1552 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1552 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The inline spiller modifies the machine function directly instead of
 | 
						|
// inserting spills and restores in VirtRegMap.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SplitKit.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveInterval.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervals.h"
 | 
						|
#include "llvm/CodeGen/LiveRangeCalc.h"
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/CodeGen/LiveStacks.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBundle.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/CodeGen/Spiller.h"
 | 
						|
#include "llvm/CodeGen/StackMaps.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
 | 
						|
STATISTIC(NumSnippets,        "Number of spilled snippets");
 | 
						|
STATISTIC(NumSpills,          "Number of spills inserted");
 | 
						|
STATISTIC(NumSpillsRemoved,   "Number of spills removed");
 | 
						|
STATISTIC(NumReloads,         "Number of reloads inserted");
 | 
						|
STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
 | 
						|
STATISTIC(NumFolded,          "Number of folded stack accesses");
 | 
						|
STATISTIC(NumFoldedLoads,     "Number of folded loads");
 | 
						|
STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
 | 
						|
 | 
						|
static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
 | 
						|
                                     cl::desc("Disable inline spill hoisting"));
 | 
						|
static cl::opt<bool>
 | 
						|
RestrictStatepointRemat("restrict-statepoint-remat",
 | 
						|
                       cl::init(false), cl::Hidden,
 | 
						|
                       cl::desc("Restrict remat for statepoint operands"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class HoistSpillHelper : private LiveRangeEdit::Delegate {
 | 
						|
  MachineFunction &MF;
 | 
						|
  LiveIntervals &LIS;
 | 
						|
  LiveStacks &LSS;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  MachineDominatorTree &MDT;
 | 
						|
  MachineLoopInfo &Loops;
 | 
						|
  VirtRegMap &VRM;
 | 
						|
  MachineRegisterInfo &MRI;
 | 
						|
  const TargetInstrInfo &TII;
 | 
						|
  const TargetRegisterInfo &TRI;
 | 
						|
  const MachineBlockFrequencyInfo &MBFI;
 | 
						|
 | 
						|
  InsertPointAnalysis IPA;
 | 
						|
 | 
						|
  // Map from StackSlot to the LiveInterval of the original register.
 | 
						|
  // Note the LiveInterval of the original register may have been deleted
 | 
						|
  // after it is spilled. We keep a copy here to track the range where
 | 
						|
  // spills can be moved.
 | 
						|
  DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
 | 
						|
 | 
						|
  // Map from pair of (StackSlot and Original VNI) to a set of spills which
 | 
						|
  // have the same stackslot and have equal values defined by Original VNI.
 | 
						|
  // These spills are mergeable and are hoist candiates.
 | 
						|
  using MergeableSpillsMap =
 | 
						|
      MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
 | 
						|
  MergeableSpillsMap MergeableSpills;
 | 
						|
 | 
						|
  /// This is the map from original register to a set containing all its
 | 
						|
  /// siblings. To hoist a spill to another BB, we need to find out a live
 | 
						|
  /// sibling there and use it as the source of the new spill.
 | 
						|
  DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
 | 
						|
 | 
						|
  bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
 | 
						|
                     MachineBasicBlock &BB, unsigned &LiveReg);
 | 
						|
 | 
						|
  void rmRedundantSpills(
 | 
						|
      SmallPtrSet<MachineInstr *, 16> &Spills,
 | 
						|
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
 | 
						|
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
 | 
						|
 | 
						|
  void getVisitOrders(
 | 
						|
      MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
 | 
						|
      SmallVectorImpl<MachineDomTreeNode *> &Orders,
 | 
						|
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
 | 
						|
      DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
 | 
						|
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
 | 
						|
 | 
						|
  void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
 | 
						|
                      SmallPtrSet<MachineInstr *, 16> &Spills,
 | 
						|
                      SmallVectorImpl<MachineInstr *> &SpillsToRm,
 | 
						|
                      DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
 | 
						|
 | 
						|
public:
 | 
						|
  HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
 | 
						|
                   VirtRegMap &vrm)
 | 
						|
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
 | 
						|
        LSS(pass.getAnalysis<LiveStacks>()),
 | 
						|
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
 | 
						|
        MDT(pass.getAnalysis<MachineDominatorTree>()),
 | 
						|
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
 | 
						|
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
 | 
						|
        TRI(*mf.getSubtarget().getRegisterInfo()),
 | 
						|
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
 | 
						|
        IPA(LIS, mf.getNumBlockIDs()) {}
 | 
						|
 | 
						|
  void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
 | 
						|
                            unsigned Original);
 | 
						|
  bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
 | 
						|
  void hoistAllSpills();
 | 
						|
  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
 | 
						|
};
 | 
						|
 | 
						|
class InlineSpiller : public Spiller {
 | 
						|
  MachineFunction &MF;
 | 
						|
  LiveIntervals &LIS;
 | 
						|
  LiveStacks &LSS;
 | 
						|
  AliasAnalysis *AA;
 | 
						|
  MachineDominatorTree &MDT;
 | 
						|
  MachineLoopInfo &Loops;
 | 
						|
  VirtRegMap &VRM;
 | 
						|
  MachineRegisterInfo &MRI;
 | 
						|
  const TargetInstrInfo &TII;
 | 
						|
  const TargetRegisterInfo &TRI;
 | 
						|
  const MachineBlockFrequencyInfo &MBFI;
 | 
						|
 | 
						|
  // Variables that are valid during spill(), but used by multiple methods.
 | 
						|
  LiveRangeEdit *Edit;
 | 
						|
  LiveInterval *StackInt;
 | 
						|
  int StackSlot;
 | 
						|
  unsigned Original;
 | 
						|
 | 
						|
  // All registers to spill to StackSlot, including the main register.
 | 
						|
  SmallVector<unsigned, 8> RegsToSpill;
 | 
						|
 | 
						|
  // All COPY instructions to/from snippets.
 | 
						|
  // They are ignored since both operands refer to the same stack slot.
 | 
						|
  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
 | 
						|
 | 
						|
  // Values that failed to remat at some point.
 | 
						|
  SmallPtrSet<VNInfo*, 8> UsedValues;
 | 
						|
 | 
						|
  // Dead defs generated during spilling.
 | 
						|
  SmallVector<MachineInstr*, 8> DeadDefs;
 | 
						|
 | 
						|
  // Object records spills information and does the hoisting.
 | 
						|
  HoistSpillHelper HSpiller;
 | 
						|
 | 
						|
  ~InlineSpiller() override = default;
 | 
						|
 | 
						|
public:
 | 
						|
  InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
 | 
						|
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
 | 
						|
        LSS(pass.getAnalysis<LiveStacks>()),
 | 
						|
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
 | 
						|
        MDT(pass.getAnalysis<MachineDominatorTree>()),
 | 
						|
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
 | 
						|
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
 | 
						|
        TRI(*mf.getSubtarget().getRegisterInfo()),
 | 
						|
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
 | 
						|
        HSpiller(pass, mf, vrm) {}
 | 
						|
 | 
						|
  void spill(LiveRangeEdit &) override;
 | 
						|
  void postOptimization() override;
 | 
						|
 | 
						|
private:
 | 
						|
  bool isSnippet(const LiveInterval &SnipLI);
 | 
						|
  void collectRegsToSpill();
 | 
						|
 | 
						|
  bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
 | 
						|
 | 
						|
  bool isSibling(unsigned Reg);
 | 
						|
  bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
 | 
						|
  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
 | 
						|
 | 
						|
  void markValueUsed(LiveInterval*, VNInfo*);
 | 
						|
  bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI);
 | 
						|
  bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
 | 
						|
  void reMaterializeAll();
 | 
						|
 | 
						|
  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
 | 
						|
  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
 | 
						|
                         MachineInstr *LoadMI = nullptr);
 | 
						|
  void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
 | 
						|
  void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
 | 
						|
 | 
						|
  void spillAroundUses(unsigned Reg);
 | 
						|
  void spillAll();
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
Spiller::~Spiller() = default;
 | 
						|
 | 
						|
void Spiller::anchor() {}
 | 
						|
 | 
						|
Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
 | 
						|
                                   MachineFunction &mf,
 | 
						|
                                   VirtRegMap &vrm) {
 | 
						|
  return new InlineSpiller(pass, mf, vrm);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                Snippets
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// When spilling a virtual register, we also spill any snippets it is connected
 | 
						|
// to. The snippets are small live ranges that only have a single real use,
 | 
						|
// leftovers from live range splitting. Spilling them enables memory operand
 | 
						|
// folding or tightens the live range around the single use.
