543 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			543 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/CodeGen/GlobalISel/Utils.cpp -------------------------*- C++ -*-==//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file This file implements the utility functions used by the GlobalISel
 | |
| /// pipeline.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/GlobalISel/Utils.h"
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/StackProtector.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| 
 | |
| #define DEBUG_TYPE "globalisel-utils"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| Register llvm::constrainRegToClass(MachineRegisterInfo &MRI,
 | |
|                                    const TargetInstrInfo &TII,
 | |
|                                    const RegisterBankInfo &RBI, Register Reg,
 | |
|                                    const TargetRegisterClass &RegClass) {
 | |
|   if (!RBI.constrainGenericRegister(Reg, RegClass, MRI))
 | |
|     return MRI.createVirtualRegister(&RegClass);
 | |
| 
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| Register llvm::constrainOperandRegClass(
 | |
|     const MachineFunction &MF, const TargetRegisterInfo &TRI,
 | |
|     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
 | |
|     const RegisterBankInfo &RBI, MachineInstr &InsertPt,
 | |
|     const TargetRegisterClass &RegClass, const MachineOperand &RegMO) {
 | |
|   Register Reg = RegMO.getReg();
 | |
|   // Assume physical registers are properly constrained.
 | |
|   assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
 | |
| 
 | |
|   Register ConstrainedReg = constrainRegToClass(MRI, TII, RBI, Reg, RegClass);
 | |
|   // If we created a new virtual register because the class is not compatible
 | |
|   // then create a copy between the new and the old register.
 | |
|   if (ConstrainedReg != Reg) {
 | |
|     MachineBasicBlock::iterator InsertIt(&InsertPt);
 | |
|     MachineBasicBlock &MBB = *InsertPt.getParent();
 | |
|     if (RegMO.isUse()) {
 | |
|       BuildMI(MBB, InsertIt, InsertPt.getDebugLoc(),
 | |
|               TII.get(TargetOpcode::COPY), ConstrainedReg)
 | |
|           .addReg(Reg);
 | |
|     } else {
 | |
|       assert(RegMO.isDef() && "Must be a definition");
 | |
|       BuildMI(MBB, std::next(InsertIt), InsertPt.getDebugLoc(),
 | |
|               TII.get(TargetOpcode::COPY), Reg)
 | |
|           .addReg(ConstrainedReg);
 | |
|     }
 | |
|   } else {
 | |
|     if (GISelChangeObserver *Observer = MF.getObserver()) {
 | |
|       if (!RegMO.isDef()) {
 | |
|         MachineInstr *RegDef = MRI.getVRegDef(Reg);
 | |
|         Observer->changedInstr(*RegDef);
 | |
|       }
 | |
|       Observer->changingAllUsesOfReg(MRI, Reg);
 | |
|       Observer->finishedChangingAllUsesOfReg();
 | |
|     }
 | |
|   }
 | |
|   return ConstrainedReg;
 | |
| }
 | |
| 
 | |
| Register llvm::constrainOperandRegClass(
 | |
|     const MachineFunction &MF, const TargetRegisterInfo &TRI,
 | |
|     MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
 | |
|     const RegisterBankInfo &RBI, MachineInstr &InsertPt, const MCInstrDesc &II,
 | |
|     const MachineOperand &RegMO, unsigned OpIdx) {
 | |
|   Register Reg = RegMO.getReg();
 | |
|   // Assume physical registers are properly constrained.
 | |
|   assert(Register::isVirtualRegister(Reg) && "PhysReg not implemented");
 | |
| 
 | |
|   const TargetRegisterClass *RegClass = TII.getRegClass(II, OpIdx, &TRI, MF);
 | |
|   // Some of the target independent instructions, like COPY, may not impose any
 | |
|   // register class constraints on some of their operands: If it's a use, we can
 | |
|   // skip constraining as the instruction defining the register would constrain
 | |
|   // it.
 | |
| 
 | |
|   // We can't constrain unallocatable register classes, because we can't create
 | |
|   // virtual registers for these classes, so we need to let targets handled this
 | |
|   // case.
