2465 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2465 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
 | ||
| //
 | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | ||
| // See https://llvm.org/LICENSE.txt for license information.
 | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | ||
| //
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| /// \file
 | ||
| /// This file implements the IRTranslator class.
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
 | ||
| #include "llvm/ADT/PostOrderIterator.h"
 | ||
| #include "llvm/ADT/STLExtras.h"
 | ||
| #include "llvm/ADT/ScopeExit.h"
 | ||
| #include "llvm/ADT/SmallSet.h"
 | ||
| #include "llvm/ADT/SmallVector.h"
 | ||
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | ||
| #include "llvm/Analysis/Loads.h"
 | ||
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | ||
| #include "llvm/Analysis/ValueTracking.h"
 | ||
| #include "llvm/CodeGen/Analysis.h"
 | ||
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | ||
| #include "llvm/CodeGen/GlobalISel/CallLowering.h"
 | ||
| #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
 | ||
| #include "llvm/CodeGen/LowLevelType.h"
 | ||
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | ||
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | ||
| #include "llvm/CodeGen/MachineFunction.h"
 | ||
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | ||
| #include "llvm/CodeGen/MachineMemOperand.h"
 | ||
| #include "llvm/CodeGen/MachineOperand.h"
 | ||
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | ||
| #include "llvm/CodeGen/StackProtector.h"
 | ||
| #include "llvm/CodeGen/TargetFrameLowering.h"
 | ||
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | ||
| #include "llvm/CodeGen/TargetLowering.h"
 | ||
| #include "llvm/CodeGen/TargetPassConfig.h"
 | ||
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | ||
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | ||
| #include "llvm/IR/BasicBlock.h"
 | ||
| #include "llvm/IR/CFG.h"
 | ||
| #include "llvm/IR/Constant.h"
 | ||
| #include "llvm/IR/Constants.h"
 | ||
| #include "llvm/IR/DataLayout.h"
 | ||
| #include "llvm/IR/DebugInfo.h"
 | ||
| #include "llvm/IR/DerivedTypes.h"
 | ||
| #include "llvm/IR/Function.h"
 | ||
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | ||
| #include "llvm/IR/InlineAsm.h"
 | ||
| #include "llvm/IR/InstrTypes.h"
 | ||
| #include "llvm/IR/Instructions.h"
 | ||
| #include "llvm/IR/IntrinsicInst.h"
 | ||
| #include "llvm/IR/Intrinsics.h"
 | ||
| #include "llvm/IR/LLVMContext.h"
 | ||
| #include "llvm/IR/Metadata.h"
 | ||
| #include "llvm/IR/Type.h"
 | ||
| #include "llvm/IR/User.h"
 | ||
| #include "llvm/IR/Value.h"
 | ||
| #include "llvm/InitializePasses.h"
 | ||
| #include "llvm/MC/MCContext.h"
 | ||
| #include "llvm/Pass.h"
 | ||
| #include "llvm/Support/Casting.h"
 | ||
| #include "llvm/Support/CodeGen.h"
 | ||
| #include "llvm/Support/Debug.h"
 | ||
| #include "llvm/Support/ErrorHandling.h"
 | ||
| #include "llvm/Support/LowLevelTypeImpl.h"
 | ||
| #include "llvm/Support/MathExtras.h"
 | ||
| #include "llvm/Support/raw_ostream.h"
 | ||
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | ||
| #include "llvm/Target/TargetMachine.h"
 | ||
| #include <algorithm>
 | ||
| #include <cassert>
 | ||
| #include <cstdint>
 | ||
| #include <iterator>
 | ||
| #include <string>
 | ||
| #include <utility>
 | ||
| #include <vector>
 | ||
| 
 | ||
| #define DEBUG_TYPE "irtranslator"
 | ||
| 
 | ||
| using namespace llvm;
 | ||
| 
 | ||
| static cl::opt<bool>
 | ||
|     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
 | ||
|                             cl::desc("Should enable CSE in irtranslator"),
 | ||
|                             cl::Optional, cl::init(false));
 | ||
| char IRTranslator::ID = 0;
 | ||
| 
 | ||
| INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
 | ||
|                 false, false)
 | ||
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
 | ||
| INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
 | ||
| INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
 | ||
|                 false, false)
 | ||
| 
 | ||
| static void reportTranslationError(MachineFunction &MF,
 | ||
|                                    const TargetPassConfig &TPC,
 | ||
|                                    OptimizationRemarkEmitter &ORE,
 | ||
|                                    OptimizationRemarkMissed &R) {
 | ||
|   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
 | ||
| 
 | ||
|   // Print the function name explicitly if we don't have a debug location (which
 | ||
|   // makes the diagnostic less useful) or if we're going to emit a raw error.
 | ||
|   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
 | ||
|     R << (" (in function: " + MF.getName() + ")").str();
 | ||
| 
 | ||
|   if (TPC.isGlobalISelAbortEnabled())
 | ||
|     report_fatal_error(R.getMsg());
 | ||
|   else
 | ||
|     ORE.emit(R);
 | ||
| }
 | ||
| 
 | ||
| IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
 | ||
| 
 | ||
| #ifndef NDEBUG
 | ||
| namespace {
 | ||
| /// Verify that every instruction created has the same DILocation as the
 | ||
| /// instruction being translated.
 | ||
| class DILocationVerifier : public GISelChangeObserver {
 | ||
|   const Instruction *CurrInst = nullptr;
 | ||
| 
 | ||
| public:
 | ||
|   DILocationVerifier() = default;
 | ||
|   ~DILocationVerifier() = default;
 | ||
| 
 | ||
|   const Instruction *getCurrentInst() const { return CurrInst; }
 | ||
|   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
 | ||
| 
 | ||
|   void erasingInstr(MachineInstr &MI) override {}
 | ||
|   void changingInstr(MachineInstr &MI) override {}
 | ||
|   void changedInstr(MachineInstr &MI) override {}
 | ||
| 
 | ||
|   void createdInstr(MachineInstr &MI) override {
 | ||
|     assert(getCurrentInst() && "Inserted instruction without a current MI");
 | ||
| 
 | ||
|     // Only print the check message if we're actually checking it.
 | ||
| #ifndef NDEBUG
 | ||
|     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
 | ||
|                       << " was copied to " << MI);
 | ||
| #endif
 | ||
|     // We allow insts in the entry block to have a debug loc line of 0 because
 | ||
|     // they could have originated from constants, and we don't want a jumpy
 | ||
|     // debug experience.
 | ||
|     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
 | ||
|             MI.getDebugLoc().getLine() == 0) &&
 | ||
|            "Line info was not transferred to all instructions");
 | ||
|   }
 | ||
| };
 | ||
| } // namespace
 | ||
| #endif // ifndef NDEBUG
 | ||
| 
 | ||
| 
 | ||
| void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
 | ||
|   AU.addRequired<StackProtector>();
 | ||
|   AU.addRequired<TargetPassConfig>();
 | ||
|   AU.addRequired<GISelCSEAnalysisWrapperPass>();
 | ||
|   getSelectionDAGFallbackAnalysisUsage(AU);
 | ||
|   MachineFunctionPass::getAnalysisUsage(AU);
 | ||
| }
 | ||
| 
 | ||
| IRTranslator::ValueToVRegInfo::VRegListT &
 | ||
| IRTranslator::allocateVRegs(const Value &Val) {
 | ||
|   assert(!VMap.contains(Val) && "Value already allocated in VMap");
 | ||
|   auto *Regs = VMap.getVRegs(Val);
 | ||
|   auto *Offsets = VMap.getOffsets(Val);
 | ||
|   SmallVector<LLT, 4> SplitTys;
 | ||
|   computeValueLLTs(*DL, *Val.getType(), SplitTys,
 | ||
|                    Offsets->empty() ? Offsets : nullptr);
 | ||
|   for (unsigned i = 0; i < SplitTys.size(); ++i)
 | ||
|     Regs->push_back(0);
 | ||
|   return *Regs;
 | ||
| }
 | ||
| 
 | ||
| ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
 | ||
|   auto VRegsIt = VMap.findVRegs(Val);
 | ||
|   if (VRegsIt != VMap.vregs_end())
 | ||
|     return *VRegsIt->second;
 | ||
| 
 | ||
|   if (Val.getType()->isVoidTy())
 | ||
|     return *VMap.getVRegs(Val);
 | ||
| 
 | ||
|   // Create entry for this type.
 | ||
|   auto *VRegs = VMap.getVRegs(Val);
 | ||
|   auto *Offsets = VMap.getOffsets(Val);
 | ||
| 
 | ||
|   assert(Val.getType()->isSized() &&
 | ||
|          "Don't know how to create an empty vreg");
 | ||
| 
 | ||
|   SmallVector<LLT, 4> SplitTys;
 | ||
|   computeValueLLTs(*DL, *Val.getType(), SplitTys,
 | ||
|                    Offsets->empty() ? Offsets : nullptr);
 | ||
| 
 | ||
|   if (!isa<Constant>(Val)) {
 | ||
|     for (auto Ty : SplitTys)
 | ||
|       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
 | ||
|     return *VRegs;
 | ||
|   }
 | ||
| 
 | ||
|   if (Val.getType()->isAggregateType()) {
 | ||
|     // UndefValue, ConstantAggregateZero
 | ||
|     auto &C = cast<Constant>(Val);
 | ||
|     unsigned Idx = 0;
 | ||
|     while (auto Elt = C.getAggregateElement(Idx++)) {
 | ||
|       auto EltRegs = getOrCreateVRegs(*Elt);
 | ||
|       llvm::copy(EltRegs, std::back_inserter(*VRegs));
 | ||
|     }
 | ||
|   } else {
 | ||
|     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
 | ||
|     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
 | ||
|     bool Success = translate(cast<Constant>(Val), VRegs->front());
 | ||
|     if (!Success) {
 | ||
|       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                  MF->getFunction().getSubprogram(),
 | ||
|                                  &MF->getFunction().getEntryBlock());
 | ||
|       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
 | ||
|       reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|       return *VRegs;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return *VRegs;
 | ||
| }
 | ||
| 
 | ||
| int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
 | ||
|   if (FrameIndices.find(&AI) != FrameIndices.end())
 | ||
|     return FrameIndices[&AI];
 | ||
| 
 | ||
|   uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
 | ||
|   uint64_t Size =
 | ||
|       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
 | ||
| 
 | ||
|   // Always allocate at least one byte.
 | ||
|   Size = std::max<uint64_t>(Size, 1u);
 | ||
| 
 | ||
|   unsigned Alignment = AI.getAlignment();
 | ||
|   if (!Alignment)
 | ||
|     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
 | ||
| 
 | ||
|   int &FI = FrameIndices[&AI];
 | ||
|   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
 | ||
|   return FI;
 | ||
| }
 | ||
| 
 | ||
| unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
 | ||
|   unsigned Alignment = 0;
 | ||
|   Type *ValTy = nullptr;
 | ||
|   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | ||
|     Alignment = SI->getAlignment();
 | ||
|     ValTy = SI->getValueOperand()->getType();
 | ||
|   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | ||
|     Alignment = LI->getAlignment();
 | ||
|     ValTy = LI->getType();
 | ||
|   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
 | ||
|     // TODO(PR27168): This instruction has no alignment attribute, but unlike
 | ||
|     // the default alignment for load/store, the default here is to assume
 | ||
|     // it has NATURAL alignment, not DataLayout-specified alignment.
 | ||
|     const DataLayout &DL = AI->getModule()->getDataLayout();
 | ||
|     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
 | ||
|     ValTy = AI->getCompareOperand()->getType();
 | ||
|   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
 | ||
|     // TODO(PR27168): This instruction has no alignment attribute, but unlike
 | ||
|     // the default alignment for load/store, the default here is to assume
 | ||
|     // it has NATURAL alignment, not DataLayout-specified alignment.