 | 
						|
//
 | 
						|
// This minimizes register pressure and maximizes the store-to-load distance for
 | 
						|
// spill slots which can be important in tight loops.
 | 
						|
 | 
						|
/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
 | 
						|
/// otherwise return 0.
 | 
						|
static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
 | 
						|
  if (!MI.isFullCopy())
 | 
						|
    return 0;
 | 
						|
  if (MI.getOperand(0).getReg() == Reg)
 | 
						|
    return MI.getOperand(1).getReg();
 | 
						|
  if (MI.getOperand(1).getReg() == Reg)
 | 
						|
    return MI.getOperand(0).getReg();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// isSnippet - Identify if a live interval is a snippet that should be spilled.
 | 
						|
/// It is assumed that SnipLI is a virtual register with the same original as
 | 
						|
/// Edit->getReg().
 | 
						|
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
 | 
						|
  unsigned Reg = Edit->getReg();
 | 
						|
 | 
						|
  // A snippet is a tiny live range with only a single instruction using it
 | 
						|
  // besides copies to/from Reg or spills/fills. We accept:
 | 
						|
  //
 | 
						|
  //   %snip = COPY %Reg / FILL fi#
 | 
						|
  //   %snip = USE %snip
 | 
						|
  //   %Reg = COPY %snip / SPILL %snip, fi#
 | 
						|
  //
 | 
						|
  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *UseMI = nullptr;
 | 
						|
 | 
						|
  // Check that all uses satisfy our criteria.
 | 
						|
  for (MachineRegisterInfo::reg_instr_nodbg_iterator
 | 
						|
       RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
 | 
						|
       E = MRI.reg_instr_nodbg_end(); RI != E; ) {
 | 
						|
    MachineInstr &MI = *RI++;
 | 
						|
 | 
						|
    // Allow copies to/from Reg.
 | 
						|
    if (isFullCopyOf(MI, Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Allow stack slot loads.
 | 
						|
    int FI;
 | 
						|
    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Allow stack slot stores.
 | 
						|
    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Allow a single additional instruction.
 | 
						|
    if (UseMI && &MI != UseMI)
 | 
						|
      return false;
 | 
						|
    UseMI = &MI;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// collectRegsToSpill - Collect live range snippets that only have a single
 | 
						|
/// real use.
 | 
						|
void InlineSpiller::collectRegsToSpill() {
 | 
						|
  unsigned Reg = Edit->getReg();
 | 
						|
 | 
						|
  // Main register always spills.
 | 
						|
  RegsToSpill.assign(1, Reg);
 | 
						|
  SnippetCopies.clear();
 | 
						|
 | 
						|
  // Snippets all have the same original, so there can't be any for an original
 | 
						|
  // register.
 | 
						|
  if (Original == Reg)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (MachineRegisterInfo::reg_instr_iterator
 | 
						|
       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
 | 
						|
    MachineInstr &MI = *RI++;
 | 
						|
    unsigned SnipReg = isFullCopyOf(MI, Reg);
 | 
						|
    if (!isSibling(SnipReg))
 | 
						|
      continue;
 | 
						|
    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
 | 
						|
    if (!isSnippet(SnipLI))
 | 
						|
      continue;
 | 
						|
    SnippetCopies.insert(&MI);
 | 
						|
    if (isRegToSpill(SnipReg))
 | 
						|
      continue;
 | 
						|
    RegsToSpill.push_back(SnipReg);
 | 
						|
    LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
 | 
						|
    ++NumSnippets;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool InlineSpiller::isSibling(unsigned Reg) {
 | 
						|
  return Register::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original;
 | 
						|
}
 | 
						|
 | 
						|
/// It is beneficial to spill to earlier place in the same BB in case
 | 
						|
/// as follows:
 | 
						|
/// There is an alternative def earlier in the same MBB.
 | 
						|
/// Hoist the spill as far as possible in SpillMBB. This can ease
 | 
						|
/// register pressure:
 | 
						|
///
 | 
						|
///   x = def
 | 
						|
///   y = use x
 | 
						|
///   s = copy x
 | 
						|
///
 | 
						|
/// Hoisting the spill of s to immediately after the def removes the
 | 
						|
/// interference between x and y:
 | 
						|
///
 | 
						|
///   x = def
 | 
						|
///   spill x
 | 
						|
///   y = use killed x
 | 
						|
///
 | 
						|
/// This hoist only helps when the copy kills its source.
 | 
						|
///
 | 
						|
bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
 | 
						|
                                       MachineInstr &CopyMI) {
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
 | 
						|
#ifndef NDEBUG
 | 
						|
  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
 | 
						|
  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
 | 
						|
#endif
 | 
						|
 | 
						|
  Register SrcReg = CopyMI.getOperand(1).getReg();
 | 
						|
  LiveInterval &SrcLI = LIS.getInterval(SrcReg);
 | 
						|
  VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
 | 
						|
  LiveQueryResult SrcQ = SrcLI.Query(Idx);
 | 
						|
  MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
 | 
						|
  if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Conservatively extend the stack slot range to the range of the original
 | 
						|
  // value. We may be able to do better with stack slot coloring by being more
 | 
						|
  // careful here.
 | 
						|
  assert(StackInt && "No stack slot assigned yet.");
 | 
						|
  LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
 | 
						|
  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
 | 
						|
  LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
 | 
						|
                    << *StackInt << '\n');
 | 
						|
 | 
						|
  // We are going to spill SrcVNI immediately after its def, so clear out
 | 
						|
  // any later spills of the same value.
 | 
						|
  eliminateRedundantSpills(SrcLI, SrcVNI);
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
 | 
						|
  MachineBasicBlock::iterator MII;
 | 
						|
  if (SrcVNI->isPHIDef())
 | 
						|
    MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
 | 
						|
  else {
 | 
						|
    MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
 | 
						|
    assert(DefMI && "Defining instruction disappeared");
 | 
						|
    MII = DefMI;
 | 
						|
    ++MII;
 | 
						|
  }
 | 
						|
  // Insert spill without kill flag immediately after def.
 | 
						|
  TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
 | 
						|
                          MRI.getRegClass(SrcReg), &TRI);
 | 
						|
  --MII; // Point to store instruction.
 | 
						|
  LIS.InsertMachineInstrInMaps(*MII);
 | 
						|
  LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
 | 
						|
 | 
						|
  HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
 | 
						|
  ++NumSpills;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
 | 
						|
/// redundant spills of this value in SLI.reg and sibling copies.
