if (Delta >= 0)
 | 
						|
    return std::equal(FieldsInBindingKey.begin() + Delta,
 | 
						|
                      FieldsInBindingKey.end(),
 | 
						|
                      Fields.begin());
 | 
						|
  else
 | 
						|
    return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
 | 
						|
                      Fields.begin() - Delta);
 | 
						|
}
 | 
						|
 | 
						|
/// Collects all bindings in \p Cluster that may refer to bindings within
 | 
						|
/// \p Top.
 | 
						|
///
 | 
						|
/// Each binding is a pair whose \c first is the key (a BindingKey) and whose
 | 
						|
/// \c second is the value (an SVal).
 | 
						|
///
 | 
						|
/// The \p IncludeAllDefaultBindings parameter specifies whether to include
 | 
						|
/// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
 | 
						|
/// an aggregate within a larger aggregate with a default binding.
 | 
						|
static void
 | 
						|
collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
 | 
						|
                         SValBuilder &SVB, const ClusterBindings &Cluster,
 | 
						|
                         const SubRegion *Top, BindingKey TopKey,
 | 
						|
                         bool IncludeAllDefaultBindings) {
 | 
						|
  FieldVector FieldsInSymbolicSubregions;
 | 
						|
  if (TopKey.hasSymbolicOffset()) {
 | 
						|
    getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
 | 
						|
    Top = TopKey.getConcreteOffsetRegion();
 | 
						|
    TopKey = BindingKey::Make(Top, BindingKey::Default);
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the length (in bits) of the region being invalidated.
 | 
						|
  uint64_t Length = UINT64_MAX;
 | 
						|
  SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
 | 
						|
  if (Optional<nonloc::ConcreteInt> ExtentCI =
 | 
						|
          Extent.getAs<nonloc::ConcreteInt>()) {
 | 
						|
    const llvm::APSInt &ExtentInt = ExtentCI->getValue();
 | 
						|
    assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
 | 
						|
    // Extents are in bytes but region offsets are in bits. Be careful!
 | 
						|
    Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
 | 
						|
  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
 | 
						|
    if (FR->getDecl()->isBitField())
 | 
						|
      Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
 | 
						|
  }
 | 
						|
 | 
						|
  for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    BindingKey NextKey = I.getKey();
 | 
						|
    if (NextKey.getRegion() == TopKey.getRegion()) {
 | 
						|
      // FIXME: This doesn't catch the case where we're really invalidating a
 | 
						|
      // region with a symbolic offset. Example:
 | 
						|
      //      R: points[i].y
 | 
						|
      //   Next: points[0].x
 | 
						|
 | 
						|
      if (NextKey.getOffset() > TopKey.getOffset() &&
 | 
						|
          NextKey.getOffset() - TopKey.getOffset() < Length) {
 | 
						|
        // Case 1: The next binding is inside the region we're invalidating.
 | 
						|
        // Include it.
 | 
						|
        Bindings.push_back(*I);
 | 
						|
 | 
						|
      } else if (NextKey.getOffset() == TopKey.getOffset()) {
 | 
						|
        // Case 2: The next binding is at the same offset as the region we're
 | 
						|
        // invalidating. In this case, we need to leave default bindings alone,
 | 
						|
        // since they may be providing a default value for a regions beyond what
 | 
						|
        // we're invalidating.
 | 
						|
        // FIXME: This is probably incorrect; consider invalidating an outer
 | 
						|
        // struct whose first field is bound to a LazyCompoundVal.
 | 
						|
        if (IncludeAllDefaultBindings || NextKey.isDirect())
 | 
						|
          Bindings.push_back(*I);
 | 
						|
      }
 | 
						|
 | 
						|
    } else if (NextKey.hasSymbolicOffset()) {
 | 
						|
      const MemRegion *Base = NextKey.getConcreteOffsetRegion();
 | 
						|
      if (Top->isSubRegionOf(Base) && Top != Base) {
 | 
						|
        // Case 3: The next key is symbolic and we just changed something within
 | 
						|
        // its concrete region. We don't know if the binding is still valid, so
 | 
						|
        // we'll be conservative and include it.
 | 
						|
        if (IncludeAllDefaultBindings || NextKey.isDirect())
 | 
						|
          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
 | 
						|
            Bindings.push_back(*I);
 | 
						|
      } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
 | 
						|
        // Case 4: The next key is symbolic, but we changed a known
 | 
						|
        // super-region. In this case the binding is certainly included.
 | 
						|
        if (BaseSR->isSubRegionOf(Top))
 | 
						|
          if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
 | 
						|
            Bindings.push_back(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
 | 
						|
                         SValBuilder &SVB, const ClusterBindings &Cluster,
 | 
						|
                         const SubRegion *Top, bool IncludeAllDefaultBindings) {
 | 
						|
  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
 | 
						|
                           BindingKey::Make(Top, BindingKey::Default),
 | 
						|
                           IncludeAllDefaultBindings);
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef
 | 
						|
RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
 | 
						|
                                            const SubRegion *Top) {
 | 
						|
  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
 | 
						|
  const MemRegion *ClusterHead = TopKey.getBaseRegion();
 | 
						|
 | 
						|
  if (Top == ClusterHead) {
 | 
						|
    // We can remove an entire cluster's bindings all in one go.
 | 
						|
    return B.remove(Top);
 | 
						|
  }
 | 
						|
 | 
						|
  const ClusterBindings *Cluster = B.lookup(ClusterHead);
 | 
						|
  if (!Cluster) {
 | 
						|
    // If we're invalidating a region with a symbolic offset, we need to make
 | 
						|
    // sure we don't treat the base region as uninitialized anymore.
 | 
						|
    if (TopKey.hasSymbolicOffset()) {
 | 
						|
      const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
 | 
						|
      return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
 | 
						|
    }
 | 
						|
    return B;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<BindingPair, 32> Bindings;
 | 
						|
  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
 | 
						|
                           /*IncludeAllDefaultBindings=*/false);
 | 
						|
 | 
						|
  ClusterBindingsRef Result(*Cluster, CBFactory);
 | 
						|
  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
 | 
						|
                                                    E = Bindings.end();
 | 
						|
       I != E; ++I)
 | 
						|
    Result = Result.remove(I->first);
 | 
						|
 | 
						|
  // If we're invalidating a region with a symbolic offset, we need to make sure
 | 
						|
  // we don't treat the base region as uninitialized anymore.
 | 
						|
  // FIXME: This isn't very precise; see the example in
 | 
						|
  // collectSubRegionBindings.
 | 
						|
  if (TopKey.hasSymbolicOffset()) {
 | 
						|
    const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
 | 
						|
    Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
 | 
						|
                        UnknownVal());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Result.isEmpty())
 | 
						|
    return B.remove(ClusterHead);
 | 
						|
  return B.add(ClusterHead, Result.asImmutableMap());
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
 | 
						|
{
 | 
						|
  const Expr *Ex;
 | 
						|
  unsigned Count;
 | 
						|
  const LocationContext *LCtx;
 | 
						|
  InvalidatedSymbols &IS;
 | 
						|
  RegionAndSymbolInvalidationTraits &ITraits;
 | 
						|
  StoreManager::InvalidatedRegions *Regions;
 | 
						|
  GlobalsFilterKind GlobalsFilter;
 | 
						|
public:
 | 
						|
  InvalidateRegionsWorker(RegionStoreManager &rm,
 | 
						|
                          ProgramStateManager &stateMgr,
 | 
						|
                          RegionBindingsRef b,
 | 
						|
                          const Expr *ex, unsigned count,
 | 
						|
                          const LocationContext *lctx,
 | 
						|
                          InvalidatedSymbols &is,
 | 
						|
                          RegionAndSymbolInvalidationTraits &ITraitsIn,
 | 
						|
                          StoreManager::InvalidatedRegions *r,
 | 
						|
                          GlobalsFilterKind GFK)
 | 
						|
     : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
 | 
						|
       Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
 | 
						|
       GlobalsFilter(GFK) {}
 | 
						|
 | 
						|
  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
 | 
						|
  void VisitBinding(SVal V);
 | 
						|
 | 
						|
  using ClusterAnalysis::AddToWorkList;
 | 
						|
 | 
						|
  bool AddToWorkList(const MemRegion *R);
 | 
						|
 | 
						|
  /// Returns true if all clusters in the memory space for \p Base should be
 | 
						|
  /// be invalidated.
 | 
						|
  bool includeEntireMemorySpace(const MemRegion *Base);
 | 
						|
 | 
						|
  /// Returns true if the memory space of the given region is one of the global
 | 
						|
  /// regions specially included at the start of invalidation.
 | 
						|
  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
 | 
						|
  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
 | 
						|
      R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | 
						|
  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
 | 
						|
  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
 | 
						|
}
 | 
						|
 | 
						|
void InvalidateRegionsWorker::VisitBinding(SVal V) {
 | 
						|
  // A symbol?  Mark it touched by the invalidation.