 | ||
|     const DataLayout &DL = AI->getModule()->getDataLayout();
 | ||
|     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
 | ||
|     ValTy = AI->getType();
 | ||
|   } else {
 | ||
|     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
 | ||
|     R << "unable to translate memop: " << ore::NV("Opcode", &I);
 | ||
|     reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|     return 1;
 | ||
|   }
 | ||
| 
 | ||
|   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
 | ||
| }
 | ||
| 
 | ||
| MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
 | ||
|   MachineBasicBlock *&MBB = BBToMBB[&BB];
 | ||
|   assert(MBB && "BasicBlock was not encountered before");
 | ||
|   return *MBB;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
 | ||
|   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
 | ||
|   MachinePreds[Edge].push_back(NewPred);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
 | ||
|                                      MachineIRBuilder &MIRBuilder) {
 | ||
|   // Get or create a virtual register for each value.
 | ||
|   // Unless the value is a Constant => loadimm cst?
 | ||
|   // or inline constant each time?
 | ||
|   // Creation of a virtual register needs to have a size.
 | ||
|   Register Op0 = getOrCreateVReg(*U.getOperand(0));
 | ||
|   Register Op1 = getOrCreateVReg(*U.getOperand(1));
 | ||
|   Register Res = getOrCreateVReg(U);
 | ||
|   uint16_t Flags = 0;
 | ||
|   if (isa<Instruction>(U)) {
 | ||
|     const Instruction &I = cast<Instruction>(U);
 | ||
|     Flags = MachineInstr::copyFlagsFromInstruction(I);
 | ||
|   }
 | ||
| 
 | ||
|   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   // -0.0 - X --> G_FNEG
 | ||
|   if (isa<Constant>(U.getOperand(0)) &&
 | ||
|       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
 | ||
|     Register Op1 = getOrCreateVReg(*U.getOperand(1));
 | ||
|     Register Res = getOrCreateVReg(U);
 | ||
|     uint16_t Flags = 0;
 | ||
|     if (isa<Instruction>(U)) {
 | ||
|       const Instruction &I = cast<Instruction>(U);
 | ||
|       Flags = MachineInstr::copyFlagsFromInstruction(I);
 | ||
|     }
 | ||
|     // Negate the last operand of the FSUB
 | ||
|     MIRBuilder.buildFNeg(Res, Op1, Flags);
 | ||
|     return true;
 | ||
|   }
 | ||
|   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   Register Op0 = getOrCreateVReg(*U.getOperand(0));
 | ||
|   Register Res = getOrCreateVReg(U);
 | ||
|   uint16_t Flags = 0;
 | ||
|   if (isa<Instruction>(U)) {
 | ||
|     const Instruction &I = cast<Instruction>(U);
 | ||
|     Flags = MachineInstr::copyFlagsFromInstruction(I);
 | ||
|   }
 | ||
|   MIRBuilder.buildFNeg(Res, Op0, Flags);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCompare(const User &U,
 | ||
|                                     MachineIRBuilder &MIRBuilder) {
 | ||
|   auto *CI = dyn_cast<CmpInst>(&U);
 | ||
|   Register Op0 = getOrCreateVReg(*U.getOperand(0));
 | ||
|   Register Op1 = getOrCreateVReg(*U.getOperand(1));
 | ||
|   Register Res = getOrCreateVReg(U);
 | ||
|   CmpInst::Predicate Pred =
 | ||
|       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
 | ||
|                                     cast<ConstantExpr>(U).getPredicate());
 | ||
|   if (CmpInst::isIntPredicate(Pred))
 | ||
|     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
 | ||
|   else if (Pred == CmpInst::FCMP_FALSE)
 | ||
|     MIRBuilder.buildCopy(
 | ||
|         Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
 | ||
|   else if (Pred == CmpInst::FCMP_TRUE)
 | ||
|     MIRBuilder.buildCopy(
 | ||
|         Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
 | ||
|   else {
 | ||
|     assert(CI && "Instruction should be CmpInst");
 | ||
|     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
 | ||
|                          MachineInstr::copyFlagsFromInstruction(*CI));
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const ReturnInst &RI = cast<ReturnInst>(U);
 | ||
|   const Value *Ret = RI.getReturnValue();
 | ||
|   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
 | ||
|     Ret = nullptr;
 | ||
| 
 | ||
|   ArrayRef<Register> VRegs;
 | ||
|   if (Ret)
 | ||
|     VRegs = getOrCreateVRegs(*Ret);
 | ||
| 
 | ||
|   Register SwiftErrorVReg = 0;
 | ||
|   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
 | ||
|     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
 | ||
|         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
 | ||
|   }
 | ||
| 
 | ||
|   // The target may mess up with the insertion point, but
 | ||
|   // this is not important as a return is the last instruction
 | ||
|   // of the block anyway.
 | ||
|   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const BranchInst &BrInst = cast<BranchInst>(U);
 | ||
|   unsigned Succ = 0;
 | ||
|   if (!BrInst.isUnconditional()) {
 | ||
|     // We want a G_BRCOND to the true BB followed by an unconditional branch.
 | ||
|     Register Tst = getOrCreateVReg(*BrInst.getCondition());
 | ||
|     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
 | ||
|     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
 | ||
|     MIRBuilder.buildBrCond(Tst, TrueBB);
 | ||
|   }
 | ||
| 
 | ||
|   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
 | ||
|   MachineBasicBlock &TgtBB = getMBB(BrTgt);
 | ||
|   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
 | ||
| 
 | ||
|   // If the unconditional target is the layout successor, fallthrough.
 | ||
|   if (!CurBB.isLayoutSuccessor(&TgtBB))
 | ||
|     MIRBuilder.buildBr(TgtBB);
 | ||
| 
 | ||
|   // Link successors.
 | ||
|   for (const BasicBlock *Succ : successors(&BrInst))
 | ||
|     CurBB.addSuccessor(&getMBB(*Succ));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
 | ||
|                                         MachineBasicBlock *Dst,
 | ||
|                                         BranchProbability Prob) {
 | ||
|   if (!FuncInfo.BPI) {
 | ||
|     Src->addSuccessorWithoutProb(Dst);
 | ||
|     return;
 | ||
|   }
 | ||
|   if (Prob.isUnknown())
 | ||
|     Prob = getEdgeProbability(Src, Dst);
 | ||
|   Src->addSuccessor(Dst, Prob);
 | ||
| }
 | ||
| 
 | ||
| BranchProbability
 | ||
| IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
 | ||
|                                  const MachineBasicBlock *Dst) const {
 | ||
|   const BasicBlock *SrcBB = Src->getBasicBlock();
 | ||
|   const BasicBlock *DstBB = Dst->getBasicBlock();
 | ||
|   if (!FuncInfo.BPI) {
 | ||
|     // If BPI is not available, set the default probability as 1 / N, where N is
 | ||
|     // the number of successors.
 | ||
|     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
 | ||
|     return BranchProbability(1, SuccSize);
 | ||
|   }
 | ||
|   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
 | ||
|   using namespace SwitchCG;
 | ||
|   // Extract cases from the switch.
 | ||
|   const SwitchInst &SI = cast<SwitchInst>(U);
 | ||
|   BranchProbabilityInfo *BPI = FuncInfo.BPI;
 | ||
|   CaseClusterVector Clusters;
 | ||
|   Clusters.reserve(SI.getNumCases());
 | ||
|   for (auto &I : SI.cases()) {
 | ||
|     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
 | ||
|     assert(Succ && "Could not find successor mbb in mapping");
 | ||
|     const ConstantInt *CaseVal = I.getCaseValue();
 | ||
|     BranchProbability Prob =
 | ||
|         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
 | ||
|             : BranchProbability(1, SI.getNumCases() + 1);
 | ||
|     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
 | ||
|   }
 | ||
| 
 | ||
|   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
 | ||
| 
 | ||
|   // Cluster adjacent cases with the same destination. We do this at all
 | ||
|   // optimization levels because it's cheap to do and will make codegen faster
 | ||
|   // if there are many clusters.
 | ||
|   sortAndRangeify(Clusters);
 | ||
| 
 | ||
|   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
 | ||
| 
 | ||
|   // If there is only the default destination, jump there directly.
 | ||
|   if (Clusters.empty()) {
 | ||
|     SwitchMBB->addSuccessor(DefaultMBB);
 | ||
|     if (DefaultMBB != SwitchMBB->getNextNode())
 | ||
|       MIB.buildBr(*DefaultMBB);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
 | ||
| 
 | ||
|   LLVM_DEBUG({
 | ||
|     dbgs() << "Case clusters: ";
 | ||
|     for (const CaseCluster &C : Clusters) {
 | ||
|       if (C.Kind == CC_JumpTable)
 | ||
|         dbgs() << "JT:";
 | ||
|       if (C.Kind == CC_BitTests)
 | ||
|         dbgs() << "BT:";
 | ||
| 
 | ||
|       C.Low->getValue().print(dbgs(), true);
 | ||
|       if (C.Low != C.High) {
 | ||
|         dbgs() << '-';
 | ||
|         C.High->getValue().print(dbgs(), true);
 | ||
|       }
 | ||
|       dbgs() << ' ';
 | ||
|     }
 | ||
|     dbgs() << '\n';
 | ||
|   });
 | ||
| 
 | ||
|   assert(!Clusters.empty());
 | ||
|   SwitchWorkList WorkList;
 | ||
|   CaseClusterIt First = Clusters.begin();
 | ||
|   CaseClusterIt Last = Clusters.end() - 1;
 | ||
|   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
 | ||
|   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
 | ||
| 
 | ||
|   // FIXME: At the moment we don't do any splitting optimizations here like
 | ||
|   // SelectionDAG does, so this worklist only has one entry.
 | ||
|   while (!WorkList.empty()) {
 | ||
|     SwitchWorkListItem W = WorkList.back();
 | ||
|     WorkList.pop_back();
 | ||
|     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
 | ||
|       return false;
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
 | ||
|                                  MachineBasicBlock *MBB) {
 | ||
|   // Emit the code for the jump table
 | ||
|   assert(JT.Reg != -1U && "Should lower JT Header first!");
 | ||
|   MachineIRBuilder MIB(*MBB->getParent());
 | ||
|   MIB.setMBB(*MBB);
 | ||
|   MIB.setDebugLoc(CurBuilder->getDebugLoc());
 | ||
| 
 | ||
|   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
 | ||
|   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
 | ||
| 
 | ||
|   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
 | ||
|   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
 | ||
|                                        SwitchCG::JumpTableHeader &JTH,
 | ||
|                                        MachineBasicBlock *HeaderBB) {
 | ||
|   MachineIRBuilder MIB(*HeaderBB->getParent());
 | ||
|   MIB.setMBB(*HeaderBB);
 | ||
|   MIB.setDebugLoc(CurBuilder->getDebugLoc());
 | ||
| 
 | ||
|   const Value &SValue = *JTH.SValue;
 | ||
|   // Subtract the lowest switch case value from the value being switched on.
 | ||
|   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
 | ||
|   Register SwitchOpReg = getOrCreateVReg(SValue);
 | ||
|   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
 | ||
|   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
 | ||
| 
 | ||
|   // This value may be smaller or larger than the target's pointer type, and
 | ||
|   // therefore require extension or truncating.
 | ||
|   Type *PtrIRTy = SValue.getType()->getPointerTo();
 | ||
|   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
 | ||
|   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
 | ||
| 
 | ||
|   JT.Reg = Sub.getReg(0);
 | ||
| 
 | ||
|   if (JTH.OmitRangeCheck) {
 | ||
|     if (JT.MBB != HeaderBB->getNextNode())
 | ||
|       MIB.buildBr(*JT.MBB);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // Emit the range check for the jump table, and branch to the default block
 | ||
|   // for the switch statement if the value being switched on exceeds the
 | ||
|   // largest case in the switch.
 | ||
|   auto Cst = getOrCreateVReg(
 | ||
|       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
 | ||
|   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
 | ||
|   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
 | ||
| 
 | ||
|   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
 | ||
| 
 | ||
|   // Avoid emitting unnecessary branches to the next block.
 | ||
|   if (JT.MBB != HeaderBB->getNextNode())
 | ||
|     BrCond = MIB.buildBr(*JT.MBB);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
 | ||
|                                   MachineBasicBlock *SwitchBB,
 | ||
|                                   MachineIRBuilder &MIB) {
 | ||
|   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
 | ||
|   Register Cond;
 | ||
|   DebugLoc OldDbgLoc = MIB.getDebugLoc();
 | ||
|   MIB.setDebugLoc(CB.DbgLoc);
 | ||
|   MIB.setMBB(*CB.ThisBB);
 | ||
| 
 | ||
|   if (CB.PredInfo.NoCmp) {
 | ||
|     // Branch or fall through to TrueBB.
