1514 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1514 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Collect the sequence of machine instructions for a basic block.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/ModuleSlotTracker.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "codegen"
 | |
| 
 | |
| static cl::opt<bool> PrintSlotIndexes(
 | |
|     "print-slotindexes",
 | |
|     cl::desc("When printing machine IR, annotate instructions and blocks with "
 | |
|              "SlotIndexes when available"),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
 | |
|     : BB(B), Number(-1), xParent(&MF) {
 | |
|   Insts.Parent = this;
 | |
|   if (B)
 | |
|     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::~MachineBasicBlock() {
 | |
| }
 | |
| 
 | |
| /// Return the MCSymbol for this basic block.
 | |
| MCSymbol *MachineBasicBlock::getSymbol() const {
 | |
|   if (!CachedMCSymbol) {
 | |
|     const MachineFunction *MF = getParent();
 | |
|     MCContext &Ctx = MF->getContext();
 | |
|     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
 | |
|     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
 | |
|     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
 | |
|                                            Twine(MF->getFunctionNumber()) +
 | |
|                                            "_" + Twine(getNumber()));
 | |
|   }
 | |
| 
 | |
|   return CachedMCSymbol;
 | |
| }
 | |
| 
 | |
| 
 | |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
 | |
|   MBB.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
 | |
|   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
 | |
| }
 | |
| 
 | |
| /// When an MBB is added to an MF, we need to update the parent pointer of the
 | |
| /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
 | |
| /// operand list for registers.
 | |
| ///
 | |
| /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
 | |
| /// gets the next available unique MBB number. If it is removed from a
 | |
| /// MachineFunction, it goes back to being #-1.
 | |
| void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
 | |
|     MachineBasicBlock *N) {
 | |
|   MachineFunction &MF = *N->getParent();
 | |
|   N->Number = MF.addToMBBNumbering(N);
 | |
| 
 | |
|   // Make sure the instructions have their operands in the reginfo lists.
 | |
|   MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|   for (MachineBasicBlock::instr_iterator
 | |
|          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
 | |
|     I->AddRegOperandsToUseLists(RegInfo);
 | |
| }
 | |
| 
 | |
| void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
 | |
|     MachineBasicBlock *N) {
 | |
|   N->getParent()->removeFromMBBNumbering(N->Number);
 | |
|   N->Number = -1;
 | |
| }
 | |
| 
 | |
| /// When we add an instruction to a basic block list, we update its parent
 | |
| /// pointer and add its operands from reg use/def lists if appropriate.
 | |
| void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
 | |
|   assert(!N->getParent() && "machine instruction already in a basic block");
 | |
|   N->setParent(Parent);
 | |
| 
 | |
|   // Add the instruction's register operands to their corresponding
 | |
|   // use/def lists.
 | |
|   MachineFunction *MF = Parent->getParent();
 | |
|   N->AddRegOperandsToUseLists(MF->getRegInfo());
 | |
|   MF->handleInsertion(*N);
 | |
| }
 | |
| 
 | |
| /// When we remove an instruction from a basic block list, we update its parent
 | |
| /// pointer and remove its operands from reg use/def lists if appropriate.
 | |
| void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
 | |
|   assert(N->getParent() && "machine instruction not in a basic block");
 | |
| 
 | |
|   // Remove from the use/def lists.
 | |
|   if (MachineFunction *MF = N->getMF()) {
 | |
|     MF->handleRemoval(*N);
 | |
|     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
 | |
|   }
 | |
| 
 | |
|   N->setParent(nullptr);
 | |
| }
 | |
| 
 | |
| /// When moving a range of instructions from one MBB list to another, we need to
 | |
| /// update the parent pointers and the use/def lists.
 | |
| void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
 | |
|                                                        instr_iterator First,
 | |
|                                                        instr_iterator Last) {
 | |
|   assert(Parent->getParent() == FromList.Parent->getParent() &&
 | |
|          "cannot transfer MachineInstrs between MachineFunctions");
 | |
| 
 | |
|   // If it's within the same BB, there's nothing to do.
 | |
|   if (this == &FromList)
 | |
|     return;
 | |
| 
 | |
|   assert(Parent != FromList.Parent && "Two lists have the same parent?");
 | |
| 
 | |
|   // If splicing between two blocks within the same function, just update the
 | |
|   // parent pointers.
 | |
|   for (; First != Last; ++First)
 | |
|     First->setParent(Parent);
 | |
| }
 | |
| 
 | |
| void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
 | |
|   assert(!MI->getParent() && "MI is still in a block!");
 | |
|   Parent->getParent()->DeleteMachineInstr(MI);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
 | |
|   instr_iterator I = instr_begin(), E = instr_end();
 | |
|   while (I != E && I->isPHI())
 | |
|     ++I;
 | |
|   assert((I == E || !I->isInsideBundle()) &&
 | |
|          "First non-phi MI cannot be inside a bundle!");
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
 | |
|   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
 | |
| 
 | |
|   iterator E = end();
 | |
|   while (I != E && (I->isPHI() || I->isPosition() ||
 | |
|                     TII->isBasicBlockPrologue(*I)))
 | |
|     ++I;
 | |
|   // FIXME: This needs to change if we wish to bundle labels
 | |
|   // inside the bundle.
 | |
|   assert((I == E || !I->isInsideBundle()) &&
 | |
|          "First non-phi / non-label instruction is inside a bundle!");
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
 | |
|   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
 | |
| 
 | |
|   iterator E = end();
 | |
|   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
 | |
|                     TII->isBasicBlockPrologue(*I)))
 | |
|     ++I;
 | |
|   // FIXME: This needs to change if we wish to bundle labels / dbg_values
 | |
|   // inside the bundle.
 | |
|   assert((I == E || !I->isInsideBundle()) &&
 | |
|          "First non-phi / non-label / non-debug "
 | |
|          "instruction is inside a bundle!");
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
 | |
|   iterator B = begin(), E = end(), I = E;
 | |
|   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
 | |
|     ; /*noop */
 | |
|   while (I != E && !I->isTerminator())
 | |
|     ++I;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
 | |
|   instr_iterator B = instr_begin(), E = instr_end(), I = E;
 | |
|   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
 | |
|     ; /*noop */
 | |
|   while (I != E && !I->isTerminator())
 | |
|     ++I;
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
 | |
|   // Skip over begin-of-block dbg_value instructions.
 | |
|   return skipDebugInstructionsForward(begin(), end());
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
 | |
|   // Skip over end-of-block dbg_value instructions.
 | |
|   instr_iterator B = instr_begin(), I = instr_end();
 | |
|   while (I != B) {
 | |
|     --I;
 | |
|     // Return instruction that starts a bundle.