 | 
						|
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
 | 
						|
  assert(VNI && "Missing value");
 | 
						|
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
 | 
						|
  WorkList.push_back(std::make_pair(&SLI, VNI));
 | 
						|
  assert(StackInt && "No stack slot assigned yet.");
 | 
						|
 | 
						|
  do {
 | 
						|
    LiveInterval *LI;
 | 
						|
    std::tie(LI, VNI) = WorkList.pop_back_val();
 | 
						|
    unsigned Reg = LI->reg;
 | 
						|
    LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
 | 
						|
                      << VNI->def << " in " << *LI << '\n');
 | 
						|
 | 
						|
    // Regs to spill are taken care of.
 | 
						|
    if (isRegToSpill(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add all of VNI's live range to StackInt.
 | 
						|
    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
 | 
						|
    LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
 | 
						|
 | 
						|
    // Find all spills and copies of VNI.
 | 
						|
    for (MachineRegisterInfo::use_instr_nodbg_iterator
 | 
						|
         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
 | 
						|
         UI != E; ) {
 | 
						|
      MachineInstr &MI = *UI++;
 | 
						|
      if (!MI.isCopy() && !MI.mayStore())
 | 
						|
        continue;
 | 
						|
      SlotIndex Idx = LIS.getInstructionIndex(MI);
 | 
						|
      if (LI->getVNInfoAt(Idx) != VNI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Follow sibling copies down the dominator tree.
 | 
						|
      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
 | 
						|
        if (isSibling(DstReg)) {
 | 
						|
           LiveInterval &DstLI = LIS.getInterval(DstReg);
 | 
						|
           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
 | 
						|
           assert(DstVNI && "Missing defined value");
 | 
						|
           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
 | 
						|
           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Erase spills.
 | 
						|
      int FI;
 | 
						|
      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
 | 
						|
        // eliminateDeadDefs won't normally remove stores, so switch opcode.
 | 
						|
        MI.setDesc(TII.get(TargetOpcode::KILL));
 | 
						|
        DeadDefs.push_back(&MI);
 | 
						|
        ++NumSpillsRemoved;
 | 
						|
        if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
 | 
						|
          --NumSpills;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Rematerialization
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
 | 
						|
/// instruction cannot be eliminated. See through snippet copies
 | 
						|
void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
 | 
						|
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
 | 
						|
  WorkList.push_back(std::make_pair(LI, VNI));
 | 
						|
  do {
 | 
						|
    std::tie(LI, VNI) = WorkList.pop_back_val();
 | 
						|
    if (!UsedValues.insert(VNI).second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
 | 
						|
      for (MachineBasicBlock *P : MBB->predecessors()) {
 | 
						|
        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
 | 
						|
        if (PVNI)
 | 
						|
          WorkList.push_back(std::make_pair(LI, PVNI));
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Follow snippet copies.
 | 
						|
    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
    if (!SnippetCopies.count(MI))
 | 
						|
      continue;
 | 
						|
    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
 | 
						|
    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
 | 
						|
    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
 | 
						|
    assert(SnipVNI && "Snippet undefined before copy");
 | 
						|
    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
 | 
						|
  } while (!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg,
 | 
						|
                                                     MachineInstr &MI) {
 | 
						|
  if (!RestrictStatepointRemat)
 | 
						|
    return true;
 | 
						|
  // Here's a quick explanation of the problem we're trying to handle here:
 | 
						|
  // * There are some pseudo instructions with more vreg uses than there are
 | 
						|
  //   physical registers on the machine.
 | 
						|
  // * This is normally handled by spilling the vreg, and folding the reload
 | 
						|
  //   into the user instruction.  (Thus decreasing the number of used vregs
 | 
						|
  //   until the remainder can be assigned to physregs.)
 | 
						|
  // * However, since we may try to spill vregs in any order, we can end up
 | 
						|
  //   trying to spill each operand to the instruction, and then rematting it
 | 
						|
  //   instead.  When that happens, the new live intervals (for the remats) are
 | 
						|
  //   expected to be trivially assignable (i.e. RS_Done).  However, since we
 | 
						|
  //   may have more remats than physregs, we're guaranteed to fail to assign
 | 
						|
  //   one.
 | 
						|
  // At the moment, we only handle this for STATEPOINTs since they're the only
 | 
						|
  // pseudo op where we've seen this.  If we start seeing other instructions
 | 
						|
  // with the same problem, we need to revisit this.
 | 
						|
  if (MI.getOpcode() != TargetOpcode::STATEPOINT)
 | 
						|
    return true;
 | 
						|
  // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
 | 
						|
  // that number of physical registers is enough to cover all fixed arguments.
 | 
						|
  // If it is not true we need to revisit it.
 | 
						|
  for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
 | 
						|
                EndIdx = MI.getNumOperands();
 | 
						|
       Idx < EndIdx; ++Idx) {
 | 
						|
    MachineOperand &MO = MI.getOperand(Idx);
 | 
						|
    if (MO.isReg() && MO.getReg() == VReg)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
 | 
						|
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
 | 
						|
  // Analyze instruction
 | 
						|
  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
 | 
						|
  VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg, &Ops);
 | 
						|
 | 
						|
  if (!RI.Reads)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
 | 
						|
  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
 | 
						|
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
 | 
						|
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = MI.getOperand(i);
 | 
						|
      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
 | 
						|
        MO.setIsUndef();
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SnippetCopies.count(&MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
 | 
						|
  LiveRangeEdit::Remat RM(ParentVNI);
 | 
						|
  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
 | 
						|
 | 
						|
  if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
 | 
						|
    markValueUsed(&VirtReg, ParentVNI);
 | 
						|
    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the instruction also writes VirtReg.reg, it had better not require the
 | 
						|
  // same register for uses and defs.
 | 
						|
  if (RI.Tied) {
 | 
						|
    markValueUsed(&VirtReg, ParentVNI);
 | 
						|
    LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Before rematerializing into a register for a single instruction, try to
 | 
						|
  // fold a load into the instruction. That avoids allocating a new register.
 | 
						|
  if (RM.OrigMI->canFoldAsLoad() &&
 | 
						|
      foldMemoryOperand(Ops, RM.OrigMI)) {
 | 
						|
    Edit->markRematerialized(RM.ParentVNI);
 | 
						|
    ++NumFoldedLoads;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can't guarantee that we'll be able to actually assign the new vreg,
 | 
						|
  // we can't remat.
 | 
						|
  if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) {
 | 
						|
    markValueUsed(&VirtReg, ParentVNI);
 | 
						|
    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate a new register for the remat.
 | 
						|
  unsigned NewVReg = Edit->createFrom(Original);
 | 
						|
 | 
						|
  // Finally we can rematerialize OrigMI before MI.
 | 
						|
  SlotIndex DefIdx =
 | 
						|
      Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
 | 
						|
 | 
						|
  // We take the DebugLoc from MI, since OrigMI may be attributed to a
 | 
						|
  // different source location.
 | 
						|
  auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
 | 
						|
  NewMI->setDebugLoc(MI.getDebugLoc());
 | 
						|
 | 
						|
  (void)DefIdx;
 | 
						|
  LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
 | 
						|
                    << *LIS.getInstructionFromIndex(DefIdx));
 | 
						|
 | 
						|
  // Replace operands
 | 
						|
  for (const auto &OpPair : Ops) {
 | 
						|
    MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
 | 
						|
    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
 | 
						|
      MO.setReg(NewVReg);
 | 
						|
      MO.setIsKill();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
 | 
						|
 | 
						|
  ++NumRemats;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// reMaterializeAll - Try to rematerialize as many uses as possible,
 | 
						|
/// and trim the live ranges after.
 | 
						|
void InlineSpiller::reMaterializeAll() {
 | 
						|
  if (!Edit->anyRematerializable(AA))
 | 
						|
    return;
 | 
						|
 | 
						|
  UsedValues.clear();
 | 
						|
 | 
						|
  // Try to remat before all uses of snippets.