 | 
						|
  if (SymbolRef Sym = V.getAsSymbol())
 | 
						|
    IS.insert(Sym);
 | 
						|
 | 
						|
  if (const MemRegion *R = V.getAsRegion()) {
 | 
						|
    AddToWorkList(R);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Is it a LazyCompoundVal?  All references get invalidated as well.
 | 
						|
  if (Optional<nonloc::LazyCompoundVal> LCS =
 | 
						|
          V.getAs<nonloc::LazyCompoundVal>()) {
 | 
						|
 | 
						|
    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
 | 
						|
 | 
						|
    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
 | 
						|
                                                        E = Vals.end();
 | 
						|
         I != E; ++I)
 | 
						|
      VisitBinding(*I);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
 | 
						|
                                           const ClusterBindings *C) {
 | 
						|
 | 
						|
  bool PreserveRegionsContents =
 | 
						|
      ITraits.hasTrait(baseR,
 | 
						|
                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | 
						|
 | 
						|
  if (C) {
 | 
						|
    for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
 | 
						|
      VisitBinding(I.getData());
 | 
						|
 | 
						|
    // Invalidate regions contents.
 | 
						|
    if (!PreserveRegionsContents)
 | 
						|
      B = B.remove(baseR);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
 | 
						|
    if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
 | 
						|
 | 
						|
      // Lambdas can affect all static local variables without explicitly
 | 
						|
      // capturing those.
 | 
						|
      // We invalidate all static locals referenced inside the lambda body.
 | 
						|
      if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
 | 
						|
        using namespace ast_matchers;
 | 
						|
 | 
						|
        const char *DeclBind = "DeclBind";
 | 
						|
        StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
 | 
						|
              to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
 | 
						|
        auto Matches =
 | 
						|
            match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
 | 
						|
                  RD->getASTContext());
 | 
						|
 | 
						|
        for (BoundNodes &Match : Matches) {
 | 
						|
          auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
 | 
						|
          const VarRegion *ToInvalidate =
 | 
						|
              RM.getRegionManager().getVarRegion(VD, LCtx);
 | 
						|
          AddToWorkList(ToInvalidate);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // BlockDataRegion?  If so, invalidate captured variables that are passed
 | 
						|
  // by reference.
 | 
						|
  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
 | 
						|
    for (BlockDataRegion::referenced_vars_iterator
 | 
						|
         BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
 | 
						|
         BI != BE; ++BI) {
 | 
						|
      const VarRegion *VR = BI.getCapturedRegion();
 | 
						|
      const VarDecl *VD = VR->getDecl();
 | 
						|
      if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
 | 
						|
        AddToWorkList(VR);
 | 
						|
      }
 | 
						|
      else if (Loc::isLocType(VR->getValueType())) {
 | 
						|
        // Map the current bindings to a Store to retrieve the value
 | 
						|
        // of the binding.  If that binding itself is a region, we should
 | 
						|
        // invalidate that region.  This is because a block may capture
 | 
						|
        // a pointer value, but the thing pointed by that pointer may
 | 
						|
        // get invalidated.
 | 
						|
        SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
 | 
						|
        if (Optional<Loc> L = V.getAs<Loc>()) {
 | 
						|
          if (const MemRegion *LR = L->getAsRegion())
 | 
						|
            AddToWorkList(LR);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Symbolic region?
 | 
						|
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
 | 
						|
    IS.insert(SR->getSymbol());
 | 
						|
 | 
						|
  // Nothing else should be done in the case when we preserve regions context.
 | 
						|
  if (PreserveRegionsContents)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Otherwise, we have a normal data region. Record that we touched the region.
 | 
						|
  if (Regions)
 | 
						|
    Regions->push_back(baseR);
 | 
						|
 | 
						|
  if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
 | 
						|
    // Invalidate the region by setting its default value to
 | 
						|
    // conjured symbol. The type of the symbol is irrelevant.
 | 
						|
    DefinedOrUnknownSVal V =
 | 
						|
      svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
 | 
						|
    B = B.addBinding(baseR, BindingKey::Default, V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!baseR->isBoundable())
 | 
						|
    return;
 | 
						|
 | 
						|
  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
 | 
						|
  QualType T = TR->getValueType();
 | 
						|
 | 
						|
  if (isInitiallyIncludedGlobalRegion(baseR)) {
 | 
						|
    // If the region is a global and we are invalidating all globals,
 | 
						|
    // erasing the entry is good enough.  This causes all globals to be lazily
 | 
						|
    // symbolicated from the same base symbol.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->isRecordType()) {
 | 
						|
    // Invalidate the region by setting its default value to
 | 
						|
    // conjured symbol. The type of the symbol is irrelevant.
 | 
						|
    DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
 | 
						|
                                                          Ctx.IntTy, Count);
 | 
						|
    B = B.addBinding(baseR, BindingKey::Default, V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
 | 
						|
    bool doNotInvalidateSuperRegion = ITraits.hasTrait(
 | 
						|
        baseR,
 | 
						|
        RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | 
						|
 | 
						|
    if (doNotInvalidateSuperRegion) {
 | 
						|
      // We are not doing blank invalidation of the whole array region so we
 | 
						|
      // have to manually invalidate each elements.
 | 
						|
      Optional<uint64_t> NumElements;
 | 
						|
 | 
						|
      // Compute lower and upper offsets for region within array.
 | 
						|
      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | 
						|
        NumElements = CAT->getSize().getZExtValue();
 | 
						|
      if (!NumElements) // We are not dealing with a constant size array
 | 
						|
        goto conjure_default;
 | 
						|
      QualType ElementTy = AT->getElementType();
 | 
						|
      uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
 | 
						|
      const RegionOffset &RO = baseR->getAsOffset();
 | 
						|
      const MemRegion *SuperR = baseR->getBaseRegion();
 | 
						|
      if (RO.hasSymbolicOffset()) {
 | 
						|
        // If base region has a symbolic offset,
 | 
						|
        // we revert to invalidating the super region.
 | 
						|
        if (SuperR)
 | 
						|
          AddToWorkList(SuperR);
 | 
						|
        goto conjure_default;
 | 
						|
      }
 | 
						|
 | 
						|
      uint64_t LowerOffset = RO.getOffset();
 | 
						|
      uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
 | 
						|
      bool UpperOverflow = UpperOffset < LowerOffset;
 | 
						|
 | 
						|
      // Invalidate regions which are within array boundaries,
 | 
						|
      // or have a symbolic offset.
 | 
						|
      if (!SuperR)
 | 
						|
        goto conjure_default;
 | 
						|
 | 
						|
      const ClusterBindings *C = B.lookup(SuperR);
 | 
						|
      if (!C)
 | 
						|
        goto conjure_default;
 | 
						|
 | 
						|
      for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
 | 
						|
           ++I) {
 | 
						|
        const BindingKey &BK = I.getKey();
 | 
						|
        Optional<uint64_t> ROffset =
 | 
						|
            BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
 | 
						|
 | 
						|
        // Check offset is not symbolic and within array's boundaries.
 | 
						|
        // Handles arrays of 0 elements and of 0-sized elements as well.
 | 
						|
        if (!ROffset ||
 | 
						|
            ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
 | 
						|
             (UpperOverflow &&
 | 
						|
              (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
 | 
						|
             (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
 | 
						|
          B = B.removeBinding(I.getKey());
 | 
						|
          // Bound symbolic regions need to be invalidated for dead symbol
 | 
						|
          // detection.
 | 
						|
          SVal V = I.getData();
 | 
						|
          const MemRegion *R = V.getAsRegion();
 | 
						|
          if (R && isa<SymbolicRegion>(R))
 | 
						|
            VisitBinding(V);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  conjure_default:
 | 
						|
      // Set the default value of the array to conjured symbol.
 | 
						|
    DefinedOrUnknownSVal V =
 | 
						|
    svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
 | 
						|
                                     AT->getElementType(), Count);
 | 
						|
    B = B.addBinding(baseR, BindingKey::Default, V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
 | 
						|
                                                        T,Count);
 | 
						|
  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
 | 
						|
  B = B.addBinding(baseR, BindingKey::Direct, V);
 | 
						|
}
 | 
						|
 | 
						|
bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
 | 
						|
    const MemRegion *R) {
 | 
						|
  switch (GlobalsFilter) {
 | 
						|
  case GFK_None:
 | 
						|
    return false;
 | 
						|
  case GFK_SystemOnly:
 | 
						|
    return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
 | 
						|
  case GFK_All:
 | 
						|
    return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown globals filter");
 | 
						|
}
 | 
						|
 | 
						|
bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
 | 
						|
  if (isInitiallyIncludedGlobalRegion(Base))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
 | 
						|
  return ITraits.hasTrait(MemSpace,
 | 
						|
                          RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef
 | 
						|
RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
 | 
						|
                                           const Expr *Ex,
 | 
						|
                                           unsigned Count,
 | 
						|
                                           const LocationContext *LCtx,
 | 
						|
                                           RegionBindingsRef B,
 | 
						|
                                           InvalidatedRegions *Invalidated) {
 | 
						|
  // Bind the globals memory space to a new symbol that we will use to derive
 | 
						|
  // the bindings for all globals.
