3774 lines
		
	
	
		
			136 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3774 lines
		
	
	
		
			136 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // MachineScheduler schedules machine instructions after phi elimination. It
 | |
| // preserves LiveIntervals so it can be invoked before register allocation.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/MachineScheduler.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/PriorityQueue.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachinePassRegistry.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/RegisterPressure.h"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGMutation.h"
 | |
| #include "llvm/CodeGen/ScheduleDFS.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetFrameLowering.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "machine-scheduler"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
 | |
|                            cl::desc("Force top-down list scheduling"));
 | |
| cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
 | |
|                             cl::desc("Force bottom-up list scheduling"));
 | |
| cl::opt<bool>
 | |
| DumpCriticalPathLength("misched-dcpl", cl::Hidden,
 | |
|                        cl::desc("Print critical path length to stdout"));
 | |
| 
 | |
| cl::opt<bool> VerifyScheduling(
 | |
|     "verify-misched", cl::Hidden,
 | |
|     cl::desc("Verify machine instrs before and after machine scheduling"));
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
 | |
|   cl::desc("Pop up a window to show MISched dags after they are processed"));
 | |
| 
 | |
| /// In some situations a few uninteresting nodes depend on nearly all other
 | |
| /// nodes in the graph, provide a cutoff to hide them.
 | |
| static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
 | |
|   cl::desc("Hide nodes with more predecessor/successor than cutoff"));
 | |
| 
 | |
| static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
 | |
|   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
 | |
| 
 | |
| static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
 | |
|   cl::desc("Only schedule this function"));
 | |
| static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
 | |
|                                         cl::desc("Only schedule this MBB#"));
 | |
| static cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden,
 | |
|                               cl::desc("Print schedule DAGs"));
 | |
| #else
 | |
| static const bool ViewMISchedDAGs = false;
 | |
| static const bool PrintDAGs = false;
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// Avoid quadratic complexity in unusually large basic blocks by limiting the
 | |
| /// size of the ready lists.
 | |
| static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden,
 | |
|   cl::desc("Limit ready list to N instructions"), cl::init(256));
 | |
| 
 | |
| static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
 | |
|   cl::desc("Enable register pressure scheduling."), cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
 | |
|   cl::desc("Enable cyclic critical path analysis."), cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden,
 | |
|                                         cl::desc("Enable memop clustering."),
 | |
|                                         cl::init(true));
 | |
| 
 | |
| // DAG subtrees must have at least this many nodes.
 | |
| static const unsigned MinSubtreeSize = 8;
 | |
| 
 | |
| // Pin the vtables to this file.
 | |
| void MachineSchedStrategy::anchor() {}
 | |
| 
 | |
| void ScheduleDAGMutation::anchor() {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Machine Instruction Scheduling Pass and Registry
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineSchedContext::MachineSchedContext() {
 | |
|   RegClassInfo = new RegisterClassInfo();
 | |
| }
 | |
| 
 | |
| MachineSchedContext::~MachineSchedContext() {
 | |
|   delete RegClassInfo;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Base class for a machine scheduler class that can run at any point.
 | |
| class MachineSchedulerBase : public MachineSchedContext,
 | |
|                              public MachineFunctionPass {
 | |
| public:
 | |
|   MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
 | |
| 
 | |
|   void print(raw_ostream &O, const Module* = nullptr) const override;
 | |
| 
 | |
| protected:
 | |
|   void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
 | |
| };
 | |
| 
 | |
| /// MachineScheduler runs after coalescing and before register allocation.
 | |
| class MachineScheduler : public MachineSchedulerBase {
 | |
| public:
 | |
|   MachineScheduler();
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction&) override;
 | |
| 
 | |
|   static char ID; // Class identification, replacement for typeinfo
 | |
| 
 | |
| protected:
 | |
|   ScheduleDAGInstrs *createMachineScheduler();
 | |
| };
 | |
| 
 | |
| /// PostMachineScheduler runs after shortly before code emission.
 | |
| class PostMachineScheduler : public MachineSchedulerBase {
 | |
| public:
 | |
|   PostMachineScheduler();
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction&) override;
 | |
| 
 | |
|   static char ID; // Class identification, replacement for typeinfo
 | |
| 
 | |
| protected:
 | |
|   ScheduleDAGInstrs *createPostMachineScheduler();
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineScheduler::ID = 0;
 | |
| 
 | |
| char &llvm::MachineSchedulerID = MachineScheduler::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE,
 | |
|                       "Machine Instruction Scheduler", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE,
 | |
|                     "Machine Instruction Scheduler", false, false)
 | |
| 
 | |
| MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) {
 | |
|   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addRequired<TargetPassConfig>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| char PostMachineScheduler::ID = 0;
 | |
| 
 | |
| char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
 | |
| 
 | |
| INITIALIZE_PASS(PostMachineScheduler, "postmisched",
 | |
|                 "PostRA Machine Instruction Scheduler", false, false)
 | |
| 
 | |
| PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) {
 | |
|   initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addRequired<TargetPassConfig>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor>
 | |
|     MachineSchedRegistry::Registry;
 | |
| 
 | |
| /// A dummy default scheduler factory indicates whether the scheduler
 | |
| /// is overridden on the command line.
 | |
| static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// MachineSchedOpt allows command line selection of the scheduler.
 | |
| static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
 | |
|                RegisterPassParser<MachineSchedRegistry>>
 | |
| MachineSchedOpt("misched",
 | |
|                 cl::init(&useDefaultMachineSched), cl::Hidden,
 | |
|                 cl::desc("Machine instruction scheduler to use"));
 | |
| 
 | |
| static MachineSchedRegistry
 | |
| DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
 | |
|                      useDefaultMachineSched);
 | |
| 
 | |
| static cl::opt<bool> EnableMachineSched(
 | |
|     "enable-misched",
 | |
|     cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
 | |
|     cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> EnablePostRAMachineSched(
 | |
|     "enable-post-misched",
 | |
|     cl::desc("Enable the post-ra machine instruction scheduling pass."),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| /// Decrement this iterator until reaching the top or a non-debug instr.
 | |
| static MachineBasicBlock::const_iterator
 | |
| priorNonDebug(MachineBasicBlock::const_iterator I,
 | |
|               MachineBasicBlock::const_iterator Beg) {
 | |
|   assert(I != Beg && "reached the top of the region, cannot decrement");
 | |
|   while (--I != Beg) {
 | |
|     if (!I->isDebugInstr())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// Non-const version.
 | |
| static MachineBasicBlock::iterator
 | |
| priorNonDebug(MachineBasicBlock::iterator I,
 | |
|               MachineBasicBlock::const_iterator Beg) {
 | |
|   return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)
 | |
|       .getNonConstIterator();
 | |
| }
 | |
| 
 | |
| /// If this iterator is a debug value, increment until reaching the End or a
 | |
| /// non-debug instruction.
 | |
| static MachineBasicBlock::const_iterator
 | |
| nextIfDebug(MachineBasicBlock::const_iterator I,
 | |
|             MachineBasicBlock::const_iterator End) {
 | |
|   for(; I != End; ++I) {
 | |
|     if (!I->isDebugInstr())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// Non-const version.
 | |
| static MachineBasicBlock::iterator
 | |
| nextIfDebug(MachineBasicBlock::iterator I,
 | |
|             MachineBasicBlock::const_iterator End) {
 | |
|   return nextIfDebug(MachineBasicBlock::const_iterator(I), End)
 | |
|       .getNonConstIterator();
 | |
| }
 | |
| 
 | |
| /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
 | |
| ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
 | |
|   // Select the scheduler, or set the default.
 | |
|   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
 | |
|   if (Ctor != useDefaultMachineSched)
 | |
|     return Ctor(this);
 | |
| 
 | |
|   // Get the default scheduler set by the target for this function.
 | |
|   ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
 | |
|   if (Scheduler)
 | |
|     return Scheduler;
 | |
| 
 | |
|   // Default to GenericScheduler.
 | |
|   return createGenericSchedLive(this);
 | |
| }
 | |
| 
 | |
| /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
 | |
| /// the caller. We don't have a command line option to override the postRA
 | |
| /// scheduler. The Target must configure it.
 | |
| ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
 | |
|   // Get the postRA scheduler set by the target for this function.
 | |
|   ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
 | |
|   if (Scheduler)
 | |
|     return Scheduler;
 | |
| 
 | |
|   // Default to GenericScheduler.
 | |
|   return createGenericSchedPostRA(this);
 | |
| }
 | |
| 
 | |
| /// Top-level MachineScheduler pass driver.