 | |
|     if (I->isDebugInstr() || I->isInsideBundle())
 | |
|       continue;
 | |
|     return I;
 | |
|   }
 | |
|   // The block is all debug values.
 | |
|   return end();
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::hasEHPadSuccessor() const {
 | |
|   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
 | |
|     if ((*I)->isEHPad())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
 | |
|   print(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool MachineBasicBlock::isLegalToHoistInto() const {
 | |
|   if (isReturnBlock() || hasEHPadSuccessor())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| StringRef MachineBasicBlock::getName() const {
 | |
|   if (const BasicBlock *LBB = getBasicBlock())
 | |
|     return LBB->getName();
 | |
|   else
 | |
|     return StringRef("", 0);
 | |
| }
 | |
| 
 | |
| /// Return a hopefully unique identifier for this block.
 | |
| std::string MachineBasicBlock::getFullName() const {
 | |
|   std::string Name;
 | |
|   if (getParent())
 | |
|     Name = (getParent()->getName() + ":").str();
 | |
|   if (getBasicBlock())
 | |
|     Name += getBasicBlock()->getName();
 | |
|   else
 | |
|     Name += ("BB" + Twine(getNumber())).str();
 | |
|   return Name;
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
 | |
|                               bool IsStandalone) const {
 | |
|   const MachineFunction *MF = getParent();
 | |
|   if (!MF) {
 | |
|     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
 | |
|        << " is null\n";
 | |
|     return;
 | |
|   }
 | |
|   const Function &F = MF->getFunction();
 | |
|   const Module *M = F.getParent();
 | |
|   ModuleSlotTracker MST(M);
 | |
|   MST.incorporateFunction(F);
 | |
|   print(OS, MST, Indexes, IsStandalone);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
 | |
|                               const SlotIndexes *Indexes,
 | |
|                               bool IsStandalone) const {
 | |
|   const MachineFunction *MF = getParent();
 | |
|   if (!MF) {
 | |
|     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
 | |
|        << " is null\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Indexes && PrintSlotIndexes)
 | |
|     OS << Indexes->getMBBStartIdx(this) << '\t';
 | |
| 
 | |
|   OS << "bb." << getNumber();
 | |
|   bool HasAttributes = false;
 | |
|   if (const auto *BB = getBasicBlock()) {
 | |
|     if (BB->hasName()) {
 | |
|       OS << "." << BB->getName();
 | |
|     } else {
 | |
|       HasAttributes = true;
 | |
|       OS << " (";
 | |
|       int Slot = MST.getLocalSlot(BB);
 | |
|       if (Slot == -1)
 | |
|         OS << "<ir-block badref>";
 | |
|       else
 | |
|         OS << (Twine("%ir-block.") + Twine(Slot)).str();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (hasAddressTaken()) {
 | |
|     OS << (HasAttributes ? ", " : " (");
 | |
|     OS << "address-taken";
 | |
|     HasAttributes = true;
 | |
|   }
 | |
|   if (isEHPad()) {
 | |
|     OS << (HasAttributes ? ", " : " (");
 | |
|     OS << "landing-pad";
 | |
|     HasAttributes = true;
 | |
|   }
 | |
|   if (getAlignment() != Align(1)) {
 | |
|     OS << (HasAttributes ? ", " : " (");
 | |
|     OS << "align " << Log2(getAlignment());
 | |
|     HasAttributes = true;
 | |
|   }
 | |
|   if (HasAttributes)
 | |
|     OS << ")";
 | |
|   OS << ":\n";
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | |
|   const MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
|   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
 | |
|   bool HasLineAttributes = false;
 | |
| 
 | |
|   // Print the preds of this block according to the CFG.
 | |
|   if (!pred_empty() && IsStandalone) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     // Don't indent(2), align with previous line attributes.
 | |
|     OS << "; predecessors: ";
 | |
|     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
 | |
|       if (I != pred_begin())
 | |
|         OS << ", ";
 | |
|       OS << printMBBReference(**I);
 | |
|     }
 | |
|     OS << '\n';
 | |
|     HasLineAttributes = true;
 | |
|   }
 | |
| 
 | |
|   if (!succ_empty()) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     // Print the successors
 | |
|     OS.indent(2) << "successors: ";
 | |
|     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
 | |
|       if (I != succ_begin())
 | |
|         OS << ", ";
 | |
|       OS << printMBBReference(**I);
 | |
|       if (!Probs.empty())
 | |
|         OS << '('
 | |
|            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
 | |
|            << ')';
 | |
|     }
 | |
|     if (!Probs.empty() && IsStandalone) {
 | |
|       // Print human readable probabilities as comments.
 | |
|       OS << "; ";
 | |
|       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
 | |
|         const BranchProbability &BP = getSuccProbability(I);
 | |
|         if (I != succ_begin())
 | |
|           OS << ", ";
 | |
|         OS << printMBBReference(**I) << '('
 | |
|            << format("%.2f%%",
 | |
|                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
 | |
|                           100.0 * 100.0) /
 | |
|                          100.0)
 | |
|            << ')';
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     OS << '\n';
 | |
|     HasLineAttributes = true;
 | |
|   }
 | |
| 
 | |
|   if (!livein_empty() && MRI.tracksLiveness()) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     OS.indent(2) << "liveins: ";
 | |
| 
 | |
|     bool First = true;
 | |
|     for (const auto &LI : liveins()) {
 | |
|       if (!First)
 | |
|         OS << ", ";
 | |
|       First = false;
 | |
|       OS << printReg(LI.PhysReg, TRI);
 | |
|       if (!LI.LaneMask.all())
 | |
|         OS << ":0x" << PrintLaneMask(LI.LaneMask);
 | |
|     }
 | |
|     HasLineAttributes = true;
 | |
|   }
 | |
| 
 | |
|   if (HasLineAttributes)
 | |
|     OS << '\n';
 | |
| 
 | |
|   bool IsInBundle = false;
 | |
|   for (const MachineInstr &MI : instrs()) {
 | |
|     if (Indexes && PrintSlotIndexes) {
 | |
|       if (Indexes->hasIndex(MI))
 | |
|         OS << Indexes->getInstructionIndex(MI);
 | |
|       OS << '\t';
 | |
|     }
 | |
| 
 | |
|     if (IsInBundle && !MI.isInsideBundle()) {
 | |
|       OS.indent(2) << "}\n";
 | |
|       IsInBundle = false;
 | |
|     }
 | |
| 
 | |
|     OS.indent(IsInBundle ? 4 : 2);
 | |
|     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
 | |
|              /*AddNewLine=*/false, &TII);
 | |
| 
 | |
|     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
 | |
|       OS << " {";
 | |
|       IsInBundle = true;
 | |
|     }
 | |
|     OS << '\n';
 | |
|   }
 | |
| 
 | |
|   if (IsInBundle)
 | |
|     OS.indent(2) << "}\n";
 | |
| 
 | |
|   if (IrrLoopHeaderWeight && IsStandalone) {
 | |
|     if (Indexes) OS << '\t';
 | |
|     OS.indent(2) << "; Irreducible loop header weight: "
 | |
|                  << IrrLoopHeaderWeight.getValue() << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::printAsOperand(raw_ostream &OS,
 | |
|                                        bool /*PrintType*/) const {
 | |
|   OS << "%bb." << getNumber();
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
 | |
|   LiveInVector::iterator I = find_if(
 | |
|       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
 | |
|   if (I == LiveIns.end())
 | |
|     return;
 | |
| 
 | |
|   I->LaneMask &= ~LaneMask;
 | |
|   if (I->LaneMask.none())
 | |
|     LiveIns.erase(I);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::livein_iterator
 | |
| MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
 | |
|   // Get non-const version of iterator.