 | 
						|
  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
 | 
						|
  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
 | 
						|
                                        /* type does not matter */ Ctx.IntTy,
 | 
						|
                                        Count);
 | 
						|
 | 
						|
  B = B.removeBinding(GS)
 | 
						|
       .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
 | 
						|
 | 
						|
  // Even if there are no bindings in the global scope, we still need to
 | 
						|
  // record that we touched it.
 | 
						|
  if (Invalidated)
 | 
						|
    Invalidated->push_back(GS);
 | 
						|
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
 | 
						|
                                          ArrayRef<SVal> Values,
 | 
						|
                                          InvalidatedRegions *TopLevelRegions) {
 | 
						|
  for (ArrayRef<SVal>::iterator I = Values.begin(),
 | 
						|
                                E = Values.end(); I != E; ++I) {
 | 
						|
    SVal V = *I;
 | 
						|
    if (Optional<nonloc::LazyCompoundVal> LCS =
 | 
						|
        V.getAs<nonloc::LazyCompoundVal>()) {
 | 
						|
 | 
						|
      const SValListTy &Vals = getInterestingValues(*LCS);
 | 
						|
 | 
						|
      for (SValListTy::const_iterator I = Vals.begin(),
 | 
						|
                                      E = Vals.end(); I != E; ++I) {
 | 
						|
        // Note: the last argument is false here because these are
 | 
						|
        // non-top-level regions.
 | 
						|
        if (const MemRegion *R = (*I).getAsRegion())
 | 
						|
          W.AddToWorkList(R);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const MemRegion *R = V.getAsRegion()) {
 | 
						|
      if (TopLevelRegions)
 | 
						|
        TopLevelRegions->push_back(R);
 | 
						|
      W.AddToWorkList(R);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
StoreRef
 | 
						|
RegionStoreManager::invalidateRegions(Store store,
 | 
						|
                                     ArrayRef<SVal> Values,
 | 
						|
                                     const Expr *Ex, unsigned Count,
 | 
						|
                                     const LocationContext *LCtx,
 | 
						|
                                     const CallEvent *Call,
 | 
						|
                                     InvalidatedSymbols &IS,
 | 
						|
                                     RegionAndSymbolInvalidationTraits &ITraits,
 | 
						|
                                     InvalidatedRegions *TopLevelRegions,
 | 
						|
                                     InvalidatedRegions *Invalidated) {
 | 
						|
  GlobalsFilterKind GlobalsFilter;
 | 
						|
  if (Call) {
 | 
						|
    if (Call->isInSystemHeader())
 | 
						|
      GlobalsFilter = GFK_SystemOnly;
 | 
						|
    else
 | 
						|
      GlobalsFilter = GFK_All;
 | 
						|
  } else {
 | 
						|
    GlobalsFilter = GFK_None;
 | 
						|
  }
 | 
						|
 | 
						|
  RegionBindingsRef B = getRegionBindings(store);
 | 
						|
  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
 | 
						|
                            Invalidated, GlobalsFilter);
 | 
						|
 | 
						|
  // Scan the bindings and generate the clusters.
 | 
						|
  W.GenerateClusters();
 | 
						|
 | 
						|
  // Add the regions to the worklist.
 | 
						|
  populateWorkList(W, Values, TopLevelRegions);
 | 
						|
 | 
						|
  W.RunWorkList();
 | 
						|
 | 
						|
  // Return the new bindings.
 | 
						|
  B = W.getRegionBindings();
 | 
						|
 | 
						|
  // For calls, determine which global regions should be invalidated and
 | 
						|
  // invalidate them. (Note that function-static and immutable globals are never
 | 
						|
  // invalidated by this.)
 | 
						|
  // TODO: This could possibly be more precise with modules.
 | 
						|
  switch (GlobalsFilter) {
 | 
						|
  case GFK_All:
 | 
						|
    B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
 | 
						|
                               Ex, Count, LCtx, B, Invalidated);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case GFK_SystemOnly:
 | 
						|
    B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
 | 
						|
                               Ex, Count, LCtx, B, Invalidated);
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case GFK_None:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return StoreRef(B.asStore(), *this);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Location and region casting.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | 
						|
///  type.  'Array' represents the lvalue of the array being decayed
 | 
						|
///  to a pointer, and the returned SVal represents the decayed
 | 
						|
///  version of that lvalue (i.e., a pointer to the first element of
 | 
						|
///  the array).  This is called by ExprEngine when evaluating casts
 | 
						|
///  from arrays to pointers.
 | 
						|
SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
 | 
						|
  if (Array.getAs<loc::ConcreteInt>())
 | 
						|
    return Array;
 | 
						|
 | 
						|
  if (!Array.getAs<loc::MemRegionVal>())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  const SubRegion *R =
 | 
						|
      cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
 | 
						|
  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
 | 
						|
  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Loading values from regions.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
 | 
						|
  assert(!L.getAs<UnknownVal>() && "location unknown");
 | 
						|
  assert(!L.getAs<UndefinedVal>() && "location undefined");
 | 
						|
 | 
						|
  // For access to concrete addresses, return UnknownVal.  Checks
 | 
						|
  // for null dereferences (and similar errors) are done by checkers, not
 | 
						|
  // the Store.
 | 
						|
  // FIXME: We can consider lazily symbolicating such memory, but we really
 | 
						|
  // should defer this when we can reason easily about symbolicating arrays
 | 
						|
  // of bytes.
 | 
						|
  if (L.getAs<loc::ConcreteInt>()) {
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
  if (!L.getAs<loc::MemRegionVal>()) {
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
 | 
						|
 | 
						|
  if (isa<BlockDataRegion>(MR)) {
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isa<TypedValueRegion>(MR)) {
 | 
						|
    if (T.isNull()) {
 | 
						|
      if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
 | 
						|
        T = TR->getLocationType()->getPointeeType();
 | 
						|
      else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
 | 
						|
        T = SR->getSymbol()->getType()->getPointeeType();
 | 
						|
    }
 | 
						|
    assert(!T.isNull() && "Unable to auto-detect binding type!");
 | 
						|
    assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
 | 
						|
    MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
 | 
						|
  } else {
 | 
						|
    T = cast<TypedValueRegion>(MR)->getValueType();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
 | 
						|
  //  instead of 'Loc', and have the other Loc cases handled at a higher level.
 | 
						|
  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
 | 
						|
  QualType RTy = R->getValueType();
 | 
						|
 | 
						|
  // FIXME: we do not yet model the parts of a complex type, so treat the
 | 
						|
  // whole thing as "unknown".
 | 
						|
  if (RTy->isAnyComplexType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // FIXME: We should eventually handle funny addressing.  e.g.:
 | 
						|
  //
 | 
						|
  //   int x = ...;
 | 
						|
  //   int *p = &x;
 | 
						|
  //   char *q = (char*) p;
 | 
						|
  //   char c = *q;  // returns the first byte of 'x'.
 | 
						|
  //
 | 
						|
  // Such funny addressing will occur due to layering of regions.
 | 
						|
  if (RTy->isStructureOrClassType())
 | 
						|
    return getBindingForStruct(B, R);
 | 
						|
 | 
						|
  // FIXME: Handle unions.
 | 
						|
  if (RTy->isUnionType())
 | 
						|
    return createLazyBinding(B, R);
 | 
						|
 | 
						|
  if (RTy->isArrayType()) {
 | 
						|
    if (RTy->isConstantArrayType())
 | 
						|
      return getBindingForArray(B, R);
 | 
						|
    else
 | 
						|
      return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: handle Vector types.
 | 
						|
  if (RTy->isVectorType())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
 | 
						|
    return CastRetrievedVal(getBindingForField(B, FR), FR, T);
 | 
						|
 | 
						|
  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
 | 
						|
    // FIXME: Here we actually perform an implicit conversion from the loaded
 | 
						|
    // value to the element type.  Eventually we want to compose these values
 | 
						|
    // more intelligently.  For example, an 'element' can encompass multiple
 | 
						|
    // bound regions (e.g., several bound bytes), or could be a subset of
 | 
						|
    // a larger value.
 | 
						|
    return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
 | 
						|
    // FIXME: Here we actually perform an implicit conversion from the loaded
 | 
						|
    // value to the ivar type.  What we should model is stores to ivars
 | 
						|
    // that blow past the extent of the ivar.  If the address of the ivar is
 | 
						|
    // reinterpretted, it is possible we stored a different value that could
 | 
						|
    // fit within the ivar.  Either we need to cast these when storing them
 | 
						|
    // or reinterpret them lazily (as we do here).