 | |
| ///
 | |
| /// Visit blocks in function order. Divide each block into scheduling regions
 | |
| /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
 | |
| /// consistent with the DAG builder, which traverses the interior of the
 | |
| /// scheduling regions bottom-up.
 | |
| ///
 | |
| /// This design avoids exposing scheduling boundaries to the DAG builder,
 | |
| /// simplifying the DAG builder's support for "special" target instructions.
 | |
| /// At the same time the design allows target schedulers to operate across
 | |
| /// scheduling boundaries, for example to bundle the boundary instructions
 | |
| /// without reordering them. This creates complexity, because the target
 | |
| /// scheduler must update the RegionBegin and RegionEnd positions cached by
 | |
| /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
 | |
| /// design would be to split blocks at scheduling boundaries, but LLVM has a
 | |
| /// general bias against block splitting purely for implementation simplicity.
 | |
| bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | |
|   if (skipFunction(mf.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   if (EnableMachineSched.getNumOccurrences()) {
 | |
|     if (!EnableMachineSched)
 | |
|       return false;
 | |
|   } else if (!mf.getSubtarget().enableMachineScheduler())
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
 | |
| 
 | |
|   // Initialize the context of the pass.
 | |
|   MF = &mf;
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   PassConfig = &getAnalysis<TargetPassConfig>();
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
| 
 | |
|   LIS = &getAnalysis<LiveIntervals>();
 | |
| 
 | |
|   if (VerifyScheduling) {
 | |
|     LLVM_DEBUG(LIS->dump());
 | |
|     MF->verify(this, "Before machine scheduling.");
 | |
|   }
 | |
|   RegClassInfo->runOnMachineFunction(*MF);
 | |
| 
 | |
|   // Instantiate the selected scheduler for this target, function, and
 | |
|   // optimization level.
 | |
|   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
 | |
|   scheduleRegions(*Scheduler, false);
 | |
| 
 | |
|   LLVM_DEBUG(LIS->dump());
 | |
|   if (VerifyScheduling)
 | |
|     MF->verify(this, "After machine scheduling.");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | |
|   if (skipFunction(mf.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   if (EnablePostRAMachineSched.getNumOccurrences()) {
 | |
|     if (!EnablePostRAMachineSched)
 | |
|       return false;
 | |
|   } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) {
 | |
|     LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
 | |
|     return false;
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
 | |
| 
 | |
|   // Initialize the context of the pass.
 | |
|   MF = &mf;
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   PassConfig = &getAnalysis<TargetPassConfig>();
 | |
|   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
| 
 | |
|   if (VerifyScheduling)
 | |
|     MF->verify(this, "Before post machine scheduling.");
 | |
| 
 | |
|   // Instantiate the selected scheduler for this target, function, and
 | |
|   // optimization level.
 | |
|   std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
 | |
|   scheduleRegions(*Scheduler, true);
 | |
| 
 | |
|   if (VerifyScheduling)
 | |
|     MF->verify(this, "After post machine scheduling.");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Return true of the given instruction should not be included in a scheduling
 | |
| /// region.
 | |
| ///
 | |
| /// MachineScheduler does not currently support scheduling across calls. To
 | |
| /// handle calls, the DAG builder needs to be modified to create register
 | |
| /// anti/output dependencies on the registers clobbered by the call's regmask
 | |
| /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
 | |
| /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
 | |
| /// the boundary, but there would be no benefit to postRA scheduling across
 | |
| /// calls this late anyway.
 | |
| static bool isSchedBoundary(MachineBasicBlock::iterator MI,
 | |
|                             MachineBasicBlock *MBB,
 | |
|                             MachineFunction *MF,
 | |
|                             const TargetInstrInfo *TII) {
 | |
|   return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF);
 | |
| }
 | |
| 
 | |
| /// A region of an MBB for scheduling.
 | |
| namespace {
 | |
| struct SchedRegion {
 | |
|   /// RegionBegin is the first instruction in the scheduling region, and
 | |
|   /// RegionEnd is either MBB->end() or the scheduling boundary after the
 | |
|   /// last instruction in the scheduling region. These iterators cannot refer
 | |
|   /// to instructions outside of the identified scheduling region because
 | |
|   /// those may be reordered before scheduling this region.
 | |
|   MachineBasicBlock::iterator RegionBegin;
 | |
|   MachineBasicBlock::iterator RegionEnd;
 | |
|   unsigned NumRegionInstrs;
 | |
| 
 | |
|   SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E,
 | |
|               unsigned N) :
 | |
|     RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {}
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| using MBBRegionsVector = SmallVector<SchedRegion, 16>;
 | |
| 
 | |
| static void
 | |
| getSchedRegions(MachineBasicBlock *MBB,
 | |
|                 MBBRegionsVector &Regions,
 | |
|                 bool RegionsTopDown) {
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
| 
 | |
|   MachineBasicBlock::iterator I = nullptr;
 | |
|   for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | |
|       RegionEnd != MBB->begin(); RegionEnd = I) {
 | |
| 
 | |
|     // Avoid decrementing RegionEnd for blocks with no terminator.
 | |
|     if (RegionEnd != MBB->end() ||
 | |
|         isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
 | |
|       --RegionEnd;
 | |
|     }
 | |
| 
 | |
|     // The next region starts above the previous region. Look backward in the
 | |
|     // instruction stream until we find the nearest boundary.
 | |
|     unsigned NumRegionInstrs = 0;
 | |
|     I = RegionEnd;
 | |
|     for (;I != MBB->begin(); --I) {
 | |
|       MachineInstr &MI = *std::prev(I);
 | |
|       if (isSchedBoundary(&MI, &*MBB, MF, TII))
 | |
|         break;
 | |
|       if (!MI.isDebugInstr()) {
 | |
|         // MBB::size() uses instr_iterator to count. Here we need a bundle to
 | |
|         // count as a single instruction.
 | |
|         ++NumRegionInstrs;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // It's possible we found a scheduling region that only has debug
 | |
|     // instructions. Don't bother scheduling these.
 | |
|     if (NumRegionInstrs != 0)
 | |
|       Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs));
 | |
|   }
 | |
| 
 | |
|   if (RegionsTopDown)
 | |
|     std::reverse(Regions.begin(), Regions.end());
 | |
| }
 | |
| 
 | |
| /// Main driver for both MachineScheduler and PostMachineScheduler.
 | |
| void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
 | |
|                                            bool FixKillFlags) {
 | |
|   // Visit all machine basic blocks.
 | |
|   //
 | |
|   // TODO: Visit blocks in global postorder or postorder within the bottom-up
 | |
|   // loop tree. Then we can optionally compute global RegPressure.
 | |
|   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
 | |
|        MBB != MBBEnd; ++MBB) {
 | |
| 
 | |
|     Scheduler.startBlock(&*MBB);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
 | |
|       continue;
 | |
|     if (SchedOnlyBlock.getNumOccurrences()
 | |
|         && (int)SchedOnlyBlock != MBB->getNumber())
 | |
|       continue;
 | |
| #endif
 | |
| 
 | |
|     // Break the block into scheduling regions [I, RegionEnd). RegionEnd
 | |
|     // points to the scheduling boundary at the bottom of the region. The DAG
 | |
|     // does not include RegionEnd, but the region does (i.e. the next
 | |
|     // RegionEnd is above the previous RegionBegin). If the current block has
 | |
|     // no terminator then RegionEnd == MBB->end() for the bottom region.
 | |
|     //
 | |
|     // All the regions of MBB are first found and stored in MBBRegions, which
 | |
|     // will be processed (MBB) top-down if initialized with true.
 | |
|     //
 | |
|     // The Scheduler may insert instructions during either schedule() or
 | |
|     // exitRegion(), even for empty regions. So the local iterators 'I' and
 | |
|     // 'RegionEnd' are invalid across these calls. Instructions must not be
 | |
|     // added to other regions than the current one without updating MBBRegions.
 | |
| 
 | |
|     MBBRegionsVector MBBRegions;
 | |
|     getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown());
 | |
|     for (MBBRegionsVector::iterator R = MBBRegions.begin();
 | |
|          R != MBBRegions.end(); ++R) {
 | |
|       MachineBasicBlock::iterator I = R->RegionBegin;
 | |
|       MachineBasicBlock::iterator RegionEnd = R->RegionEnd;
 | |
|       unsigned NumRegionInstrs = R->NumRegionInstrs;
 | |
| 
 | |
|       // Notify the scheduler of the region, even if we may skip scheduling
 | |
|       // it. Perhaps it still needs to be bundled.
