655 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CodeGen/AsmPrinter/EHStreamer.cpp - Exception Directive Streamer ---===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains support for writing exception info into assembly files.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "EHStreamer.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/BinaryFormat/Dwarf.h"
 | |
| #include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/MC/MCTargetOptions.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/LEB128.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| EHStreamer::EHStreamer(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
 | |
| 
 | |
| EHStreamer::~EHStreamer() = default;
 | |
| 
 | |
| /// How many leading type ids two landing pads have in common.
 | |
| unsigned EHStreamer::sharedTypeIDs(const LandingPadInfo *L,
 | |
|                                    const LandingPadInfo *R) {
 | |
|   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
 | |
|   unsigned LSize = LIds.size(), RSize = RIds.size();
 | |
|   unsigned MinSize = LSize < RSize ? LSize : RSize;
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   for (; Count != MinSize; ++Count)
 | |
|     if (LIds[Count] != RIds[Count])
 | |
|       return Count;
 | |
| 
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| /// Compute the actions table and gather the first action index for each landing
 | |
| /// pad site.
 | |
| void EHStreamer::computeActionsTable(
 | |
|     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | |
|     SmallVectorImpl<ActionEntry> &Actions,
 | |
|     SmallVectorImpl<unsigned> &FirstActions) {
 | |
|   // The action table follows the call-site table in the LSDA. The individual
 | |
|   // records are of two types:
 | |
|   //
 | |
|   //   * Catch clause
 | |
|   //   * Exception specification
 | |
|   //
 | |
|   // The two record kinds have the same format, with only small differences.
 | |
|   // They are distinguished by the "switch value" field: Catch clauses
 | |
|   // (TypeInfos) have strictly positive switch values, and exception
 | |
|   // specifications (FilterIds) have strictly negative switch values. Value 0
 | |
|   // indicates a catch-all clause.
 | |
|   //
 | |
|   // Negative type IDs index into FilterIds. Positive type IDs index into
 | |
|   // TypeInfos.  The value written for a positive type ID is just the type ID
 | |
|   // itself.  For a negative type ID, however, the value written is the
 | |
|   // (negative) byte offset of the corresponding FilterIds entry.  The byte
 | |
|   // offset is usually equal to the type ID (because the FilterIds entries are
 | |
|   // written using a variable width encoding, which outputs one byte per entry
 | |
|   // as long as the value written is not too large) but can differ.  This kind
 | |
|   // of complication does not occur for positive type IDs because type infos are
 | |
|   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
 | |
|   // offset corresponding to FilterIds[i].
 | |
| 
 | |
|   const std::vector<unsigned> &FilterIds = Asm->MF->getFilterIds();
 | |
|   SmallVector<int, 16> FilterOffsets;
 | |
|   FilterOffsets.reserve(FilterIds.size());
 | |
|   int Offset = -1;
 | |
| 
 | |
|   for (std::vector<unsigned>::const_iterator
 | |
|          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
 | |
|     FilterOffsets.push_back(Offset);
 | |
|     Offset -= getULEB128Size(*I);
 | |
|   }
 | |
| 
 | |
|   FirstActions.reserve(LandingPads.size());
 | |
| 
 | |
|   int FirstAction = 0;
 | |
|   unsigned SizeActions = 0; // Total size of all action entries for a function
 | |
|   const LandingPadInfo *PrevLPI = nullptr;
 | |
| 
 | |
|   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
 | |
|          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
 | |
|     const LandingPadInfo *LPI = *I;
 | |
|     const std::vector<int> &TypeIds = LPI->TypeIds;
 | |
|     unsigned NumShared = PrevLPI ? sharedTypeIDs(LPI, PrevLPI) : 0;
 | |
|     unsigned SizeSiteActions = 0; // Total size of all entries for a landingpad
 | |
| 
 | |
|     if (NumShared < TypeIds.size()) {
 | |
|       // Size of one action entry (typeid + next action)
 | |
|       unsigned SizeActionEntry = 0;
 | |
|       unsigned PrevAction = (unsigned)-1;
 | |
| 
 | |
|       if (NumShared) {
 | |
|         unsigned SizePrevIds = PrevLPI->TypeIds.size();
 | |
|         assert(Actions.size());
 | |
|         PrevAction = Actions.size() - 1;
 | |
|         SizeActionEntry = getSLEB128Size(Actions[PrevAction].NextAction) +
 | |
|                           getSLEB128Size(Actions[PrevAction].ValueForTypeID);
 | |
| 
 | |
|         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
 | |
|           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
 | |
|           SizeActionEntry -= getSLEB128Size(Actions[PrevAction].ValueForTypeID);
 | |
|           SizeActionEntry += -Actions[PrevAction].NextAction;
 | |
|           PrevAction = Actions[PrevAction].Previous;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute the actions.