 | |
|   if (RegClass && !RegClass->isAllocatable())
 | |
|     RegClass = TRI.getConstrainedRegClassForOperand(RegMO, MRI);
 | |
| 
 | |
|   if (!RegClass) {
 | |
|     assert((!isTargetSpecificOpcode(II.getOpcode()) || RegMO.isUse()) &&
 | |
|            "Register class constraint is required unless either the "
 | |
|            "instruction is target independent or the operand is a use");
 | |
|     // FIXME: Just bailing out like this here could be not enough, unless we
 | |
|     // expect the users of this function to do the right thing for PHIs and
 | |
|     // COPY:
 | |
|     //   v1 = COPY v0
 | |
|     //   v2 = COPY v1
 | |
|     // v1 here may end up not being constrained at all. Please notice that to
 | |
|     // reproduce the issue we likely need a destination pattern of a selection
 | |
|     // rule producing such extra copies, not just an input GMIR with them as
 | |
|     // every existing target using selectImpl handles copies before calling it
 | |
|     // and they never reach this function.
 | |
|     return Reg;
 | |
|   }
 | |
|   return constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt, *RegClass,
 | |
|                                   RegMO);
 | |
| }
 | |
| 
 | |
| bool llvm::constrainSelectedInstRegOperands(MachineInstr &I,
 | |
|                                             const TargetInstrInfo &TII,
 | |
|                                             const TargetRegisterInfo &TRI,
 | |
|                                             const RegisterBankInfo &RBI) {
 | |
|   assert(!isPreISelGenericOpcode(I.getOpcode()) &&
 | |
|          "A selected instruction is expected");
 | |
|   MachineBasicBlock &MBB = *I.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   for (unsigned OpI = 0, OpE = I.getNumExplicitOperands(); OpI != OpE; ++OpI) {
 | |
|     MachineOperand &MO = I.getOperand(OpI);
 | |
| 
 | |
|     // There's nothing to be done on non-register operands.
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Converting operand: " << MO << '\n');
 | |
|     assert(MO.isReg() && "Unsupported non-reg operand");
 | |
| 
 | |
|     Register Reg = MO.getReg();
 | |
|     // Physical registers don't need to be constrained.
 | |
|     if (Register::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     // Register operands with a value of 0 (e.g. predicate operands) don't need
 | |
|     // to be constrained.
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     // If the operand is a vreg, we should constrain its regclass, and only
 | |
|     // insert COPYs if that's impossible.
 | |
|     // constrainOperandRegClass does that for us.
 | |
|     MO.setReg(constrainOperandRegClass(MF, TRI, MRI, TII, RBI, I, I.getDesc(),
 | |
|                                        MO, OpI));
 | |
| 
 | |
|     // Tie uses to defs as indicated in MCInstrDesc if this hasn't already been
 | |
|     // done.
 | |
|     if (MO.isUse()) {
 | |
|       int DefIdx = I.getDesc().getOperandConstraint(OpI, MCOI::TIED_TO);
 | |
|       if (DefIdx != -1 && !I.isRegTiedToUseOperand(DefIdx))
 | |
|         I.tieOperands(DefIdx, OpI);
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::canReplaceReg(Register DstReg, Register SrcReg,
 | |
|                          MachineRegisterInfo &MRI) {
 | |
|   // Give up if either DstReg or SrcReg  is a physical register.
 | |
|   if (DstReg.isPhysical() || SrcReg.isPhysical())
 | |
|     return false;
 | |
|   // Give up if the types don't match.
 | |
|   if (MRI.getType(DstReg) != MRI.getType(SrcReg))
 | |
|     return false;
 | |
|   // Replace if either DstReg has no constraints or the register
 | |
|   // constraints match.
 | |
|   return !MRI.getRegClassOrRegBank(DstReg) ||
 | |
|          MRI.getRegClassOrRegBank(DstReg) == MRI.getRegClassOrRegBank(SrcReg);
 | |
| }
 | |
| 
 | |
| bool llvm::isTriviallyDead(const MachineInstr &MI,
 | |
|                            const MachineRegisterInfo &MRI) {
 | |
|   // If we can move an instruction, we can remove it.  Otherwise, it has
 | |
|   // a side-effect of some sort.
 | |
|   bool SawStore = false;
 | |
|   if (!MI.isSafeToMove(/*AA=*/nullptr, SawStore) && !MI.isPHI())
 | |
|     return false;
 | |
| 
 | |
|   // Instructions without side-effects are dead iff they only define dead vregs.