 | 
						|
  bool anyRemat = false;
 | 
						|
  for (unsigned Reg : RegsToSpill) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    for (MachineRegisterInfo::reg_bundle_iterator
 | 
						|
           RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
 | 
						|
         RegI != E; ) {
 | 
						|
      MachineInstr &MI = *RegI++;
 | 
						|
 | 
						|
      // Debug values are not allowed to affect codegen.
 | 
						|
      if (MI.isDebugValue())
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
 | 
						|
             "instruction that isn't a DBG_VALUE");
 | 
						|
 | 
						|
      anyRemat |= reMaterializeFor(LI, MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!anyRemat)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Remove any values that were completely rematted.
 | 
						|
  for (unsigned Reg : RegsToSpill) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      VNInfo *VNI = *I;
 | 
						|
      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
 | 
						|
      MI->addRegisterDead(Reg, &TRI);
 | 
						|
      if (!MI->allDefsAreDead())
 | 
						|
        continue;
 | 
						|
      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
 | 
						|
      DeadDefs.push_back(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate dead code after remat. Note that some snippet copies may be
 | 
						|
  // deleted here.
 | 
						|
  if (DeadDefs.empty())
 | 
						|
    return;
 | 
						|
  LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
 | 
						|
  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
 | 
						|
 | 
						|
  // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
 | 
						|
  // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
 | 
						|
  // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
 | 
						|
  // removed, PHI VNI are still left in the LiveInterval.
 | 
						|
  // So to get rid of unused reg, we need to check whether it has non-dbg
 | 
						|
  // reference instead of whether it has non-empty interval.
 | 
						|
  unsigned ResultPos = 0;
 | 
						|
  for (unsigned Reg : RegsToSpill) {
 | 
						|
    if (MRI.reg_nodbg_empty(Reg)) {
 | 
						|
      Edit->eraseVirtReg(Reg);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(LIS.hasInterval(Reg) &&
 | 
						|
           (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
 | 
						|
           "Empty and not used live-range?!");
 | 
						|
 | 
						|
    RegsToSpill[ResultPos++] = Reg;
 | 
						|
  }
 | 
						|
  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
 | 
						|
  LLVM_DEBUG(dbgs() << RegsToSpill.size()
 | 
						|
                    << " registers to spill after remat.\n");
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                 Spilling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// If MI is a load or store of StackSlot, it can be removed.
 | 
						|
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
 | 
						|
  int FI = 0;
 | 
						|
  unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
 | 
						|
  bool IsLoad = InstrReg;
 | 
						|
  if (!IsLoad)
 | 
						|
    InstrReg = TII.isStoreToStackSlot(*MI, FI);
 | 
						|
 | 
						|
  // We have a stack access. Is it the right register and slot?
 | 
						|
  if (InstrReg != Reg || FI != StackSlot)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!IsLoad)
 | 
						|
    HSpiller.rmFromMergeableSpills(*MI, StackSlot);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
 | 
						|
  LIS.RemoveMachineInstrFromMaps(*MI);
 | 
						|
  MI->eraseFromParent();
 | 
						|
 | 
						|
  if (IsLoad) {
 | 
						|
    ++NumReloadsRemoved;
 | 
						|
    --NumReloads;
 | 
						|
  } else {
 | 
						|
    ++NumSpillsRemoved;
 | 
						|
    --NumSpills;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
// Dump the range of instructions from B to E with their slot indexes.
 | 
						|
static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
 | 
						|
                                               MachineBasicBlock::iterator E,
 | 
						|
                                               LiveIntervals const &LIS,
 | 
						|
                                               const char *const header,
 | 
						|
                                               unsigned VReg =0) {
 | 
						|
  char NextLine = '\n';
 | 
						|
  char SlotIndent = '\t';
 | 
						|
 | 
						|
  if (std::next(B) == E) {
 | 
						|
    NextLine = ' ';
 | 
						|
    SlotIndent = ' ';
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << '\t' << header << ": " << NextLine;
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
 | 
						|
 | 
						|
    // If a register was passed in and this instruction has it as a
 | 
						|
    // destination that is marked as an early clobber, print the
 | 
						|
    // early-clobber slot index.
 | 
						|
    if (VReg) {
 | 
						|
      MachineOperand *MO = I->findRegisterDefOperand(VReg);
 | 
						|
      if (MO && MO->isEarlyClobber())
 | 
						|
        Idx = Idx.getRegSlot(true);
 | 
						|
    }
 | 
						|
 | 
						|
    dbgs() << SlotIndent << Idx << '\t' << *I;
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// foldMemoryOperand - Try folding stack slot references in Ops into their
 | 
						|
/// instructions.
 | 
						|
///
 | 
						|
/// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
 | 
						|
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
 | 
						|
/// @return       True on success.
 | 
						|
bool InlineSpiller::
 | 
						|
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
 | 
						|
                  MachineInstr *LoadMI) {
 | 
						|
  if (Ops.empty())
 | 
						|
    return false;
 | 
						|
  // Don't attempt folding in bundles.
 | 
						|
  MachineInstr *MI = Ops.front().first;
 | 
						|
  if (Ops.back().first != MI || MI->isBundled())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool WasCopy = MI->isCopy();
 | 
						|
  unsigned ImpReg = 0;
 | 
						|
 | 
						|
  // Spill subregs if the target allows it.
 | 
						|
  // We always want to spill subregs for stackmap/patchpoint pseudos.
 | 
						|
  bool SpillSubRegs = TII.isSubregFoldable() ||
 | 
						|
                      MI->getOpcode() == TargetOpcode::STATEPOINT ||
 | 
						|
                      MI->getOpcode() == TargetOpcode::PATCHPOINT ||
 | 
						|
                      MI->getOpcode() == TargetOpcode::STACKMAP;
 | 
						|
 | 
						|
  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
 | 
						|
  // operands.
 | 
						|
  SmallVector<unsigned, 8> FoldOps;
 | 
						|
  for (const auto &OpPair : Ops) {
 | 
						|
    unsigned Idx = OpPair.second;
 | 
						|
    assert(MI == OpPair.first && "Instruction conflict during operand folding");
 | 
						|
    MachineOperand &MO = MI->getOperand(Idx);
 | 
						|
    if (MO.isImplicit()) {
 | 
						|
      ImpReg = MO.getReg();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!SpillSubRegs && MO.getSubReg())
 | 
						|
      return false;
 | 
						|
    // We cannot fold a load instruction into a def.
 | 
						|
    if (LoadMI && MO.isDef())
 | 
						|
      return false;
 | 
						|
    // Tied use operands should not be passed to foldMemoryOperand.
 | 
						|
    if (!MI->isRegTiedToDefOperand(Idx))
 | 
						|
      FoldOps.push_back(Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we only have implicit uses, we won't be able to fold that.
 | 
						|
  // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
 | 
						|
  if (FoldOps.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstrSpan MIS(MI, MI->getParent());
 | 
						|
 | 
						|
  MachineInstr *FoldMI =
 | 
						|
      LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
 | 
						|
             : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
 | 
						|
  if (!FoldMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Remove LIS for any dead defs in the original MI not in FoldMI.
 | 
						|
  for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
 | 
						|
    if (!MO->isReg())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO->getReg();
 | 
						|
    if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Skip non-Defs, including undef uses and internal reads.
 | 
						|
    if (MO->isUse())
 | 
						|
      continue;
 | 
						|
    PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
 | 
						|
    if (RI.FullyDefined)
 | 
						|
      continue;
 | 
						|
    // FoldMI does not define this physreg. Remove the LI segment.