 | |
|       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
 | |
|         int TypeID = TypeIds[J];
 | |
|         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
 | |
|         int ValueForTypeID =
 | |
|             isFilterEHSelector(TypeID) ? FilterOffsets[-1 - TypeID] : TypeID;
 | |
|         unsigned SizeTypeID = getSLEB128Size(ValueForTypeID);
 | |
| 
 | |
|         int NextAction = SizeActionEntry ? -(SizeActionEntry + SizeTypeID) : 0;
 | |
|         SizeActionEntry = SizeTypeID + getSLEB128Size(NextAction);
 | |
|         SizeSiteActions += SizeActionEntry;
 | |
| 
 | |
|         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
 | |
|         Actions.push_back(Action);
 | |
|         PrevAction = Actions.size() - 1;
 | |
|       }
 | |
| 
 | |
|       // Record the first action of the landing pad site.
 | |
|       FirstAction = SizeActions + SizeSiteActions - SizeActionEntry + 1;
 | |
|     } // else identical - re-use previous FirstAction
 | |
| 
 | |
|     // Information used when creating the call-site table. The action record
 | |
|     // field of the call site record is the offset of the first associated
 | |
|     // action record, relative to the start of the actions table. This value is
 | |
|     // biased by 1 (1 indicating the start of the actions table), and 0
 | |
|     // indicates that there are no actions.
 | |
|     FirstActions.push_back(FirstAction);
 | |
| 
 | |
|     // Compute this sites contribution to size.
 | |
|     SizeActions += SizeSiteActions;
 | |
| 
 | |
|     PrevLPI = LPI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return `true' if this is a call to a function marked `nounwind'. Return
 | |
| /// `false' otherwise.
 | |
| bool EHStreamer::callToNoUnwindFunction(const MachineInstr *MI) {
 | |
|   assert(MI->isCall() && "This should be a call instruction!");
 | |
| 
 | |
|   bool MarkedNoUnwind = false;
 | |
|   bool SawFunc = false;
 | |
| 
 | |
|   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
 | |
|     const MachineOperand &MO = MI->getOperand(I);
 | |
| 
 | |
|     if (!MO.isGlobal()) continue;
 | |
| 
 | |
|     const Function *F = dyn_cast<Function>(MO.getGlobal());
 | |
|     if (!F) continue;
 | |
| 
 | |
|     if (SawFunc) {
 | |
|       // Be conservative. If we have more than one function operand for this
 | |
|       // call, then we can't make the assumption that it's the callee and
 | |
|       // not a parameter to the call.
 | |
|       //
 | |
|       // FIXME: Determine if there's a way to say that `F' is the callee or
 | |
|       // parameter.
 | |
|       MarkedNoUnwind = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     MarkedNoUnwind = F->doesNotThrow();
 | |
|     SawFunc = true;
 | |
|   }
 | |
| 
 | |
|   return MarkedNoUnwind;
 | |
| }
 | |
| 
 | |
| void EHStreamer::computePadMap(
 | |
|     const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | |
|     RangeMapType &PadMap) {
 | |
|   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
 | |
|   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
 | |
|   // try-ranges for them need be deduced so we can put them in the LSDA.
 | |
|   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
 | |
|     const LandingPadInfo *LandingPad = LandingPads[i];
 | |
|     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
 | |
|       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
 | |
|       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
 | |
|       PadRange P = { i, j };
 | |
|       PadMap[BeginLabel] = P;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Compute the call-site table.  The entry for an invoke has a try-range
 | |
| /// containing the call, a non-zero landing pad, and an appropriate action.  The
 | |
| /// entry for an ordinary call has a try-range containing the call and zero for
 | |
| /// the landing pad and the action.  Calls marked 'nounwind' have no entry and
 | |
| /// must not be contained in the try-range of any entry - they form gaps in the
 | |
| /// table.  Entries must be ordered by try-range address.