 | 
						|
    return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
 | 
						|
    // FIXME: Here we actually perform an implicit conversion from the loaded
 | 
						|
    // value to the variable type.  What we should model is stores to variables
 | 
						|
    // that blow past the extent of the variable.  If the address of the
 | 
						|
    // variable is reinterpretted, it is possible we stored a different value
 | 
						|
    // that could fit within the variable.  Either we need to cast these when
 | 
						|
    // storing them or reinterpret them lazily (as we do here).
 | 
						|
    return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
 | 
						|
  }
 | 
						|
 | 
						|
  const SVal *V = B.lookup(R, BindingKey::Direct);
 | 
						|
 | 
						|
  // Check if the region has a binding.
 | 
						|
  if (V)
 | 
						|
    return *V;
 | 
						|
 | 
						|
  // The location does not have a bound value.  This means that it has
 | 
						|
  // the value it had upon its creation and/or entry to the analyzed
 | 
						|
  // function/method.  These are either symbolic values or 'undefined'.
 | 
						|
  if (R->hasStackNonParametersStorage()) {
 | 
						|
    // All stack variables are considered to have undefined values
 | 
						|
    // upon creation.  All heap allocated blocks are considered to
 | 
						|
    // have undefined values as well unless they are explicitly bound
 | 
						|
    // to specific values.
 | 
						|
    return UndefinedVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // All other values are symbolic.
 | 
						|
  return svalBuilder.getRegionValueSymbolVal(R);
 | 
						|
}
 | 
						|
 | 
						|
static QualType getUnderlyingType(const SubRegion *R) {
 | 
						|
  QualType RegionTy;
 | 
						|
  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
 | 
						|
    RegionTy = TVR->getValueType();
 | 
						|
 | 
						|
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
 | 
						|
    RegionTy = SR->getSymbol()->getType();
 | 
						|
 | 
						|
  return RegionTy;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks to see if store \p B has a lazy binding for region \p R.
 | 
						|
///
 | 
						|
/// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
 | 
						|
/// if there are additional bindings within \p R.
 | 
						|
///
 | 
						|
/// Note that unlike RegionStoreManager::findLazyBinding, this will not search
 | 
						|
/// for lazy bindings for super-regions of \p R.
 | 
						|
static Optional<nonloc::LazyCompoundVal>
 | 
						|
getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
 | 
						|
                       const SubRegion *R, bool AllowSubregionBindings) {
 | 
						|
  Optional<SVal> V = B.getDefaultBinding(R);
 | 
						|
  if (!V)
 | 
						|
    return None;
 | 
						|
 | 
						|
  Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
 | 
						|
  if (!LCV)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // If the LCV is for a subregion, the types might not match, and we shouldn't
 | 
						|
  // reuse the binding.
 | 
						|
  QualType RegionTy = getUnderlyingType(R);
 | 
						|
  if (!RegionTy.isNull() &&
 | 
						|
      !RegionTy->isVoidPointerType()) {
 | 
						|
    QualType SourceRegionTy = LCV->getRegion()->getValueType();
 | 
						|
    if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
 | 
						|
      return None;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllowSubregionBindings) {
 | 
						|
    // If there are any other bindings within this region, we shouldn't reuse
 | 
						|
    // the top-level binding.
 | 
						|
    SmallVector<BindingPair, 16> Bindings;
 | 
						|
    collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
 | 
						|
                             /*IncludeAllDefaultBindings=*/true);
 | 
						|
    if (Bindings.size() > 1)
 | 
						|
      return None;
 | 
						|
  }
 | 
						|
 | 
						|
  return *LCV;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
std::pair<Store, const SubRegion *>
 | 
						|
RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
 | 
						|
                                   const SubRegion *R,
 | 
						|
                                   const SubRegion *originalRegion) {
 | 
						|
  if (originalRegion != R) {
 | 
						|
    if (Optional<nonloc::LazyCompoundVal> V =
 | 
						|
          getExistingLazyBinding(svalBuilder, B, R, true))
 | 
						|
      return std::make_pair(V->getStore(), V->getRegion());
 | 
						|
  }
 | 
						|
 | 
						|
  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
 | 
						|
  StoreRegionPair Result = StoreRegionPair();
 | 
						|
 | 
						|
  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
 | 
						|
    Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
 | 
						|
                             originalRegion);
 | 
						|
 | 
						|
    if (Result.second)
 | 
						|
      Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
 | 
						|
 | 
						|
  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
 | 
						|
    Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
 | 
						|
                                       originalRegion);
 | 
						|
 | 
						|
    if (Result.second)
 | 
						|
      Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
 | 
						|
 | 
						|
  } else if (const CXXBaseObjectRegion *BaseReg =
 | 
						|
               dyn_cast<CXXBaseObjectRegion>(R)) {
 | 
						|
    // C++ base object region is another kind of region that we should blast
 | 
						|
    // through to look for lazy compound value. It is like a field region.
 | 
						|
    Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
 | 
						|
                             originalRegion);
 | 
						|
 | 
						|
    if (Result.second)
 | 
						|
      Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
 | 
						|
                                                            Result.second);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
 | 
						|
                                              const ElementRegion* R) {
 | 
						|
  // We do not currently model bindings of the CompoundLiteralregion.
 | 
						|
  if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Check if the region has a binding.
 | 
						|
  if (const Optional<SVal> &V = B.getDirectBinding(R))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  const MemRegion* superR = R->getSuperRegion();
 | 
						|
 | 
						|
  // Check if the region is an element region of a string literal.
 | 
						|
  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
 | 
						|
    // FIXME: Handle loads from strings where the literal is treated as
 | 
						|
    // an integer, e.g., *((unsigned int*)"hello")
 | 
						|
    QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
 | 
						|
    if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
 | 
						|
      return UnknownVal();
 | 
						|
 | 
						|
    const StringLiteral *Str = StrR->getStringLiteral();
 | 
						|
    SVal Idx = R->getIndex();
 | 
						|
    if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
 | 
						|
      int64_t i = CI->getValue().getSExtValue();
 | 
						|
      // Abort on string underrun.  This can be possible by arbitrary
 | 
						|
      // clients of getBindingForElement().
 | 
						|
      if (i < 0)
 | 
						|
        return UndefinedVal();
 | 
						|
      int64_t length = Str->getLength();
 | 
						|
      // Technically, only i == length is guaranteed to be null.
 | 
						|
      // However, such overflows should be caught before reaching this point;
 | 
						|
      // the only time such an access would be made is if a string literal was
 | 
						|
      // used to initialize a larger array.
 | 
						|
      char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
 | 
						|
      return svalBuilder.makeIntVal(c, T);
 | 
						|
    }
 | 
						|
  } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
 | 
						|
    // Check if the containing array has an initialized value that we can trust.
 | 
						|
    // We can trust a const value or a value of a global initializer in main().
 | 
						|
    const VarDecl *VD = VR->getDecl();
 | 
						|
    if (VD->getType().isConstQualified() ||
 | 
						|
        R->getElementType().isConstQualified() ||
 | 
						|
        (B.isMainAnalysis() && VD->hasGlobalStorage())) {
 | 
						|
      if (const Expr *Init = VD->getAnyInitializer()) {
 | 
						|
        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
 | 
						|
          // The array index has to be known.
 | 
						|
          if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
 | 
						|
            int64_t i = CI->getValue().getSExtValue();
 | 
						|
            // If it is known that the index is out of bounds, we can return
 | 
						|
            // an undefined value.
 | 
						|
            if (i < 0)
 | 
						|
              return UndefinedVal();
 | 
						|
 | 
						|
            if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
 | 
						|
              if (CAT->getSize().sle(i))
 | 
						|
                return UndefinedVal();
 | 
						|
 | 
						|
            // If there is a list, but no init, it must be zero.
 | 
						|
            if (i >= InitList->getNumInits())
 | 
						|
              return svalBuilder.makeZeroVal(R->getElementType());
 | 
						|
 | 
						|
            if (const Expr *ElemInit = InitList->getInit(i))
 | 
						|
              if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
 | 
						|
                return *V;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for loads from a code text region.  For such loads, just give up.
 | 
						|
  if (isa<CodeTextRegion>(superR))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  // Handle the case where we are indexing into a larger scalar object.
 | 
						|
  // For example, this handles:
 | 
						|
  //   int x = ...
 | 
						|
  //   char *y = &x;
 | 
						|
  //   return *y;
 | 
						|
  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
 | 
						|
  const RegionRawOffset &O = R->getAsArrayOffset();
 | 
						|
 | 
						|
  // If we cannot reason about the offset, return an unknown value.
 | 
						|
  if (!O.getRegion())
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  if (const TypedValueRegion *baseR =
 | 
						|
        dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
 | 
						|
    QualType baseT = baseR->getValueType();
 | 
						|
    if (baseT->isScalarType()) {
 | 
						|
      QualType elemT = R->getElementType();
 | 
						|
      if (elemT->isScalarType()) {
 | 
						|
        if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
 | 
						|
          if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
 | 
						|
            if (SymbolRef parentSym = V->getAsSymbol())
 | 
						|
              return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
 | 
						|
 | 
						|
            if (V->isUnknownOrUndef())
 | 
						|
              return *V;
 | 
						|
            // Other cases: give up.  We are indexing into a larger object
 | 
						|
            // that has some value, but we don't know how to handle that yet.