 | |
|       Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
 | |
| 
 | |
|       // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | |
|       if (I == RegionEnd || I == std::prev(RegionEnd)) {
 | |
|         // Close the current region. Bundle the terminator if needed.
 | |
|         // This invalidates 'RegionEnd' and 'I'.
 | |
|         Scheduler.exitRegion();
 | |
|         continue;
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
 | |
|       LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB)
 | |
|                         << " " << MBB->getName() << "\n  From: " << *I
 | |
|                         << "    To: ";
 | |
|                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | |
|                  else dbgs() << "End";
 | |
|                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
 | |
|       if (DumpCriticalPathLength) {
 | |
|         errs() << MF->getName();
 | |
|         errs() << ":%bb. " << MBB->getNumber();
 | |
|         errs() << " " << MBB->getName() << " \n";
 | |
|       }
 | |
| 
 | |
|       // Schedule a region: possibly reorder instructions.
 | |
|       // This invalidates the original region iterators.
 | |
|       Scheduler.schedule();
 | |
| 
 | |
|       // Close the current region.
 | |
|       Scheduler.exitRegion();
 | |
|     }
 | |
|     Scheduler.finishBlock();
 | |
|     // FIXME: Ideally, no further passes should rely on kill flags. However,
 | |
|     // thumb2 size reduction is currently an exception, so the PostMIScheduler
 | |
|     // needs to do this.
 | |
|     if (FixKillFlags)
 | |
|       Scheduler.fixupKills(*MBB);
 | |
|   }
 | |
|   Scheduler.finalizeSchedule();
 | |
| }
 | |
| 
 | |
| void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
 | |
|   // unimplemented
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void ReadyQueue::dump() const {
 | |
|   dbgs() << "Queue " << Name << ": ";
 | |
|   for (const SUnit *SU : Queue)
 | |
|     dbgs() << SU->NodeNum << " ";
 | |
|   dbgs() << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScheduleDAGMI - Basic machine instruction scheduling. This is
 | |
| // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
 | |
| // virtual registers.
 | |
| // ===----------------------------------------------------------------------===/
 | |
| 
 | |
| // Provide a vtable anchor.
 | |
| ScheduleDAGMI::~ScheduleDAGMI() = default;
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 | |
| /// NumPredsLeft reaches zero, release the successor node.
 | |
| ///
 | |
| /// FIXME: Adjust SuccSU height based on MinLatency.
 | |
| void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
|   if (SuccEdge->isWeak()) {
 | |
|     --SuccSU->WeakPredsLeft;
 | |
|     if (SuccEdge->isCluster())
 | |
|       NextClusterSucc = SuccSU;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     dumpNode(*SuccSU);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| #endif
 | |
|   // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
 | |
|   // CurrCycle may have advanced since then.
 | |
|   if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
 | |
|     SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
 | |
| 
 | |
|   --SuccSU->NumPredsLeft;
 | |
|   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | |
|     SchedImpl->releaseTopNode(SuccSU);
 | |
| }
 | |
| 
 | |
| /// releaseSuccessors - Call releaseSucc on each of SU's successors.
 | |
| void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 | |
|   for (SDep &Succ : SU->Succs)
 | |
|     releaseSucc(SU, &Succ);
 | |
| }
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
 | |
| /// NumSuccsLeft reaches zero, release the predecessor node.
 | |
| ///
 | |
| /// FIXME: Adjust PredSU height based on MinLatency.
 | |
| void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
| 
 | |
|   if (PredEdge->isWeak()) {
 | |
|     --PredSU->WeakSuccsLeft;
 | |
|     if (PredEdge->isCluster())
 | |
|       NextClusterPred = PredSU;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     dumpNode(*PredSU);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| #endif
 | |
|   // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
 | |
|   // CurrCycle may have advanced since then.
 | |
|   if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
 | |
|     PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
 | |
| 
 | |
|   --PredSU->NumSuccsLeft;
 | |
|   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
 | |
|     SchedImpl->releaseBottomNode(PredSU);
 | |
| }
 | |
| 
 | |
| /// releasePredecessors - Call releasePred on each of SU's predecessors.
 | |
| void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
 | |
|   for (SDep &Pred : SU->Preds)
 | |
|     releasePred(SU, &Pred);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) {
 | |
|   ScheduleDAGInstrs::startBlock(bb);
 | |
|   SchedImpl->enterMBB(bb);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::finishBlock() {
 | |
|   SchedImpl->leaveMBB();
 | |
|   ScheduleDAGInstrs::finishBlock();
 | |
| }
 | |
| 
 | |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in
 | |
| /// the region, including the boundary itself and single-instruction regions
 | |
| /// that don't get scheduled.
 | |
| void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
 | |
|                                      MachineBasicBlock::iterator begin,
 | |
|                                      MachineBasicBlock::iterator end,
 | |
|                                      unsigned regioninstrs)
 | |
| {
 | |
|   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
 | |
| 
 | |
|   SchedImpl->initPolicy(begin, end, regioninstrs);
 | |
| }
 | |
| 
 | |
| /// This is normally called from the main scheduler loop but may also be invoked
 | |
| /// by the scheduling strategy to perform additional code motion.
 | |
| void ScheduleDAGMI::moveInstruction(
 | |
|   MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
 | |
|   // Advance RegionBegin if the first instruction moves down.
 | |
|   if (&*RegionBegin == MI)
 | |
|     ++RegionBegin;
 | |
| 
 | |
|   // Update the instruction stream.
 | |
|   BB->splice(InsertPos, BB, MI);
 | |
| 
 | |
|   // Update LiveIntervals
 | |
|   if (LIS)
 | |
|     LIS->handleMove(*MI, /*UpdateFlags=*/true);
 | |
| 
 | |
|   // Recede RegionBegin if an instruction moves above the first.
 | |
|   if (RegionBegin == InsertPos)
 | |
|     RegionBegin = MI;
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGMI::checkSchedLimit() {
 | |
| #ifndef NDEBUG
 | |
|   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
 | |
|     CurrentTop = CurrentBottom;
 | |
|     return false;
 | |
|   }
 | |
|   ++NumInstrsScheduled;
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Per-region scheduling driver, called back from
 | |
| /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
 | |
| /// does not consider liveness or register pressure. It is useful for PostRA
 | |
| /// scheduling and potentially other custom schedulers.
 | |
| void ScheduleDAGMI::schedule() {
 | |
|   LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
 | |
|   LLVM_DEBUG(SchedImpl->dumpPolicy());
 | |
| 
 | |
|   // Build the DAG.
 | |
|   buildSchedGraph(AA);
 | |
| 
 | |
|   postprocessDAG();
 | |
| 
 | |
|   SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | |
|   findRootsAndBiasEdges(TopRoots, BotRoots);
 | |
| 
 | |
|   LLVM_DEBUG(dump());
 | |
|   if (PrintDAGs) dump();
 | |
|   if (ViewMISchedDAGs) viewGraph();
 | |
| 
 | |
|   // Initialize the strategy before modifying the DAG.
 | |
|   // This may initialize a DFSResult to be used for queue priority.
 | |
|   SchedImpl->initialize(this);
 | |
| 
 | |
|   // Initialize ready queues now that the DAG and priority data are finalized.
 | |
|   initQueues(TopRoots, BotRoots);
 | |
| 
 | |
|   bool IsTopNode = false;
 | |
|   while (true) {
 | |
|     LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
 | |
|     SUnit *SU = SchedImpl->pickNode(IsTopNode);
 | |
|     if (!SU) break;
 | |
| 
 | |
|     assert(!SU->isScheduled && "Node already scheduled");
 | |
|     if (!checkSchedLimit())
 | |
|       break;
 | |
| 
 | |
|     MachineInstr *MI = SU->getInstr();
 | |
|     if (IsTopNode) {
 | |
|       assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | |
|       if (&*CurrentTop == MI)
 | |
|         CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | |
|       else
 | |
|         moveInstruction(MI, CurrentTop);
 | |
|     } else {
 | |
|       assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | |
|       MachineBasicBlock::iterator priorII =
 | |
|         priorNonDebug(CurrentBottom, CurrentTop);
 | |
|       if (&*priorII == MI)
 | |
|         CurrentBottom = priorII;
 | |
|       else {
 | |
|         if (&*CurrentTop == MI)
 | |
|           CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | |
|         moveInstruction(MI, CurrentBottom);
 | |
|         CurrentBottom = MI;
 | |
|       }
 | |
|     }
 | |
|     // Notify the scheduling strategy before updating the DAG.