 | |
| void EHStreamer::
 | |
| computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
 | |
|                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
 | |
|                      const SmallVectorImpl<unsigned> &FirstActions) {
 | |
|   RangeMapType PadMap;
 | |
|   computePadMap(LandingPads, PadMap);
 | |
| 
 | |
|   // The end label of the previous invoke or nounwind try-range.
 | |
|   MCSymbol *LastLabel = nullptr;
 | |
| 
 | |
|   // Whether there is a potentially throwing instruction (currently this means
 | |
|   // an ordinary call) between the end of the previous try-range and now.
 | |
|   bool SawPotentiallyThrowing = false;
 | |
| 
 | |
|   // Whether the last CallSite entry was for an invoke.
 | |
|   bool PreviousIsInvoke = false;
 | |
| 
 | |
|   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
 | |
| 
 | |
|   // Visit all instructions in order of address.
 | |
|   for (const auto &MBB : *Asm->MF) {
 | |
|     for (const auto &MI : MBB) {
 | |
|       if (!MI.isEHLabel()) {
 | |
|         if (MI.isCall())
 | |
|           SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // End of the previous try-range?
 | |
|       MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol();
 | |
|       if (BeginLabel == LastLabel)
 | |
|         SawPotentiallyThrowing = false;
 | |
| 
 | |
|       // Beginning of a new try-range?
 | |
|       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
 | |
|       if (L == PadMap.end())
 | |
|         // Nope, it was just some random label.
 | |
|         continue;
 | |
| 
 | |
|       const PadRange &P = L->second;
 | |
|       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
 | |
|       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
 | |
|              "Inconsistent landing pad map!");
 | |
| 
 | |
|       // For Dwarf exception handling (SjLj handling doesn't use this). If some
 | |
|       // instruction between the previous try-range and this one may throw,
 | |
|       // create a call-site entry with no landing pad for the region between the
 | |
|       // try-ranges.
 | |
|       if (SawPotentiallyThrowing && Asm->MAI->usesCFIForEH()) {
 | |
|         CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 };
 | |
|         CallSites.push_back(Site);
 | |
|         PreviousIsInvoke = false;
 | |
|       }
 | |
| 
 | |
|       LastLabel = LandingPad->EndLabels[P.RangeIndex];
 | |
|       assert(BeginLabel && LastLabel && "Invalid landing pad!");
 | |
| 
 | |
|       if (!LandingPad->LandingPadLabel) {
 | |
|         // Create a gap.
 | |
|         PreviousIsInvoke = false;
 | |
|       } else {
 | |
|         // This try-range is for an invoke.
 | |
|         CallSiteEntry Site = {
 | |
|           BeginLabel,
 | |
|           LastLabel,
 | |
|           LandingPad,
 | |
|           FirstActions[P.PadIndex]
 | |
|         };
 | |
| 
 | |
|         // Try to merge with the previous call-site. SJLJ doesn't do this
 | |
|         if (PreviousIsInvoke && !IsSJLJ) {
 | |
|           CallSiteEntry &Prev = CallSites.back();
 | |
|           if (Site.LPad == Prev.LPad && Site.Action == Prev.Action) {
 | |
|             // Extend the range of the previous entry.
 | |
|             Prev.EndLabel = Site.EndLabel;
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Otherwise, create a new call-site.
 | |
|         if (!IsSJLJ)
 | |
|           CallSites.push_back(Site);
 | |
|         else {
 | |
|           // SjLj EH must maintain the call sites in the order assigned
 | |
|           // to them by the SjLjPrepare pass.
 | |
|           unsigned SiteNo = Asm->MF->getCallSiteBeginLabel(BeginLabel);
 | |
|           if (CallSites.size() < SiteNo)
 | |
|             CallSites.resize(SiteNo);
 | |
|           CallSites[SiteNo - 1] = Site;
 | |
|         }
 | |
|         PreviousIsInvoke = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If some instruction between the previous try-range and the end of the
 | |
|   // function may throw, create a call-site entry with no landing pad for the
 | |
|   // region following the try-range.
 | |
|   if (SawPotentiallyThrowing && !IsSJLJ) {
 | |
|     CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 };
 | |
|     CallSites.push_back(Site);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Emit landing pads and actions.
 | |
| ///
 | |
| /// The general organization of the table is complex, but the basic concepts are
 | |
| /// easy.  First there is a header which describes the location and organization
 | |
| /// of the three components that follow.