 | |
|   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
 | |
|   return LiveIns.erase(LI);
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
 | |
|   livein_iterator I = find_if(
 | |
|       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
 | |
|   return I != livein_end() && (I->LaneMask & LaneMask).any();
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::sortUniqueLiveIns() {
 | |
|   llvm::sort(LiveIns,
 | |
|              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
 | |
|                return LI0.PhysReg < LI1.PhysReg;
 | |
|              });
 | |
|   // Liveins are sorted by physreg now we can merge their lanemasks.
 | |
|   LiveInVector::const_iterator I = LiveIns.begin();
 | |
|   LiveInVector::const_iterator J;
 | |
|   LiveInVector::iterator Out = LiveIns.begin();
 | |
|   for (; I != LiveIns.end(); ++Out, I = J) {
 | |
|     unsigned PhysReg = I->PhysReg;
 | |
|     LaneBitmask LaneMask = I->LaneMask;
 | |
|     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
 | |
|       LaneMask |= J->LaneMask;
 | |
|     Out->PhysReg = PhysReg;
 | |
|     Out->LaneMask = LaneMask;
 | |
|   }
 | |
|   LiveIns.erase(Out, LiveIns.end());
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
 | |
|   assert(getParent() && "MBB must be inserted in function");
 | |
|   assert(PhysReg.isPhysical() && "Expected physreg");
 | |
|   assert(RC && "Register class is required");
 | |
|   assert((isEHPad() || this == &getParent()->front()) &&
 | |
|          "Only the entry block and landing pads can have physreg live ins");
 | |
| 
 | |
|   bool LiveIn = isLiveIn(PhysReg);
 | |
|   iterator I = SkipPHIsAndLabels(begin()), E = end();
 | |
|   MachineRegisterInfo &MRI = getParent()->getRegInfo();
 | |
|   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
 | |
| 
 | |
|   // Look for an existing copy.
 | |
|   if (LiveIn)
 | |
|     for (;I != E && I->isCopy(); ++I)
 | |
|       if (I->getOperand(1).getReg() == PhysReg) {
 | |
|         Register VirtReg = I->getOperand(0).getReg();
 | |
|         if (!MRI.constrainRegClass(VirtReg, RC))
 | |
|           llvm_unreachable("Incompatible live-in register class.");
 | |
|         return VirtReg;
 | |
|       }
 | |
| 
 | |
|   // No luck, create a virtual register.
 | |
|   Register VirtReg = MRI.createVirtualRegister(RC);
 | |
|   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
 | |
|     .addReg(PhysReg, RegState::Kill);
 | |
|   if (!LiveIn)
 | |
|     addLiveIn(PhysReg);
 | |
|   return VirtReg;
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
 | |
|   getParent()->splice(NewAfter->getIterator(), getIterator());
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
 | |
|   getParent()->splice(++NewBefore->getIterator(), getIterator());
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::updateTerminator() {
 | |
|   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
 | |
|   // A block with no successors has no concerns with fall-through edges.
 | |
|   if (this->succ_empty())
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   DebugLoc DL = findBranchDebugLoc();
 | |
|   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
 | |
|   (void) B;
 | |
|   assert(!B && "UpdateTerminators requires analyzable predecessors!");
 | |
|   if (Cond.empty()) {
 | |
|     if (TBB) {
 | |
|       // The block has an unconditional branch. If its successor is now its
 | |
|       // layout successor, delete the branch.
 | |
|       if (isLayoutSuccessor(TBB))
 | |
|         TII->removeBranch(*this);
 | |
|     } else {
 | |
|       // The block has an unconditional fallthrough. If its successor is not its
 | |
|       // layout successor, insert a branch. First we have to locate the only
 | |
|       // non-landing-pad successor, as that is the fallthrough block.
 | |
|       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
 | |
|         if ((*SI)->isEHPad())
 | |
|           continue;
 | |
|         assert(!TBB && "Found more than one non-landing-pad successor!");
 | |
|         TBB = *SI;
 | |
|       }
 | |
| 
 | |
|       // If there is no non-landing-pad successor, the block has no fall-through
 | |
|       // edges to be concerned with.
 | |
|       if (!TBB)
 | |
|         return;
 | |
| 
 | |
|       // Finally update the unconditional successor to be reached via a branch
 | |
|       // if it would not be reached by fallthrough.
 | |
|       if (!isLayoutSuccessor(TBB))
 | |
|         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (FBB) {
 | |
|     // The block has a non-fallthrough conditional branch. If one of its
 | |
|     // successors is its layout successor, rewrite it to a fallthrough
 | |
|     // conditional branch.
 | |
|     if (isLayoutSuccessor(TBB)) {
 | |
|       if (TII->reverseBranchCondition(Cond))
 | |
|         return;
 | |
|       TII->removeBranch(*this);
 | |
|       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
 | |
|     } else if (isLayoutSuccessor(FBB)) {
 | |
|       TII->removeBranch(*this);
 | |
|       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Walk through the successors and find the successor which is not a landing
 | |
|   // pad and is not the conditional branch destination (in TBB) as the
 | |
|   // fallthrough successor.
 | |
|   MachineBasicBlock *FallthroughBB = nullptr;
 | |
|   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
 | |
|     if ((*SI)->isEHPad() || *SI == TBB)
 | |
|       continue;
 | |
|     assert(!FallthroughBB && "Found more than one fallthrough successor.");
 | |
|     FallthroughBB = *SI;
 | |
|   }
 | |
| 
 | |
|   if (!FallthroughBB) {
 | |
|     if (canFallThrough()) {
 | |
|       // We fallthrough to the same basic block as the conditional jump targets.
 | |
|       // Remove the conditional jump, leaving unconditional fallthrough.
 | |
|       // FIXME: This does not seem like a reasonable pattern to support, but it
 | |
|       // has been seen in the wild coming out of degenerate ARM test cases.