 | |
|     // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
 | |
|     // runs, it can then use the accurate ReadyCycle time to determine whether
 | |
|     // newly released nodes can move to the readyQ.
 | |
|     SchedImpl->schedNode(SU, IsTopNode);
 | |
| 
 | |
|     updateQueues(SU, IsTopNode);
 | |
|   }
 | |
|   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | |
| 
 | |
|   placeDebugValues();
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "*** Final schedule for "
 | |
|            << printMBBReference(*begin()->getParent()) << " ***\n";
 | |
|     dumpSchedule();
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Apply each ScheduleDAGMutation step in order.
 | |
| void ScheduleDAGMI::postprocessDAG() {
 | |
|   for (auto &m : Mutations)
 | |
|     m->apply(this);
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::
 | |
| findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
 | |
|                       SmallVectorImpl<SUnit*> &BotRoots) {
 | |
|   for (SUnit &SU : SUnits) {
 | |
|     assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits");
 | |
| 
 | |
|     // Order predecessors so DFSResult follows the critical path.
 | |
|     SU.biasCriticalPath();
 | |
| 
 | |
|     // A SUnit is ready to top schedule if it has no predecessors.
 | |
|     if (!SU.NumPredsLeft)
 | |
|       TopRoots.push_back(&SU);
 | |
|     // A SUnit is ready to bottom schedule if it has no successors.
 | |
|     if (!SU.NumSuccsLeft)
 | |
|       BotRoots.push_back(&SU);
 | |
|   }
 | |
|   ExitSU.biasCriticalPath();
 | |
| }
 | |
| 
 | |
| /// Identify DAG roots and setup scheduler queues.
 | |
| void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
 | |
|                                ArrayRef<SUnit*> BotRoots) {
 | |
|   NextClusterSucc = nullptr;
 | |
|   NextClusterPred = nullptr;
 | |
| 
 | |
|   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
 | |
|   //
 | |
|   // Nodes with unreleased weak edges can still be roots.
 | |
|   // Release top roots in forward order.
 | |
|   for (SUnit *SU : TopRoots)
 | |
|     SchedImpl->releaseTopNode(SU);
 | |
| 
 | |
|   // Release bottom roots in reverse order so the higher priority nodes appear
 | |
|   // first. This is more natural and slightly more efficient.
 | |
|   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
 | |
|          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
 | |
|     SchedImpl->releaseBottomNode(*I);
 | |
|   }
 | |
| 
 | |
|   releaseSuccessors(&EntrySU);
 | |
|   releasePredecessors(&ExitSU);
 | |
| 
 | |
|   SchedImpl->registerRoots();
 | |
| 
 | |
|   // Advance past initial DebugValues.
 | |
|   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
 | |
|   CurrentBottom = RegionEnd;
 | |
| }
 | |
| 
 | |
| /// Update scheduler queues after scheduling an instruction.
 | |
| void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
 | |
|   // Release dependent instructions for scheduling.
 | |
|   if (IsTopNode)
 | |
|     releaseSuccessors(SU);
 | |
|   else
 | |
|     releasePredecessors(SU);
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| }
 | |
| 
 | |
| /// Reinsert any remaining debug_values, just like the PostRA scheduler.
 | |
| void ScheduleDAGMI::placeDebugValues() {
 | |
|   // If first instruction was a DBG_VALUE then put it back.
 | |
|   if (FirstDbgValue) {
 | |
|     BB->splice(RegionBegin, BB, FirstDbgValue);
 | |
|     RegionBegin = FirstDbgValue;
 | |
|   }
 | |
| 
 | |
|   for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator
 | |
|          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | |
|     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
 | |
|     MachineInstr *DbgValue = P.first;
 | |
|     MachineBasicBlock::iterator OrigPrevMI = P.second;
 | |
|     if (&*RegionBegin == DbgValue)
 | |
|       ++RegionBegin;
 | |
|     BB->splice(++OrigPrevMI, BB, DbgValue);
 | |
|     if (OrigPrevMI == std::prev(RegionEnd))
 | |
|       RegionEnd = DbgValue;
 | |
|   }
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = nullptr;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const {
 | |
|   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
 | |
|     if (SUnit *SU = getSUnit(&(*MI)))
 | |
|       dumpNode(*SU);
 | |
|     else
 | |
|       dbgs() << "Missing SUnit\n";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
 | |
| // preservation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ScheduleDAGMILive::~ScheduleDAGMILive() {
 | |
|   delete DFSResult;
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMILive::collectVRegUses(SUnit &SU) {
 | |
|   const MachineInstr &MI = *SU.getInstr();
 | |
|   for (const MachineOperand &MO : MI.operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (!MO.readsReg())
 | |
|       continue;
 | |
|     if (TrackLaneMasks && !MO.isUse())
 | |
|       continue;
 | |
| 
 | |
|     Register Reg = MO.getReg();
 | |
|     if (!Register::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     // Ignore re-defs.
 | |
|     if (TrackLaneMasks) {
 | |
|       bool FoundDef = false;
 | |
|       for (const MachineOperand &MO2 : MI.operands()) {
 | |
|         if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
 | |
|           FoundDef = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (FoundDef)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Record this local VReg use.
 | |
|     VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
 | |
|     for (; UI != VRegUses.end(); ++UI) {
 | |
|       if (UI->SU == &SU)
 | |
|         break;
 | |
|     }
 | |
|     if (UI == VRegUses.end())
 | |
|       VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in
 | |
| /// the region, including the boundary itself and single-instruction regions
 | |
| /// that don't get scheduled.
 | |
| void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
 | |
|                                 MachineBasicBlock::iterator begin,
 | |
|                                 MachineBasicBlock::iterator end,
 | |
|                                 unsigned regioninstrs)
 | |
| {
 | |
|   // ScheduleDAGMI initializes SchedImpl's per-region policy.
 | |
|   ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
 | |
| 
 | |
|   // For convenience remember the end of the liveness region.
 | |
|   LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
 | |
| 
 | |
|   SUPressureDiffs.clear();
 | |
| 
 | |
|   ShouldTrackPressure = SchedImpl->shouldTrackPressure();
 | |
|   ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks();
 | |
| 
 | |
|   assert((!ShouldTrackLaneMasks || ShouldTrackPressure) &&
 | |
|          "ShouldTrackLaneMasks requires ShouldTrackPressure");
 | |
| }
 | |
| 
 | |
| // Setup the register pressure trackers for the top scheduled and bottom
 | |
| // scheduled regions.
 | |
| void ScheduleDAGMILive::initRegPressure() {
 | |
|   VRegUses.clear();
 | |
|   VRegUses.setUniverse(MRI.getNumVirtRegs());
 | |
|   for (SUnit &SU : SUnits)
 | |
|     collectVRegUses(SU);
 | |
| 
 | |
|   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin,
 | |
|                     ShouldTrackLaneMasks, false);
 | |
|   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
 | |
|                     ShouldTrackLaneMasks, false);
 | |
| 
 | |
|   // Close the RPTracker to finalize live ins.
 | |
|   RPTracker.closeRegion();
 | |
| 
 | |
|   LLVM_DEBUG(RPTracker.dump());
 | |
| 
 | |
|   // Initialize the live ins and live outs.
 | |
|   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | |
|   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | |
| 
 | |
|   // Close one end of the tracker so we can call
 | |
|   // getMaxUpward/DownwardPressureDelta before advancing across any
 | |
|   // instructions. This converts currently live regs into live ins/outs.
 | |
|   TopRPTracker.closeTop();
 | |
|   BotRPTracker.closeBottom();
 | |
| 
 | |
|   BotRPTracker.initLiveThru(RPTracker);
 | |
|   if (!BotRPTracker.getLiveThru().empty()) {
 | |
|     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
 | |
|     LLVM_DEBUG(dbgs() << "Live Thru: ";
 | |
|                dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
 | |
|   };
 | |
| 
 | |
|   // For each live out vreg reduce the pressure change associated with other
 | |
|   // uses of the same vreg below the live-out reaching def.
 | |
|   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
 | |
| 
 | |
|   // Account for liveness generated by the region boundary.