 | |
| ///
 | |
| ///  1. The landing pad site information describes the range of code covered by
 | |
| ///     the try.  In our case it's an accumulation of the ranges covered by the
 | |
| ///     invokes in the try.  There is also a reference to the landing pad that
 | |
| ///     handles the exception once processed.  Finally an index into the actions
 | |
| ///     table.
 | |
| ///  2. The action table, in our case, is composed of pairs of type IDs and next
 | |
| ///     action offset.  Starting with the action index from the landing pad
 | |
| ///     site, each type ID is checked for a match to the current exception.  If
 | |
| ///     it matches then the exception and type id are passed on to the landing
 | |
| ///     pad.  Otherwise the next action is looked up.  This chain is terminated
 | |
| ///     with a next action of zero.  If no type id is found then the frame is
 | |
| ///     unwound and handling continues.
 | |
| ///  3. Type ID table contains references to all the C++ typeinfo for all
 | |
| ///     catches in the function.  This tables is reverse indexed base 1.
 | |
| ///
 | |
| /// Returns the starting symbol of an exception table.
 | |
| MCSymbol *EHStreamer::emitExceptionTable() {
 | |
|   const MachineFunction *MF = Asm->MF;
 | |
|   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
 | |
|   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
 | |
|   const std::vector<LandingPadInfo> &PadInfos = MF->getLandingPads();
 | |
| 
 | |
|   // Sort the landing pads in order of their type ids.  This is used to fold
 | |
|   // duplicate actions.
 | |
|   SmallVector<const LandingPadInfo *, 64> LandingPads;
 | |
|   LandingPads.reserve(PadInfos.size());
 | |
| 
 | |
|   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
 | |
|     LandingPads.push_back(&PadInfos[i]);
 | |
| 
 | |
|   // Order landing pads lexicographically by type id.
 | |
|   llvm::sort(LandingPads, [](const LandingPadInfo *L, const LandingPadInfo *R) {
 | |
|     return L->TypeIds < R->TypeIds;
 | |
|   });
 | |
| 
 | |
|   // Compute the actions table and gather the first action index for each
 | |
|   // landing pad site.
 | |
|   SmallVector<ActionEntry, 32> Actions;
 | |
|   SmallVector<unsigned, 64> FirstActions;
 | |
|   computeActionsTable(LandingPads, Actions, FirstActions);
 | |
| 
 | |
|   // Compute the call-site table.
 | |
|   SmallVector<CallSiteEntry, 64> CallSites;
 | |
|   computeCallSiteTable(CallSites, LandingPads, FirstActions);
 | |
| 
 | |
|   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
 | |
|   bool IsWasm = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::Wasm;
 | |
|   unsigned CallSiteEncoding =
 | |
|       IsSJLJ ? static_cast<unsigned>(dwarf::DW_EH_PE_udata4) :
 | |
|                Asm->getObjFileLowering().getCallSiteEncoding();
 | |
|   bool HaveTTData = !TypeInfos.empty() || !FilterIds.empty();
 | |
| 
 | |
|   // Type infos.
 | |
|   MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
 | |
|   unsigned TTypeEncoding;
 | |
| 
 | |
|   if (!HaveTTData) {
 | |
|     // If there is no TypeInfo, then we just explicitly say that we're omitting
 | |
|     // that bit.
 | |
|     TTypeEncoding = dwarf::DW_EH_PE_omit;
 | |
|   } else {
 | |
|     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
 | |
|     // pick a type encoding for them.  We're about to emit a list of pointers to
 | |
|     // typeinfo objects at the end of the LSDA.  However, unless we're in static
 | |
|     // mode, this reference will require a relocation by the dynamic linker.
 | |
|     //
 | |
|     // Because of this, we have a couple of options:
 | |
|     //
 | |
|     //   1) If we are in -static mode, we can always use an absolute reference
 | |
|     //      from the LSDA, because the static linker will resolve it.
 | |
|     //
 | |
|     //   2) Otherwise, if the LSDA section is writable, we can output the direct
 | |
|     //      reference to the typeinfo and allow the dynamic linker to relocate
 | |
|     //      it.  Since it is in a writable section, the dynamic linker won't
 | |
|     //      have a problem.