 | |
|   for (auto &MO : MI.operands()) {
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
| 
 | |
|     Register Reg = MO.getReg();
 | |
|     if (Register::isPhysicalRegister(Reg) || !MRI.use_nodbg_empty(Reg))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
 | |
|                               MachineOptimizationRemarkEmitter &MORE,
 | |
|                               MachineOptimizationRemarkMissed &R) {
 | |
|   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
 | |
| 
 | |
|   // Print the function name explicitly if we don't have a debug location (which
 | |
|   // makes the diagnostic less useful) or if we're going to emit a raw error.
 | |
|   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
 | |
|     R << (" (in function: " + MF.getName() + ")").str();
 | |
| 
 | |
|   if (TPC.isGlobalISelAbortEnabled())
 | |
|     report_fatal_error(R.getMsg());
 | |
|   else
 | |
|     MORE.emit(R);
 | |
| }
 | |
| 
 | |
| void llvm::reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC,
 | |
|                               MachineOptimizationRemarkEmitter &MORE,
 | |
|                               const char *PassName, StringRef Msg,
 | |
|                               const MachineInstr &MI) {
 | |
|   MachineOptimizationRemarkMissed R(PassName, "GISelFailure: ",
 | |
|                                     MI.getDebugLoc(), MI.getParent());
 | |
|   R << Msg;
 | |
|   // Printing MI is expensive;  only do it if expensive remarks are enabled.
 | |
|   if (TPC.isGlobalISelAbortEnabled() || MORE.allowExtraAnalysis(PassName))
 | |
|     R << ": " << ore::MNV("Inst", MI);
 | |
|   reportGISelFailure(MF, TPC, MORE, R);
 | |
| }
 | |
| 
 | |
| Optional<int64_t> llvm::getConstantVRegVal(Register VReg,
 | |
|                                            const MachineRegisterInfo &MRI) {
 | |
|   Optional<ValueAndVReg> ValAndVReg =
 | |
|       getConstantVRegValWithLookThrough(VReg, MRI, /*LookThroughInstrs*/ false);
 | |
|   assert((!ValAndVReg || ValAndVReg->VReg == VReg) &&
 | |
|          "Value found while looking through instrs");
 | |
|   if (!ValAndVReg)
 | |
|     return None;
 | |
|   return ValAndVReg->Value;
 | |
| }
 | |
| 
 | |
| Optional<ValueAndVReg> llvm::getConstantVRegValWithLookThrough(
 | |
|     Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs,
 | |
|     bool HandleFConstant) {
 | |
|   SmallVector<std::pair<unsigned, unsigned>, 4> SeenOpcodes;
 | |
|   MachineInstr *MI;
 | |
|   auto IsConstantOpcode = [HandleFConstant](unsigned Opcode) {
 | |
|     return Opcode == TargetOpcode::G_CONSTANT ||
 | |
|            (HandleFConstant && Opcode == TargetOpcode::G_FCONSTANT);
 | |
|   };
 | |
|   auto GetImmediateValue = [HandleFConstant,
 | |
|                             &MRI](const MachineInstr &MI) -> Optional<APInt> {
 | |
|     const MachineOperand &CstVal = MI.getOperand(1);
 | |
|     if (!CstVal.isImm() && !CstVal.isCImm() &&
 | |
|         (!HandleFConstant || !CstVal.isFPImm()))
 | |
|       return None;
 | |
|     if (!CstVal.isFPImm()) {
 | |
|       unsigned BitWidth =
 | |
|           MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
 | |
|       APInt Val = CstVal.isImm() ? APInt(BitWidth, CstVal.getImm())
 | |
|                                  : CstVal.getCImm()->getValue();
 | |
|       assert(Val.getBitWidth() == BitWidth &&
 | |
|              "Value bitwidth doesn't match definition type");