 | 
						|
    assert(MO->isDead() && "Cannot fold physreg def");
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
 | 
						|
    LIS.removePhysRegDefAt(Reg, Idx);
 | 
						|
  }
 | 
						|
 | 
						|
  int FI;
 | 
						|
  if (TII.isStoreToStackSlot(*MI, FI) &&
 | 
						|
      HSpiller.rmFromMergeableSpills(*MI, FI))
 | 
						|
    --NumSpills;
 | 
						|
  LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
 | 
						|
  // Update the call site info.
 | 
						|
  if (MI->isCandidateForCallSiteEntry())
 | 
						|
    MI->getMF()->moveCallSiteInfo(MI, FoldMI);
 | 
						|
  MI->eraseFromParent();
 | 
						|
 | 
						|
  // Insert any new instructions other than FoldMI into the LIS maps.
 | 
						|
  assert(!MIS.empty() && "Unexpected empty span of instructions!");
 | 
						|
  for (MachineInstr &MI : MIS)
 | 
						|
    if (&MI != FoldMI)
 | 
						|
      LIS.InsertMachineInstrInMaps(MI);
 | 
						|
 | 
						|
  // TII.foldMemoryOperand may have left some implicit operands on the
 | 
						|
  // instruction.  Strip them.
 | 
						|
  if (ImpReg)
 | 
						|
    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
 | 
						|
      MachineOperand &MO = FoldMI->getOperand(i - 1);
 | 
						|
      if (!MO.isReg() || !MO.isImplicit())
 | 
						|
        break;
 | 
						|
      if (MO.getReg() == ImpReg)
 | 
						|
        FoldMI->RemoveOperand(i - 1);
 | 
						|
    }
 | 
						|
 | 
						|
  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
 | 
						|
                                                "folded"));
 | 
						|
 | 
						|
  if (!WasCopy)
 | 
						|
    ++NumFolded;
 | 
						|
  else if (Ops.front().second == 0) {
 | 
						|
    ++NumSpills;
 | 
						|
    HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
 | 
						|
  } else
 | 
						|
    ++NumReloads;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void InlineSpiller::insertReload(unsigned NewVReg,
 | 
						|
                                 SlotIndex Idx,
 | 
						|
                                 MachineBasicBlock::iterator MI) {
 | 
						|
  MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
 | 
						|
  MachineInstrSpan MIS(MI, &MBB);
 | 
						|
  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
 | 
						|
                           MRI.getRegClass(NewVReg), &TRI);
 | 
						|
 | 
						|
  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
 | 
						|
 | 
						|
  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
 | 
						|
                                                NewVReg));
 | 
						|
  ++NumReloads;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if \p Def fully defines a VReg with an undefined value.
 | 
						|
/// If that's the case, that means the value of VReg is actually
 | 
						|
/// not relevant.
 | 
						|
static bool isFullUndefDef(const MachineInstr &Def) {
 | 
						|
  if (!Def.isImplicitDef())
 | 
						|
    return false;
 | 
						|
  assert(Def.getNumOperands() == 1 &&
 | 
						|
         "Implicit def with more than one definition");
 | 
						|
  // We can say that the VReg defined by Def is undef, only if it is
 | 
						|
  // fully defined by Def. Otherwise, some of the lanes may not be
 | 
						|
  // undef and the value of the VReg matters.
 | 
						|
  return !Def.getOperand(0).getSubReg();
 | 
						|
}
 | 
						|
 | 
						|
/// insertSpill - Insert a spill of NewVReg after MI.
 | 
						|
void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
 | 
						|
                                 MachineBasicBlock::iterator MI) {
 | 
						|
  MachineBasicBlock &MBB = *MI->getParent();
 | 
						|
 | 
						|
  MachineInstrSpan MIS(MI, &MBB);
 | 
						|
  bool IsRealSpill = true;
 | 
						|
  if (isFullUndefDef(*MI)) {
 | 
						|
    // Don't spill undef value.
 | 
						|
    // Anything works for undef, in particular keeping the memory
 | 
						|
    // uninitialized is a viable option and it saves code size and
 | 
						|
    // run time.
 | 
						|
    BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
 | 
						|
        .addReg(NewVReg, getKillRegState(isKill));
 | 
						|
    IsRealSpill = false;
 | 
						|
  } else
 | 
						|
    TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
 | 
						|
                            MRI.getRegClass(NewVReg), &TRI);
 | 
						|
 | 
						|
  LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
 | 
						|
 | 
						|
  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
 | 
						|
                                                "spill"));
 | 
						|
  ++NumSpills;
 | 
						|
  if (IsRealSpill)
 | 
						|
    HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
 | 
						|
}
 | 
						|
 | 
						|
/// spillAroundUses - insert spill code around each use of Reg.
 | 
						|
void InlineSpiller::spillAroundUses(unsigned Reg) {
 | 
						|
  LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
 | 
						|
  LiveInterval &OldLI = LIS.getInterval(Reg);
 | 
						|
 | 
						|
  // Iterate over instructions using Reg.
 | 
						|
  for (MachineRegisterInfo::reg_bundle_iterator
 | 
						|
       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
 | 
						|
       RegI != E; ) {
 | 
						|
    MachineInstr *MI = &*(RegI++);
 | 
						|
 | 
						|
    // Debug values are not allowed to affect codegen.
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      // Modify DBG_VALUE now that the value is in a spill slot.
 | 
						|
      MachineBasicBlock *MBB = MI->getParent();
 | 
						|
      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
 | 
						|
      buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
 | 
						|
      MBB->erase(MI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
 | 
						|
           "instruction that isn't a DBG_VALUE");
 | 
						|
 | 
						|
    // Ignore copies to/from snippets. We'll delete them.
 | 
						|
    if (SnippetCopies.count(MI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Stack slot accesses may coalesce away.
 | 
						|
    if (coalesceStackAccess(MI, Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Analyze instruction.
 | 
						|
    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
 | 
						|
    VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
 | 
						|
 | 
						|
    // Find the slot index where this instruction reads and writes OldLI.
 | 
						|
    // This is usually the def slot, except for tied early clobbers.
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
 | 
						|
    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
 | 
						|
      if (SlotIndex::isSameInstr(Idx, VNI->def))
 | 
						|
        Idx = VNI->def;
 | 
						|
 | 
						|
    // Check for a sibling copy.
 | 
						|
    unsigned SibReg = isFullCopyOf(*MI, Reg);
 | 
						|
    if (SibReg && isSibling(SibReg)) {
 | 
						|
      // This may actually be a copy between snippets.
 | 
						|
      if (isRegToSpill(SibReg)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
 | 
						|
        SnippetCopies.insert(MI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (RI.Writes) {
 | 
						|
        if (hoistSpillInsideBB(OldLI, *MI)) {
 | 
						|
          // This COPY is now dead, the value is already in the stack slot.
 | 
						|
          MI->getOperand(0).setIsDead();
 | 
						|
          DeadDefs.push_back(MI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // This is a reload for a sib-reg copy. Drop spills downstream.
 | 
						|
        LiveInterval &SibLI = LIS.getInterval(SibReg);
 | 
						|
        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
 | 
						|
        // The COPY will fold to a reload below.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Attempt to fold memory ops.
 | 
						|
    if (foldMemoryOperand(Ops))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create a new virtual register for spill/fill.
 | 
						|
    // FIXME: Infer regclass from instruction alone.
 | 
						|
    unsigned NewVReg = Edit->createFrom(Reg);
 | 
						|
 | 
						|
    if (RI.Reads)
 | 
						|
      insertReload(NewVReg, Idx, MI);
 | 
						|
 | 
						|
    // Rewrite instruction operands.