 | 
						|
            return UnknownVal();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
 | 
						|
                                            const FieldRegion* R) {
 | 
						|
 | 
						|
  // Check if the region has a binding.
 | 
						|
  if (const Optional<SVal> &V = B.getDirectBinding(R))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  // Is the field declared constant and has an in-class initializer?
 | 
						|
  const FieldDecl *FD = R->getDecl();
 | 
						|
  QualType Ty = FD->getType();
 | 
						|
  if (Ty.isConstQualified())
 | 
						|
    if (const Expr *Init = FD->getInClassInitializer())
 | 
						|
      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
 | 
						|
        return *V;
 | 
						|
 | 
						|
  // If the containing record was initialized, try to get its constant value.
 | 
						|
  const MemRegion* superR = R->getSuperRegion();
 | 
						|
  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
 | 
						|
    const VarDecl *VD = VR->getDecl();
 | 
						|
    QualType RecordVarTy = VD->getType();
 | 
						|
    unsigned Index = FD->getFieldIndex();
 | 
						|
    // Either the record variable or the field has an initializer that we can
 | 
						|
    // trust. We trust initializers of constants and, additionally, respect
 | 
						|
    // initializers of globals when analyzing main().
 | 
						|
    if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
 | 
						|
        (B.isMainAnalysis() && VD->hasGlobalStorage()))
 | 
						|
      if (const Expr *Init = VD->getAnyInitializer())
 | 
						|
        if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
 | 
						|
          if (Index < InitList->getNumInits()) {
 | 
						|
            if (const Expr *FieldInit = InitList->getInit(Index))
 | 
						|
              if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
 | 
						|
                return *V;
 | 
						|
          } else {
 | 
						|
            return svalBuilder.makeZeroVal(Ty);
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  return getBindingForFieldOrElementCommon(B, R, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Optional<SVal>
 | 
						|
RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
 | 
						|
                                                     const MemRegion *superR,
 | 
						|
                                                     const TypedValueRegion *R,
 | 
						|
                                                     QualType Ty) {
 | 
						|
 | 
						|
  if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
 | 
						|
    const SVal &val = D.getValue();
 | 
						|
    if (SymbolRef parentSym = val.getAsSymbol())
 | 
						|
      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
 | 
						|
 | 
						|
    if (val.isZeroConstant())
 | 
						|
      return svalBuilder.makeZeroVal(Ty);
 | 
						|
 | 
						|
    if (val.isUnknownOrUndef())
 | 
						|
      return val;
 | 
						|
 | 
						|
    // Lazy bindings are usually handled through getExistingLazyBinding().
 | 
						|
    // We should unify these two code paths at some point.
 | 
						|
    if (val.getAs<nonloc::LazyCompoundVal>() ||
 | 
						|
        val.getAs<nonloc::CompoundVal>())
 | 
						|
      return val;
 | 
						|
 | 
						|
    llvm_unreachable("Unknown default value");
 | 
						|
  }
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
 | 
						|
                                        RegionBindingsRef LazyBinding) {
 | 
						|
  SVal Result;
 | 
						|
  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
 | 
						|
    Result = getBindingForElement(LazyBinding, ER);
 | 
						|
  else
 | 
						|
    Result = getBindingForField(LazyBinding,
 | 
						|
                                cast<FieldRegion>(LazyBindingRegion));
 | 
						|
 | 
						|
  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
 | 
						|
  // default value for /part/ of an aggregate from a default value for the
 | 
						|
  // /entire/ aggregate. The most common case of this is when struct Outer
 | 
						|
  // has as its first member a struct Inner, which is copied in from a stack
 | 
						|
  // variable. In this case, even if the Outer's default value is symbolic, 0,
 | 
						|
  // or unknown, it gets overridden by the Inner's default value of undefined.
 | 
						|
  //
 | 
						|
  // This is a general problem -- if the Inner is zero-initialized, the Outer
 | 
						|
  // will now look zero-initialized. The proper way to solve this is with a
 | 
						|
  // new version of RegionStore that tracks the extent of a binding as well
 | 
						|
  // as the offset.
 | 
						|
  //
 | 
						|
  // This hack only takes care of the undefined case because that can very
 | 
						|
  // quickly result in a warning.
 | 
						|
  if (Result.isUndef())
 | 
						|
    Result = UnknownVal();
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
SVal
 | 
						|
RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
 | 
						|
                                                      const TypedValueRegion *R,
 | 
						|
                                                      QualType Ty) {
 | 
						|
 | 
						|
  // At this point we have already checked in either getBindingForElement or
 | 
						|
  // getBindingForField if 'R' has a direct binding.
 | 
						|
 | 
						|
  // Lazy binding?
 | 
						|
  Store lazyBindingStore = nullptr;
 | 
						|
  const SubRegion *lazyBindingRegion = nullptr;
 | 
						|
  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
 | 
						|
  if (lazyBindingRegion)
 | 
						|
    return getLazyBinding(lazyBindingRegion,
 | 
						|
                          getRegionBindings(lazyBindingStore));
 | 
						|
 | 
						|
  // Record whether or not we see a symbolic index.  That can completely
 | 
						|
  // be out of scope of our lookup.
 | 
						|
  bool hasSymbolicIndex = false;
 | 
						|
 | 
						|
  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
 | 
						|
  // default value for /part/ of an aggregate from a default value for the
 | 
						|
  // /entire/ aggregate. The most common case of this is when struct Outer
 | 
						|
  // has as its first member a struct Inner, which is copied in from a stack
 | 
						|
  // variable. In this case, even if the Outer's default value is symbolic, 0,
 | 
						|
  // or unknown, it gets overridden by the Inner's default value of undefined.
 | 
						|
  //
 | 
						|
  // This is a general problem -- if the Inner is zero-initialized, the Outer
 | 
						|
  // will now look zero-initialized. The proper way to solve this is with a
 | 
						|
  // new version of RegionStore that tracks the extent of a binding as well
 | 
						|
  // as the offset.
 | 
						|
  //
 | 
						|
  // This hack only takes care of the undefined case because that can very
 | 
						|
  // quickly result in a warning.
 | 
						|
  bool hasPartialLazyBinding = false;
 | 
						|
 | 
						|
  const SubRegion *SR = R;
 | 
						|
  while (SR) {
 | 
						|
    const MemRegion *Base = SR->getSuperRegion();
 | 
						|
    if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
 | 
						|
      if (D->getAs<nonloc::LazyCompoundVal>()) {
 | 
						|
        hasPartialLazyBinding = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      return *D;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
 | 
						|
      NonLoc index = ER->getIndex();
 | 
						|
      if (!index.isConstant())
 | 
						|
        hasSymbolicIndex = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If our super region is a field or element itself, walk up the region
 | 
						|
    // hierarchy to see if there is a default value installed in an ancestor.
 | 
						|
    SR = dyn_cast<SubRegion>(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->hasStackNonParametersStorage()) {
 | 
						|
    if (isa<ElementRegion>(R)) {
 | 
						|
      // Currently we don't reason specially about Clang-style vectors.  Check
 | 
						|
      // if superR is a vector and if so return Unknown.
 | 
						|
      if (const TypedValueRegion *typedSuperR =
 | 
						|
            dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
 | 
						|
        if (typedSuperR->getValueType()->isVectorType())
 | 
						|
          return UnknownVal();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: We also need to take ElementRegions with symbolic indexes into
 | 
						|
    // account.  This case handles both directly accessing an ElementRegion
 | 
						|
    // with a symbolic offset, but also fields within an element with
 | 
						|
    // a symbolic offset.
 | 
						|
    if (hasSymbolicIndex)
 | 
						|
      return UnknownVal();
 | 
						|
 | 
						|
    // Additionally allow introspection of a block's internal layout.
 | 
						|
    if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
 | 
						|
      return UndefinedVal();
 | 
						|
  }
 | 
						|
 | 
						|
  // All other values are symbolic.
 | 
						|
  return svalBuilder.getRegionValueSymbolVal(R);
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
 | 
						|
                                               const ObjCIvarRegion* R) {
 | 
						|
  // Check if the region has a binding.
 | 
						|
  if (const Optional<SVal> &V = B.getDirectBinding(R))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  const MemRegion *superR = R->getSuperRegion();
 | 
						|
 | 
						|
  // Check if the super region has a default binding.
 | 
						|
  if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
 | 
						|
    if (SymbolRef parentSym = V->getAsSymbol())
 | 
						|
      return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
 | 
						|
 | 
						|
    // Other cases: give up.
 | 
						|
    return UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  return getBindingForLazySymbol(R);
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
 | 
						|
                                          const VarRegion *R) {
 | 
						|
 | 
						|
  // Check if the region has a binding.