 | ||
|     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
 | ||
|     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
 | ||
|                       CB.ThisBB);
 | ||
|     CB.ThisBB->normalizeSuccProbs();
 | ||
|     if (CB.TrueBB != CB.ThisBB->getNextNode())
 | ||
|       MIB.buildBr(*CB.TrueBB);
 | ||
|     MIB.setDebugLoc(OldDbgLoc);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   const LLT i1Ty = LLT::scalar(1);
 | ||
|   // Build the compare.
 | ||
|   if (!CB.CmpMHS) {
 | ||
|     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
 | ||
|     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
 | ||
|   } else {
 | ||
|     assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
 | ||
|            "Can only handle SLE ranges");
 | ||
| 
 | ||
|     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
 | ||
|     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
 | ||
| 
 | ||
|     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
 | ||
|     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
 | ||
|       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
 | ||
|       Cond =
 | ||
|           MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
 | ||
|     } else {
 | ||
|       const LLT CmpTy = MRI->getType(CmpOpReg);
 | ||
|       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
 | ||
|       auto Diff = MIB.buildConstant(CmpTy, High - Low);
 | ||
|       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Update successor info
 | ||
|   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
 | ||
| 
 | ||
|   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
 | ||
|                     CB.ThisBB);
 | ||
| 
 | ||
|   // TrueBB and FalseBB are always different unless the incoming IR is
 | ||
|   // degenerate. This only happens when running llc on weird IR.
 | ||
|   if (CB.TrueBB != CB.FalseBB)
 | ||
|     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
 | ||
|   CB.ThisBB->normalizeSuccProbs();
 | ||
| 
 | ||
|   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
 | ||
|     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
 | ||
|                       CB.ThisBB);
 | ||
| 
 | ||
|   // If the lhs block is the next block, invert the condition so that we can
 | ||
|   // fall through to the lhs instead of the rhs block.
 | ||
|   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
 | ||
|     std::swap(CB.TrueBB, CB.FalseBB);
 | ||
|     auto True = MIB.buildConstant(i1Ty, 1);
 | ||
|     Cond = MIB.buildXor(i1Ty, Cond, True).getReg(0);
 | ||
|   }
 | ||
| 
 | ||
|   MIB.buildBrCond(Cond, *CB.TrueBB);
 | ||
|   MIB.buildBr(*CB.FalseBB);
 | ||
|   MIB.setDebugLoc(OldDbgLoc);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
 | ||
|                                           MachineBasicBlock *SwitchMBB,
 | ||
|                                           MachineBasicBlock *CurMBB,
 | ||
|                                           MachineBasicBlock *DefaultMBB,
 | ||
|                                           MachineIRBuilder &MIB,
 | ||
|                                           MachineFunction::iterator BBI,
 | ||
|                                           BranchProbability UnhandledProbs,
 | ||
|                                           SwitchCG::CaseClusterIt I,
 | ||
|                                           MachineBasicBlock *Fallthrough,
 | ||
|                                           bool FallthroughUnreachable) {
 | ||
|   using namespace SwitchCG;
 | ||
|   MachineFunction *CurMF = SwitchMBB->getParent();
 | ||
|   // FIXME: Optimize away range check based on pivot comparisons.
 | ||
|   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
 | ||
|   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
 | ||
|   BranchProbability DefaultProb = W.DefaultProb;
 | ||
| 
 | ||
|   // The jump block hasn't been inserted yet; insert it here.
 | ||
|   MachineBasicBlock *JumpMBB = JT->MBB;
 | ||
|   CurMF->insert(BBI, JumpMBB);
 | ||
| 
 | ||
|   // Since the jump table block is separate from the switch block, we need
 | ||
|   // to keep track of it as a machine predecessor to the default block,
 | ||
|   // otherwise we lose the phi edges.
 | ||
|   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
 | ||
|                     CurMBB);
 | ||
|   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
 | ||
|                     JumpMBB);
 | ||
| 
 | ||
|   auto JumpProb = I->Prob;
 | ||
|   auto FallthroughProb = UnhandledProbs;
 | ||
| 
 | ||
|   // If the default statement is a target of the jump table, we evenly
 | ||
|   // distribute the default probability to successors of CurMBB. Also
 | ||
|   // update the probability on the edge from JumpMBB to Fallthrough.
 | ||
|   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
 | ||
|                                         SE = JumpMBB->succ_end();
 | ||
|        SI != SE; ++SI) {
 | ||
|     if (*SI == DefaultMBB) {
 | ||
|       JumpProb += DefaultProb / 2;
 | ||
|       FallthroughProb -= DefaultProb / 2;
 | ||
|       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
 | ||
|       JumpMBB->normalizeSuccProbs();
 | ||
|     } else {
 | ||
|       // Also record edges from the jump table block to it's successors.
 | ||
|       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
 | ||
|                         JumpMBB);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Skip the range check if the fallthrough block is unreachable.
 | ||
|   if (FallthroughUnreachable)
 | ||
|     JTH->OmitRangeCheck = true;
 | ||
| 
 | ||
|   if (!JTH->OmitRangeCheck)
 | ||
|     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
 | ||
|   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
 | ||
|   CurMBB->normalizeSuccProbs();
 | ||
| 
 | ||
|   // The jump table header will be inserted in our current block, do the
 | ||
|   // range check, and fall through to our fallthrough block.
 | ||
|   JTH->HeaderBB = CurMBB;
 | ||
|   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
 | ||
| 
 | ||
|   // If we're in the right place, emit the jump table header right now.
 | ||
|   if (CurMBB == SwitchMBB) {
 | ||
|     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
 | ||
|       return false;
 | ||
|     JTH->Emitted = true;
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
 | ||
|                                             Value *Cond,
 | ||
|                                             MachineBasicBlock *Fallthrough,
 | ||
|                                             bool FallthroughUnreachable,
 | ||
|                                             BranchProbability UnhandledProbs,
 | ||
|                                             MachineBasicBlock *CurMBB,
 | ||
|                                             MachineIRBuilder &MIB,
 | ||
|                                             MachineBasicBlock *SwitchMBB) {
 | ||
|   using namespace SwitchCG;
 | ||
|   const Value *RHS, *LHS, *MHS;
 | ||
|   CmpInst::Predicate Pred;
 | ||
|   if (I->Low == I->High) {
 | ||
|     // Check Cond == I->Low.
 | ||
|     Pred = CmpInst::ICMP_EQ;
 | ||
|     LHS = Cond;
 | ||
|     RHS = I->Low;
 | ||
|     MHS = nullptr;
 | ||
|   } else {
 | ||
|     // Check I->Low <= Cond <= I->High.
 | ||
|     Pred = CmpInst::ICMP_SLE;
 | ||
|     LHS = I->Low;
 | ||
|     MHS = Cond;
 | ||
|     RHS = I->High;
 | ||
|   }
 | ||
| 
 | ||
|   // If Fallthrough is unreachable, fold away the comparison.
 | ||
|   // The false probability is the sum of all unhandled cases.
 | ||
|   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
 | ||
|                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
 | ||
| 
 | ||
|   emitSwitchCase(CB, SwitchMBB, MIB);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
 | ||
|                                        Value *Cond,
 | ||
|                                        MachineBasicBlock *SwitchMBB,
 | ||
|                                        MachineBasicBlock *DefaultMBB,
 | ||
|                                        MachineIRBuilder &MIB) {
 | ||
|   using namespace SwitchCG;
 | ||
|   MachineFunction *CurMF = FuncInfo.MF;
 | ||
|   MachineBasicBlock *NextMBB = nullptr;
 | ||
|   MachineFunction::iterator BBI(W.MBB);
 | ||
|   if (++BBI != FuncInfo.MF->end())
 | ||
|     NextMBB = &*BBI;
 | ||
| 
 | ||
|   if (EnableOpts) {
 | ||
|     // Here, we order cases by probability so the most likely case will be
 | ||
|     // checked first. However, two clusters can have the same probability in
 | ||
|     // which case their relative ordering is non-deterministic. So we use Low
 | ||
|     // as a tie-breaker as clusters are guaranteed to never overlap.
 | ||
|     llvm::sort(W.FirstCluster, W.LastCluster + 1,
 | ||
|                [](const CaseCluster &a, const CaseCluster &b) {
 | ||
|                  return a.Prob != b.Prob
 | ||
|                             ? a.Prob > b.Prob
 | ||
|                             : a.Low->getValue().slt(b.Low->getValue());
 | ||
|                });
 | ||
| 
 | ||
|     // Rearrange the case blocks so that the last one falls through if possible
 | ||
|     // without changing the order of probabilities.
 | ||
|     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
 | ||
|       --I;
 | ||
|       if (I->Prob > W.LastCluster->Prob)
 | ||
|         break;
 | ||
|       if (I->Kind == CC_Range && I->MBB == NextMBB) {
 | ||
|         std::swap(*I, *W.LastCluster);
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Compute total probability.
 | ||
|   BranchProbability DefaultProb = W.DefaultProb;
 | ||
|   BranchProbability UnhandledProbs = DefaultProb;
 | ||
|   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
 | ||
|     UnhandledProbs += I->Prob;
 | ||
| 
 | ||
|   MachineBasicBlock *CurMBB = W.MBB;
 | ||
|   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
 | ||
|     bool FallthroughUnreachable = false;
 | ||
|     MachineBasicBlock *Fallthrough;
 | ||
|     if (I == W.LastCluster) {
 | ||
|       // For the last cluster, fall through to the default destination.
 | ||
|       Fallthrough = DefaultMBB;
 | ||
|       FallthroughUnreachable = isa<UnreachableInst>(
 | ||
|           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
 | ||
|     } else {
 | ||
|       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
 | ||
|       CurMF->insert(BBI, Fallthrough);
 | ||
|     }
 | ||
|     UnhandledProbs -= I->Prob;
 | ||
| 
 | ||
|     switch (I->Kind) {
 | ||
|     case CC_BitTests: {
 | ||
|       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
 | ||
|       return false; // Bit tests currently unimplemented.
 | ||
|     }
 | ||
|     case CC_JumpTable: {
 | ||
|       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
 | ||
|                                   UnhandledProbs, I, Fallthrough,
 | ||
|                                   FallthroughUnreachable)) {
 | ||
|         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
 | ||
|         return false;
 | ||
|       }
 | ||
|       break;
 | ||
|     }
 | ||
|     case CC_Range: {
 | ||
|       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
 | ||
|                                     FallthroughUnreachable, UnhandledProbs,
 | ||
|                                     CurMBB, MIB, SwitchMBB)) {
 | ||
|         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
 | ||
|         return false;
 | ||
|       }
 | ||
|       break;
 | ||
|     }
 | ||
|     }
 | ||
|     CurMBB = Fallthrough;
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateIndirectBr(const User &U,
 | ||
|                                        MachineIRBuilder &MIRBuilder) {
 | ||
|   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
 | ||
| 
 | ||
|   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
 | ||
|   MIRBuilder.buildBrIndirect(Tgt);
 | ||
| 
 | ||
|   // Link successors.