 | |
|   if (LiveRegionEnd != RegionEnd) {
 | |
|     SmallVector<RegisterMaskPair, 8> LiveUses;
 | |
|     BotRPTracker.recede(&LiveUses);
 | |
|     updatePressureDiffs(LiveUses);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Top Pressure:\n";
 | |
|              dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
 | |
|              dbgs() << "Bottom Pressure:\n";
 | |
|              dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI););
 | |
| 
 | |
|   assert((BotRPTracker.getPos() == RegionEnd ||
 | |
|           (RegionEnd->isDebugInstr() &&
 | |
|            BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) &&
 | |
|          "Can't find the region bottom");
 | |
| 
 | |
|   // Cache the list of excess pressure sets in this region. This will also track
 | |
|   // the max pressure in the scheduled code for these sets.
 | |
|   RegionCriticalPSets.clear();
 | |
|   const std::vector<unsigned> &RegionPressure =
 | |
|     RPTracker.getPressure().MaxSetPressure;
 | |
|   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
 | |
|     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
 | |
|     if (RegionPressure[i] > Limit) {
 | |
|       LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit
 | |
|                         << " Actual " << RegionPressure[i] << "\n");
 | |
|       RegionCriticalPSets.push_back(PressureChange(i));
 | |
|     }
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Excess PSets: ";
 | |
|              for (const PressureChange &RCPS
 | |
|                   : RegionCriticalPSets) dbgs()
 | |
|              << TRI->getRegPressureSetName(RCPS.getPSet()) << " ";
 | |
|              dbgs() << "\n");
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMILive::
 | |
| updateScheduledPressure(const SUnit *SU,
 | |
|                         const std::vector<unsigned> &NewMaxPressure) {
 | |
|   const PressureDiff &PDiff = getPressureDiff(SU);
 | |
|   unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
 | |
|   for (const PressureChange &PC : PDiff) {
 | |
|     if (!PC.isValid())
 | |
|       break;
 | |
|     unsigned ID = PC.getPSet();
 | |
|     while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
 | |
|       ++CritIdx;
 | |
|     if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
 | |
|       if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
 | |
|           && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max())
 | |
|         RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
 | |
|     }
 | |
|     unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
 | |
|     if (NewMaxPressure[ID] >= Limit - 2) {
 | |
|       LLVM_DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
 | |
|                         << NewMaxPressure[ID]
 | |
|                         << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ")
 | |
|                         << Limit << "(+ " << BotRPTracker.getLiveThru()[ID]
 | |
|                         << " livethru)\n");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update the PressureDiff array for liveness after scheduling this
 | |
| /// instruction.
 | |
| void ScheduleDAGMILive::updatePressureDiffs(
 | |
|     ArrayRef<RegisterMaskPair> LiveUses) {
 | |
|   for (const RegisterMaskPair &P : LiveUses) {
 | |
|     unsigned Reg = P.RegUnit;
 | |
|     /// FIXME: Currently assuming single-use physregs.
 | |
|     if (!Register::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     if (ShouldTrackLaneMasks) {
 | |
|       // If the register has just become live then other uses won't change
 | |
|       // this fact anymore => decrement pressure.
 | |
|       // If the register has just become dead then other uses make it come
 | |
|       // back to life => increment pressure.
 | |
|       bool Decrement = P.LaneMask.any();
 | |
| 
 | |
|       for (const VReg2SUnit &V2SU
 | |
|            : make_range(VRegUses.find(Reg), VRegUses.end())) {
 | |
|         SUnit &SU = *V2SU.SU;
 | |
|         if (SU.isScheduled || &SU == &ExitSU)
 | |
|           continue;
 | |
| 
 | |
|         PressureDiff &PDiff = getPressureDiff(&SU);
 | |
|         PDiff.addPressureChange(Reg, Decrement, &MRI);
 | |
|         LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU.NodeNum << ") "
 | |
|                           << printReg(Reg, TRI) << ':'
 | |
|                           << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr();
 | |
|                    dbgs() << "              to "; PDiff.dump(*TRI););
 | |
|       }
 | |
|     } else {
 | |
|       assert(P.LaneMask.any());
 | |
|       LLVM_DEBUG(dbgs() << "  LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n");
 | |
|       // This may be called before CurrentBottom has been initialized. However,
 | |
|       // BotRPTracker must have a valid position. We want the value live into the
 | |
|       // instruction or live out of the block, so ask for the previous
 | |
|       // instruction's live-out.
 | |
|       const LiveInterval &LI = LIS->getInterval(Reg);
 | |
|       VNInfo *VNI;
 | |
|       MachineBasicBlock::const_iterator I =
 | |
|         nextIfDebug(BotRPTracker.getPos(), BB->end());
 | |
|       if (I == BB->end())
 | |
|         VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
 | |
|       else {
 | |
|         LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I));
 | |
|         VNI = LRQ.valueIn();
 | |
|       }
 | |
|       // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
 | |
|       assert(VNI && "No live value at use.");
 | |
|       for (const VReg2SUnit &V2SU
 | |
|            : make_range(VRegUses.find(Reg), VRegUses.end())) {
 | |
|         SUnit *SU = V2SU.SU;
 | |
|         // If this use comes before the reaching def, it cannot be a last use,
 | |
|         // so decrease its pressure change.
 | |
|         if (!SU->isScheduled && SU != &ExitSU) {
 | |
|           LiveQueryResult LRQ =
 | |
|               LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
 | |
|           if (LRQ.valueIn() == VNI) {
 | |
|             PressureDiff &PDiff = getPressureDiff(SU);
 | |
|             PDiff.addPressureChange(Reg, true, &MRI);
 | |
|             LLVM_DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
 | |
|                               << *SU->getInstr();
 | |
|                        dbgs() << "              to "; PDiff.dump(*TRI););
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMILive::dump() const {
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   if (EntrySU.getInstr() != nullptr)
 | |
|     dumpNodeAll(EntrySU);
 | |
|   for (const SUnit &SU : SUnits) {
 | |
|     dumpNodeAll(SU);
 | |
|     if (ShouldTrackPressure) {
 | |
|       dbgs() << "  Pressure Diff      : ";
 | |
|       getPressureDiff(&SU).dump(*TRI);
 | |
|     }
 | |
|     dbgs() << "  Single Issue       : ";
 | |
|     if (SchedModel.mustBeginGroup(SU.getInstr()) &&
 | |
|         SchedModel.mustEndGroup(SU.getInstr()))
 | |
|       dbgs() << "true;";
 | |
|     else
 | |
|       dbgs() << "false;";
 | |
|     dbgs() << '\n';
 | |
|   }
 | |
|   if (ExitSU.getInstr() != nullptr)
 | |
|     dumpNodeAll(ExitSU);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// schedule - Called back from MachineScheduler::runOnMachineFunction
 | |
| /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | |
| /// only includes instructions that have DAG nodes, not scheduling boundaries.
 | |
| ///
 | |
| /// This is a skeletal driver, with all the functionality pushed into helpers,
 | |
| /// so that it can be easily extended by experimental schedulers. Generally,
 | |
| /// implementing MachineSchedStrategy should be sufficient to implement a new
 | |
| /// scheduling algorithm. However, if a scheduler further subclasses
 | |
| /// ScheduleDAGMILive then it will want to override this virtual method in order
 | |
| /// to update any specialized state.
 | |
| void ScheduleDAGMILive::schedule() {
 | |
|   LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
 | |
|   LLVM_DEBUG(SchedImpl->dumpPolicy());
 | |
|   buildDAGWithRegPressure();
 | |
| 
 | |
|   postprocessDAG();
 | |
| 
 | |
|   SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | |
|   findRootsAndBiasEdges(TopRoots, BotRoots);
 | |
| 
 | |
|   // Initialize the strategy before modifying the DAG.
 | |
|   // This may initialize a DFSResult to be used for queue priority.
 | |
|   SchedImpl->initialize(this);
 | |
| 
 | |
|   LLVM_DEBUG(dump());
 | |
|   if (PrintDAGs) dump();
 | |
|   if (ViewMISchedDAGs) viewGraph();
 | |
| 
 | |
|   // Initialize ready queues now that the DAG and priority data are finalized.
 | |
|   initQueues(TopRoots, BotRoots);
 | |
| 
 | |
|   bool IsTopNode = false;
 | |
|   while (true) {
 | |
|     LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
 | |
|     SUnit *SU = SchedImpl->pickNode(IsTopNode);
 | |
|     if (!SU) break;
 | |
| 
 | |
|     assert(!SU->isScheduled && "Node already scheduled");
 | |
|     if (!checkSchedLimit())
 | |
|       break;
 | |
| 
 | |
|     scheduleMI(SU, IsTopNode);
 | |
| 
 | |
|     if (DFSResult) {
 | |
|       unsigned SubtreeID = DFSResult->getSubtreeID(SU);
 | |
|       if (!ScheduledTrees.test(SubtreeID)) {
 | |
|         ScheduledTrees.set(SubtreeID);
 | |
|         DFSResult->scheduleTree(SubtreeID);
 | |
|         SchedImpl->scheduleTree(SubtreeID);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Notify the scheduling strategy after updating the DAG.