 | |
|     //
 | |
|     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
 | |
|     //      we need to use some form of indirection.  For example, on Darwin,
 | |
|     //      we can output a statically-relocatable reference to a dyld stub. The
 | |
|     //      offset to the stub is constant, but the contents are in a section
 | |
|     //      that is updated by the dynamic linker.  This is easy enough, but we
 | |
|     //      need to tell the personality function of the unwinder to indirect
 | |
|     //      through the dyld stub.
 | |
|     //
 | |
|     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
 | |
|     // somewhere.  This predicate should be moved to a shared location that is
 | |
|     // in target-independent code.
 | |
|     //
 | |
|     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
 | |
|   }
 | |
| 
 | |
|   // Begin the exception table.
 | |
|   // Sometimes we want not to emit the data into separate section (e.g. ARM
 | |
|   // EHABI). In this case LSDASection will be NULL.
 | |
|   if (LSDASection)
 | |
|     Asm->OutStreamer->SwitchSection(LSDASection);
 | |
|   Asm->emitAlignment(Align(4));
 | |
| 
 | |
|   // Emit the LSDA.
 | |
|   MCSymbol *GCCETSym =
 | |
|     Asm->OutContext.getOrCreateSymbol(Twine("GCC_except_table")+
 | |
|                                       Twine(Asm->getFunctionNumber()));
 | |
|   Asm->OutStreamer->emitLabel(GCCETSym);
 | |
|   Asm->OutStreamer->emitLabel(Asm->getCurExceptionSym());
 | |
| 
 | |
|   // Emit the LSDA header.
 | |
|   Asm->emitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
 | |
|   Asm->emitEncodingByte(TTypeEncoding, "@TType");
 | |
| 
 | |
|   MCSymbol *TTBaseLabel = nullptr;
 | |
|   if (HaveTTData) {
 | |
|     // N.B.: There is a dependency loop between the size of the TTBase uleb128
 | |
|     // here and the amount of padding before the aligned type table. The
 | |
|     // assembler must sometimes pad this uleb128 or insert extra padding before
 | |
|     // the type table. See PR35809 or GNU as bug 4029.
 | |
|     MCSymbol *TTBaseRefLabel = Asm->createTempSymbol("ttbaseref");
 | |
|     TTBaseLabel = Asm->createTempSymbol("ttbase");
 | |
|     Asm->emitLabelDifferenceAsULEB128(TTBaseLabel, TTBaseRefLabel);
 | |
|     Asm->OutStreamer->emitLabel(TTBaseRefLabel);
 | |
|   }
 | |
| 
 | |
|   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
 | |
| 
 | |
|   // Emit the landing pad call site table.
 | |
|   MCSymbol *CstBeginLabel = Asm->createTempSymbol("cst_begin");
 | |
|   MCSymbol *CstEndLabel = Asm->createTempSymbol("cst_end");
 | |
|   Asm->emitEncodingByte(CallSiteEncoding, "Call site");
 | |
|   Asm->emitLabelDifferenceAsULEB128(CstEndLabel, CstBeginLabel);
 | |
|   Asm->OutStreamer->emitLabel(CstBeginLabel);
 | |
| 
 | |
|   // SjLj / Wasm Exception handling
 | |
|   if (IsSJLJ || IsWasm) {
 | |
|     unsigned idx = 0;
 | |
|     for (SmallVectorImpl<CallSiteEntry>::const_iterator
 | |
|          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
 | |
|       const CallSiteEntry &S = *I;
 | |
| 
 | |
|       // Index of the call site entry.
 | |
|       if (VerboseAsm) {
 | |
|         Asm->OutStreamer->AddComment(">> Call Site " + Twine(idx) + " <<");
 | |
|         Asm->OutStreamer->AddComment("  On exception at call site "+Twine(idx));
 | |
|       }
 | |
|       Asm->emitULEB128(idx);
 | |
| 
 | |
|       // Offset of the first associated action record, relative to the start of
 | |
|       // the action table. This value is biased by 1 (1 indicates the start of
 | |
|       // the action table), and 0 indicates that there are no actions.