 | 
						|
    bool hasLiveDef = false;
 | 
						|
    for (const auto &OpPair : Ops) {
 | 
						|
      MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
 | 
						|
      MO.setReg(NewVReg);
 | 
						|
      if (MO.isUse()) {
 | 
						|
        if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
 | 
						|
          MO.setIsKill();
 | 
						|
      } else {
 | 
						|
        if (!MO.isDead())
 | 
						|
          hasLiveDef = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
 | 
						|
 | 
						|
    // FIXME: Use a second vreg if instruction has no tied ops.
 | 
						|
    if (RI.Writes)
 | 
						|
      if (hasLiveDef)
 | 
						|
        insertSpill(NewVReg, true, MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// spillAll - Spill all registers remaining after rematerialization.
 | 
						|
void InlineSpiller::spillAll() {
 | 
						|
  // Update LiveStacks now that we are committed to spilling.
 | 
						|
  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
 | 
						|
    StackSlot = VRM.assignVirt2StackSlot(Original);
 | 
						|
    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
 | 
						|
    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
 | 
						|
  } else
 | 
						|
    StackInt = &LSS.getInterval(StackSlot);
 | 
						|
 | 
						|
  if (Original != Edit->getReg())
 | 
						|
    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
 | 
						|
 | 
						|
  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
 | 
						|
  for (unsigned Reg : RegsToSpill)
 | 
						|
    StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
 | 
						|
                                     StackInt->getValNumInfo(0));
 | 
						|
  LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
 | 
						|
 | 
						|
  // Spill around uses of all RegsToSpill.
 | 
						|
  for (unsigned Reg : RegsToSpill)
 | 
						|
    spillAroundUses(Reg);
 | 
						|
 | 
						|
  // Hoisted spills may cause dead code.
 | 
						|
  if (!DeadDefs.empty()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
 | 
						|
    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally delete the SnippetCopies.
 | 
						|
  for (unsigned Reg : RegsToSpill) {
 | 
						|
    for (MachineRegisterInfo::reg_instr_iterator
 | 
						|
         RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
 | 
						|
         RI != E; ) {
 | 
						|
      MachineInstr &MI = *(RI++);
 | 
						|
      assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
 | 
						|
      // FIXME: Do this with a LiveRangeEdit callback.
 | 
						|
      LIS.RemoveMachineInstrFromMaps(MI);
 | 
						|
      MI.eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete all spilled registers.
 | 
						|
  for (unsigned Reg : RegsToSpill)
 | 
						|
    Edit->eraseVirtReg(Reg);
 | 
						|
}
 | 
						|
 | 
						|
void InlineSpiller::spill(LiveRangeEdit &edit) {
 | 
						|
  ++NumSpilledRanges;
 | 
						|
  Edit = &edit;
 | 
						|
  assert(!Register::isStackSlot(edit.getReg()) &&
 | 
						|
         "Trying to spill a stack slot.");
 | 
						|
  // Share a stack slot among all descendants of Original.
 | 
						|
  Original = VRM.getOriginal(edit.getReg());
 | 
						|
  StackSlot = VRM.getStackSlot(Original);
 | 
						|
  StackInt = nullptr;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Inline spilling "
 | 
						|
                    << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
 | 
						|
                    << ':' << edit.getParent() << "\nFrom original "
 | 
						|
                    << printReg(Original) << '\n');
 | 
						|
  assert(edit.getParent().isSpillable() &&
 | 
						|
         "Attempting to spill already spilled value.");
 | 
						|
  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
 | 
						|
 | 
						|
  collectRegsToSpill();
 | 
						|
  reMaterializeAll();
 | 
						|
 | 
						|
  // Remat may handle everything.
 | 
						|
  if (!RegsToSpill.empty())
 | 
						|
    spillAll();
 | 
						|
 | 
						|
  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
 | 
						|
}
 | 
						|
 | 
						|
/// Optimizations after all the reg selections and spills are done.
 | 
						|
void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
 | 
						|
 | 
						|
/// When a spill is inserted, add the spill to MergeableSpills map.
 | 
						|
void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
 | 
						|
                                            unsigned Original) {
 | 
						|
  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
 | 
						|
  LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
  // save a copy of LiveInterval in StackSlotToOrigLI because the original
 | 
						|
  // LiveInterval may be cleared after all its references are spilled.
 | 
						|
  if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
 | 
						|
    auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
 | 
						|
    LI->assign(OrigLI, Allocator);
 | 
						|
    StackSlotToOrigLI[StackSlot] = std::move(LI);
 | 
						|
  }
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
 | 
						|
  VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
 | 
						|
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
 | 
						|
  MergeableSpills[MIdx].insert(&Spill);
 | 
						|
}
 | 
						|
 | 
						|
/// When a spill is removed, remove the spill from MergeableSpills map.
 | 
						|
/// Return true if the spill is removed successfully.
 | 
						|
bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
 | 
						|
                                             int StackSlot) {
 | 
						|
  auto It = StackSlotToOrigLI.find(StackSlot);
 | 
						|
  if (It == StackSlotToOrigLI.end())
 | 
						|
    return false;
 | 
						|
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
 | 
						|
  VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
 | 
						|
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
 | 
						|
  return MergeableSpills[MIdx].erase(&Spill);
 | 
						|
}
 | 
						|
 | 
						|
/// Check BB to see if it is a possible target BB to place a hoisted spill,
 | 
						|
/// i.e., there should be a living sibling of OrigReg at the insert point.
 | 
						|
bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
 | 
						|
                                     MachineBasicBlock &BB, unsigned &LiveReg) {
 | 
						|
  SlotIndex Idx;
 | 
						|
  unsigned OrigReg = OrigLI.reg;
 | 
						|
  MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
 | 
						|
  if (MI != BB.end())
 | 
						|
    Idx = LIS.getInstructionIndex(*MI);
 | 
						|
  else
 | 
						|
    Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
 | 
						|
  SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
 | 
						|
  assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
 | 
						|
 | 
						|
  for (auto const SibReg : Siblings) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(SibReg);
 | 
						|
    VNInfo *VNI = LI.getVNInfoAt(Idx);
 | 
						|
    if (VNI) {
 | 
						|
      LiveReg = SibReg;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove redundant spills in the same BB. Save those redundant spills in
 | 
						|
/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
 | 
						|
void HoistSpillHelper::rmRedundantSpills(
 | 
						|
    SmallPtrSet<MachineInstr *, 16> &Spills,
 | 
						|
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
 | 
						|
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
 | 
						|
  // For each spill saw, check SpillBBToSpill[] and see if its BB already has
 | 
						|
  // another spill inside. If a BB contains more than one spill, only keep the
 | 
						|
  // earlier spill with smaller SlotIndex.
 | 
						|
  for (const auto CurrentSpill : Spills) {
 | 
						|
    MachineBasicBlock *Block = CurrentSpill->getParent();
 | 
						|
    MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
 | 
						|
    MachineInstr *PrevSpill = SpillBBToSpill[Node];
 | 
						|
    if (PrevSpill) {
 | 
						|
      SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
 | 
						|
      SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
 | 
						|
      MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
 | 
						|
      MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
 | 
						|
      SpillsToRm.push_back(SpillToRm);
 | 
						|
      SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
 | 
						|
    } else {
 | 
						|
      SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (const auto SpillToRm : SpillsToRm)
 | 
						|
    Spills.erase(SpillToRm);
 | 
						|
}
 | 
						|
 | 
						|
/// Starting from \p Root find a top-down traversal order of the dominator
 | 
						|
/// tree to visit all basic blocks containing the elements of \p Spills.