 | ||
|   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
 | ||
|   for (const BasicBlock *Succ : successors(&BrInst))
 | ||
|     CurBB.addSuccessor(&getMBB(*Succ));
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| static bool isSwiftError(const Value *V) {
 | ||
|   if (auto Arg = dyn_cast<Argument>(V))
 | ||
|     return Arg->hasSwiftErrorAttr();
 | ||
|   if (auto AI = dyn_cast<AllocaInst>(V))
 | ||
|     return AI->isSwiftError();
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const LoadInst &LI = cast<LoadInst>(U);
 | ||
|   if (DL->getTypeStoreSize(LI.getType()) == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
 | ||
|   Register Base = getOrCreateVReg(*LI.getPointerOperand());
 | ||
| 
 | ||
|   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
 | ||
|   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
 | ||
| 
 | ||
|   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
 | ||
|     assert(Regs.size() == 1 && "swifterror should be single pointer");
 | ||
|     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
 | ||
|                                                     LI.getPointerOperand());
 | ||
|     MIRBuilder.buildCopy(Regs[0], VReg);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);
 | ||
| 
 | ||
|   const MDNode *Ranges =
 | ||
|       Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
 | ||
|   for (unsigned i = 0; i < Regs.size(); ++i) {
 | ||
|     Register Addr;
 | ||
|     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
 | ||
| 
 | ||
|     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
 | ||
|     unsigned BaseAlign = getMemOpAlignment(LI);
 | ||
|     AAMDNodes AAMetadata;
 | ||
|     LI.getAAMetadata(AAMetadata);
 | ||
|     auto MMO = MF->getMachineMemOperand(
 | ||
|         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
 | ||
|         MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
 | ||
|         LI.getSyncScopeID(), LI.getOrdering());
 | ||
|     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const StoreInst &SI = cast<StoreInst>(U);
 | ||
|   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
 | ||
|   Register Base = getOrCreateVReg(*SI.getPointerOperand());
 | ||
| 
 | ||
|   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
 | ||
|   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
 | ||
| 
 | ||
|   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
 | ||
|     assert(Vals.size() == 1 && "swifterror should be single pointer");
 | ||
| 
 | ||
|     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
 | ||
|                                                     SI.getPointerOperand());
 | ||
|     MIRBuilder.buildCopy(VReg, Vals[0]);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
 | ||
| 
 | ||
|   for (unsigned i = 0; i < Vals.size(); ++i) {
 | ||
|     Register Addr;
 | ||
|     MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
 | ||
| 
 | ||
|     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
 | ||
|     unsigned BaseAlign = getMemOpAlignment(SI);
 | ||
|     AAMDNodes AAMetadata;
 | ||
|     SI.getAAMetadata(AAMetadata);
 | ||
|     auto MMO = MF->getMachineMemOperand(
 | ||
|         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
 | ||
|         MinAlign(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
 | ||
|         SI.getSyncScopeID(), SI.getOrdering());
 | ||
|     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
 | ||
|   const Value *Src = U.getOperand(0);
 | ||
|   Type *Int32Ty = Type::getInt32Ty(U.getContext());
 | ||
| 
 | ||
|   // getIndexedOffsetInType is designed for GEPs, so the first index is the
 | ||
|   // usual array element rather than looking into the actual aggregate.
 | ||
|   SmallVector<Value *, 1> Indices;
 | ||
|   Indices.push_back(ConstantInt::get(Int32Ty, 0));
 | ||
| 
 | ||
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
 | ||
|     for (auto Idx : EVI->indices())
 | ||
|       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
 | ||
|   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
 | ||
|     for (auto Idx : IVI->indices())
 | ||
|       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
 | ||
|   } else {
 | ||
|     for (unsigned i = 1; i < U.getNumOperands(); ++i)
 | ||
|       Indices.push_back(U.getOperand(i));
 | ||
|   }
 | ||
| 
 | ||
|   return 8 * static_cast<uint64_t>(
 | ||
|                  DL.getIndexedOffsetInType(Src->getType(), Indices));
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateExtractValue(const User &U,
 | ||
|                                          MachineIRBuilder &MIRBuilder) {
 | ||
|   const Value *Src = U.getOperand(0);
 | ||
|   uint64_t Offset = getOffsetFromIndices(U, *DL);
 | ||
|   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
 | ||
|   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
 | ||
|   auto &DstRegs = allocateVRegs(U);
 | ||
| 
 | ||
|   for (unsigned i = 0; i < DstRegs.size(); ++i)
 | ||
|     DstRegs[i] = SrcRegs[Idx++];
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInsertValue(const User &U,
 | ||
|                                         MachineIRBuilder &MIRBuilder) {
 | ||
|   const Value *Src = U.getOperand(0);
 | ||
|   uint64_t Offset = getOffsetFromIndices(U, *DL);
 | ||
|   auto &DstRegs = allocateVRegs(U);
 | ||
|   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
 | ||
|   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
 | ||
|   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
 | ||
|   auto InsertedIt = InsertedRegs.begin();
 | ||
| 
 | ||
|   for (unsigned i = 0; i < DstRegs.size(); ++i) {
 | ||
|     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
 | ||
|       DstRegs[i] = *InsertedIt++;
 | ||
|     else
 | ||
|       DstRegs[i] = SrcRegs[i];
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateSelect(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   Register Tst = getOrCreateVReg(*U.getOperand(0));
 | ||
|   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
 | ||
|   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
 | ||
|   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
 | ||
| 
 | ||
|   const SelectInst &SI = cast<SelectInst>(U);
 | ||
|   uint16_t Flags = 0;
 | ||
|   if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
 | ||
|     Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
 | ||
| 
 | ||
|   for (unsigned i = 0; i < ResRegs.size(); ++i) {
 | ||
|     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateBitCast(const User &U,
 | ||
|                                     MachineIRBuilder &MIRBuilder) {
 | ||
|   // If we're bitcasting to the source type, we can reuse the source vreg.
 | ||
|   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
 | ||
|       getLLTForType(*U.getType(), *DL)) {
 | ||
|     Register SrcReg = getOrCreateVReg(*U.getOperand(0));
 | ||
|     auto &Regs = *VMap.getVRegs(U);
 | ||
|     // If we already assigned a vreg for this bitcast, we can't change that.
 | ||
|     // Emit a copy to satisfy the users we already emitted.
 | ||
|     if (!Regs.empty())
 | ||
|       MIRBuilder.buildCopy(Regs[0], SrcReg);
 | ||
|     else {
 | ||
|       Regs.push_back(SrcReg);
 | ||
|       VMap.getOffsets(U)->push_back(0);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCast(unsigned Opcode, const User &U,
 | ||
|                                  MachineIRBuilder &MIRBuilder) {
 | ||
|   Register Op = getOrCreateVReg(*U.getOperand(0));
 | ||
|   Register Res = getOrCreateVReg(U);
 | ||
|   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateGetElementPtr(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   Value &Op0 = *U.getOperand(0);
 | ||
|   Register BaseReg = getOrCreateVReg(Op0);
 | ||
|   Type *PtrIRTy = Op0.getType();
 | ||
|   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
 | ||
|   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
 | ||
|   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
 | ||
| 
 | ||
|   // Normalize Vector GEP - all scalar operands should be converted to the
 | ||
|   // splat vector.
 | ||
|   unsigned VectorWidth = 0;
 | ||
|   if (auto *VT = dyn_cast<VectorType>(U.getType()))
 | ||
|     VectorWidth = VT->getNumElements();
 | ||
| 
 | ||
|   // We might need to splat the base pointer into a vector if the offsets
 | ||
|   // are vectors.
 | ||
|   if (VectorWidth && !PtrTy.isVector()) {
 | ||
|     BaseReg =
 | ||
|         MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
 | ||
|             .getReg(0);
 | ||
|     PtrIRTy = VectorType::get(PtrIRTy, VectorWidth);
 | ||
|     PtrTy = getLLTForType(*PtrIRTy, *DL);
 | ||
|     OffsetIRTy = DL->getIntPtrType(PtrIRTy);
 | ||
|     OffsetTy = getLLTForType(*OffsetIRTy, *DL);
 | ||
|   }
 | ||
| 
 | ||
|   int64_t Offset = 0;
 | ||
|   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
 | ||
|        GTI != E; ++GTI) {
 | ||
|     const Value *Idx = GTI.getOperand();
 | ||
|     if (StructType *StTy = GTI.getStructTypeOrNull()) {
 | ||
|       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
 | ||
|       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
 | ||
|       continue;
 | ||
|     } else {
 | ||
|       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
 | ||
| 
 | ||
|       // If this is a scalar constant or a splat vector of constants,
 | ||
|       // handle it quickly.
 | ||
|       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
 | ||
|         Offset += ElementSize * CI->getSExtValue();
 | ||
|         continue;
 | ||
|       }
 | ||
| 
 | ||
|       if (Offset != 0) {
 | ||
|         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
 | ||
|         BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
 | ||
|                       .getReg(0);
 | ||
|         Offset = 0;
 | ||
|       }
 | ||
| 
 | ||
|       Register IdxReg = getOrCreateVReg(*Idx);
 | ||
|       LLT IdxTy = MRI->getType(IdxReg);
 | ||
|       if (IdxTy != OffsetTy) {
 | ||
|         if (!IdxTy.isVector() && VectorWidth) {
 | ||
|           IdxReg = MIRBuilder.buildSplatVector(
 | ||
|             OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
 | ||
|         }
 | ||
| 
 | ||
|         IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
 | ||
|       }
 | ||
| 
 | ||
|       // N = N + Idx * ElementSize;
 | ||
|       // Avoid doing it for ElementSize of 1.
 | ||
|       Register GepOffsetReg;
 | ||
|       if (ElementSize != 1) {
 | ||
|         auto ElementSizeMIB = MIRBuilder.buildConstant(
 | ||
|             getLLTForType(*OffsetIRTy, *DL), ElementSize);
 | ||
|         GepOffsetReg =
 | ||
|             MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
 | ||
|       } else
 | ||
|         GepOffsetReg = IdxReg;
 | ||
| 
 | ||
|       BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (Offset != 0) {
 | ||
|     auto OffsetMIB =
 | ||
|         MIRBuilder.buildConstant(OffsetTy, Offset);
 | ||
|     MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateMemFunc(const CallInst &CI,
 | ||
|                                     MachineIRBuilder &MIRBuilder,
 | ||
|                                     Intrinsic::ID ID) {
 | ||
| 
 | ||
|   // If the source is undef, then just emit a nop.
 | ||
|   if (isa<UndefValue>(CI.getArgOperand(1)))
 | ||
|     return true;
 | ||
| 
 | ||
|   ArrayRef<Register> Res;
 | ||
|   auto ICall = MIRBuilder.buildIntrinsic(ID, Res, true);
 | ||
|   for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI)
 | ||
|     ICall.addUse(getOrCreateVReg(**AI));
 | ||
| 
 | ||
|   unsigned DstAlign = 0, SrcAlign = 0;
 | ||
|   unsigned IsVol =
 | ||
|       cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
 | ||
|           ->getZExtValue();
 | ||
| 
 | ||
|   if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
 | ||
|     DstAlign = std::max<unsigned>(MCI->getDestAlignment(), 1);
 | ||
|     SrcAlign = std::max<unsigned>(MCI->getSourceAlignment(), 1);
 | ||
|   } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
 | ||
|     DstAlign = std::max<unsigned>(MMI->getDestAlignment(), 1);
 | ||
|     SrcAlign = std::max<unsigned>(MMI->getSourceAlignment(), 1);
 | ||
|   } else {
 | ||
|     auto *MSI = cast<MemSetInst>(&CI);
 | ||
|     DstAlign = std::max<unsigned>(MSI->getDestAlignment(), 1);
 | ||
|   }
 | ||
| 
 | ||
|   // We need to propagate the tail call flag from the IR inst as an argument.
 | ||
|   // Otherwise, we have to pessimize and assume later that we cannot tail call
 | ||
|   // any memory intrinsics.
 | ||
|   ICall.addImm(CI.isTailCall() ? 1 : 0);
 | ||
| 
 | ||
|   // Create mem operands to store the alignment and volatile info.