 | |
|       if (VerboseAsm) {
 | |
|         if (S.Action == 0)
 | |
|           Asm->OutStreamer->AddComment("  Action: cleanup");
 | |
|         else
 | |
|           Asm->OutStreamer->AddComment("  Action: " +
 | |
|                                        Twine((S.Action - 1) / 2 + 1));
 | |
|       }
 | |
|       Asm->emitULEB128(S.Action);
 | |
|     }
 | |
|   } else {
 | |
|     // Itanium LSDA exception handling
 | |
| 
 | |
|     // The call-site table is a list of all call sites that may throw an
 | |
|     // exception (including C++ 'throw' statements) in the procedure
 | |
|     // fragment. It immediately follows the LSDA header. Each entry indicates,
 | |
|     // for a given call, the first corresponding action record and corresponding
 | |
|     // landing pad.
 | |
|     //
 | |
|     // The table begins with the number of bytes, stored as an LEB128
 | |
|     // compressed, unsigned integer. The records immediately follow the record
 | |
|     // count. They are sorted in increasing call-site address. Each record
 | |
|     // indicates:
 | |
|     //
 | |
|     //   * The position of the call-site.
 | |
|     //   * The position of the landing pad.
 | |
|     //   * The first action record for that call site.
 | |
|     //
 | |
|     // A missing entry in the call-site table indicates that a call is not
 | |
|     // supposed to throw.
 | |
| 
 | |
|     unsigned Entry = 0;
 | |
|     for (SmallVectorImpl<CallSiteEntry>::const_iterator
 | |
|          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
 | |
|       const CallSiteEntry &S = *I;
 | |
| 
 | |
|       MCSymbol *EHFuncBeginSym = Asm->getFunctionBegin();
 | |
| 
 | |
|       MCSymbol *BeginLabel = S.BeginLabel;
 | |
|       if (!BeginLabel)
 | |
|         BeginLabel = EHFuncBeginSym;
 | |
|       MCSymbol *EndLabel = S.EndLabel;
 | |
|       if (!EndLabel)
 | |
|         EndLabel = Asm->getFunctionEnd();
 | |
| 
 | |
|       // Offset of the call site relative to the start of the procedure.
 | |
|       if (VerboseAsm)
 | |
|         Asm->OutStreamer->AddComment(">> Call Site " + Twine(++Entry) + " <<");
 | |
|       Asm->emitCallSiteOffset(BeginLabel, EHFuncBeginSym, CallSiteEncoding);
 | |
|       if (VerboseAsm)
 | |
|         Asm->OutStreamer->AddComment(Twine("  Call between ") +
 | |
|                                      BeginLabel->getName() + " and " +
 | |
|                                      EndLabel->getName());
 | |
|       Asm->emitCallSiteOffset(EndLabel, BeginLabel, CallSiteEncoding);
 | |
| 
 | |
|       // Offset of the landing pad relative to the start of the procedure.
 | |
|       if (!S.LPad) {
 | |
|         if (VerboseAsm)
 | |
|           Asm->OutStreamer->AddComment("    has no landing pad");
 | |
|         Asm->emitCallSiteValue(0, CallSiteEncoding);
 | |
|       } else {
 | |
|         if (VerboseAsm)
 | |
|           Asm->OutStreamer->AddComment(Twine("    jumps to ") +
 | |
|                                        S.LPad->LandingPadLabel->getName());
 | |
|         Asm->emitCallSiteOffset(S.LPad->LandingPadLabel, EHFuncBeginSym,
 | |
|                                 CallSiteEncoding);
 | |
|       }
 | |
| 
 | |
|       // Offset of the first associated action record, relative to the start of
 | |
|       // the action table. This value is biased by 1 (1 indicates the start of
 | |
|       // the action table), and 0 indicates that there are no actions.
 | |
|       if (VerboseAsm) {
 | |
|         if (S.Action == 0)
 | |
|           Asm->OutStreamer->AddComment("  On action: cleanup");
 | |
|         else
 | |
|           Asm->OutStreamer->AddComment("  On action: " +
 | |
|                                        Twine((S.Action - 1) / 2 + 1));
 | |
|       }
 | |
|       Asm->emitULEB128(S.Action);
 | |
|     }
 | |
|   }
 | |
|   Asm->OutStreamer->emitLabel(CstEndLabel);
 | |
| 
 | |
|   // Emit the Action Table.
 | |
|   int Entry = 0;
 | |
|   for (SmallVectorImpl<ActionEntry>::const_iterator
 | |
|          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
 | |
|     const ActionEntry &Action = *I;
 | |
| 
 | |
|     if (VerboseAsm) {
 | |
|       // Emit comments that decode the action table.