 | |
|     SchedImpl->schedNode(SU, IsTopNode);
 | |
| 
 | |
|     updateQueues(SU, IsTopNode);
 | |
|   }
 | |
|   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | |
| 
 | |
|   placeDebugValues();
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "*** Final schedule for "
 | |
|            << printMBBReference(*begin()->getParent()) << " ***\n";
 | |
|     dumpSchedule();
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Build the DAG and setup three register pressure trackers.
 | |
| void ScheduleDAGMILive::buildDAGWithRegPressure() {
 | |
|   if (!ShouldTrackPressure) {
 | |
|     RPTracker.reset();
 | |
|     RegionCriticalPSets.clear();
 | |
|     buildSchedGraph(AA);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Initialize the register pressure tracker used by buildSchedGraph.
 | |
|   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
 | |
|                  ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true);
 | |
| 
 | |
|   // Account for liveness generate by the region boundary.
 | |
|   if (LiveRegionEnd != RegionEnd)
 | |
|     RPTracker.recede();
 | |
| 
 | |
|   // Build the DAG, and compute current register pressure.
 | |
|   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks);
 | |
| 
 | |
|   // Initialize top/bottom trackers after computing region pressure.
 | |
|   initRegPressure();
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMILive::computeDFSResult() {
 | |
|   if (!DFSResult)
 | |
|     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
 | |
|   DFSResult->clear();
 | |
|   ScheduledTrees.clear();
 | |
|   DFSResult->resize(SUnits.size());
 | |
|   DFSResult->compute(SUnits);
 | |
|   ScheduledTrees.resize(DFSResult->getNumSubtrees());
 | |
| }
 | |
| 
 | |
| /// Compute the max cyclic critical path through the DAG. The scheduling DAG
 | |
| /// only provides the critical path for single block loops. To handle loops that
 | |
| /// span blocks, we could use the vreg path latencies provided by
 | |
| /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
 | |
| /// available for use in the scheduler.
 | |
| ///
 | |
| /// The cyclic path estimation identifies a def-use pair that crosses the back
 | |
| /// edge and considers the depth and height of the nodes. For example, consider
 | |
| /// the following instruction sequence where each instruction has unit latency
 | |
| /// and defines an epomymous virtual register:
 | |
| ///
 | |
| /// a->b(a,c)->c(b)->d(c)->exit
 | |
| ///
 | |
| /// The cyclic critical path is a two cycles: b->c->b
 | |
| /// The acyclic critical path is four cycles: a->b->c->d->exit
 | |
| /// LiveOutHeight = height(c) = len(c->d->exit) = 2
 | |
| /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
 | |
| /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
 | |
| /// LiveInDepth = depth(b) = len(a->b) = 1
 | |
| ///
 | |
| /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
 | |
| /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
 | |
| /// CyclicCriticalPath = min(2, 2) = 2
 | |
| ///
 | |
| /// This could be relevant to PostRA scheduling, but is currently implemented
 | |
| /// assuming LiveIntervals.
 | |
| unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
 | |
|   // This only applies to single block loop.
 | |
|   if (!BB->isSuccessor(BB))
 | |
|     return 0;
 | |
| 
 | |
|   unsigned MaxCyclicLatency = 0;
 | |
|   // Visit each live out vreg def to find def/use pairs that cross iterations.
 | |
|   for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) {
 | |
|     unsigned Reg = P.RegUnit;
 | |
|     if (!Register::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     const LiveInterval &LI = LIS->getInterval(Reg);
 | |
|     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
 | |
|     if (!DefVNI)
 | |
|       continue;
 | |
| 
 | |
|     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
 | |
|     const SUnit *DefSU = getSUnit(DefMI);
 | |
|     if (!DefSU)
 | |
|       continue;
 | |
| 
 | |
|     unsigned LiveOutHeight = DefSU->getHeight();
 | |
|     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
 | |
|     // Visit all local users of the vreg def.
 | |
|     for (const VReg2SUnit &V2SU
 | |
|          : make_range(VRegUses.find(Reg), VRegUses.end())) {
 | |
|       SUnit *SU = V2SU.SU;
 | |
|       if (SU == &ExitSU)
 | |
|         continue;
 | |
| 
 | |
|       // Only consider uses of the phi.
 | |
|       LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr()));
 | |
|       if (!LRQ.valueIn()->isPHIDef())
 | |
|         continue;
 | |
| 
 | |
|       // Assume that a path spanning two iterations is a cycle, which could
 | |
|       // overestimate in strange cases. This allows cyclic latency to be
 | |
|       // estimated as the minimum slack of the vreg's depth or height.
 | |
|       unsigned CyclicLatency = 0;
 | |
|       if (LiveOutDepth > SU->getDepth())
 | |
|         CyclicLatency = LiveOutDepth - SU->getDepth();
 | |
| 
 | |
|       unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
 | |
|       if (LiveInHeight > LiveOutHeight) {
 | |
|         if (LiveInHeight - LiveOutHeight < CyclicLatency)
 | |
|           CyclicLatency = LiveInHeight - LiveOutHeight;
 | |
|       } else
 | |
|         CyclicLatency = 0;
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
 | |
|                         << SU->NodeNum << ") = " << CyclicLatency << "c\n");
 | |
|       if (CyclicLatency > MaxCyclicLatency)
 | |
|         MaxCyclicLatency = CyclicLatency;
 | |
|     }
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
 | |
|   return MaxCyclicLatency;
 | |
| }
 | |
| 
 | |
| /// Release ExitSU predecessors and setup scheduler queues. Re-position
 | |
| /// the Top RP tracker in case the region beginning has changed.
 | |
| void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots,
 | |
|                                    ArrayRef<SUnit*> BotRoots) {
 | |
|   ScheduleDAGMI::initQueues(TopRoots, BotRoots);
 | |
|   if (ShouldTrackPressure) {
 | |
|     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | |
|     TopRPTracker.setPos(CurrentTop);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Move an instruction and update register pressure.
 | |
| void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
 | |
|   // Move the instruction to its new location in the instruction stream.
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
| 
 | |
|   if (IsTopNode) {
 | |
|     assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | |
|     if (&*CurrentTop == MI)
 | |
|       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | |
|     else {
 | |
|       moveInstruction(MI, CurrentTop);
 | |
|       TopRPTracker.setPos(MI);
 | |
|     }
 | |
| 
 | |
|     if (ShouldTrackPressure) {
 | |
|       // Update top scheduled pressure.
 | |
|       RegisterOperands RegOpers;
 | |
|       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
 | |
|       if (ShouldTrackLaneMasks) {
 | |
|         // Adjust liveness and add missing dead+read-undef flags.
 | |
|         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
 | |
|         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
 | |
|       } else {
 | |
|         // Adjust for missing dead-def flags.
 | |
|         RegOpers.detectDeadDefs(*MI, *LIS);
 | |
|       }
 | |
| 
 | |
|       TopRPTracker.advance(RegOpers);
 | |
|       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
 | |
|       LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure(
 | |
|                      TopRPTracker.getRegSetPressureAtPos(), TRI););
 | |
| 
 | |
|       updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
 | |
|     }
 | |
|   } else {
 | |
|     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | |
|     MachineBasicBlock::iterator priorII =
 | |
|       priorNonDebug(CurrentBottom, CurrentTop);
 | |
|     if (&*priorII == MI)
 | |
|       CurrentBottom = priorII;
 | |
|     else {
 | |
|       if (&*CurrentTop == MI) {
 | |
|         CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | |
|         TopRPTracker.setPos(CurrentTop);
 | |
|       }
 | |
|       moveInstruction(MI, CurrentBottom);
 | |
|       CurrentBottom = MI;
 | |
|       BotRPTracker.setPos(CurrentBottom);
 | |
|     }
 | |
|     if (ShouldTrackPressure) {
 | |
|       RegisterOperands RegOpers;
 | |
|       RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
 | |
|       if (ShouldTrackLaneMasks) {
 | |
|         // Adjust liveness and add missing dead+read-undef flags.