 | ||
|   auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
 | ||
|   ICall.addMemOperand(MF->getMachineMemOperand(
 | ||
|       MachinePointerInfo(CI.getArgOperand(0)),
 | ||
|       MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
 | ||
|   if (ID != Intrinsic::memset)
 | ||
|     ICall.addMemOperand(MF->getMachineMemOperand(
 | ||
|         MachinePointerInfo(CI.getArgOperand(1)),
 | ||
|         MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::getStackGuard(Register DstReg,
 | ||
|                                  MachineIRBuilder &MIRBuilder) {
 | ||
|   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | ||
|   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
 | ||
|   auto MIB =
 | ||
|       MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
 | ||
| 
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
 | ||
|   if (!Global)
 | ||
|     return;
 | ||
| 
 | ||
|   MachinePointerInfo MPInfo(Global);
 | ||
|   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
 | ||
|                MachineMemOperand::MODereferenceable;
 | ||
|   MachineMemOperand *MemRef =
 | ||
|       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
 | ||
|                                DL->getPointerABIAlignment(0).value());
 | ||
|   MIB.setMemRefs({MemRef});
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
 | ||
|                                               MachineIRBuilder &MIRBuilder) {
 | ||
|   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
 | ||
|   MIRBuilder.buildInstr(
 | ||
|       Op, {ResRegs[0], ResRegs[1]},
 | ||
|       {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
 | ||
|   switch (ID) {
 | ||
|     default:
 | ||
|       break;
 | ||
|     case Intrinsic::bswap:
 | ||
|       return TargetOpcode::G_BSWAP;
 | ||
|   case Intrinsic::bitreverse:
 | ||
|       return TargetOpcode::G_BITREVERSE;
 | ||
|     case Intrinsic::ceil:
 | ||
|       return TargetOpcode::G_FCEIL;
 | ||
|     case Intrinsic::cos:
 | ||
|       return TargetOpcode::G_FCOS;
 | ||
|     case Intrinsic::ctpop:
 | ||
|       return TargetOpcode::G_CTPOP;
 | ||
|     case Intrinsic::exp:
 | ||
|       return TargetOpcode::G_FEXP;
 | ||
|     case Intrinsic::exp2:
 | ||
|       return TargetOpcode::G_FEXP2;
 | ||
|     case Intrinsic::fabs:
 | ||
|       return TargetOpcode::G_FABS;
 | ||
|     case Intrinsic::copysign:
 | ||
|       return TargetOpcode::G_FCOPYSIGN;
 | ||
|     case Intrinsic::minnum:
 | ||
|       return TargetOpcode::G_FMINNUM;
 | ||
|     case Intrinsic::maxnum:
 | ||
|       return TargetOpcode::G_FMAXNUM;
 | ||
|     case Intrinsic::minimum:
 | ||
|       return TargetOpcode::G_FMINIMUM;
 | ||
|     case Intrinsic::maximum:
 | ||
|       return TargetOpcode::G_FMAXIMUM;
 | ||
|     case Intrinsic::canonicalize:
 | ||
|       return TargetOpcode::G_FCANONICALIZE;
 | ||
|     case Intrinsic::floor:
 | ||
|       return TargetOpcode::G_FFLOOR;
 | ||
|     case Intrinsic::fma:
 | ||
|       return TargetOpcode::G_FMA;
 | ||
|     case Intrinsic::log:
 | ||
|       return TargetOpcode::G_FLOG;
 | ||
|     case Intrinsic::log2:
 | ||
|       return TargetOpcode::G_FLOG2;
 | ||
|     case Intrinsic::log10:
 | ||
|       return TargetOpcode::G_FLOG10;
 | ||
|     case Intrinsic::nearbyint:
 | ||
|       return TargetOpcode::G_FNEARBYINT;
 | ||
|     case Intrinsic::pow:
 | ||
|       return TargetOpcode::G_FPOW;
 | ||
|     case Intrinsic::rint:
 | ||
|       return TargetOpcode::G_FRINT;
 | ||
|     case Intrinsic::round:
 | ||
|       return TargetOpcode::G_INTRINSIC_ROUND;
 | ||
|     case Intrinsic::sin:
 | ||
|       return TargetOpcode::G_FSIN;
 | ||
|     case Intrinsic::sqrt:
 | ||
|       return TargetOpcode::G_FSQRT;
 | ||
|     case Intrinsic::trunc:
 | ||
|       return TargetOpcode::G_INTRINSIC_TRUNC;
 | ||
|     case Intrinsic::readcyclecounter:
 | ||
|       return TargetOpcode::G_READCYCLECOUNTER;
 | ||
|   }
 | ||
|   return Intrinsic::not_intrinsic;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
 | ||
|                                             Intrinsic::ID ID,
 | ||
|                                             MachineIRBuilder &MIRBuilder) {
 | ||
| 
 | ||
|   unsigned Op = getSimpleIntrinsicOpcode(ID);
 | ||
| 
 | ||
|   // Is this a simple intrinsic?
 | ||
|   if (Op == Intrinsic::not_intrinsic)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Yes. Let's translate it.
 | ||
|   SmallVector<llvm::SrcOp, 4> VRegs;
 | ||
|   for (auto &Arg : CI.arg_operands())
 | ||
|     VRegs.push_back(getOrCreateVReg(*Arg));
 | ||
| 
 | ||
|   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
 | ||
|                         MachineInstr::copyFlagsFromInstruction(CI));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
 | ||
|                                            MachineIRBuilder &MIRBuilder) {
 | ||
| 
 | ||
|   // If this is a simple intrinsic (that is, we just need to add a def of
 | ||
|   // a vreg, and uses for each arg operand, then translate it.
 | ||
|   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
 | ||
|     return true;
 | ||
| 
 | ||
|   switch (ID) {
 | ||
|   default:
 | ||
|     break;
 | ||
|   case Intrinsic::lifetime_start:
 | ||
|   case Intrinsic::lifetime_end: {
 | ||
|     // No stack colouring in O0, discard region information.
 | ||
|     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
 | ||
|       return true;
 | ||
| 
 | ||
|     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
 | ||
|                                                   : TargetOpcode::LIFETIME_END;
 | ||
| 
 | ||
|     // Get the underlying objects for the location passed on the lifetime
 | ||
|     // marker.
 | ||
|     SmallVector<const Value *, 4> Allocas;
 | ||
|     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
 | ||
| 
 | ||
|     // Iterate over each underlying object, creating lifetime markers for each
 | ||
|     // static alloca. Quit if we find a non-static alloca.
 | ||
|     for (const Value *V : Allocas) {
 | ||
|       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
 | ||
|       if (!AI)
 | ||
|         continue;
 | ||
| 
 | ||
|       if (!AI->isStaticAlloca())
 | ||
|         return true;
 | ||
| 
 | ||
|       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::dbg_declare: {
 | ||
|     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
 | ||
|     assert(DI.getVariable() && "Missing variable");
 | ||
| 
 | ||
|     const Value *Address = DI.getAddress();
 | ||
|     if (!Address || isa<UndefValue>(Address)) {
 | ||
|       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|     assert(DI.getVariable()->isValidLocationForIntrinsic(
 | ||
|                MIRBuilder.getDebugLoc()) &&
 | ||
|            "Expected inlined-at fields to agree");
 | ||
|     auto AI = dyn_cast<AllocaInst>(Address);
 | ||
|     if (AI && AI->isStaticAlloca()) {
 | ||
|       // Static allocas are tracked at the MF level, no need for DBG_VALUE
 | ||
|       // instructions (in fact, they get ignored if they *do* exist).
 | ||
|       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
 | ||
|                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
 | ||
|     } else {
 | ||
|       // A dbg.declare describes the address of a source variable, so lower it
 | ||
|       // into an indirect DBG_VALUE.
 | ||
|       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
 | ||
|                                        DI.getVariable(), DI.getExpression());
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::dbg_label: {
 | ||
|     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
 | ||
|     assert(DI.getLabel() && "Missing label");
 | ||
| 
 | ||
|     assert(DI.getLabel()->isValidLocationForIntrinsic(
 | ||
|                MIRBuilder.getDebugLoc()) &&
 | ||
|            "Expected inlined-at fields to agree");
 | ||
| 
 | ||
|     MIRBuilder.buildDbgLabel(DI.getLabel());
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::vaend:
 | ||
|     // No target I know of cares about va_end. Certainly no in-tree target
 | ||
|     // does. Simplest intrinsic ever!
 | ||
|     return true;
 | ||
|   case Intrinsic::vastart: {
 | ||
|     auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|     Value *Ptr = CI.getArgOperand(0);
 | ||
|     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
 | ||
| 
 | ||
|     // FIXME: Get alignment
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
 | ||
|         .addMemOperand(MF->getMachineMemOperand(
 | ||
|             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::dbg_value: {
 | ||
|     // This form of DBG_VALUE is target-independent.
 | ||
|     const DbgValueInst &DI = cast<DbgValueInst>(CI);
 | ||
|     const Value *V = DI.getValue();
 | ||
|     assert(DI.getVariable()->isValidLocationForIntrinsic(
 | ||
|                MIRBuilder.getDebugLoc()) &&
 | ||
|            "Expected inlined-at fields to agree");
 | ||
|     if (!V) {
 | ||
|       // Currently the optimizer can produce this; insert an undef to
 | ||
|       // help debugging.  Probably the optimizer should not do this.
 | ||
|       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
 | ||
|     } else if (const auto *CI = dyn_cast<Constant>(V)) {
 | ||
|       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
 | ||
|     } else {
 | ||
|       for (Register Reg : getOrCreateVRegs(*V)) {
 | ||
|         // FIXME: This does not handle register-indirect values at offset 0. The
 | ||
|         // direct/indirect thing shouldn't really be handled by something as
 | ||
|         // implicit as reg+noreg vs reg+imm in the first place, but it seems
 | ||
|         // pretty baked in right now.
 | ||
|         MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
 | ||
|       }
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::uadd_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
 | ||
|   case Intrinsic::sadd_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
 | ||
|   case Intrinsic::usub_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
 | ||
|   case Intrinsic::ssub_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
 | ||
|   case Intrinsic::umul_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
 | ||
|   case Intrinsic::smul_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
 | ||
|   case Intrinsic::fmuladd: {
 | ||
|     const TargetMachine &TM = MF->getTarget();
 | ||
|     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|     Register Dst = getOrCreateVReg(CI);
 | ||
|     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
 | ||
|     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
 | ||
|     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
 | ||
|     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
 | ||
|         TLI.isFMAFasterThanFMulAndFAdd(*MF,
 | ||
|                                        TLI.getValueType(*DL, CI.getType()))) {
 | ||
|       // TODO: Revisit this to see if we should move this part of the
 | ||
|       // lowering to the combiner.
 | ||
|       MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
 | ||
|                           MachineInstr::copyFlagsFromInstruction(CI));
 | ||
|     } else {
 | ||
|       LLT Ty = getLLTForType(*CI.getType(), *DL);
 | ||
|       auto FMul = MIRBuilder.buildFMul(
 | ||
|           Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
 | ||
|       MIRBuilder.buildFAdd(Dst, FMul, Op2,
 | ||
|                            MachineInstr::copyFlagsFromInstruction(CI));
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::memcpy:
 | ||
|   case Intrinsic::memmove:
 | ||
|   case Intrinsic::memset:
 | ||
|     return translateMemFunc(CI, MIRBuilder, ID);
 | ||
|   case Intrinsic::eh_typeid_for: {
 | ||
|     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
 | ||
|     Register Reg = getOrCreateVReg(CI);
 | ||
|     unsigned TypeID = MF->getTypeIDFor(GV);
 | ||
|     MIRBuilder.buildConstant(Reg, TypeID);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::objectsize:
 | ||
|     llvm_unreachable("llvm.objectsize.* should have been lowered already");
 | ||
| 
 | ||
|   case Intrinsic::is_constant:
 | ||
|     llvm_unreachable("llvm.is.constant.* should have been lowered already");
 | ||
| 
 | ||
|   case Intrinsic::stackguard:
 | ||
|     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
 | ||
|     return true;
 | ||
|   case Intrinsic::stackprotector: {
 | ||
|     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
 | ||
|     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|     getStackGuard(GuardVal, MIRBuilder);
 | ||
| 
 | ||
|     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
 | ||
|     int FI = getOrCreateFrameIndex(*Slot);
 | ||
|     MF->getFrameInfo().setStackProtectorIndex(FI);
 | ||
| 
 | ||
|     MIRBuilder.buildStore(
 | ||
|         GuardVal, getOrCreateVReg(*Slot),
 | ||
|         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
 | ||
|                                   MachineMemOperand::MOStore |
 | ||
|                                       MachineMemOperand::MOVolatile,
 | ||
|                                   PtrTy.getSizeInBits() / 8, 8));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::stacksave: {
 | ||
|     // Save the stack pointer to the location provided by the intrinsic.
 | ||
|     Register Reg = getOrCreateVReg(CI);
 | ||
|     Register StackPtr = MF->getSubtarget()
 | ||
|                             .getTargetLowering()
 | ||
|                             ->getStackPointerRegisterToSaveRestore();
 | ||
| 
 | ||
|     // If the target doesn't specify a stack pointer, then fall back.
 | ||
|     if (!StackPtr)
 | ||
|       return false;
 | ||
| 
 | ||
|     MIRBuilder.buildCopy(Reg, StackPtr);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::stackrestore: {
 | ||
|     // Restore the stack pointer from the location provided by the intrinsic.