 | 
						|
/// Redundant spills will be found and put into \p SpillsToRm at the same
 | 
						|
/// time. \p SpillBBToSpill will be populated as part of the process and
 | 
						|
/// maps a basic block to the first store occurring in the basic block.
 | 
						|
/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
 | 
						|
void HoistSpillHelper::getVisitOrders(
 | 
						|
    MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
 | 
						|
    SmallVectorImpl<MachineDomTreeNode *> &Orders,
 | 
						|
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
 | 
						|
    DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
 | 
						|
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
 | 
						|
  // The set contains all the possible BB nodes to which we may hoist
 | 
						|
  // original spills.
 | 
						|
  SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
 | 
						|
  // Save the BB nodes on the path from the first BB node containing
 | 
						|
  // non-redundant spill to the Root node.
 | 
						|
  SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
 | 
						|
  // All the spills to be hoisted must originate from a single def instruction
 | 
						|
  // to the OrigReg. It means the def instruction should dominate all the spills
 | 
						|
  // to be hoisted. We choose the BB where the def instruction is located as
 | 
						|
  // the Root.
 | 
						|
  MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
 | 
						|
  // For every node on the dominator tree with spill, walk up on the dominator
 | 
						|
  // tree towards the Root node until it is reached. If there is other node
 | 
						|
  // containing spill in the middle of the path, the previous spill saw will
 | 
						|
  // be redundant and the node containing it will be removed. All the nodes on
 | 
						|
  // the path starting from the first node with non-redundant spill to the Root
 | 
						|
  // node will be added to the WorkSet, which will contain all the possible
 | 
						|
  // locations where spills may be hoisted to after the loop below is done.
 | 
						|
  for (const auto Spill : Spills) {
 | 
						|
    MachineBasicBlock *Block = Spill->getParent();
 | 
						|
    MachineDomTreeNode *Node = MDT[Block];
 | 
						|
    MachineInstr *SpillToRm = nullptr;
 | 
						|
    while (Node != RootIDomNode) {
 | 
						|
      // If Node dominates Block, and it already contains a spill, the spill in
 | 
						|
      // Block will be redundant.
 | 
						|
      if (Node != MDT[Block] && SpillBBToSpill[Node]) {
 | 
						|
        SpillToRm = SpillBBToSpill[MDT[Block]];
 | 
						|
        break;
 | 
						|
        /// If we see the Node already in WorkSet, the path from the Node to
 | 
						|
        /// the Root node must already be traversed by another spill.
 | 
						|
        /// Then no need to repeat.
 | 
						|
      } else if (WorkSet.count(Node)) {
 | 
						|
        break;
 | 
						|
      } else {
 | 
						|
        NodesOnPath.insert(Node);
 | 
						|
      }
 | 
						|
      Node = Node->getIDom();
 | 
						|
    }
 | 
						|
    if (SpillToRm) {
 | 
						|
      SpillsToRm.push_back(SpillToRm);
 | 
						|
    } else {
 | 
						|
      // Add a BB containing the original spills to SpillsToKeep -- i.e.,
 | 
						|
      // set the initial status before hoisting start. The value of BBs
 | 
						|
      // containing original spills is set to 0, in order to descriminate
 | 
						|
      // with BBs containing hoisted spills which will be inserted to
 | 
						|
      // SpillsToKeep later during hoisting.
 | 
						|
      SpillsToKeep[MDT[Block]] = 0;
 | 
						|
      WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
 | 
						|
    }
 | 
						|
    NodesOnPath.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort the nodes in WorkSet in top-down order and save the nodes
 | 
						|
  // in Orders. Orders will be used for hoisting in runHoistSpills.
 | 
						|
  unsigned idx = 0;
 | 
						|
  Orders.push_back(MDT.getBase().getNode(Root));
 | 
						|
  do {
 | 
						|
    MachineDomTreeNode *Node = Orders[idx++];
 | 
						|
    const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
 | 
						|
    unsigned NumChildren = Children.size();
 | 
						|
    for (unsigned i = 0; i != NumChildren; ++i) {
 | 
						|
      MachineDomTreeNode *Child = Children[i];
 | 
						|
      if (WorkSet.count(Child))
 | 
						|
        Orders.push_back(Child);
 | 
						|
    }
 | 
						|
  } while (idx != Orders.size());
 | 
						|
  assert(Orders.size() == WorkSet.size() &&
 | 
						|
         "Orders have different size with WorkSet");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
 | 
						|
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
 | 
						|
  for (; RIt != Orders.rend(); RIt++)
 | 
						|
    LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
 | 
						|
  LLVM_DEBUG(dbgs() << "\n");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/// Try to hoist spills according to BB hotness. The spills to removed will
 | 
						|
/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
 | 
						|
/// \p SpillsToIns.
 | 
						|
void HoistSpillHelper::runHoistSpills(
 | 
						|
    LiveInterval &OrigLI, VNInfo &OrigVNI,
 | 
						|
    SmallPtrSet<MachineInstr *, 16> &Spills,
 | 
						|
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
 | 
						|
    DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
 | 
						|
  // Visit order of dominator tree nodes.
 | 
						|
  SmallVector<MachineDomTreeNode *, 32> Orders;
 | 
						|
  // SpillsToKeep contains all the nodes where spills are to be inserted
 | 
						|
  // during hoisting. If the spill to be inserted is an original spill
 | 
						|
  // (not a hoisted one), the value of the map entry is 0. If the spill
 | 
						|
  // is a hoisted spill, the value of the map entry is the VReg to be used
 | 
						|
  // as the source of the spill.
 | 
						|
  DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
 | 
						|
  // Map from BB to the first spill inside of it.
 | 
						|
  DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
 | 
						|
 | 
						|
  rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
 | 
						|
 | 
						|
  MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
 | 
						|
  getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
 | 
						|
                 SpillBBToSpill);
 | 
						|
 | 
						|
  // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
 | 
						|
  // nodes set and the cost of all the spills inside those nodes.
 | 
						|
  // The nodes set are the locations where spills are to be inserted
 | 
						|
  // in the subtree of current node.
 | 
						|
  using NodesCostPair =
 | 
						|
      std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
 | 
						|
  DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
 | 
						|
 | 
						|
  // Iterate Orders set in reverse order, which will be a bottom-up order
 | 
						|
  // in the dominator tree. Once we visit a dom tree node, we know its
 | 
						|
  // children have already been visited and the spill locations in the
 | 
						|
  // subtrees of all the children have been determined.
 | 
						|
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
 | 
						|
  for (; RIt != Orders.rend(); RIt++) {
 | 
						|
    MachineBasicBlock *Block = (*RIt)->getBlock();
 | 
						|
 | 
						|
    // If Block contains an original spill, simply continue.
 | 
						|
    if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
 | 
						|
      SpillsInSubTreeMap[*RIt].first.insert(*RIt);
 | 
						|
      // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
 | 
						|
      SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Collect spills in subtree of current node (*RIt) to
 | 
						|
    // SpillsInSubTreeMap[*RIt].first.
 | 
						|
    const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
 | 
						|
    unsigned NumChildren = Children.size();
 | 
						|
    for (unsigned i = 0; i != NumChildren; ++i) {
 | 
						|
      MachineDomTreeNode *Child = Children[i];
 | 
						|
      if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
 | 
						|
        continue;
 | 
						|
      // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
 | 
						|
      // should be placed before getting the begin and end iterators of
 | 
						|
      // SpillsInSubTreeMap[Child].first, or else the iterators may be
 | 
						|
      // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
 | 
						|
      // and the map grows and then the original buckets in the map are moved.