 | |
|         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
 | |
|         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
 | |
|       } else {
 | |
|         // Adjust for missing dead-def flags.
 | |
|         RegOpers.detectDeadDefs(*MI, *LIS);
 | |
|       }
 | |
| 
 | |
|       if (BotRPTracker.getPos() != CurrentBottom)
 | |
|         BotRPTracker.recedeSkipDebugValues();
 | |
|       SmallVector<RegisterMaskPair, 8> LiveUses;
 | |
|       BotRPTracker.recede(RegOpers, &LiveUses);
 | |
|       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
 | |
|       LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure(
 | |
|                      BotRPTracker.getRegSetPressureAtPos(), TRI););
 | |
| 
 | |
|       updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
 | |
|       updatePressureDiffs(LiveUses);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Post-process the DAG to create cluster edges between neighboring
 | |
| /// loads or between neighboring stores.
 | |
| class BaseMemOpClusterMutation : public ScheduleDAGMutation {
 | |
|   struct MemOpInfo {
 | |
|     SUnit *SU;
 | |
|     SmallVector<const MachineOperand *, 4> BaseOps;
 | |
|     int64_t Offset;
 | |
| 
 | |
|     MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps,
 | |
|               int64_t Offset)
 | |
|         : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset) {}
 | |
| 
 | |
|     static bool Compare(const MachineOperand *const &A,
 | |
|                         const MachineOperand *const &B) {
 | |
|       if (A->getType() != B->getType())
 | |
|         return A->getType() < B->getType();
 | |
|       if (A->isReg())
 | |
|         return A->getReg() < B->getReg();
 | |
|       if (A->isFI()) {
 | |
|         const MachineFunction &MF = *A->getParent()->getParent()->getParent();
 | |
|         const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering();
 | |
|         bool StackGrowsDown = TFI.getStackGrowthDirection() ==
 | |
|                               TargetFrameLowering::StackGrowsDown;
 | |
|         return StackGrowsDown ? A->getIndex() > B->getIndex()
 | |
|                               : A->getIndex() < B->getIndex();
 | |
|       }
 | |
| 
 | |
|       llvm_unreachable("MemOpClusterMutation only supports register or frame "
 | |
|                        "index bases.");
 | |
|     }
 | |
| 
 | |
|     bool operator<(const MemOpInfo &RHS) const {
 | |
|       // FIXME: Don't compare everything twice. Maybe use C++20 three way
 | |
|       // comparison instead when it's available.
 | |
|       if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(),
 | |
|                                        RHS.BaseOps.begin(), RHS.BaseOps.end(),
 | |
|                                        Compare))
 | |
|         return true;
 | |
|       if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(),
 | |
|                                        BaseOps.begin(), BaseOps.end(), Compare))
 | |
|         return false;
 | |
|       if (Offset != RHS.Offset)
 | |
|         return Offset < RHS.Offset;
 | |
|       return SU->NodeNum < RHS.SU->NodeNum;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   bool IsLoad;
 | |
| 
 | |
| public:
 | |
|   BaseMemOpClusterMutation(const TargetInstrInfo *tii,
 | |
|                            const TargetRegisterInfo *tri, bool IsLoad)
 | |
|       : TII(tii), TRI(tri), IsLoad(IsLoad) {}
 | |
| 
 | |
|   void apply(ScheduleDAGInstrs *DAGInstrs) override;
 | |
| 
 | |
| protected:
 | |
|   void clusterNeighboringMemOps(ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG);
 | |
| };
 | |
| 
 | |
| class StoreClusterMutation : public BaseMemOpClusterMutation {
 | |
| public:
 | |
|   StoreClusterMutation(const TargetInstrInfo *tii,
 | |
|                        const TargetRegisterInfo *tri)
 | |
|       : BaseMemOpClusterMutation(tii, tri, false) {}
 | |
| };
 | |
| 
 | |
| class LoadClusterMutation : public BaseMemOpClusterMutation {
 | |
| public:
 | |
|   LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri)
 | |
|       : BaseMemOpClusterMutation(tii, tri, true) {}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| std::unique_ptr<ScheduleDAGMutation>
 | |
| createLoadClusterDAGMutation(const TargetInstrInfo *TII,
 | |
|                              const TargetRegisterInfo *TRI) {
 | |
|   return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI)
 | |
|                             : nullptr;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<ScheduleDAGMutation>
 | |
| createStoreClusterDAGMutation(const TargetInstrInfo *TII,
 | |
|                               const TargetRegisterInfo *TRI) {
 | |
|   return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI)
 | |
|                             : nullptr;
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| void BaseMemOpClusterMutation::clusterNeighboringMemOps(
 | |
|     ArrayRef<SUnit *> MemOps, ScheduleDAGInstrs *DAG) {
 | |
|   SmallVector<MemOpInfo, 32> MemOpRecords;
 | |
|   for (SUnit *SU : MemOps) {
 | |
|     SmallVector<const MachineOperand *, 4> BaseOps;
 | |
|     int64_t Offset;
 | |
|     bool OffsetIsScalable;
 | |
|     if (TII->getMemOperandsWithOffset(*SU->getInstr(), BaseOps, Offset,
 | |
|                                       OffsetIsScalable, TRI))
 | |
|       MemOpRecords.push_back(MemOpInfo(SU, BaseOps, Offset));
 | |
| #ifndef NDEBUG
 | |
|     for (auto *Op : BaseOps)
 | |
|       assert(Op);
 | |
| #endif
 | |
|   }
 | |
|   if (MemOpRecords.size() < 2)
 | |
|     return;
 | |
| 
 | |
|   llvm::sort(MemOpRecords);
 | |
|   unsigned ClusterLength = 1;
 | |
|   for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) {
 | |
|     SUnit *SUa = MemOpRecords[Idx].SU;
 | |
|     SUnit *SUb = MemOpRecords[Idx+1].SU;
 | |
|     if (TII->shouldClusterMemOps(MemOpRecords[Idx].BaseOps,
 | |
|                                  MemOpRecords[Idx + 1].BaseOps,
 | |
|                                  ClusterLength + 1)) {
 | |
|       if (SUa->NodeNum > SUb->NodeNum)
 | |
|         std::swap(SUa, SUb);
 | |
|       if (DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
 | |
|         LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU("
 | |
|                           << SUb->NodeNum << ")\n");
 | |
|         // Copy successor edges from SUa to SUb. Interleaving computation
 | |
|         // dependent on SUa can prevent load combining due to register reuse.
 | |
|         // Predecessor edges do not need to be copied from SUb to SUa since
 | |
|         // nearby loads should have effectively the same inputs.
 | |
|         for (const SDep &Succ : SUa->Succs) {
 | |
|           if (Succ.getSUnit() == SUb)
 | |
|             continue;
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "  Copy Succ SU(" << Succ.getSUnit()->NodeNum << ")\n");
 | |
|           DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial));
 | |
|         }
 | |
|         ++ClusterLength;
 | |
|       } else
 | |
|         ClusterLength = 1;
 | |
|     } else
 | |
|       ClusterLength = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Callback from DAG postProcessing to create cluster edges for loads.
 | |
| void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) {
 | |
|   // Map DAG NodeNum to a set of dependent MemOps in store chain.
 | |
|   DenseMap<unsigned, SmallVector<SUnit *, 4>> StoreChains;
 | |
|   for (SUnit &SU : DAG->SUnits) {
 | |
|     if ((IsLoad && !SU.getInstr()->mayLoad()) ||
 | |
|         (!IsLoad && !SU.getInstr()->mayStore()))
 | |
|       continue;
 | |
| 
 | |
|     unsigned ChainPredID = DAG->SUnits.size();
 | |
|     for (const SDep &Pred : SU.Preds) {
 | |
|       if (Pred.isCtrl() && !Pred.isArtificial()) {
 | |
|         ChainPredID = Pred.getSUnit()->NodeNum;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Insert the SU to corresponding store chain.
 | |
|     auto &Chain = StoreChains.FindAndConstruct(ChainPredID).second;
 | |
|     Chain.push_back(&SU);
 | |
|   }
 | |
| 
 | |
|   // Iterate over the store chains.
 | |
|   for (auto &SCD : StoreChains)
 | |
|     clusterNeighboringMemOps(SCD.second, DAG);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CopyConstrain - DAG post-processing to encourage copy elimination.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Post-process the DAG to create weak edges from all uses of a copy to
 | |
| /// the one use that defines the copy's source vreg, most likely an induction
 | |
| /// variable increment.