 | |
|       TII->removeBranch(*this);
 | |
| 
 | |
|       // Finally update the unconditional successor to be reached via a branch if
 | |
|       // it would not be reached by fallthrough.
 | |
|       if (!isLayoutSuccessor(TBB))
 | |
|         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // We enter here iff exactly one successor is TBB which cannot fallthrough
 | |
|     // and the rest successors if any are EHPads.  In this case, we need to
 | |
|     // change the conditional branch into unconditional branch.
 | |
|     TII->removeBranch(*this);
 | |
|     Cond.clear();
 | |
|     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The block has a fallthrough conditional branch.
 | |
|   if (isLayoutSuccessor(TBB)) {
 | |
|     if (TII->reverseBranchCondition(Cond)) {
 | |
|       // We can't reverse the condition, add an unconditional branch.
 | |
|       Cond.clear();
 | |
|       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
 | |
|       return;
 | |
|     }
 | |
|     TII->removeBranch(*this);
 | |
|     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
 | |
|   } else if (!isLayoutSuccessor(FallthroughBB)) {
 | |
|     TII->removeBranch(*this);
 | |
|     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::validateSuccProbs() const {
 | |
| #ifndef NDEBUG
 | |
|   int64_t Sum = 0;
 | |
|   for (auto Prob : Probs)
 | |
|     Sum += Prob.getNumerator();
 | |
|   // Due to precision issue, we assume that the sum of probabilities is one if
 | |
|   // the difference between the sum of their numerators and the denominator is
 | |
|   // no greater than the number of successors.
 | |
|   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
 | |
|              Probs.size() &&
 | |
|          "The sum of successors's probabilities exceeds one.");
 | |
| #endif // NDEBUG
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
 | |
|                                      BranchProbability Prob) {
 | |
|   // Probability list is either empty (if successor list isn't empty, this means
 | |
|   // disabled optimization) or has the same size as successor list.
 | |
|   if (!(Probs.empty() && !Successors.empty()))
 | |
|     Probs.push_back(Prob);
 | |
|   Successors.push_back(Succ);
 | |
|   Succ->addPredecessor(this);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
 | |
|   // We need to make sure probability list is either empty or has the same size
 | |
|   // of successor list. When this function is called, we can safely delete all
 | |
|   // probability in the list.
 | |
|   Probs.clear();
 | |
|   Successors.push_back(Succ);
 | |
|   Succ->addPredecessor(this);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
 | |
|                                        MachineBasicBlock *New,
 | |
|                                        bool NormalizeSuccProbs) {
 | |
|   succ_iterator OldI = llvm::find(successors(), Old);
 | |
|   assert(OldI != succ_end() && "Old is not a successor of this block!");
 | |
|   assert(llvm::find(successors(), New) == succ_end() &&
 | |
|          "New is already a successor of this block!");
 | |
| 
 | |
|   // Add a new successor with equal probability as the original one. Note
 | |
|   // that we directly copy the probability using the iterator rather than
 | |
|   // getting a potentially synthetic probability computed when unknown. This
 | |
|   // preserves the probabilities as-is and then we can renormalize them and
 | |
|   // query them effectively afterward.
 | |
|   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
 | |
|                                   : *getProbabilityIterator(OldI));
 | |
|   if (NormalizeSuccProbs)
 | |
|     normalizeSuccProbs();
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
 | |
|                                         bool NormalizeSuccProbs) {
 | |
|   succ_iterator I = find(Successors, Succ);
 | |
|   removeSuccessor(I, NormalizeSuccProbs);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::succ_iterator
 | |
| MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
 | |
|   assert(I != Successors.end() && "Not a current successor!");
 | |
| 
 | |
|   // If probability list is empty it means we don't use it (disabled
 | |
|   // optimization).
 | |
|   if (!Probs.empty()) {
 | |
|     probability_iterator WI = getProbabilityIterator(I);
 | |
|     Probs.erase(WI);
 | |
|     if (NormalizeSuccProbs)
 | |
|       normalizeSuccProbs();
 | |
|   }
 | |
| 
 | |
|   (*I)->removePredecessor(this);
 | |
|   return Successors.erase(I);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
 | |
|                                          MachineBasicBlock *New) {
 | |
|   if (Old == New)
 | |
|     return;
 | |
| 
 | |
|   succ_iterator E = succ_end();
 | |
|   succ_iterator NewI = E;
 | |
|   succ_iterator OldI = E;
 | |
|   for (succ_iterator I = succ_begin(); I != E; ++I) {
 | |
|     if (*I == Old) {
 | |
|       OldI = I;
 | |
|       if (NewI != E)
 | |
|         break;
 | |
|     }
 | |
|     if (*I == New) {
 | |
|       NewI = I;
 | |
|       if (OldI != E)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   assert(OldI != E && "Old is not a successor of this block");
 | |
| 
 | |
|   // If New isn't already a successor, let it take Old's place.
 | |
|   if (NewI == E) {
 | |
|     Old->removePredecessor(this);
 | |
|     New->addPredecessor(this);
 | |
|     *OldI = New;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // New is already a successor.
 | |
|   // Update its probability instead of adding a duplicate edge.
 | |
|   if (!Probs.empty()) {
 | |
|     auto ProbIter = getProbabilityIterator(NewI);
 | |
|     if (!ProbIter->isUnknown())
 | |
|       *ProbIter += *getProbabilityIterator(OldI);
 | |
|   }
 | |
|   removeSuccessor(OldI);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
 | |
|                                       succ_iterator I) {
 | |
|   if (Orig->Probs.empty())
 | |
|     addSuccessor(*I, Orig->getSuccProbability(I));
 | |
|   else
 | |
|     addSuccessorWithoutProb(*I);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
 | |
|   Predecessors.push_back(Pred);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
 | |
|   pred_iterator I = find(Predecessors, Pred);
 | |
|   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
 | |
|   Predecessors.erase(I);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
 | |
|   if (this == FromMBB)
 | |
|     return;
 | |
| 
 | |
|   while (!FromMBB->succ_empty()) {
 | |
|     MachineBasicBlock *Succ = *FromMBB->succ_begin();
 | |
| 
 | |
|     // If probability list is empty it means we don't use it (disabled
 | |
|     // optimization).
 | |
|     if (!FromMBB->Probs.empty()) {
 | |
|       auto Prob = *FromMBB->Probs.begin();
 | |
|       addSuccessor(Succ, Prob);
 | |
|     } else
 | |
|       addSuccessorWithoutProb(Succ);
 | |
| 
 | |
|     FromMBB->removeSuccessor(Succ);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
 | |
|   if (this == FromMBB)
 | |
|     return;
 | |
| 
 | |
|   while (!FromMBB->succ_empty()) {
 | |
|     MachineBasicBlock *Succ = *FromMBB->succ_begin();
 | |
|     if (!FromMBB->Probs.empty()) {
 | |
|       auto Prob = *FromMBB->Probs.begin();
 | |
|       addSuccessor(Succ, Prob);
 | |
|     } else
 | |
|       addSuccessorWithoutProb(Succ);
 | |
|     FromMBB->removeSuccessor(Succ);
 | |
| 
 | |
|     // Fix up any PHI nodes in the successor.