 | ||
|     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
 | ||
|     Register StackPtr = MF->getSubtarget()
 | ||
|                             .getTargetLowering()
 | ||
|                             ->getStackPointerRegisterToSaveRestore();
 | ||
| 
 | ||
|     // If the target doesn't specify a stack pointer, then fall back.
 | ||
|     if (!StackPtr)
 | ||
|       return false;
 | ||
| 
 | ||
|     MIRBuilder.buildCopy(StackPtr, Reg);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::cttz:
 | ||
|   case Intrinsic::ctlz: {
 | ||
|     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
 | ||
|     bool isTrailing = ID == Intrinsic::cttz;
 | ||
|     unsigned Opcode = isTrailing
 | ||
|                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
 | ||
|                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
 | ||
|                           : Cst->isZero() ? TargetOpcode::G_CTLZ
 | ||
|                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
 | ||
|     MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
 | ||
|                           {getOrCreateVReg(*CI.getArgOperand(0))});
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::invariant_start: {
 | ||
|     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
 | ||
|     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|     MIRBuilder.buildUndef(Undef);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::invariant_end:
 | ||
|     return true;
 | ||
|   case Intrinsic::assume:
 | ||
|   case Intrinsic::var_annotation:
 | ||
|   case Intrinsic::sideeffect:
 | ||
|     // Discard annotate attributes, assumptions, and artificial side-effects.
 | ||
|     return true;
 | ||
|   case Intrinsic::read_register: {
 | ||
|     Value *Arg = CI.getArgOperand(0);
 | ||
|     MIRBuilder
 | ||
|         .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
 | ||
|         .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::write_register: {
 | ||
|     Value *Arg = CI.getArgOperand(0);
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
 | ||
|       .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
 | ||
|       .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
 | ||
|     return true;
 | ||
|   }
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInlineAsm(const CallInst &CI,
 | ||
|                                       MachineIRBuilder &MIRBuilder) {
 | ||
|   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
 | ||
|   StringRef ConstraintStr = IA.getConstraintString();
 | ||
| 
 | ||
|   bool HasOnlyMemoryClobber = false;
 | ||
|   if (!ConstraintStr.empty()) {
 | ||
|     // Until we have full inline assembly support, we just try to handle the
 | ||
|     // very simple case of just "~{memory}" to avoid falling back so often.
 | ||
|     if (ConstraintStr != "~{memory}")
 | ||
|       return false;
 | ||
|     HasOnlyMemoryClobber = true;
 | ||
|   }
 | ||
| 
 | ||
|   unsigned ExtraInfo = 0;
 | ||
|   if (IA.hasSideEffects())
 | ||
|     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
 | ||
|   if (IA.getDialect() == InlineAsm::AD_Intel)
 | ||
|     ExtraInfo |= InlineAsm::Extra_AsmDialect;
 | ||
| 
 | ||
|   // HACK: special casing for ~memory.
 | ||
|   if (HasOnlyMemoryClobber)
 | ||
|     ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
 | ||
| 
 | ||
|   auto Inst = MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
 | ||
|                   .addExternalSymbol(IA.getAsmString().c_str())
 | ||
|                   .addImm(ExtraInfo);
 | ||
|   if (const MDNode *SrcLoc = CI.getMetadata("srcloc"))
 | ||
|     Inst.addMetadata(SrcLoc);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCallSite(const ImmutableCallSite &CS,
 | ||
|                                      MachineIRBuilder &MIRBuilder) {
 | ||
|   const Instruction &I = *CS.getInstruction();
 | ||
|   ArrayRef<Register> Res = getOrCreateVRegs(I);
 | ||
| 
 | ||
|   SmallVector<ArrayRef<Register>, 8> Args;
 | ||
|   Register SwiftInVReg = 0;
 | ||
|   Register SwiftErrorVReg = 0;
 | ||
|   for (auto &Arg : CS.args()) {
 | ||
|     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
 | ||
|       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
 | ||
|       LLT Ty = getLLTForType(*Arg->getType(), *DL);
 | ||
|       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
 | ||
|       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
 | ||
|                                             &I, &MIRBuilder.getMBB(), Arg));
 | ||
|       Args.emplace_back(makeArrayRef(SwiftInVReg));
 | ||
|       SwiftErrorVReg =
 | ||
|           SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg);
 | ||
|       continue;
 | ||
|     }
 | ||
|     Args.push_back(getOrCreateVRegs(*Arg));
 | ||
|   }
 | ||
| 
 | ||
|   // We don't set HasCalls on MFI here yet because call lowering may decide to
 | ||
|   // optimize into tail calls. Instead, we defer that to selection where a final
 | ||
|   // scan is done to check if any instructions are calls.
 | ||
|   bool Success =
 | ||
|       CLI->lowerCall(MIRBuilder, CS, Res, Args, SwiftErrorVReg,
 | ||
|                      [&]() { return getOrCreateVReg(*CS.getCalledValue()); });
 | ||
| 
 | ||
|   // Check if we just inserted a tail call.
 | ||
|   if (Success) {
 | ||
|     assert(!HasTailCall && "Can't tail call return twice from block?");
 | ||
|     const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | ||
|     HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
 | ||
|   }
 | ||
| 
 | ||
|   return Success;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const CallInst &CI = cast<CallInst>(U);
 | ||
|   auto TII = MF->getTarget().getIntrinsicInfo();
 | ||
|   const Function *F = CI.getCalledFunction();
 | ||
| 
 | ||
|   // FIXME: support Windows dllimport function calls.
 | ||
|   if (F && (F->hasDLLImportStorageClass() ||
 | ||
|             (MF->getTarget().getTargetTriple().isOSWindows() &&
 | ||
|              F->hasExternalWeakLinkage())))
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support control flow guard targets.
 | ||
|   if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
 | ||
|     return false;
 | ||
| 
 | ||
|   if (CI.isInlineAsm())
 | ||
|     return translateInlineAsm(CI, MIRBuilder);
 | ||
| 
 | ||
|   Intrinsic::ID ID = Intrinsic::not_intrinsic;
 | ||
|   if (F && F->isIntrinsic()) {
 | ||
|     ID = F->getIntrinsicID();
 | ||
|     if (TII && ID == Intrinsic::not_intrinsic)
 | ||
|       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
 | ||
|   }
 | ||
| 
 | ||
|   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
 | ||
|     return translateCallSite(&CI, MIRBuilder);
 | ||
| 
 | ||
|   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
 | ||
| 
 | ||
|   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
 | ||
|     return true;
 | ||
| 
 | ||
|   ArrayRef<Register> ResultRegs;
 | ||
|   if (!CI.getType()->isVoidTy())
 | ||
|     ResultRegs = getOrCreateVRegs(CI);
 | ||
| 
 | ||
|   // Ignore the callsite attributes. Backend code is most likely not expecting
 | ||
|   // an intrinsic to sometimes have side effects and sometimes not.
 | ||
|   MachineInstrBuilder MIB =
 | ||
|       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
 | ||
|   if (isa<FPMathOperator>(CI))
 | ||
|     MIB->copyIRFlags(CI);
 | ||
| 
 | ||
|   for (auto &Arg : enumerate(CI.arg_operands())) {
 | ||
|     // Some intrinsics take metadata parameters. Reject them.
 | ||
|     if (isa<MetadataAsValue>(Arg.value()))
 | ||
|       return false;
 | ||
| 
 | ||
|     // If this is required to be an immediate, don't materialize it in a
 | ||
|     // register.
 | ||
|     if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
 | ||
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
 | ||
|         // imm arguments are more convenient than cimm (and realistically
 | ||
|         // probably sufficient), so use them.
 | ||
|         assert(CI->getBitWidth() <= 64 &&
 | ||
|                "large intrinsic immediates not handled");
 | ||
|         MIB.addImm(CI->getSExtValue());
 | ||
|       } else {
 | ||
|         MIB.addFPImm(cast<ConstantFP>(Arg.value()));
 | ||
|       }
 | ||
|     } else {
 | ||
|       ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
 | ||
|       if (VRegs.size() > 1)
 | ||
|         return false;
 | ||
|       MIB.addUse(VRegs[0]);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Add a MachineMemOperand if it is a target mem intrinsic.
 | ||
|   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   TargetLowering::IntrinsicInfo Info;
 | ||
|   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
 | ||
|   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
 | ||
|     MaybeAlign Align = Info.align;
 | ||
|     if (!Align)
 | ||
|       Align = MaybeAlign(
 | ||
|           DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext())));
 | ||
| 
 | ||
|     uint64_t Size = Info.memVT.getStoreSize();
 | ||
|     MIB.addMemOperand(MF->getMachineMemOperand(
 | ||
|         MachinePointerInfo(Info.ptrVal), Info.flags, Size, Align->value()));
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInvoke(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   const InvokeInst &I = cast<InvokeInst>(U);
 | ||
|   MCContext &Context = MF->getContext();
 | ||
| 
 | ||
|   const BasicBlock *ReturnBB = I.getSuccessor(0);
 | ||
|   const BasicBlock *EHPadBB = I.getSuccessor(1);
 | ||
| 
 | ||
|   const Value *Callee = I.getCalledValue();
 | ||
|   const Function *Fn = dyn_cast<Function>(Callee);
 | ||
|   if (isa<InlineAsm>(Callee))
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support invoking patchpoint and statepoint intrinsics.
 | ||
|   if (Fn && Fn->isIntrinsic())
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support whatever these are.
 | ||
|   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support control flow guard targets.
 | ||
|   if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support Windows exception handling.
 | ||
|   if (!isa<LandingPadInst>(EHPadBB->front()))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
 | ||
|   // the region covered by the try.
 | ||
|   MCSymbol *BeginSymbol = Context.createTempSymbol();
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
 | ||
| 
 | ||
|   if (!translateCallSite(&I, MIRBuilder))
 | ||
|     return false;
 | ||
| 
 | ||
|   MCSymbol *EndSymbol = Context.createTempSymbol();
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
 | ||
| 
 | ||
|   // FIXME: track probabilities.
 | ||
|   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
 | ||
|                     &ReturnMBB = getMBB(*ReturnBB);
 | ||
|   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
 | ||
|   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
 | ||
|   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
 | ||
|   MIRBuilder.buildBr(ReturnMBB);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCallBr(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   // FIXME: Implement this.
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateLandingPad(const User &U,
 | ||
|                                        MachineIRBuilder &MIRBuilder) {
 | ||
|   const LandingPadInst &LP = cast<LandingPadInst>(U);
 | ||
| 
 | ||
|   MachineBasicBlock &MBB = MIRBuilder.getMBB();
 | ||
| 
 | ||
|   MBB.setIsEHPad();
 | ||
| 
 | ||
|   // If there aren't registers to copy the values into (e.g., during SjLj
 | ||
|   // exceptions), then don't bother.
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
 | ||
|   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
 | ||
|       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   // If landingpad's return type is token type, we don't create DAG nodes
 | ||
|   // for its exception pointer and selector value. The extraction of exception
 | ||
|   // pointer or selector value from token type landingpads is not currently
 | ||
|   // supported.
 | ||
|   if (LP.getType()->isTokenTy())
 | ||
|     return true;
 | ||
| 
 | ||
|   // Add a label to mark the beginning of the landing pad.  Deletion of the
 | ||
|   // landing pad can thus be detected via the MachineModuleInfo.