 | 
						|
  if (Optional<SVal> V = B.getDirectBinding(R))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  if (Optional<SVal> V = B.getDefaultBinding(R))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  // Lazily derive a value for the VarRegion.
 | 
						|
  const VarDecl *VD = R->getDecl();
 | 
						|
  const MemSpaceRegion *MS = R->getMemorySpace();
 | 
						|
 | 
						|
  // Arguments are always symbolic.
 | 
						|
  if (isa<StackArgumentsSpaceRegion>(MS))
 | 
						|
    return svalBuilder.getRegionValueSymbolVal(R);
 | 
						|
 | 
						|
  // Is 'VD' declared constant?  If so, retrieve the constant value.
 | 
						|
  if (VD->getType().isConstQualified()) {
 | 
						|
    if (const Expr *Init = VD->getAnyInitializer()) {
 | 
						|
      if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
 | 
						|
        return *V;
 | 
						|
 | 
						|
      // If the variable is const qualified and has an initializer but
 | 
						|
      // we couldn't evaluate initializer to a value, treat the value as
 | 
						|
      // unknown.
 | 
						|
      return UnknownVal();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This must come after the check for constants because closure-captured
 | 
						|
  // constant variables may appear in UnknownSpaceRegion.
 | 
						|
  if (isa<UnknownSpaceRegion>(MS))
 | 
						|
    return svalBuilder.getRegionValueSymbolVal(R);
 | 
						|
 | 
						|
  if (isa<GlobalsSpaceRegion>(MS)) {
 | 
						|
    QualType T = VD->getType();
 | 
						|
 | 
						|
    // If we're in main(), then global initializers have not become stale yet.
 | 
						|
    if (B.isMainAnalysis())
 | 
						|
      if (const Expr *Init = VD->getAnyInitializer())
 | 
						|
        if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
 | 
						|
          return *V;
 | 
						|
 | 
						|
    // Function-scoped static variables are default-initialized to 0; if they
 | 
						|
    // have an initializer, it would have been processed by now.
 | 
						|
    // FIXME: This is only true when we're starting analysis from main().
 | 
						|
    // We're losing a lot of coverage here.
 | 
						|
    if (isa<StaticGlobalSpaceRegion>(MS))
 | 
						|
      return svalBuilder.makeZeroVal(T);
 | 
						|
 | 
						|
    if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
 | 
						|
      assert(!V->getAs<nonloc::LazyCompoundVal>());
 | 
						|
      return V.getValue();
 | 
						|
    }
 | 
						|
 | 
						|
    return svalBuilder.getRegionValueSymbolVal(R);
 | 
						|
  }
 | 
						|
 | 
						|
  return UndefinedVal();
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
 | 
						|
  // All other values are symbolic.
 | 
						|
  return svalBuilder.getRegionValueSymbolVal(R);
 | 
						|
}
 | 
						|
 | 
						|
const RegionStoreManager::SValListTy &
 | 
						|
RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
 | 
						|
  // First, check the cache.
 | 
						|
  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
 | 
						|
  if (I != LazyBindingsMap.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  // If we don't have a list of values cached, start constructing it.
 | 
						|
  SValListTy List;
 | 
						|
 | 
						|
  const SubRegion *LazyR = LCV.getRegion();
 | 
						|
  RegionBindingsRef B = getRegionBindings(LCV.getStore());
 | 
						|
 | 
						|
  // If this region had /no/ bindings at the time, there are no interesting
 | 
						|
  // values to return.
 | 
						|
  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
 | 
						|
  if (!Cluster)
 | 
						|
    return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
 | 
						|
 | 
						|
  SmallVector<BindingPair, 32> Bindings;
 | 
						|
  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
 | 
						|
                           /*IncludeAllDefaultBindings=*/true);
 | 
						|
  for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
 | 
						|
                                                    E = Bindings.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    SVal V = I->second;
 | 
						|
    if (V.isUnknownOrUndef() || V.isConstant())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Optional<nonloc::LazyCompoundVal> InnerLCV =
 | 
						|
            V.getAs<nonloc::LazyCompoundVal>()) {
 | 
						|
      const SValListTy &InnerList = getInterestingValues(*InnerLCV);
 | 
						|
      List.insert(List.end(), InnerList.begin(), InnerList.end());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    List.push_back(V);
 | 
						|
  }
 | 
						|
 | 
						|
  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
 | 
						|
}
 | 
						|
 | 
						|
NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
 | 
						|
                                             const TypedValueRegion *R) {
 | 
						|
  if (Optional<nonloc::LazyCompoundVal> V =
 | 
						|
        getExistingLazyBinding(svalBuilder, B, R, false))
 | 
						|
    return *V;
 | 
						|
 | 
						|
  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
 | 
						|
}
 | 
						|
 | 
						|
static bool isRecordEmpty(const RecordDecl *RD) {
 | 
						|
  if (!RD->field_empty())
 | 
						|
    return false;
 | 
						|
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
    return CRD->getNumBases() == 0;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
 | 
						|
                                             const TypedValueRegion *R) {
 | 
						|
  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
 | 
						|
  if (!RD->getDefinition() || isRecordEmpty(RD))
 | 
						|
    return UnknownVal();
 | 
						|
 | 
						|
  return createLazyBinding(B, R);
 | 
						|
}
 | 
						|
 | 
						|
SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
 | 
						|
                                            const TypedValueRegion *R) {
 | 
						|
  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
 | 
						|
         "Only constant array types can have compound bindings.");
 | 
						|
 | 
						|
  return createLazyBinding(B, R);
 | 
						|
}
 | 
						|
 | 
						|
bool RegionStoreManager::includedInBindings(Store store,
 | 
						|
                                            const MemRegion *region) const {
 | 
						|
  RegionBindingsRef B = getRegionBindings(store);
 | 
						|
  region = region->getBaseRegion();
 | 
						|
 | 
						|
  // Quick path: if the base is the head of a cluster, the region is live.
 | 
						|
  if (B.lookup(region))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Slow path: if the region is the VALUE of any binding, it is live.
 | 
						|
  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
 | 
						|
    const ClusterBindings &Cluster = RI.getData();
 | 
						|
    for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
 | 
						|
         CI != CE; ++CI) {
 | 
						|
      const SVal &D = CI.getData();
 | 
						|
      if (const MemRegion *R = D.getAsRegion())
 | 
						|
        if (R->getBaseRegion() == region)
 | 
						|
          return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Binding values to regions.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
 | 
						|
  if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
 | 
						|
    if (const MemRegion* R = LV->getRegion())
 | 
						|
      return StoreRef(getRegionBindings(ST).removeBinding(R)
 | 
						|
                                           .asImmutableMap()
 | 
						|
                                           .getRootWithoutRetain(),
 | 
						|
                      *this);
 | 
						|
 | 
						|
  return StoreRef(ST, *this);
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef
 | 
						|
RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
 | 
						|
  if (L.getAs<loc::ConcreteInt>())
 | 
						|
    return B;
 | 
						|
 | 
						|
  // If we get here, the location should be a region.
 | 
						|
  const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
 | 
						|
 | 
						|
  // Check if the region is a struct region.
 | 
						|
  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
 | 
						|
    QualType Ty = TR->getValueType();
 | 
						|
    if (Ty->isArrayType())
 | 
						|
      return bindArray(B, TR, V);
 | 
						|
    if (Ty->isStructureOrClassType())
 | 
						|
      return bindStruct(B, TR, V);
 | 
						|
    if (Ty->isVectorType())
 | 
						|
      return bindVector(B, TR, V);
 | 
						|
    if (Ty->isUnionType())
 | 
						|
      return bindAggregate(B, TR, V);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
 | 
						|
    // Binding directly to a symbolic region should be treated as binding
 | 
						|
    // to element 0.
 | 
						|
    QualType T = SR->getSymbol()->getType();
 | 
						|
    if (T->isAnyPointerType() || T->isReferenceType())
 | 
						|
      T = T->getPointeeType();
 | 
						|
 | 
						|
    R = GetElementZeroRegion(SR, T);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
 | 
						|
         "'this' pointer is not an l-value and is not assignable");
 | 
						|
 | 
						|
  // Clear out bindings that may overlap with this binding.
 | 
						|
  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
 | 
						|
  return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef
 | 
						|
RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
 | 
						|
                                            const MemRegion *R,
 | 
						|
                                            QualType T) {
 | 
						|
  SVal V;
 | 
						|
 | 
						|
  if (Loc::isLocType(T))
 | 
						|
    V = svalBuilder.makeNull();
 | 
						|
  else if (T->isIntegralOrEnumerationType())
 | 
						|
    V = svalBuilder.makeZeroVal(T);
 | 
						|
  else if (T->isStructureOrClassType() || T->isArrayType()) {
 | 
						|
    // Set the default value to a zero constant when it is a structure
 | 
						|
    // or array.  The type doesn't really matter.