 | |
|     Succ->replacePhiUsesWith(FromMBB, this);
 | |
|   }
 | |
|   normalizeSuccProbs();
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
 | |
|   return is_contained(predecessors(), MBB);
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
 | |
|   return is_contained(successors(), MBB);
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
 | |
|   MachineFunction::const_iterator I(this);
 | |
|   return std::next(I) == MachineFunction::const_iterator(MBB);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *MachineBasicBlock::getFallThrough() {
 | |
|   MachineFunction::iterator Fallthrough = getIterator();
 | |
|   ++Fallthrough;
 | |
|   // If FallthroughBlock is off the end of the function, it can't fall through.
 | |
|   if (Fallthrough == getParent()->end())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If FallthroughBlock isn't a successor, no fallthrough is possible.
 | |
|   if (!isSuccessor(&*Fallthrough))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Analyze the branches, if any, at the end of the block.
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
 | |
|   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
 | |
|     // If we couldn't analyze the branch, examine the last instruction.
 | |
|     // If the block doesn't end in a known control barrier, assume fallthrough
 | |
|     // is possible. The isPredicated check is needed because this code can be
 | |
|     // called during IfConversion, where an instruction which is normally a
 | |
|     // Barrier is predicated and thus no longer an actual control barrier.
 | |
|     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
 | |
|                ? &*Fallthrough
 | |
|                : nullptr;
 | |
|   }
 | |
| 
 | |
|   // If there is no branch, control always falls through.
 | |
|   if (!TBB) return &*Fallthrough;
 | |
| 
 | |
|   // If there is some explicit branch to the fallthrough block, it can obviously
 | |
|   // reach, even though the branch should get folded to fall through implicitly.
 | |
|   if (MachineFunction::iterator(TBB) == Fallthrough ||
 | |
|       MachineFunction::iterator(FBB) == Fallthrough)
 | |
|     return &*Fallthrough;
 | |
| 
 | |
|   // If it's an unconditional branch to some block not the fall through, it
 | |
|   // doesn't fall through.
 | |
|   if (Cond.empty()) return nullptr;
 | |
| 
 | |
|   // Otherwise, if it is conditional and has no explicit false block, it falls
 | |
|   // through.
 | |
|   return (FBB == nullptr) ? &*Fallthrough : nullptr;
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::canFallThrough() {
 | |
|   return getFallThrough() != nullptr;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
 | |
|     MachineBasicBlock *Succ, Pass &P,
 | |
|     std::vector<SparseBitVector<>> *LiveInSets) {
 | |
|   if (!canSplitCriticalEdge(Succ))
 | |
|     return nullptr;
 | |
| 
 | |
|   MachineFunction *MF = getParent();
 | |
|   DebugLoc DL;  // FIXME: this is nowhere
 | |
| 
 | |
|   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
 | |
|   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
 | |
|   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
 | |
|                     << " -- " << printMBBReference(*NMBB) << " -- "
 | |
|                     << printMBBReference(*Succ) << '\n');
 | |
| 
 | |
|   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
 | |
|   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
 | |
|   if (LIS)
 | |
|     LIS->insertMBBInMaps(NMBB);
 | |
|   else if (Indexes)
 | |
|     Indexes->insertMBBInMaps(NMBB);
 | |
| 
 | |
|   // On some targets like Mips, branches may kill virtual registers. Make sure
 | |
|   // that LiveVariables is properly updated after updateTerminator replaces the
 | |
|   // terminators.
 | |
|   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
 | |
| 
 | |
|   // Collect a list of virtual registers killed by the terminators.
 | |
|   SmallVector<unsigned, 4> KilledRegs;
 | |
|   if (LV)
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I) {
 | |
|       MachineInstr *MI = &*I;
 | |
|       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|            OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|         if (!OI->isReg() || OI->getReg() == 0 ||
 | |
|             !OI->isUse() || !OI->isKill() || OI->isUndef())
 | |
|           continue;
 | |
|         Register Reg = OI->getReg();
 | |
|         if (Register::isPhysicalRegister(Reg) ||
 | |
|             LV->getVarInfo(Reg).removeKill(*MI)) {
 | |
|           KilledRegs.push_back(Reg);
 | |
|           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
 | |
|           OI->setIsKill(false);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   SmallVector<unsigned, 4> UsedRegs;
 | |
|   if (LIS) {
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I) {
 | |
|       MachineInstr *MI = &*I;
 | |
| 
 | |
|       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|            OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|         if (!OI->isReg() || OI->getReg() == 0)
 | |
|           continue;
 | |
| 
 | |
|         Register Reg = OI->getReg();
 | |
|         if (!is_contained(UsedRegs, Reg))
 | |
|           UsedRegs.push_back(Reg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ReplaceUsesOfBlockWith(Succ, NMBB);
 | |
| 
 | |
|   // If updateTerminator() removes instructions, we need to remove them from
 | |
|   // SlotIndexes.
 | |
|   SmallVector<MachineInstr*, 4> Terminators;
 | |
|   if (Indexes) {
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I)
 | |
|       Terminators.push_back(&*I);
 | |
|   }
 | |
| 
 | |
|   updateTerminator();
 | |
| 
 | |
|   if (Indexes) {
 | |
|     SmallVector<MachineInstr*, 4> NewTerminators;
 | |
|     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
 | |
|          I != E; ++I)
 | |
|       NewTerminators.push_back(&*I);
 | |
| 
 | |
|     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
 | |
|         E = Terminators.end(); I != E; ++I) {
 | |
|       if (!is_contained(NewTerminators, *I))
 | |
|         Indexes->removeMachineInstrFromMaps(**I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
 | |
|   NMBB->addSuccessor(Succ);
 | |
|   if (!NMBB->isLayoutSuccessor(Succ)) {
 | |
|     SmallVector<MachineOperand, 4> Cond;
 | |
|     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
 | |
|     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
 | |
| 
 | |
|     if (Indexes) {
 | |
|       for (MachineInstr &MI : NMBB->instrs()) {
 | |
|         // Some instructions may have been moved to NMBB by updateTerminator(),
 | |
|         // so we first remove any instruction that already has an index.
 | |
|         if (Indexes->hasIndex(MI))
 | |
|           Indexes->removeMachineInstrFromMaps(MI);
 | |
|         Indexes->insertMachineInstrInMaps(MI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
 | |
|   Succ->replacePhiUsesWith(this, NMBB);
 | |
| 
 | |
|   // Inherit live-ins from the successor
 | |
|   for (const auto &LI : Succ->liveins())
 | |
|     NMBB->addLiveIn(LI);
 | |
| 
 | |
|   // Update LiveVariables.