 | |
|       return Val;
 | |
|     }
 | |
|     return CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
 | |
|   };
 | |
|   while ((MI = MRI.getVRegDef(VReg)) && !IsConstantOpcode(MI->getOpcode()) &&
 | |
|          LookThroughInstrs) {
 | |
|     switch (MI->getOpcode()) {
 | |
|     case TargetOpcode::G_TRUNC:
 | |
|     case TargetOpcode::G_SEXT:
 | |
|     case TargetOpcode::G_ZEXT:
 | |
|       SeenOpcodes.push_back(std::make_pair(
 | |
|           MI->getOpcode(),
 | |
|           MRI.getType(MI->getOperand(0).getReg()).getSizeInBits()));
 | |
|       VReg = MI->getOperand(1).getReg();
 | |
|       break;
 | |
|     case TargetOpcode::COPY:
 | |
|       VReg = MI->getOperand(1).getReg();
 | |
|       if (Register::isPhysicalRegister(VReg))
 | |
|         return None;
 | |
|       break;
 | |
|     case TargetOpcode::G_INTTOPTR:
 | |
|       VReg = MI->getOperand(1).getReg();
 | |
|       break;
 | |
|     default:
 | |
|       return None;
 | |
|     }
 | |
|   }
 | |
|   if (!MI || !IsConstantOpcode(MI->getOpcode()))
 | |
|     return None;
 | |
| 
 | |
|   Optional<APInt> MaybeVal = GetImmediateValue(*MI);
 | |
|   if (!MaybeVal)
 | |
|     return None;
 | |
|   APInt &Val = *MaybeVal;
 | |
|   while (!SeenOpcodes.empty()) {
 | |
|     std::pair<unsigned, unsigned> OpcodeAndSize = SeenOpcodes.pop_back_val();
 | |
|     switch (OpcodeAndSize.first) {
 | |
|     case TargetOpcode::G_TRUNC:
 | |
|       Val = Val.trunc(OpcodeAndSize.second);
 | |
|       break;
 | |
|     case TargetOpcode::G_SEXT:
 | |
|       Val = Val.sext(OpcodeAndSize.second);
 | |
|       break;
 | |
|     case TargetOpcode::G_ZEXT:
 | |
|       Val = Val.zext(OpcodeAndSize.second);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Val.getBitWidth() > 64)
 | |
|     return None;
 | |
| 
 | |
|   return ValueAndVReg{Val.getSExtValue(), VReg};
 | |
| }
 | |
| 
 | |
| const llvm::ConstantFP *
 | |
| llvm::getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI) {
 | |
|   MachineInstr *MI = MRI.getVRegDef(VReg);
 | |
|   if (TargetOpcode::G_FCONSTANT != MI->getOpcode())
 | |
|     return nullptr;
 | |
|   return MI->getOperand(1).getFPImm();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct DefinitionAndSourceRegister {
 | |
|   llvm::MachineInstr *MI;
 | |
|   Register Reg;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static llvm::Optional<DefinitionAndSourceRegister>
 | |
| getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI) {
 | |
|   Register DefSrcReg = Reg;
 | |
|   auto *DefMI = MRI.getVRegDef(Reg);
 | |
|   auto DstTy = MRI.getType(DefMI->getOperand(0).getReg());
 | |
|   if (!DstTy.isValid())
 | |
|     return None;
 | |
|   while (DefMI->getOpcode() == TargetOpcode::COPY) {
 | |
|     Register SrcReg = DefMI->getOperand(1).getReg();
 | |
|     auto SrcTy = MRI.getType(SrcReg);
 | |
|     if (!SrcTy.isValid() || SrcTy != DstTy)
 | |
|       break;
 | |
|     DefMI = MRI.getVRegDef(SrcReg);
 | |
|     DefSrcReg = SrcReg;
 | |
|   }
 | |
|   return DefinitionAndSourceRegister{DefMI, DefSrcReg};
 | |
| }
 | |
| 
 | |
| llvm::MachineInstr *llvm::getDefIgnoringCopies(Register Reg,
 | |
|                                                const MachineRegisterInfo &MRI) {
 | |
|   Optional<DefinitionAndSourceRegister> DefSrcReg =
 | |
|       getDefSrcRegIgnoringCopies(Reg, MRI);
 | |