 | 
						|
    V = svalBuilder.makeZeroVal(Ctx.IntTy);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // We can't represent values of this type, but we still need to set a value
 | 
						|
    // to record that the region has been initialized.
 | 
						|
    // If this assertion ever fires, a new case should be added above -- we
 | 
						|
    // should know how to default-initialize any value we can symbolicate.
 | 
						|
    assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
 | 
						|
    V = UnknownVal();
 | 
						|
  }
 | 
						|
 | 
						|
  return B.addBinding(R, BindingKey::Default, V);
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef
 | 
						|
RegionStoreManager::bindArray(RegionBindingsConstRef B,
 | 
						|
                              const TypedValueRegion* R,
 | 
						|
                              SVal Init) {
 | 
						|
 | 
						|
  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
 | 
						|
  QualType ElementTy = AT->getElementType();
 | 
						|
  Optional<uint64_t> Size;
 | 
						|
 | 
						|
  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
 | 
						|
    Size = CAT->getSize().getZExtValue();
 | 
						|
 | 
						|
  // Check if the init expr is a literal. If so, bind the rvalue instead.
 | 
						|
  // FIXME: It's not responsibility of the Store to transform this lvalue
 | 
						|
  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
 | 
						|
  if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
 | 
						|
    SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
 | 
						|
    return bindAggregate(B, R, V);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle lazy compound values.
 | 
						|
  if (Init.getAs<nonloc::LazyCompoundVal>())
 | 
						|
    return bindAggregate(B, R, Init);
 | 
						|
 | 
						|
  if (Init.isUnknown())
 | 
						|
    return bindAggregate(B, R, UnknownVal());
 | 
						|
 | 
						|
  // Remaining case: explicit compound values.
 | 
						|
  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
 | 
						|
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | 
						|
  uint64_t i = 0;
 | 
						|
 | 
						|
  RegionBindingsRef NewB(B);
 | 
						|
 | 
						|
  for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
 | 
						|
    // The init list might be shorter than the array length.
 | 
						|
    if (VI == VE)
 | 
						|
      break;
 | 
						|
 | 
						|
    const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
 | 
						|
    const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
 | 
						|
 | 
						|
    if (ElementTy->isStructureOrClassType())
 | 
						|
      NewB = bindStruct(NewB, ER, *VI);
 | 
						|
    else if (ElementTy->isArrayType())
 | 
						|
      NewB = bindArray(NewB, ER, *VI);
 | 
						|
    else
 | 
						|
      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the init list is shorter than the array length (or the array has
 | 
						|
  // variable length), set the array default value. Values that are already set
 | 
						|
  // are not overwritten.
 | 
						|
  if (!Size.hasValue() || i < Size.getValue())
 | 
						|
    NewB = setImplicitDefaultValue(NewB, R, ElementTy);
 | 
						|
 | 
						|
  return NewB;
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
 | 
						|
                                                 const TypedValueRegion* R,
 | 
						|
                                                 SVal V) {
 | 
						|
  QualType T = R->getValueType();
 | 
						|
  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
 | 
						|
 | 
						|
  // Handle lazy compound values and symbolic values.
 | 
						|
  if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
 | 
						|
    return bindAggregate(B, R, V);
 | 
						|
 | 
						|
  // We may get non-CompoundVal accidentally due to imprecise cast logic or
 | 
						|
  // that we are binding symbolic struct value. Kill the field values, and if
 | 
						|
  // the value is symbolic go and bind it as a "default" binding.
 | 
						|
  if (!V.getAs<nonloc::CompoundVal>()) {
 | 
						|
    return bindAggregate(B, R, UnknownVal());
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ElemType = VT->getElementType();
 | 
						|
  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
 | 
						|
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | 
						|
  unsigned index = 0, numElements = VT->getNumElements();
 | 
						|
  RegionBindingsRef NewB(B);
 | 
						|
 | 
						|
  for ( ; index != numElements ; ++index) {
 | 
						|
    if (VI == VE)
 | 
						|
      break;
 | 
						|
 | 
						|
    NonLoc Idx = svalBuilder.makeArrayIndex(index);
 | 
						|
    const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
 | 
						|
 | 
						|
    if (ElemType->isArrayType())
 | 
						|
      NewB = bindArray(NewB, ER, *VI);
 | 
						|
    else if (ElemType->isStructureOrClassType())
 | 
						|
      NewB = bindStruct(NewB, ER, *VI);
 | 
						|
    else
 | 
						|
      NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
 | 
						|
  }
 | 
						|
  return NewB;
 | 
						|
}
 | 
						|
 | 
						|
Optional<RegionBindingsRef>
 | 
						|
RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
 | 
						|
                                       const TypedValueRegion *R,
 | 
						|
                                       const RecordDecl *RD,
 | 
						|
                                       nonloc::LazyCompoundVal LCV) {
 | 
						|
  FieldVector Fields;
 | 
						|
 | 
						|
  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
 | 
						|
    if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
 | 
						|
      return None;
 | 
						|
 | 
						|
  for (const auto *FD : RD->fields()) {
 | 
						|
    if (FD->isUnnamedBitfield())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If there are too many fields, or if any of the fields are aggregates,
 | 
						|
    // just use the LCV as a default binding.
 | 
						|
    if (Fields.size() == SmallStructLimit)
 | 
						|
      return None;
 | 
						|
 | 
						|
    QualType Ty = FD->getType();
 | 
						|
    if (!(Ty->isScalarType() || Ty->isReferenceType()))
 | 
						|
      return None;
 | 
						|
 | 
						|
    Fields.push_back(FD);
 | 
						|
  }
 | 
						|
 | 
						|
  RegionBindingsRef NewB = B;
 | 
						|
 | 
						|
  for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
 | 
						|
    const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
 | 
						|
    SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
 | 
						|
 | 
						|
    const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
 | 
						|
    NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewB;
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
 | 
						|
                                                 const TypedValueRegion* R,
 | 
						|
                                                 SVal V) {
 | 
						|
  if (!Features.supportsFields())
 | 
						|
    return B;
 | 
						|
 | 
						|
  QualType T = R->getValueType();
 | 
						|
  assert(T->isStructureOrClassType());
 | 
						|
 | 
						|
  const RecordType* RT = T->castAs<RecordType>();
 | 
						|
  const RecordDecl *RD = RT->getDecl();
 | 
						|
 | 
						|
  if (!RD->isCompleteDefinition())
 | 
						|
    return B;
 | 
						|
 | 
						|
  // Handle lazy compound values and symbolic values.
 | 
						|
  if (Optional<nonloc::LazyCompoundVal> LCV =
 | 
						|
        V.getAs<nonloc::LazyCompoundVal>()) {
 | 
						|
    if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
 | 
						|
      return *NewB;
 | 
						|
    return bindAggregate(B, R, V);
 | 
						|
  }
 | 
						|
  if (V.getAs<nonloc::SymbolVal>())
 | 
						|
    return bindAggregate(B, R, V);
 | 
						|
 | 
						|
  // We may get non-CompoundVal accidentally due to imprecise cast logic or
 | 
						|
  // that we are binding symbolic struct value. Kill the field values, and if
 | 
						|
  // the value is symbolic go and bind it as a "default" binding.
 | 
						|
  if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
 | 
						|
    return bindAggregate(B, R, UnknownVal());
 | 
						|
 | 
						|
  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
 | 
						|
  // list of other values. It appears pretty much only when there's an actual
 | 
						|
  // initializer list expression in the program, and the analyzer tries to
 | 
						|
  // unwrap it as soon as possible.
 | 
						|
  // This code is where such unwrap happens: when the compound value is put into
 | 
						|
  // the object that it was supposed to initialize (it's an *initializer* list,
 | 
						|
  // after all), instead of binding the whole value to the whole object, we bind
 | 
						|
  // sub-values to sub-objects. Sub-values may themselves be compound values,
 | 
						|
  // and in this case the procedure becomes recursive.
 | 
						|
  // FIXME: The annoying part about compound values is that they don't carry
 | 
						|
  // any sort of information about which value corresponds to which sub-object.
 | 
						|
  // It's simply a list of values in the middle of nowhere; we expect to match
 | 
						|
  // them to sub-objects, essentially, "by index": first value binds to
 | 
						|
  // the first field, second value binds to the second field, etc.
 | 
						|
  // It would have been much safer to organize non-lazy compound values as
 | 
						|
  // a mapping from fields/bases to values.
 | 
						|
  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
 | 
						|
  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | 
						|
 | 
						|
  RegionBindingsRef NewB(B);
 | 
						|
 | 
						|
  // In C++17 aggregates may have base classes, handle those as well.
 | 
						|
  // They appear before fields in the initializer list / compound value.