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
 | ||
|     .addSym(MF->addLandingPad(&MBB));
 | ||
| 
 | ||
|   LLT Ty = getLLTForType(*LP.getType(), *DL);
 | ||
|   Register Undef = MRI->createGenericVirtualRegister(Ty);
 | ||
|   MIRBuilder.buildUndef(Undef);
 | ||
| 
 | ||
|   SmallVector<LLT, 2> Tys;
 | ||
|   for (Type *Ty : cast<StructType>(LP.getType())->elements())
 | ||
|     Tys.push_back(getLLTForType(*Ty, *DL));
 | ||
|   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
 | ||
| 
 | ||
|   // Mark exception register as live in.
 | ||
|   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
 | ||
|   if (!ExceptionReg)
 | ||
|     return false;
 | ||
| 
 | ||
|   MBB.addLiveIn(ExceptionReg);
 | ||
|   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
 | ||
|   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
 | ||
| 
 | ||
|   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
 | ||
|   if (!SelectorReg)
 | ||
|     return false;
 | ||
| 
 | ||
|   MBB.addLiveIn(SelectorReg);
 | ||
|   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
 | ||
|   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
 | ||
|   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateAlloca(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   auto &AI = cast<AllocaInst>(U);
 | ||
| 
 | ||
|   if (AI.isSwiftError())
 | ||
|     return true;
 | ||
| 
 | ||
|   if (AI.isStaticAlloca()) {
 | ||
|     Register Res = getOrCreateVReg(AI);
 | ||
|     int FI = getOrCreateFrameIndex(AI);
 | ||
|     MIRBuilder.buildFrameIndex(Res, FI);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // FIXME: support stack probing for Windows.
 | ||
|   if (MF->getTarget().getTargetTriple().isOSWindows())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Now we're in the harder dynamic case.
 | ||
|   Type *Ty = AI.getAllocatedType();
 | ||
|   unsigned Align =
 | ||
|       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
 | ||
| 
 | ||
|   Register NumElts = getOrCreateVReg(*AI.getArraySize());
 | ||
| 
 | ||
|   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
 | ||
|   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
 | ||
|   if (MRI->getType(NumElts) != IntPtrTy) {
 | ||
|     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
 | ||
|     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
 | ||
|     NumElts = ExtElts;
 | ||
|   }
 | ||
| 
 | ||
|   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
 | ||
|   Register TySize =
 | ||
|       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
 | ||
|   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
 | ||
| 
 | ||
|   unsigned StackAlign =
 | ||
|       MF->getSubtarget().getFrameLowering()->getStackAlignment();
 | ||
|   if (Align <= StackAlign)
 | ||
|     Align = 0;
 | ||
| 
 | ||
|   // Round the size of the allocation up to the stack alignment size
 | ||
|   // by add SA-1 to the size. This doesn't overflow because we're computing
 | ||
|   // an address inside an alloca.
 | ||
|   auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign - 1);
 | ||
|   auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
 | ||
|                                       MachineInstr::NoUWrap);
 | ||
|   auto AlignCst =
 | ||
|       MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign - 1));
 | ||
|   auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
 | ||
| 
 | ||
|   MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Align);
 | ||
| 
 | ||
|   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
 | ||
|   assert(MF->getFrameInfo().hasVarSizedObjects());
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   // FIXME: We may need more info about the type. Because of how LLT works,
 | ||
|   // we're completely discarding the i64/double distinction here (amongst
 | ||
|   // others). Fortunately the ABIs I know of where that matters don't use va_arg
 | ||
|   // anyway but that's not guaranteed.
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
 | ||
|                         {getOrCreateVReg(*U.getOperand(0)),
 | ||
|                          uint64_t(DL->getABITypeAlignment(U.getType()))});
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInsertElement(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   // If it is a <1 x Ty> vector, use the scalar as it is
 | ||
|   // not a legal vector type in LLT.
 | ||
|   if (U.getType()->getVectorNumElements() == 1) {
 | ||
|     Register Elt = getOrCreateVReg(*U.getOperand(1));
 | ||
|     auto &Regs = *VMap.getVRegs(U);
 | ||
|     if (Regs.empty()) {
 | ||
|       Regs.push_back(Elt);
 | ||
|       VMap.getOffsets(U)->push_back(0);
 | ||
|     } else {
 | ||
|       MIRBuilder.buildCopy(Regs[0], Elt);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   Register Res = getOrCreateVReg(U);
 | ||
|   Register Val = getOrCreateVReg(*U.getOperand(0));
 | ||
|   Register Elt = getOrCreateVReg(*U.getOperand(1));
 | ||
|   Register Idx = getOrCreateVReg(*U.getOperand(2));
 | ||
|   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateExtractElement(const User &U,
 | ||
|                                            MachineIRBuilder &MIRBuilder) {
 | ||
|   // If it is a <1 x Ty> vector, use the scalar as it is
 | ||
|   // not a legal vector type in LLT.
 | ||
|   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
 | ||
|     Register Elt = getOrCreateVReg(*U.getOperand(0));
 | ||
|     auto &Regs = *VMap.getVRegs(U);
 | ||
|     if (Regs.empty()) {
 | ||
|       Regs.push_back(Elt);
 | ||
|       VMap.getOffsets(U)->push_back(0);
 | ||
|     } else {
 | ||
|       MIRBuilder.buildCopy(Regs[0], Elt);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   Register Res = getOrCreateVReg(U);
 | ||
|   Register Val = getOrCreateVReg(*U.getOperand(0));
 | ||
|   const auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
 | ||
|   Register Idx;
 | ||
|   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
 | ||
|     if (CI->getBitWidth() != PreferredVecIdxWidth) {
 | ||
|       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
 | ||
|       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
 | ||
|       Idx = getOrCreateVReg(*NewIdxCI);
 | ||
|     }
 | ||
|   }
 | ||
|   if (!Idx)
 | ||
|     Idx = getOrCreateVReg(*U.getOperand(1));
 | ||
|   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
 | ||
|     const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
 | ||
|     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
 | ||
|   }
 | ||
|   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateShuffleVector(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   SmallVector<int, 8> Mask;
 | ||
|   ShuffleVectorInst::getShuffleMask(cast<Constant>(U.getOperand(2)), Mask);
 | ||
|   ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
 | ||
|   MIRBuilder
 | ||
|       .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
 | ||
|                   {getOrCreateVReg(*U.getOperand(0)),
 | ||
|                    getOrCreateVReg(*U.getOperand(1))})
 | ||
|       .addShuffleMask(MaskAlloc);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const PHINode &PI = cast<PHINode>(U);
 | ||
| 
 | ||
|   SmallVector<MachineInstr *, 4> Insts;
 | ||
|   for (auto Reg : getOrCreateVRegs(PI)) {
 | ||
|     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
 | ||
|     Insts.push_back(MIB.getInstr());
 | ||
|   }
 | ||
| 
 | ||
|   PendingPHIs.emplace_back(&PI, std::move(Insts));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateAtomicCmpXchg(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
 | ||
| 
 | ||
|   if (I.isWeak())
 | ||
|     return false;
 | ||
| 
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
 | ||
| 
 | ||
|   Type *ResType = I.getType();
 | ||
|   Type *ValType = ResType->Type::getStructElementType(0);
 | ||
| 
 | ||
|   auto Res = getOrCreateVRegs(I);
 | ||
|   Register OldValRes = Res[0];
 | ||
|   Register SuccessRes = Res[1];
 | ||
|   Register Addr = getOrCreateVReg(*I.getPointerOperand());
 | ||
|   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
 | ||
|   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
 | ||
| 
 | ||
|   AAMDNodes AAMetadata;
 | ||
|   I.getAAMetadata(AAMetadata);
 | ||
| 
 | ||
|   MIRBuilder.buildAtomicCmpXchgWithSuccess(
 | ||
|       OldValRes, SuccessRes, Addr, Cmp, NewVal,
 | ||
|       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
 | ||
|                                 Flags, DL->getTypeStoreSize(ValType),
 | ||
|                                 getMemOpAlignment(I), AAMetadata, nullptr,
 | ||
|                                 I.getSyncScopeID(), I.getSuccessOrdering(),
 | ||
|                                 I.getFailureOrdering()));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateAtomicRMW(const User &U,
 | ||
|                                       MachineIRBuilder &MIRBuilder) {
 | ||
|   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
 | ||
| 
 | ||
|   Type *ResType = I.getType();
 | ||
| 
 | ||
|   Register Res = getOrCreateVReg(I);
 | ||
|   Register Addr = getOrCreateVReg(*I.getPointerOperand());
 | ||
|   Register Val = getOrCreateVReg(*I.getValOperand());
 | ||
| 
 | ||
|   unsigned Opcode = 0;
 | ||
|   switch (I.getOperation()) {
 | ||
|   default:
 | ||
|     return false;
 | ||
|   case AtomicRMWInst::Xchg:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Add:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Sub:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::And:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_AND;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Nand:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Or:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_OR;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Xor:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Max:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Min:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::UMax:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::UMin:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::FAdd:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_FADD;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::FSub:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   AAMDNodes AAMetadata;
 | ||
|   I.getAAMetadata(AAMetadata);
 | ||
| 
 | ||
|   MIRBuilder.buildAtomicRMW(
 | ||
|       Opcode, Res, Addr, Val,
 | ||
|       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
 | ||
|                                 Flags, DL->getTypeStoreSize(ResType),
 | ||
|                                 getMemOpAlignment(I), AAMetadata,
 | ||
|                                 nullptr, I.getSyncScopeID(), I.getOrdering()));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateFence(const User &U,
 | ||
|                                   MachineIRBuilder &MIRBuilder) {
 | ||
|   const FenceInst &Fence = cast<FenceInst>(U);
 | ||
|   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
 | ||
|                         Fence.getSyncScopeID());
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::finishPendingPhis() {
 | ||
| #ifndef NDEBUG
 | ||
|   DILocationVerifier Verifier;
 | ||
|   GISelObserverWrapper WrapperObserver(&Verifier);
 | ||
|   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
 | ||
| #endif // ifndef NDEBUG
 | ||
|   for (auto &Phi : PendingPHIs) {
 | ||
|     const PHINode *PI = Phi.first;
 | ||
|     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
 | ||
|     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
 | ||
|     EntryBuilder->setDebugLoc(PI->getDebugLoc());
 | ||
| #ifndef NDEBUG
 | ||
|     Verifier.setCurrentInst(PI);
 | ||
| #endif // ifndef NDEBUG
 | ||
| 
 | ||
|     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
 | ||
|     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
 | ||
|       auto IRPred = PI->getIncomingBlock(i);
 | ||
|       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
 | ||
|       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
 | ||
|         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
 | ||
|           continue;
 | ||
|         SeenPreds.insert(Pred);
 | ||
|         for (unsigned j = 0; j < ValRegs.size(); ++j) {
 | ||
|           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
 | ||
|           MIB.addUse(ValRegs[j]);
 | ||
|           MIB.addMBB(Pred);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::valueIsSplit(const Value &V,
 | ||
|                                 SmallVectorImpl<uint64_t> *Offsets) {
 | ||
|   SmallVector<LLT, 4> SplitTys;
 | ||
|   if (Offsets && !Offsets->empty())
 | ||
|     Offsets->clear();
 | ||
|   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
 | ||
|   return SplitTys.size() > 1;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translate(const Instruction &Inst) {
 | ||
|   CurBuilder->setDebugLoc(Inst.getDebugLoc());
 | ||
|   // We only emit constants into the entry block from here. To prevent jumpy
 | ||
|   // debug behaviour set the line to 0.
 | ||
|   if (const DebugLoc &DL = Inst.getDebugLoc())
 | ||
|     EntryBuilder->setDebugLoc(
 | ||
|         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
 | ||
|   else
 | ||
|     EntryBuilder->setDebugLoc(DebugLoc());
 | ||
| 
 | ||
|   switch (Inst.getOpcode()) {
 | ||
| #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
 | ||
|   case Instruction::OPCODE:                                                    \
 | ||
|     return translate##OPCODE(Inst, *CurBuilder.get());
 | ||
| #include "llvm/IR/Instruction.def"
 | ||
|   default:
 | ||
|     return false;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translate(const Constant &C, Register Reg) {
 | ||
|   if (auto CI = dyn_cast<ConstantInt>(&C))
 | ||
|     EntryBuilder->buildConstant(Reg, *CI);
 | ||
|   else if (auto CF = dyn_cast<ConstantFP>(&C))
 | ||
|     EntryBuilder->buildFConstant(Reg, *CF);
 | ||
|   else if (isa<UndefValue>(C))
 | ||
|     EntryBuilder->buildUndef(Reg);
 | ||
|   else if (isa<ConstantPointerNull>(C)) {
 | ||
|     // As we are trying to build a constant val of 0 into a pointer,
 | ||
|     // insert a cast to make them correct with respect to types.