 | |
|   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | |
|   if (LV) {
 | |
|     // Restore kills of virtual registers that were killed by the terminators.
 | |
|     while (!KilledRegs.empty()) {
 | |
|       unsigned Reg = KilledRegs.pop_back_val();
 | |
|       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
 | |
|         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
 | |
|           continue;
 | |
|         if (Register::isVirtualRegister(Reg))
 | |
|           LV->getVarInfo(Reg).Kills.push_back(&*I);
 | |
|         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Update relevant live-through information.
 | |
|     if (LiveInSets != nullptr)
 | |
|       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
 | |
|     else
 | |
|       LV->addNewBlock(NMBB, this, Succ);
 | |
|   }
 | |
| 
 | |
|   if (LIS) {
 | |
|     // After splitting the edge and updating SlotIndexes, live intervals may be
 | |
|     // in one of two situations, depending on whether this block was the last in
 | |
|     // the function. If the original block was the last in the function, all
 | |
|     // live intervals will end prior to the beginning of the new split block. If
 | |
|     // the original block was not at the end of the function, all live intervals
 | |
|     // will extend to the end of the new split block.
 | |
| 
 | |
|     bool isLastMBB =
 | |
|       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
 | |
| 
 | |
|     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
 | |
|     SlotIndex PrevIndex = StartIndex.getPrevSlot();
 | |
|     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
 | |
| 
 | |
|     // Find the registers used from NMBB in PHIs in Succ.
 | |
|     SmallSet<unsigned, 8> PHISrcRegs;
 | |
|     for (MachineBasicBlock::instr_iterator
 | |
|          I = Succ->instr_begin(), E = Succ->instr_end();
 | |
|          I != E && I->isPHI(); ++I) {
 | |
|       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
 | |
|         if (I->getOperand(ni+1).getMBB() == NMBB) {
 | |
|           MachineOperand &MO = I->getOperand(ni);
 | |
|           Register Reg = MO.getReg();
 | |
|           PHISrcRegs.insert(Reg);
 | |
|           if (MO.isUndef())
 | |
|             continue;
 | |
| 
 | |
|           LiveInterval &LI = LIS->getInterval(Reg);
 | |
|           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
 | |
|           assert(VNI &&
 | |
|                  "PHI sources should be live out of their predecessors.");
 | |
|           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
 | |
|     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|       unsigned Reg = Register::index2VirtReg(i);
 | |
|       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
 | |
|         continue;
 | |
| 
 | |
|       LiveInterval &LI = LIS->getInterval(Reg);
 | |
|       if (!LI.liveAt(PrevIndex))
 | |
|         continue;
 | |
| 
 | |
|       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
 | |
|       if (isLiveOut && isLastMBB) {
 | |
|         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
 | |
|         assert(VNI && "LiveInterval should have VNInfo where it is live.");
 | |
|         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
 | |
|       } else if (!isLiveOut && !isLastMBB) {
 | |
|         LI.removeSegment(StartIndex, EndIndex);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update all intervals for registers whose uses may have been modified by
 | |
|     // updateTerminator().
 | |
|     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
 | |
|   }
 | |
| 
 | |
|   if (MachineDominatorTree *MDT =
 | |
|           P.getAnalysisIfAvailable<MachineDominatorTree>())
 | |
|     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
 | |
| 
 | |
|   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
 | |
|     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
 | |
|       // If one or the other blocks were not in a loop, the new block is not
 | |
|       // either, and thus LI doesn't need to be updated.
 | |
|       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
 | |
|         if (TIL == DestLoop) {
 | |
|           // Both in the same loop, the NMBB joins loop.
 | |
|           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         } else if (TIL->contains(DestLoop)) {
 | |
|           // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | |
|           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         } else if (DestLoop->contains(TIL)) {
 | |
|           // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | |
|           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         } else {
 | |
|           // Edge from two loops with no containment relation.  Because these
 | |
|           // are natural loops, we know that the destination block must be the
 | |
|           // header of its loop (adding a branch into a loop elsewhere would
 | |
|           // create an irreducible loop).
 | |
|           assert(DestLoop->getHeader() == Succ &&
 | |
|                  "Should not create irreducible loops!");
 | |
|           if (MachineLoop *P = DestLoop->getParentLoop())
 | |
|             P->addBasicBlockToLoop(NMBB, MLI->getBase());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return NMBB;
 | |
| }
 | |
| 
 | |
| bool MachineBasicBlock::canSplitCriticalEdge(
 | |
|     const MachineBasicBlock *Succ) const {
 | |
|   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
 | |
|   // it in this generic function.
 | |
|   if (Succ->isEHPad())
 | |
|     return false;
 | |
| 
 | |
|   // Splitting the critical edge to a callbr's indirect block isn't advised.
 | |
|   // Don't do it in this generic function.
 | |
|   if (isInlineAsmBrIndirectTarget(Succ))
 | |
|     return false;
 | |
| 
 | |
|   const MachineFunction *MF = getParent();
 | |
|   // Performance might be harmed on HW that implements branching using exec mask
 | |
|   // where both sides of the branches are always executed.
 | |
|   if (MF->getTarget().requiresStructuredCFG())
 | |
|     return false;
 | |
| 
 | |
|   // We may need to update this's terminator, but we can't do that if
 | |
|   // analyzeBranch fails. If this uses a jump table, we won't touch it.
 | |
|   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   // AnalyzeBanch should modify this, since we did not allow modification.
 | |
|   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
 | |
|                          /*AllowModify*/ false))
 | |
|     return false;
 | |
| 
 | |
|   // Avoid bugpoint weirdness: A block may end with a conditional branch but
 | |
|   // jumps to the same MBB is either case. We have duplicate CFG edges in that
 | |
|   // case that we can't handle. Since this never happens in properly optimized
 | |
|   // code, just skip those edges.
 | |
|   if (TBB && TBB == FBB) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
 | |
|                       << printMBBReference(*this) << '\n');
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
 | |
| /// neighboring instructions so the bundle won't be broken by removing MI.
 | |
| static void unbundleSingleMI(MachineInstr *MI) {
 | |
|   // Removing the first instruction in a bundle.
 | |
|   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
 | |
|     MI->unbundleFromSucc();
 | |
|   // Removing the last instruction in a bundle.
 | |
|   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
 | |
|     MI->unbundleFromPred();
 | |
|   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
 | |
|   // are already fine.