 | 
						|
  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
 | 
						|
    // If the object was constructed with a constructor, its value is a
 | 
						|
    // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
 | 
						|
    // performing aggregate initialization. The only exception from this
 | 
						|
    // rule is sending an Objective-C++ message that returns a C++ object
 | 
						|
    // to a nil receiver; in this case the semantics is to return a
 | 
						|
    // zero-initialized object even if it's a C++ object that doesn't have
 | 
						|
    // this sort of constructor; the CompoundVal is empty in this case.
 | 
						|
    assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
 | 
						|
           "Non-aggregates are constructed with a constructor!");
 | 
						|
 | 
						|
    for (const auto &B : CRD->bases()) {
 | 
						|
      // (Multiple inheritance is fine though.)
 | 
						|
      assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
 | 
						|
 | 
						|
      if (VI == VE)
 | 
						|
        break;
 | 
						|
 | 
						|
      QualType BTy = B.getType();
 | 
						|
      assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
 | 
						|
 | 
						|
      const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
 | 
						|
      assert(BRD && "Base classes must be C++ classes!");
 | 
						|
 | 
						|
      const CXXBaseObjectRegion *BR =
 | 
						|
          MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
 | 
						|
 | 
						|
      NewB = bindStruct(NewB, BR, *VI);
 | 
						|
 | 
						|
      ++VI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RecordDecl::field_iterator FI, FE;
 | 
						|
 | 
						|
  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
 | 
						|
 | 
						|
    if (VI == VE)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Skip any unnamed bitfields to stay in sync with the initializers.
 | 
						|
    if (FI->isUnnamedBitfield())
 | 
						|
      continue;
 | 
						|
 | 
						|
    QualType FTy = FI->getType();
 | 
						|
    const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
 | 
						|
 | 
						|
    if (FTy->isArrayType())
 | 
						|
      NewB = bindArray(NewB, FR, *VI);
 | 
						|
    else if (FTy->isStructureOrClassType())
 | 
						|
      NewB = bindStruct(NewB, FR, *VI);
 | 
						|
    else
 | 
						|
      NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
 | 
						|
    ++VI;
 | 
						|
  }
 | 
						|
 | 
						|
  // There may be fewer values in the initialize list than the fields of struct.
 | 
						|
  if (FI != FE) {
 | 
						|
    NewB = NewB.addBinding(R, BindingKey::Default,
 | 
						|
                           svalBuilder.makeIntVal(0, false));
 | 
						|
  }
 | 
						|
 | 
						|
  return NewB;
 | 
						|
}
 | 
						|
 | 
						|
RegionBindingsRef
 | 
						|
RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
 | 
						|
                                  const TypedRegion *R,
 | 
						|
                                  SVal Val) {
 | 
						|
  // Remove the old bindings, using 'R' as the root of all regions
 | 
						|
  // we will invalidate. Then add the new binding.
 | 
						|
  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// State pruning.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
class RemoveDeadBindingsWorker
 | 
						|
    : public ClusterAnalysis<RemoveDeadBindingsWorker> {
 | 
						|
  SmallVector<const SymbolicRegion *, 12> Postponed;
 | 
						|
  SymbolReaper &SymReaper;
 | 
						|
  const StackFrameContext *CurrentLCtx;
 | 
						|
 | 
						|
public:
 | 
						|
  RemoveDeadBindingsWorker(RegionStoreManager &rm,
 | 
						|
                           ProgramStateManager &stateMgr,
 | 
						|
                           RegionBindingsRef b, SymbolReaper &symReaper,
 | 
						|
                           const StackFrameContext *LCtx)
 | 
						|
    : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
 | 
						|
      SymReaper(symReaper), CurrentLCtx(LCtx) {}
 | 
						|
 | 
						|
  // Called by ClusterAnalysis.
 | 
						|
  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
 | 
						|
  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
 | 
						|
  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
 | 
						|
 | 
						|
  using ClusterAnalysis::AddToWorkList;
 | 
						|
 | 
						|
  bool AddToWorkList(const MemRegion *R);
 | 
						|
 | 
						|
  bool UpdatePostponed();
 | 
						|
  void VisitBinding(SVal V);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
 | 
						|
  const MemRegion *BaseR = R->getBaseRegion();
 | 
						|
  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
 | 
						|
}
 | 
						|
 | 
						|
void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
 | 
						|
                                                   const ClusterBindings &C) {
 | 
						|
 | 
						|
  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
 | 
						|
    if (SymReaper.isLive(VR))
 | 
						|
      AddToWorkList(baseR, &C);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
 | 
						|
    if (SymReaper.isLive(SR->getSymbol()))
 | 
						|
      AddToWorkList(SR, &C);
 | 
						|
    else
 | 
						|
      Postponed.push_back(SR);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
 | 
						|
    AddToWorkList(baseR, &C);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // CXXThisRegion in the current or parent location context is live.
 | 
						|
  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
 | 
						|
    const auto *StackReg =
 | 
						|
        cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
 | 
						|
    const StackFrameContext *RegCtx = StackReg->getStackFrame();
 | 
						|
    if (CurrentLCtx &&
 | 
						|
        (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
 | 
						|
      AddToWorkList(TR, &C);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
 | 
						|
                                            const ClusterBindings *C) {
 | 
						|
  if (!C)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
 | 
						|
  // This means we should continue to track that symbol.
 | 
						|
  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
 | 
						|
    SymReaper.markLive(SymR->getSymbol());
 | 
						|
 | 
						|
  for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
 | 
						|
    // Element index of a binding key is live.
 | 
						|
    SymReaper.markElementIndicesLive(I.getKey().getRegion());
 | 
						|
 | 
						|
    VisitBinding(I.getData());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
 | 
						|
  // Is it a LazyCompoundVal?  All referenced regions are live as well.
 | 
						|
  if (Optional<nonloc::LazyCompoundVal> LCS =
 | 
						|
          V.getAs<nonloc::LazyCompoundVal>()) {
 | 
						|
 | 
						|
    const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
 | 
						|
 | 
						|
    for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
 | 
						|
                                                        E = Vals.end();
 | 
						|
         I != E; ++I)
 | 
						|
      VisitBinding(*I);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If V is a region, then add it to the worklist.
 | 
						|
  if (const MemRegion *R = V.getAsRegion()) {
 | 
						|
    AddToWorkList(R);
 | 
						|
    SymReaper.markLive(R);
 | 
						|
 | 
						|
    // All regions captured by a block are also live.
 | 
						|
    if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
 | 
						|
      BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
 | 
						|
                                                E = BR->referenced_vars_end();
 | 
						|
      for ( ; I != E; ++I)
 | 
						|
        AddToWorkList(I.getCapturedRegion());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Update the set of live symbols.
 | 
						|
  for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
 | 
						|
    SymReaper.markLive(*SI);
 | 
						|
}
 | 
						|
 | 
						|
bool RemoveDeadBindingsWorker::UpdatePostponed() {
 | 
						|
  // See if any postponed SymbolicRegions are actually live now, after
 | 
						|
  // having done a scan.
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
 | 
						|
    if (const SymbolicRegion *SR = *I) {
 | 
						|
      if (SymReaper.isLive(SR->getSymbol())) {
 | 
						|
        Changed |= AddToWorkList(SR);
 | 
						|
        *I = nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
StoreRef RegionStoreManager::removeDeadBindings(Store store,
 | 
						|
                                                const StackFrameContext *LCtx,
 | 
						|
                                                SymbolReaper& SymReaper) {
 | 
						|
  RegionBindingsRef B = getRegionBindings(store);
 | 
						|
  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
 | 
						|
  W.GenerateClusters();
 | 
						|
 | 
						|
  // Enqueue the region roots onto the worklist.
 | 
						|
  for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
 | 
						|
       E = SymReaper.region_end(); I != E; ++I) {
 | 
						|
    W.AddToWorkList(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  do W.RunWorkList(); while (W.UpdatePostponed());
 | 
						|
 | 
						|
  // We have now scanned the store, marking reachable regions and symbols
 | 
						|
  // as live.  We now remove all the regions that are dead from the store
 | 
						|
  // as well as update DSymbols with the set symbols that are now dead.
 | 
						|
  for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    const MemRegion *Base = I.getKey();
 | 
						|
 | 
						|
    // If the cluster has been visited, we know the region has been marked.
 | 
						|
    // Otherwise, remove the dead entry.
 | 
						|
    if (!W.isVisited(Base))
 | 
						|
      B = B.remove(Base);
 | 
						|
  }
 | 
						|
 | 
						|
  return StoreRef(B.asStore(), *this);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Utility methods.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
 | 
						|
                                   unsigned int Space, bool IsDot) const {
 | 
						|
  RegionBindingsRef Bindings = getRegionBindings(S);
 | 
						|
 | 
						|
  Indent(Out, Space, IsDot) << "\"store\": ";
 | 
						|
 | 
						|
  if (Bindings.isEmpty()) {
 | 
						|
    Out << "null," << NL;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
 | 
						|
  Bindings.printJson(Out, NL, Space + 1, IsDot);
 | 
						|
  Indent(Out, Space, IsDot) << "]}," << NL;
 | 
						|
}
 |