 | ||
|     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
 | ||
|     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
 | ||
|     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
 | ||
|     Register ZeroReg = getOrCreateVReg(*ZeroVal);
 | ||
|     EntryBuilder->buildCast(Reg, ZeroReg);
 | ||
|   } else if (auto GV = dyn_cast<GlobalValue>(&C))
 | ||
|     EntryBuilder->buildGlobalValue(Reg, GV);
 | ||
|   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
 | ||
|     if (!CAZ->getType()->isVectorTy())
 | ||
|       return false;
 | ||
|     // Return the scalar if it is a <1 x Ty> vector.
 | ||
|     if (CAZ->getNumElements() == 1)
 | ||
|       return translate(*CAZ->getElementValue(0u), Reg);
 | ||
|     SmallVector<Register, 4> Ops;
 | ||
|     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
 | ||
|       Constant &Elt = *CAZ->getElementValue(i);
 | ||
|       Ops.push_back(getOrCreateVReg(Elt));
 | ||
|     }
 | ||
|     EntryBuilder->buildBuildVector(Reg, Ops);
 | ||
|   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
 | ||
|     // Return the scalar if it is a <1 x Ty> vector.
 | ||
|     if (CV->getNumElements() == 1)
 | ||
|       return translate(*CV->getElementAsConstant(0), Reg);
 | ||
|     SmallVector<Register, 4> Ops;
 | ||
|     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
 | ||
|       Constant &Elt = *CV->getElementAsConstant(i);
 | ||
|       Ops.push_back(getOrCreateVReg(Elt));
 | ||
|     }
 | ||
|     EntryBuilder->buildBuildVector(Reg, Ops);
 | ||
|   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
 | ||
|     switch(CE->getOpcode()) {
 | ||
| #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
 | ||
|   case Instruction::OPCODE:                                                    \
 | ||
|     return translate##OPCODE(*CE, *EntryBuilder.get());
 | ||
| #include "llvm/IR/Instruction.def"
 | ||
|     default:
 | ||
|       return false;
 | ||
|     }
 | ||
|   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
 | ||
|     if (CV->getNumOperands() == 1)
 | ||
|       return translate(*CV->getOperand(0), Reg);
 | ||
|     SmallVector<Register, 4> Ops;
 | ||
|     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
 | ||
|       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
 | ||
|     }
 | ||
|     EntryBuilder->buildBuildVector(Reg, Ops);
 | ||
|   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
 | ||
|     EntryBuilder->buildBlockAddress(Reg, BA);
 | ||
|   } else
 | ||
|     return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::finalizeBasicBlock() {
 | ||
|   for (auto &JTCase : SL->JTCases) {
 | ||
|     // Emit header first, if it wasn't already emitted.
 | ||
|     if (!JTCase.first.Emitted)
 | ||
|       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
 | ||
| 
 | ||
|     emitJumpTable(JTCase.second, JTCase.second.MBB);
 | ||
|   }
 | ||
|   SL->JTCases.clear();
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::finalizeFunction() {
 | ||
|   // Release the memory used by the different maps we
 | ||
|   // needed during the translation.
 | ||
|   PendingPHIs.clear();
 | ||
|   VMap.reset();
 | ||
|   FrameIndices.clear();
 | ||
|   MachinePreds.clear();
 | ||
|   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
 | ||
|   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
 | ||
|   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
 | ||
|   EntryBuilder.reset();
 | ||
|   CurBuilder.reset();
 | ||
|   FuncInfo.clear();
 | ||
| }
 | ||
| 
 | ||
| /// Returns true if a BasicBlock \p BB within a variadic function contains a
 | ||
| /// variadic musttail call.
 | ||
| static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
 | ||
|   if (!IsVarArg)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Walk the block backwards, because tail calls usually only appear at the end
 | ||
|   // of a block.
 | ||
|   return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
 | ||
|     const auto *CI = dyn_cast<CallInst>(&I);
 | ||
|     return CI && CI->isMustTailCall();
 | ||
|   });
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
 | ||
|   MF = &CurMF;
 | ||
|   const Function &F = MF->getFunction();
 | ||
|   if (F.empty())
 | ||
|     return false;
 | ||
|   GISelCSEAnalysisWrapper &Wrapper =
 | ||
|       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
 | ||
|   // Set the CSEConfig and run the analysis.
 | ||
|   GISelCSEInfo *CSEInfo = nullptr;
 | ||
|   TPC = &getAnalysis<TargetPassConfig>();
 | ||
|   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
 | ||
|                        ? EnableCSEInIRTranslator
 | ||
|                        : TPC->isGISelCSEEnabled();
 | ||
| 
 | ||
|   if (EnableCSE) {
 | ||
|     EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
 | ||
|     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
 | ||
|     EntryBuilder->setCSEInfo(CSEInfo);
 | ||
|     CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
 | ||
|     CurBuilder->setCSEInfo(CSEInfo);
 | ||
|   } else {
 | ||
|     EntryBuilder = std::make_unique<MachineIRBuilder>();
 | ||
|     CurBuilder = std::make_unique<MachineIRBuilder>();
 | ||
|   }
 | ||
|   CLI = MF->getSubtarget().getCallLowering();
 | ||
|   CurBuilder->setMF(*MF);
 | ||
|   EntryBuilder->setMF(*MF);
 | ||
|   MRI = &MF->getRegInfo();
 | ||
|   DL = &F.getParent()->getDataLayout();
 | ||
|   ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
 | ||
|   FuncInfo.MF = MF;
 | ||
|   FuncInfo.BPI = nullptr;
 | ||
|   const auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   const TargetMachine &TM = MF->getTarget();
 | ||
|   SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
 | ||
|   SL->init(TLI, TM, *DL);
 | ||
| 
 | ||
|   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
 | ||
| 
 | ||
|   assert(PendingPHIs.empty() && "stale PHIs");
 | ||
| 
 | ||
|   if (!DL->isLittleEndian()) {
 | ||
|     // Currently we don't properly handle big endian code.
 | ||
|     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                F.getSubprogram(), &F.getEntryBlock());
 | ||
|     R << "unable to translate in big endian mode";
 | ||
|     reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|   }
 | ||
| 
 | ||
|   // Release the per-function state when we return, whether we succeeded or not.
 | ||
|   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
 | ||
| 
 | ||
|   // Setup a separate basic-block for the arguments and constants
 | ||
|   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
 | ||
|   MF->push_back(EntryBB);
 | ||
|   EntryBuilder->setMBB(*EntryBB);
 | ||
| 
 | ||
|   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
 | ||
|   SwiftError.setFunction(CurMF);
 | ||
|   SwiftError.createEntriesInEntryBlock(DbgLoc);
 | ||
| 
 | ||
|   bool IsVarArg = F.isVarArg();
 | ||
|   bool HasMustTailInVarArgFn = false;
 | ||
| 
 | ||
|   // Create all blocks, in IR order, to preserve the layout.
 | ||
|   for (const BasicBlock &BB: F) {
 | ||
|     auto *&MBB = BBToMBB[&BB];
 | ||
| 
 | ||
|     MBB = MF->CreateMachineBasicBlock(&BB);
 | ||
|     MF->push_back(MBB);
 | ||
| 
 | ||
|     if (BB.hasAddressTaken())
 | ||
|       MBB->setHasAddressTaken();
 | ||
| 
 | ||
|     if (!HasMustTailInVarArgFn)
 | ||
|       HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
 | ||
|   }
 | ||
| 
 | ||
|   MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
 | ||
| 
 | ||
|   // Make our arguments/constants entry block fallthrough to the IR entry block.
 | ||
|   EntryBB->addSuccessor(&getMBB(F.front()));
 | ||
| 
 | ||
|   // Lower the actual args into this basic block.
 | ||
|   SmallVector<ArrayRef<Register>, 8> VRegArgs;
 | ||
|   for (const Argument &Arg: F.args()) {
 | ||
|     if (DL->getTypeStoreSize(Arg.getType()) == 0)
 | ||
|       continue; // Don't handle zero sized types.
 | ||
|     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
 | ||
|     VRegArgs.push_back(VRegs);
 | ||
| 
 | ||
|     if (Arg.hasSwiftErrorAttr()) {
 | ||
|       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
 | ||
|       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
 | ||
|     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                F.getSubprogram(), &F.getEntryBlock());
 | ||
|     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
 | ||
|     reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   // Need to visit defs before uses when translating instructions.
 | ||
|   GISelObserverWrapper WrapperObserver;
 | ||
|   if (EnableCSE && CSEInfo)
 | ||
|     WrapperObserver.addObserver(CSEInfo);
 | ||
|   {
 | ||
|     ReversePostOrderTraversal<const Function *> RPOT(&F);
 | ||
| #ifndef NDEBUG
 | ||
|     DILocationVerifier Verifier;
 | ||
|     WrapperObserver.addObserver(&Verifier);
 | ||
| #endif // ifndef NDEBUG
 | ||
|     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
 | ||
|     RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
 | ||
|     for (const BasicBlock *BB : RPOT) {
 | ||
|       MachineBasicBlock &MBB = getMBB(*BB);
 | ||
|       // Set the insertion point of all the following translations to
 | ||
|       // the end of this basic block.
 | ||
|       CurBuilder->setMBB(MBB);
 | ||
|       HasTailCall = false;
 | ||
|       for (const Instruction &Inst : *BB) {
 | ||
|         // If we translated a tail call in the last step, then we know
 | ||
|         // everything after the call is either a return, or something that is
 | ||
|         // handled by the call itself. (E.g. a lifetime marker or assume
 | ||
|         // intrinsic.) In this case, we should stop translating the block and
 | ||
|         // move on.
 | ||
|         if (HasTailCall)
 | ||
|           break;
 | ||
| #ifndef NDEBUG
 | ||
|         Verifier.setCurrentInst(&Inst);
 | ||
| #endif // ifndef NDEBUG
 | ||
|         if (translate(Inst))
 | ||
|           continue;
 | ||
| 
 | ||
|         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                    Inst.getDebugLoc(), BB);
 | ||
|         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
 | ||
| 
 | ||
|         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
 | ||
|           std::string InstStrStorage;
 | ||
|           raw_string_ostream InstStr(InstStrStorage);
 | ||
|           InstStr << Inst;
 | ||
| 
 | ||
|           R << ": '" << InstStr.str() << "'";
 | ||
|         }
 | ||
| 
 | ||
|         reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|         return false;
 | ||
|       }
 | ||
| 
 | ||
|       finalizeBasicBlock();
 | ||
|     }
 | ||
| #ifndef NDEBUG
 | ||
|     WrapperObserver.removeObserver(&Verifier);
 | ||
| #endif
 | ||
|   }
 | ||
| 
 | ||
|   finishPendingPhis();
 | ||
| 
 | ||
|   SwiftError.propagateVRegs();
 | ||
| 
 | ||
|   // Merge the argument lowering and constants block with its single
 | ||
|   // successor, the LLVM-IR entry block.  We want the basic block to
 | ||
|   // be maximal.
 | ||
|   assert(EntryBB->succ_size() == 1 &&
 | ||
|          "Custom BB used for lowering should have only one successor");
 | ||
|   // Get the successor of the current entry block.
 | ||
|   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
 | ||
|   assert(NewEntryBB.pred_size() == 1 &&
 | ||
|          "LLVM-IR entry block has a predecessor!?");
 | ||
|   // Move all the instruction from the current entry block to the
 | ||
|   // new entry block.
 | ||
|   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
 | ||
|                     EntryBB->end());
 | ||
| 
 | ||
|   // Update the live-in information for the new entry block.
 | ||
|   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
 | ||
|     NewEntryBB.addLiveIn(LiveIn);
 | ||
|   NewEntryBB.sortUniqueLiveIns();
 | ||
| 
 | ||
|   // Get rid of the now empty basic block.
 | ||
|   EntryBB->removeSuccessor(&NewEntryBB);
 | ||
|   MF->remove(EntryBB);
 | ||
|   MF->DeleteMachineBasicBlock(EntryBB);
 | ||
| 
 | ||
|   assert(&MF->front() == &NewEntryBB &&
 | ||
|          "New entry wasn't next in the list of basic block!");
 | ||
| 
 | ||
|   // Initialize stack protector information.
 | ||
|   StackProtector &SP = getAnalysis<StackProtector>();
 | ||
|   SP.copyToMachineFrameInfo(MF->getFrameInfo());
 | ||
| 
 | ||
|   return false;
 | ||
| }
 |