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::instr_iterator
 | |
| MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
 | |
|   unbundleSingleMI(&*I);
 | |
|   return Insts.erase(I);
 | |
| }
 | |
| 
 | |
| MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
 | |
|   unbundleSingleMI(MI);
 | |
|   MI->clearFlag(MachineInstr::BundledPred);
 | |
|   MI->clearFlag(MachineInstr::BundledSucc);
 | |
|   return Insts.remove(MI);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::instr_iterator
 | |
| MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
 | |
|   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
 | |
|          "Cannot insert instruction with bundle flags");
 | |
|   // Set the bundle flags when inserting inside a bundle.
 | |
|   if (I != instr_end() && I->isBundledWithPred()) {
 | |
|     MI->setFlag(MachineInstr::BundledPred);
 | |
|     MI->setFlag(MachineInstr::BundledSucc);
 | |
|   }
 | |
|   return Insts.insert(I, MI);
 | |
| }
 | |
| 
 | |
| /// This method unlinks 'this' from the containing function, and returns it, but
 | |
| /// does not delete it.
 | |
| MachineBasicBlock *MachineBasicBlock::removeFromParent() {
 | |
|   assert(getParent() && "Not embedded in a function!");
 | |
|   getParent()->remove(this);
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| /// This method unlinks 'this' from the containing function, and deletes it.
 | |
| void MachineBasicBlock::eraseFromParent() {
 | |
|   assert(getParent() && "Not embedded in a function!");
 | |
|   getParent()->erase(this);
 | |
| }
 | |
| 
 | |
| /// Given a machine basic block that branched to 'Old', change the code and CFG
 | |
| /// so that it branches to 'New' instead.
 | |
| void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
 | |
|                                                MachineBasicBlock *New) {
 | |
|   assert(Old != New && "Cannot replace self with self!");
 | |
| 
 | |
|   MachineBasicBlock::instr_iterator I = instr_end();
 | |
|   while (I != instr_begin()) {
 | |
|     --I;
 | |
|     if (!I->isTerminator()) break;
 | |
| 
 | |
|     // Scan the operands of this machine instruction, replacing any uses of Old
 | |
|     // with New.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|       if (I->getOperand(i).isMBB() &&
 | |
|           I->getOperand(i).getMBB() == Old)
 | |
|         I->getOperand(i).setMBB(New);
 | |
|   }
 | |
| 
 | |
|   // Update the successor information.
 | |
|   replaceSuccessor(Old, New);
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
 | |
|                                            MachineBasicBlock *New) {
 | |
|   for (MachineInstr &MI : phis())
 | |
|     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (MO.getMBB() == Old)
 | |
|         MO.setMBB(New);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
 | |
| /// we have proven that MBB can only branch to DestA and DestB, remove any other
 | |
| /// MBB successors from the CFG.  DestA and DestB can be null.
 | |
| ///
 | |
| /// Besides DestA and DestB, retain other edges leading to LandingPads
 | |
| /// (currently there can be only one; we don't check or require that here).
 | |
| /// Note it is possible that DestA and/or DestB are LandingPads.
 | |
| bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
 | |
|                                              MachineBasicBlock *DestB,
 | |
|                                              bool IsCond) {
 | |
|   // The values of DestA and DestB frequently come from a call to the
 | |
|   // 'TargetInstrInfo::analyzeBranch' method. We take our meaning of the initial
 | |
|   // values from there.
 | |
|   //
 | |
|   // 1. If both DestA and DestB are null, then the block ends with no branches
 | |
|   //    (it falls through to its successor).
 | |
|   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
 | |
|   //    with only an unconditional branch.
 | |
|   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
 | |
|   //    with a conditional branch that falls through to a successor (DestB).
 | |
|   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
 | |
|   //    conditional branch followed by an unconditional branch. DestA is the
 | |
|   //    'true' destination and DestB is the 'false' destination.
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   MachineBasicBlock *FallThru = getNextNode();
 | |
| 
 | |
|   if (!DestA && !DestB) {
 | |
|     // Block falls through to successor.
 | |
|     DestA = FallThru;
 | |
|     DestB = FallThru;
 | |
|   } else if (DestA && !DestB) {
 | |
|     if (IsCond)
 | |
|       // Block ends in conditional jump that falls through to successor.
 | |
|       DestB = FallThru;
 | |
|   } else {
 | |
|     assert(DestA && DestB && IsCond &&
 | |
|            "CFG in a bad state. Cannot correct CFG edges");
 | |
|   }
 | |
| 
 | |
|   // Remove superfluous edges. I.e., those which aren't destinations of this
 | |
|   // basic block, duplicate edges, or landing pads.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
 | |
|   MachineBasicBlock::succ_iterator SI = succ_begin();
 | |
|   while (SI != succ_end()) {
 | |
|     const MachineBasicBlock *MBB = *SI;
 | |
|     if (!SeenMBBs.insert(MBB).second ||
 | |
|         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
 | |
|       // This is a superfluous edge, remove it.
 | |
|       SI = removeSuccessor(SI);
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       ++SI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Changed)
 | |
|     normalizeSuccProbs();
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
 | |
| /// instructions.  Return UnknownLoc if there is none.
 | |
| DebugLoc
 | |
| MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
 | |
|   // Skip debug declarations, we don't want a DebugLoc from them.
 | |
|   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
 | |
|   if (MBBI != instr_end())
 | |
|     return MBBI->getDebugLoc();
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
 | |
| /// instructions.  Return UnknownLoc if there is none.
 | |
| DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
 | |
|   if (MBBI == instr_begin()) return {};
 | |
|   // Skip debug declarations, we don't want a DebugLoc from them.
 | |
|   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
 | |
|   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
 | |
|   return {};
 | |
| }
 | |
| 
 | |
| /// Find and return the merged DebugLoc of the branch instructions of the block.
 | |
| /// Return UnknownLoc if there is none.
 | |
| DebugLoc
 | |
| MachineBasicBlock::findBranchDebugLoc() {
 | |
|   DebugLoc DL;
 | |
|   auto TI = getFirstTerminator();
 | |
|   while (TI != end() && !TI->isBranch())
 | |
|     ++TI;
 | |
| 
 | |
|   if (TI != end()) {
 | |
|     DL = TI->getDebugLoc();
 | |
|     for (++TI ; TI != end() ; ++TI)
 | |
|       if (TI->isBranch())
 | |
|         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
 | |
|   }
 | |
|   return DL;
 | |
| }
 | |
| 
 | |
| /// Return probability of the edge from this block to MBB.
 | |
| BranchProbability
 | |
| MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
 | |
|   if (Probs.empty())
 | |
|     return BranchProbability(1, succ_size());
 | |
| 
 | |
|   const auto &Prob = *getProbabilityIterator(Succ);
 | |
|   if (Prob.isUnknown()) {
 | |
|     // For unknown probabilities, collect the sum of all known ones, and evenly
 | |
|     // ditribute the complemental of the sum to each unknown probability.