 | |
|       Asm->OutStreamer->AddComment(">> Action Record " + Twine(++Entry) + " <<");
 | |
|     }
 | |
| 
 | |
|     // Type Filter
 | |
|     //
 | |
|     //   Used by the runtime to match the type of the thrown exception to the
 | |
|     //   type of the catch clauses or the types in the exception specification.
 | |
|     if (VerboseAsm) {
 | |
|       if (Action.ValueForTypeID > 0)
 | |
|         Asm->OutStreamer->AddComment("  Catch TypeInfo " +
 | |
|                                      Twine(Action.ValueForTypeID));
 | |
|       else if (Action.ValueForTypeID < 0)
 | |
|         Asm->OutStreamer->AddComment("  Filter TypeInfo " +
 | |
|                                      Twine(Action.ValueForTypeID));
 | |
|       else
 | |
|         Asm->OutStreamer->AddComment("  Cleanup");
 | |
|     }
 | |
|     Asm->emitSLEB128(Action.ValueForTypeID);
 | |
| 
 | |
|     // Action Record
 | |
|     //
 | |
|     //   Self-relative signed displacement in bytes of the next action record,
 | |
|     //   or 0 if there is no next action record.
 | |
|     if (VerboseAsm) {
 | |
|       if (Action.NextAction == 0) {
 | |
|         Asm->OutStreamer->AddComment("  No further actions");
 | |
|       } else {
 | |
|         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
 | |
|         Asm->OutStreamer->AddComment("  Continue to action "+Twine(NextAction));
 | |
|       }
 | |
|     }
 | |
|     Asm->emitSLEB128(Action.NextAction);
 | |
|   }
 | |
| 
 | |
|   if (HaveTTData) {
 | |
|     Asm->emitAlignment(Align(4));
 | |
|     emitTypeInfos(TTypeEncoding, TTBaseLabel);
 | |
|   }
 | |
| 
 | |
|   Asm->emitAlignment(Align(4));
 | |
|   return GCCETSym;
 | |
| }
 | |
| 
 | |
| void EHStreamer::emitTypeInfos(unsigned TTypeEncoding, MCSymbol *TTBaseLabel) {
 | |
|   const MachineFunction *MF = Asm->MF;
 | |
|   const std::vector<const GlobalValue *> &TypeInfos = MF->getTypeInfos();
 | |
|   const std::vector<unsigned> &FilterIds = MF->getFilterIds();
 | |
| 
 | |
|   bool VerboseAsm = Asm->OutStreamer->isVerboseAsm();
 | |
| 
 | |
|   int Entry = 0;
 | |
|   // Emit the Catch TypeInfos.
 | |
|   if (VerboseAsm && !TypeInfos.empty()) {
 | |
|     Asm->OutStreamer->AddComment(">> Catch TypeInfos <<");
 | |
|     Asm->OutStreamer->AddBlankLine();
 | |
|     Entry = TypeInfos.size();
 | |
|   }
 | |
| 
 | |
|   for (const GlobalValue *GV : make_range(TypeInfos.rbegin(),
 | |
|                                           TypeInfos.rend())) {
 | |
|     if (VerboseAsm)
 | |
|       Asm->OutStreamer->AddComment("TypeInfo " + Twine(Entry--));
 | |
|     Asm->emitTTypeReference(GV, TTypeEncoding);
 | |
|   }
 | |
| 
 | |
|   Asm->OutStreamer->emitLabel(TTBaseLabel);
 | |
| 
 | |
|   // Emit the Exception Specifications.
 | |
|   if (VerboseAsm && !FilterIds.empty()) {
 | |
|     Asm->OutStreamer->AddComment(">> Filter TypeInfos <<");
 | |
|     Asm->OutStreamer->AddBlankLine();
 | |
|     Entry = 0;
 | |
|   }
 | |
|   for (std::vector<unsigned>::const_iterator
 | |
|          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
 | |
|     unsigned TypeID = *I;
 | |
|     if (VerboseAsm) {
 | |
|       --Entry;
 | |
|       if (isFilterEHSelector(TypeID))
 | |
|         Asm->OutStreamer->AddComment("FilterInfo " + Twine(Entry));
 | |
|     }
 | |
| 
 | |
|     Asm->emitULEB128(TypeID);
 | |
|   }
 | |
| }
 |