 | 
						|
      SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
 | 
						|
          SpillsInSubTreeMap[*RIt].first;
 | 
						|
      BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
 | 
						|
      SubTreeCost += SpillsInSubTreeMap[Child].second;
 | 
						|
      auto BI = SpillsInSubTreeMap[Child].first.begin();
 | 
						|
      auto EI = SpillsInSubTreeMap[Child].first.end();
 | 
						|
      SpillsInSubTree.insert(BI, EI);
 | 
						|
      SpillsInSubTreeMap.erase(Child);
 | 
						|
    }
 | 
						|
 | 
						|
    SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
 | 
						|
          SpillsInSubTreeMap[*RIt].first;
 | 
						|
    BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
 | 
						|
    // No spills in subtree, simply continue.
 | 
						|
    if (SpillsInSubTree.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check whether Block is a possible candidate to insert spill.
 | 
						|
    unsigned LiveReg = 0;
 | 
						|
    if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If there are multiple spills that could be merged, bias a little
 | 
						|
    // to hoist the spill.
 | 
						|
    BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
 | 
						|
                                       ? BranchProbability(9, 10)
 | 
						|
                                       : BranchProbability(1, 1);
 | 
						|
    if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
 | 
						|
      // Hoist: Move spills to current Block.
 | 
						|
      for (const auto SpillBB : SpillsInSubTree) {
 | 
						|
        // When SpillBB is a BB contains original spill, insert the spill
 | 
						|
        // to SpillsToRm.
 | 
						|
        if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
 | 
						|
            !SpillsToKeep[SpillBB]) {
 | 
						|
          MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
 | 
						|
          SpillsToRm.push_back(SpillToRm);
 | 
						|
        }
 | 
						|
        // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
 | 
						|
        SpillsToKeep.erase(SpillBB);
 | 
						|
      }
 | 
						|
      // Current Block is the BB containing the new hoisted spill. Add it to
 | 
						|
      // SpillsToKeep. LiveReg is the source of the new spill.
 | 
						|
      SpillsToKeep[*RIt] = LiveReg;
 | 
						|
      LLVM_DEBUG({
 | 
						|
        dbgs() << "spills in BB: ";
 | 
						|
        for (const auto Rspill : SpillsInSubTree)
 | 
						|
          dbgs() << Rspill->getBlock()->getNumber() << " ";
 | 
						|
        dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
 | 
						|
               << "\n";
 | 
						|
      });
 | 
						|
      SpillsInSubTree.clear();
 | 
						|
      SpillsInSubTree.insert(*RIt);
 | 
						|
      SubTreeCost = MBFI.getBlockFreq(Block);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
 | 
						|
  // save them to SpillsToIns.
 | 
						|
  for (const auto &Ent : SpillsToKeep) {
 | 
						|
    if (Ent.second)
 | 
						|
      SpillsToIns[Ent.first->getBlock()] = Ent.second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// For spills with equal values, remove redundant spills and hoist those left
 | 
						|
/// to less hot spots.
 | 
						|
///
 | 
						|
/// Spills with equal values will be collected into the same set in
 | 
						|
/// MergeableSpills when spill is inserted. These equal spills are originated
 | 
						|
/// from the same defining instruction and are dominated by the instruction.
 | 
						|
/// Before hoisting all the equal spills, redundant spills inside in the same
 | 
						|
/// BB are first marked to be deleted. Then starting from the spills left, walk
 | 
						|
/// up on the dominator tree towards the Root node where the define instruction
 | 
						|
/// is located, mark the dominated spills to be deleted along the way and
 | 
						|
/// collect the BB nodes on the path from non-dominated spills to the define
 | 
						|
/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
 | 
						|
/// where we are considering to hoist the spills. We iterate the WorkSet in
 | 
						|
/// bottom-up order, and for each node, we will decide whether to hoist spills
 | 
						|
/// inside its subtree to that node. In this way, we can get benefit locally
 | 
						|
/// even if hoisting all the equal spills to one cold place is impossible.
 | 
						|
void HoistSpillHelper::hoistAllSpills() {
 | 
						|
  SmallVector<unsigned, 4> NewVRegs;
 | 
						|
  LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = Register::index2VirtReg(i);
 | 
						|
    unsigned Original = VRM.getPreSplitReg(Reg);
 | 
						|
    if (!MRI.def_empty(Reg))
 | 
						|
      Virt2SiblingsMap[Original].insert(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Each entry in MergeableSpills contains a spill set with equal values.
 | 
						|
  for (auto &Ent : MergeableSpills) {
 | 
						|
    int Slot = Ent.first.first;
 | 
						|
    LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
 | 
						|
    VNInfo *OrigVNI = Ent.first.second;
 | 
						|
    SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
 | 
						|
    if (Ent.second.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
 | 
						|
             << "Equal spills in BB: ";
 | 
						|
      for (const auto spill : EqValSpills)
 | 
						|
        dbgs() << spill->getParent()->getNumber() << " ";
 | 
						|
      dbgs() << "\n";
 | 
						|
    });
 | 
						|
 | 
						|
    // SpillsToRm is the spill set to be removed from EqValSpills.
 | 
						|
    SmallVector<MachineInstr *, 16> SpillsToRm;
 | 
						|
    // SpillsToIns is the spill set to be newly inserted after hoisting.
 | 
						|
    DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
 | 
						|
 | 
						|
    runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "Finally inserted spills in BB: ";
 | 
						|
      for (const auto &Ispill : SpillsToIns)
 | 
						|
        dbgs() << Ispill.first->getNumber() << " ";
 | 
						|
      dbgs() << "\nFinally removed spills in BB: ";
 | 
						|
      for (const auto Rspill : SpillsToRm)
 | 
						|
        dbgs() << Rspill->getParent()->getNumber() << " ";
 | 
						|
      dbgs() << "\n";
 | 
						|
    });
 | 
						|
 | 
						|
    // Stack live range update.
 | 
						|
    LiveInterval &StackIntvl = LSS.getInterval(Slot);
 | 
						|
    if (!SpillsToIns.empty() || !SpillsToRm.empty())
 | 
						|
      StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
 | 
						|
                                     StackIntvl.getValNumInfo(0));
 | 
						|
 | 
						|
    // Insert hoisted spills.
 | 
						|
    for (auto const &Insert : SpillsToIns) {
 | 
						|
      MachineBasicBlock *BB = Insert.first;
 | 
						|
      unsigned LiveReg = Insert.second;
 | 
						|
      MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
 | 
						|
      TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
 | 
						|
                              MRI.getRegClass(LiveReg), &TRI);
 | 
						|
      LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
 | 
						|
      ++NumSpills;
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove redundant spills or change them to dead instructions.
 | 
						|
    NumSpills -= SpillsToRm.size();
 | 
						|
    for (auto const RMEnt : SpillsToRm) {
 | 
						|
      RMEnt->setDesc(TII.get(TargetOpcode::KILL));
 | 
						|
      for (unsigned i = RMEnt->getNumOperands(); i; --i) {
 | 
						|
        MachineOperand &MO = RMEnt->getOperand(i - 1);
 | 
						|
        if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
 | 
						|
          RMEnt->RemoveOperand(i - 1);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Edit.eliminateDeadDefs(SpillsToRm, None, AA);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// For VirtReg clone, the \p New register should have the same physreg or
 | 
						|
/// stackslot as the \p old register.
 | 
						|
void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
 | 
						|
  if (VRM.hasPhys(Old))
 | 
						|
    VRM.assignVirt2Phys(New, VRM.getPhys(Old));
 | 
						|
  else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
 | 
						|
    VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
 | 
						|
  else
 | 
						|
    llvm_unreachable("VReg should be assigned either physreg or stackslot");
 | 
						|
}
 |