 | |
|     unsigned KnownProbNum = 0;
 | |
|     auto Sum = BranchProbability::getZero();
 | |
|     for (auto &P : Probs) {
 | |
|       if (!P.isUnknown()) {
 | |
|         Sum += P;
 | |
|         KnownProbNum++;
 | |
|       }
 | |
|     }
 | |
|     return Sum.getCompl() / (Probs.size() - KnownProbNum);
 | |
|   } else
 | |
|     return Prob;
 | |
| }
 | |
| 
 | |
| /// Set successor probability of a given iterator.
 | |
| void MachineBasicBlock::setSuccProbability(succ_iterator I,
 | |
|                                            BranchProbability Prob) {
 | |
|   assert(!Prob.isUnknown());
 | |
|   if (Probs.empty())
 | |
|     return;
 | |
|   *getProbabilityIterator(I) = Prob;
 | |
| }
 | |
| 
 | |
| /// Return probability iterator corresonding to the I successor iterator
 | |
| MachineBasicBlock::const_probability_iterator
 | |
| MachineBasicBlock::getProbabilityIterator(
 | |
|     MachineBasicBlock::const_succ_iterator I) const {
 | |
|   assert(Probs.size() == Successors.size() && "Async probability list!");
 | |
|   const size_t index = std::distance(Successors.begin(), I);
 | |
|   assert(index < Probs.size() && "Not a current successor!");
 | |
|   return Probs.begin() + index;
 | |
| }
 | |
| 
 | |
| /// Return probability iterator corresonding to the I successor iterator.
 | |
| MachineBasicBlock::probability_iterator
 | |
| MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
 | |
|   assert(Probs.size() == Successors.size() && "Async probability list!");
 | |
|   const size_t index = std::distance(Successors.begin(), I);
 | |
|   assert(index < Probs.size() && "Not a current successor!");
 | |
|   return Probs.begin() + index;
 | |
| }
 | |
| 
 | |
| /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
 | |
| /// as of just before "MI".
 | |
| ///
 | |
| /// Search is localised to a neighborhood of
 | |
| /// Neighborhood instructions before (searching for defs or kills) and N
 | |
| /// instructions after (searching just for defs) MI.
 | |
| MachineBasicBlock::LivenessQueryResult
 | |
| MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
 | |
|                                            unsigned Reg, const_iterator Before,
 | |
|                                            unsigned Neighborhood) const {
 | |
|   unsigned N = Neighborhood;
 | |
| 
 | |
|   // Try searching forwards from Before, looking for reads or defs.
 | |
|   const_iterator I(Before);
 | |
|   for (; I != end() && N > 0; ++I) {
 | |
|     if (I->isDebugInstr())
 | |
|       continue;
 | |
| 
 | |
|     --N;
 | |
| 
 | |
|     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
 | |
| 
 | |
|     // Register is live when we read it here.
 | |
|     if (Info.Read)
 | |
|       return LQR_Live;
 | |
|     // Register is dead if we can fully overwrite or clobber it here.
 | |
|     if (Info.FullyDefined || Info.Clobbered)
 | |
|       return LQR_Dead;
 | |
|   }
 | |
| 
 | |
|   // If we reached the end, it is safe to clobber Reg at the end of a block of
 | |
|   // no successor has it live in.
 | |
|   if (I == end()) {
 | |
|     for (MachineBasicBlock *S : successors()) {
 | |
|       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
 | |
|         if (TRI->regsOverlap(LI.PhysReg, Reg))
 | |
|           return LQR_Live;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return LQR_Dead;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   N = Neighborhood;
 | |
| 
 | |
|   // Start by searching backwards from Before, looking for kills, reads or defs.
 | |
|   I = const_iterator(Before);
 | |
|   // If this is the first insn in the block, don't search backwards.
 | |
|   if (I != begin()) {
 | |
|     do {
 | |
|       --I;
 | |
| 
 | |
|       if (I->isDebugInstr())
 | |
|         continue;
 | |
| 
 | |
|       --N;
 | |
| 
 | |
|       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
 | |
| 
 | |
|       // Defs happen after uses so they take precedence if both are present.
 | |
| 
 | |
|       // Register is dead after a dead def of the full register.
 | |
|       if (Info.DeadDef)
 | |
|         return LQR_Dead;
 | |
|       // Register is (at least partially) live after a def.
 | |
|       if (Info.Defined) {
 | |
|         if (!Info.PartialDeadDef)
 | |
|           return LQR_Live;
 | |
|         // As soon as we saw a partial definition (dead or not),
 | |
|         // we cannot tell if the value is partial live without
 | |
|         // tracking the lanemasks. We are not going to do this,
 | |
|         // so fall back on the remaining of the analysis.
 | |
|         break;
 | |
|       }
 | |
|       // Register is dead after a full kill or clobber and no def.
 | |
|       if (Info.Killed || Info.Clobbered)
 | |
|         return LQR_Dead;
 | |
|       // Register must be live if we read it.
 | |
|       if (Info.Read)
 | |
|         return LQR_Live;
 | |
| 
 | |
|     } while (I != begin() && N > 0);
 | |
|   }
 | |
| 
 | |
|   // If all the instructions before this in the block are debug instructions,
 | |
|   // skip over them.
 | |
|   while (I != begin() && std::prev(I)->isDebugInstr())
 | |
|     --I;
 | |
| 
 | |
|   // Did we get to the start of the block?
 | |
|   if (I == begin()) {
 | |
|     // If so, the register's state is definitely defined by the live-in state.
 | |
|     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
 | |
|       if (TRI->regsOverlap(LI.PhysReg, Reg))
 | |
|         return LQR_Live;
 | |
| 
 | |
|     return LQR_Dead;
 | |
|   }
 | |
| 
 | |
|   // At this point we have no idea of the liveness of the register.
 | |
|   return LQR_Unknown;
 | |
| }
 | |
| 
 | |
| const uint32_t *
 | |
| MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
 | |
|   // EH funclet entry does not preserve any registers.
 | |
|   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
 | |
| }
 | |
| 
 | |
| const uint32_t *
 | |
| MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
 | |
|   // If we see a return block with successors, this must be a funclet return,
 | |
|   // which does not preserve any registers. If there are no successors, we don't
 | |
|   // care what kind of return it is, putting a mask after it is a no-op.
 | |
|   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
 | |
| }
 | |
| 
 | |
| void MachineBasicBlock::clearLiveIns() {
 | |
|   LiveIns.clear();
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
 | |
|   assert(getParent()->getProperties().hasProperty(
 | |
|       MachineFunctionProperties::Property::TracksLiveness) &&
 | |
|       "Liveness information is accurate");
 | |
|   return LiveIns.begin();
 | |
| }
 |