|   return DefSrcReg ? DefSrcReg->MI : nullptr;
 | |
| }
 | |
| 
 | |
| Register llvm::getSrcRegIgnoringCopies(Register Reg,
 | |
|                                        const MachineRegisterInfo &MRI) {
 | |
|   Optional<DefinitionAndSourceRegister> DefSrcReg =
 | |
|       getDefSrcRegIgnoringCopies(Reg, MRI);
 | |
|   return DefSrcReg ? DefSrcReg->Reg : Register();
 | |
| }
 | |
| 
 | |
| llvm::MachineInstr *llvm::getOpcodeDef(unsigned Opcode, Register Reg,
 | |
|                                        const MachineRegisterInfo &MRI) {
 | |
|   MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI);
 | |
|   return DefMI && DefMI->getOpcode() == Opcode ? DefMI : nullptr;
 | |
| }
 | |
| 
 | |
| APFloat llvm::getAPFloatFromSize(double Val, unsigned Size) {
 | |
|   if (Size == 32)
 | |
|     return APFloat(float(Val));
 | |
|   if (Size == 64)
 | |
|     return APFloat(Val);
 | |
|   if (Size != 16)
 | |
|     llvm_unreachable("Unsupported FPConstant size");
 | |
|   bool Ignored;
 | |
|   APFloat APF(Val);
 | |
|   APF.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
 | |
|   return APF;
 | |
| }
 | |
| 
 | |
| Optional<APInt> llvm::ConstantFoldBinOp(unsigned Opcode, const unsigned Op1,
 | |
|                                         const unsigned Op2,
 | |
|                                         const MachineRegisterInfo &MRI) {
 | |
|   auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
 | |
|   auto MaybeOp2Cst = getConstantVRegVal(Op2, MRI);
 | |
|   if (MaybeOp1Cst && MaybeOp2Cst) {
 | |
|     LLT Ty = MRI.getType(Op1);
 | |
|     APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
 | |
|     APInt C2(Ty.getSizeInBits(), *MaybeOp2Cst, true);
 | |
|     switch (Opcode) {
 | |
|     default:
 | |
|       break;
 | |
|     case TargetOpcode::G_ADD:
 | |
|       return C1 + C2;
 | |
|     case TargetOpcode::G_AND:
 | |
|       return C1 & C2;
 | |
|     case TargetOpcode::G_ASHR:
 | |
|       return C1.ashr(C2);
 | |
|     case TargetOpcode::G_LSHR:
 | |
|       return C1.lshr(C2);
 | |
|     case TargetOpcode::G_MUL:
 | |
|       return C1 * C2;
 | |
|     case TargetOpcode::G_OR:
 | |
|       return C1 | C2;
 | |
|     case TargetOpcode::G_SHL:
 | |
|       return C1 << C2;
 | |
|     case TargetOpcode::G_SUB:
 | |
|       return C1 - C2;
 | |
|     case TargetOpcode::G_XOR:
 | |
|       return C1 ^ C2;
 | |
|     case TargetOpcode::G_UDIV:
 | |
|       if (!C2.getBoolValue())
 | |
|         break;
 | |
|       return C1.udiv(C2);
 | |
|     case TargetOpcode::G_SDIV:
 | |
|       if (!C2.getBoolValue())
 | |
|         break;
 | |
|       return C1.sdiv(C2);
 | |
|     case TargetOpcode::G_UREM:
 | |
|       if (!C2.getBoolValue())
 | |
|         break;
 | |
|       return C1.urem(C2);
 | |
|     case TargetOpcode::G_SREM:
 | |
|       if (!C2.getBoolValue())
 | |
|         break;
 | |
|       return C1.srem(C2);
 | |
|     }
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| bool llvm::isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI,
 | |
|                            bool SNaN) {
 | |
|   const MachineInstr *DefMI = MRI.getVRegDef(Val);
 | |
|   if (!DefMI)
 | |
|     return false;
 | |
| 
 | |
|   if (DefMI->getFlag(MachineInstr::FmNoNans))
 | |
|     return true;
 | |
| 
 | |
|   if (SNaN) {
 | |
|     // FP operations quiet. For now, just handle the ones inserted during
 | |
|     // legalization.
 | |
|     switch (DefMI->getOpcode()) {
 | |
|     case TargetOpcode::G_FPEXT:
 | |
|     case TargetOpcode::G_FPTRUNC:
 | |
|     case TargetOpcode::G_FCANONICALIZE:
 | |
|       return true;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned llvm::inferAlignmentFromPtrInfo(MachineFunction &MF,
 | |
|                                          const MachinePointerInfo &MPO) {
 | |
|   auto PSV = MPO.V.dyn_cast<const PseudoSourceValue *>();
 | |
|   if (auto FSPV = dyn_cast_or_null<FixedStackPseudoSourceValue>(PSV)) {
 | |
|     MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|     return MinAlign(MFI.getObjectAlignment(FSPV->getFrameIndex()), MPO.Offset);
 | |
|   }
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| Optional<APInt> llvm::ConstantFoldExtOp(unsigned Opcode, const unsigned Op1,
 | |
|                                         uint64_t Imm,
 | |
|                                         const MachineRegisterInfo &MRI) {
 | |
|   auto MaybeOp1Cst = getConstantVRegVal(Op1, MRI);
 | |
|   if (MaybeOp1Cst) {
 | |
|     LLT Ty = MRI.getType(Op1);
 | |
|     APInt C1(Ty.getSizeInBits(), *MaybeOp1Cst, true);
 | |
|     switch (Opcode) {
 | |
|     default:
 | |
|       break;
 | |
|     case TargetOpcode::G_SEXT_INREG:
 | |
|       return C1.trunc(Imm).sext(C1.getBitWidth());
 | |
|     }
 | |
|   }
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| void llvm::getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU) {
 | |
|   AU.addPreserved<StackProtector>();
 | |
| }
 | |
| 
 | |
| LLT llvm::getLCMType(LLT Ty0, LLT Ty1) {
 | |
|   if (!Ty0.isVector() && !Ty1.isVector()) {
 | |
|     unsigned Mul = Ty0.getSizeInBits() * Ty1.getSizeInBits();
 | |
|     int GCDSize = greatestCommonDivisor(Ty0.getSizeInBits(),
 | |
|                                         Ty1.getSizeInBits());
 | |
|     return LLT::scalar(Mul / GCDSize);
 | |
|   }
 | |
| 
 | |
|   if (Ty0.isVector() && !Ty1.isVector()) {
 | |
|     assert(Ty0.getElementType() == Ty1 && "not yet handled");
 | |
|     return Ty0;
 | |
|   }
 | |
| 
 | |
|   if (Ty1.isVector() && !Ty0.isVector()) {
 | |
|     assert(Ty1.getElementType() == Ty0 && "not yet handled");
 | |
|     return Ty1;
 | |
|   }
 | |
| 
 | |
|   if (Ty0.isVector() && Ty1.isVector()) {
 | |
|     assert(Ty0.getElementType() == Ty1.getElementType() && "not yet handled");
 | |
| 
 | |
|     int GCDElts = greatestCommonDivisor(Ty0.getNumElements(),
 | |
|                                         Ty1.getNumElements());
 | |
| 
 | |
|     int Mul = Ty0.getNumElements() * Ty1.getNumElements();
 | |
|     return LLT::vector(Mul / GCDElts, Ty0.getElementType());
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("not yet handled");
 | |
| }
 | |
| 
 | |
| LLT llvm::getGCDType(LLT OrigTy, LLT TargetTy) {
 | |
|   if (OrigTy.isVector() && TargetTy.isVector()) {
 | |
|     assert(OrigTy.getElementType() == TargetTy.getElementType());
 | |
|     int GCD = greatestCommonDivisor(OrigTy.getNumElements(),
 | |
|                                     TargetTy.getNumElements());
 | |
|     return LLT::scalarOrVector(GCD, OrigTy.getElementType());
 | |
|   }
 | |
| 
 | |
|   if (OrigTy.isVector() && !TargetTy.isVector()) {
 | |
|     assert(OrigTy.getElementType() == TargetTy);
 | |
|     return TargetTy;
 | |
|   }
 | |
| 
 | |
|   assert(!OrigTy.isVector() && !TargetTy.isVector() &&
 | |
|          "GCD type of vector and scalar not implemented");
 | |
| 
 | |
|   int GCD = greatestCommonDivisor(OrigTy.getSizeInBits(),
 | |
|                                   TargetTy.getSizeInBits());
 | |
|   return LLT::scalar(GCD);
 | |
| }
 |