 | |
| class CopyConstrain : public ScheduleDAGMutation {
 | |
|   // Transient state.
 | |
|   SlotIndex RegionBeginIdx;
 | |
| 
 | |
|   // RegionEndIdx is the slot index of the last non-debug instruction in the
 | |
|   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
 | |
|   SlotIndex RegionEndIdx;
 | |
| 
 | |
| public:
 | |
|   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
 | |
| 
 | |
|   void apply(ScheduleDAGInstrs *DAGInstrs) override;
 | |
| 
 | |
| protected:
 | |
|   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| std::unique_ptr<ScheduleDAGMutation>
 | |
| createCopyConstrainDAGMutation(const TargetInstrInfo *TII,
 | |
|                                const TargetRegisterInfo *TRI) {
 | |
|   return std::make_unique<CopyConstrain>(TII, TRI);
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| /// constrainLocalCopy handles two possibilities:
 | |
| /// 1) Local src:
 | |
| /// I0:     = dst
 | |
| /// I1: src = ...
 | |
| /// I2:     = dst
 | |
| /// I3: dst = src (copy)
 | |
| /// (create pred->succ edges I0->I1, I2->I1)
 | |
| ///
 | |
| /// 2) Local copy:
 | |
| /// I0: dst = src (copy)
 | |
| /// I1:     = dst
 | |
| /// I2: src = ...
 | |
| /// I3:     = dst
 | |
| /// (create pred->succ edges I1->I2, I3->I2)
 | |
| ///
 | |
| /// Although the MachineScheduler is currently constrained to single blocks,
 | |
| /// this algorithm should handle extended blocks. An EBB is a set of
 | |
| /// contiguously numbered blocks such that the previous block in the EBB is
 | |
| /// always the single predecessor.
 | |
| void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
 | |
|   LiveIntervals *LIS = DAG->getLIS();
 | |
|   MachineInstr *Copy = CopySU->getInstr();
 | |
| 
 | |
|   // Check for pure vreg copies.
 | |
|   const MachineOperand &SrcOp = Copy->getOperand(1);
 | |
|   Register SrcReg = SrcOp.getReg();
 | |
|   if (!Register::isVirtualRegister(SrcReg) || !SrcOp.readsReg())
 | |
|     return;
 | |
| 
 | |
|   const MachineOperand &DstOp = Copy->getOperand(0);
 | |
|   Register DstReg = DstOp.getReg();
 | |
|   if (!Register::isVirtualRegister(DstReg) || DstOp.isDead())
 | |
|     return;
 | |
| 
 | |
|   // Check if either the dest or source is local. If it's live across a back
 | |
|   // edge, it's not local. Note that if both vregs are live across the back
 | |
|   // edge, we cannot successfully contrain the copy without cyclic scheduling.
 | |
|   // If both the copy's source and dest are local live intervals, then we
 | |
|   // should treat the dest as the global for the purpose of adding
 | |
|   // constraints. This adds edges from source's other uses to the copy.
 | |
|   unsigned LocalReg = SrcReg;
 | |
|   unsigned GlobalReg = DstReg;
 | |
|   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
 | |
|   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
 | |
|     LocalReg = DstReg;
 | |
|     GlobalReg = SrcReg;
 | |
|     LocalLI = &LIS->getInterval(LocalReg);
 | |
|     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
 | |
|       return;
 | |
|   }
 | |
|   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
 | |
| 
 | |
|   // Find the global segment after the start of the local LI.
 | |
|   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
 | |
|   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
 | |
|   // local live range. We could create edges from other global uses to the local
 | |
|   // start, but the coalescer should have already eliminated these cases, so
 | |
|   // don't bother dealing with it.
 | |
|   if (GlobalSegment == GlobalLI->end())
 | |
|     return;
 | |
| 
 | |
|   // If GlobalSegment is killed at the LocalLI->start, the call to find()
 | |
|   // returned the next global segment. But if GlobalSegment overlaps with
 | |
|   // LocalLI->start, then advance to the next segment. If a hole in GlobalLI
 | |
|   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
 | |
|   if (GlobalSegment->contains(LocalLI->beginIndex()))
 | |
|     ++GlobalSegment;
 | |
| 
 | |
|   if (GlobalSegment == GlobalLI->end())
 | |
|     return;
 | |
| 
 | |
|   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
 | |
|   if (GlobalSegment != GlobalLI->begin()) {
 | |
|     // Two address defs have no hole.
 | |
|     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
 | |
|                                GlobalSegment->start)) {
 | |
|       return;
 | |
|     }
 | |
|     // If the prior global segment may be defined by the same two-address
 | |
|     // instruction that also defines LocalLI, then can't make a hole here.
 | |
|     if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
 | |
|                                LocalLI->beginIndex())) {
 | |
|       return;
 | |
|     }
 | |
|     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
 | |
|     // it would be a disconnected component in the live range.
 | |
|     assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
 | |
|            "Disconnected LRG within the scheduling region.");
 | |
|   }
 | |
|   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
 | |
|   if (!GlobalDef)
 | |
|     return;
 | |
| 
 | |
|   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
 | |
|   if (!GlobalSU)
 | |
|     return;
 | |
| 
 | |
|   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
 | |
|   // constraining the uses of the last local def to precede GlobalDef.
 | |
|   SmallVector<SUnit*,8> LocalUses;
 | |
|   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
 | |
|   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
 | |
|   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
 | |
|   for (const SDep &Succ : LastLocalSU->Succs) {
 | |
|     if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg)
 | |
|       continue;
 | |
|     if (Succ.getSUnit() == GlobalSU)
 | |
|       continue;
 | |
|     if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit()))
 | |
|       return;
 | |
|     LocalUses.push_back(Succ.getSUnit());
 | |
|   }
 | |
|   // Open the top of the GlobalLI hole by constraining any earlier global uses
 | |
|   // to precede the start of LocalLI.
 | |
|   SmallVector<SUnit*,8> GlobalUses;
 | |
|   MachineInstr *FirstLocalDef =
 | |
|     LIS->getInstructionFromIndex(LocalLI->beginIndex());
 | |
|   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
 | |
|   for (const SDep &Pred : GlobalSU->Preds) {
 | |
|     if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg)
 | |
|       continue;
 | |
|     if (Pred.getSUnit() == FirstLocalSU)
 | |
|       continue;
 | |
|     if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit()))
 | |
|       return;
 | |
|     GlobalUses.push_back(Pred.getSUnit());
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
 | |
|   // Add the weak edges.
 | |
|   for (SmallVectorImpl<SUnit*>::const_iterator
 | |
|          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
 | |
|     LLVM_DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
 | |
|                       << GlobalSU->NodeNum << ")\n");
 | |
|     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
 | |
|   }
 | |
|   for (SmallVectorImpl<SUnit*>::const_iterator
 | |
|          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
 | |
|     LLVM_DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
 | |
|                       << FirstLocalSU->NodeNum << ")\n");
 | |
|     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Callback from DAG postProcessing to create weak edges to encourage
 | |
| /// copy elimination.
 | |
| void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) {
 | |
|   ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
 | |
|   assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
 | |
| 
 | |
|   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
 | |
|   if (FirstPos == DAG->end())
 | |
|     return;
 | |
|   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos);
 | |
|   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
 | |
|       *priorNonDebug(DAG->end(), DAG->begin()));
 | |
| 
 | |
|   for (SUnit &SU : DAG->SUnits) {
 | |
|     if (!SU.getInstr()->isCopy())
 | |
|       continue;
 | |
| 
 | |
|     constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG));
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
 | |
| // and possibly other custom schedulers.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static const unsigned InvalidCycle = ~0U;
 | |
| 
 | |
| SchedBoundary::~SchedBoundary() { delete HazardRec; }
 | |
| 
 | |
| /// Given a Count of resource usage and a Latency value, return true if a
 | |
| /// SchedBoundary becomes resource limited.
 | |
| /// If we are checking after scheduling a node, we should return true when
 | |
| /// we just reach the resource limit.
 | |
| static bool checkResourceLimit(unsigned LFactor, unsigned Count,
 | |
|                                unsigned Latency, bool AfterSchedNode) {
 | |
|   int ResCntFactor = (int)(Count - (Latency * LFactor));
 | |
|   if (AfterSchedNode)
 | |
|     return ResCntFactor >= (int)LFactor;
 | |
|   else
 | |
|     return ResCntFactor > (int)LFactor;
 | |
| }
 | |
| 
 | |
| void SchedBoundary::reset() {
 | |
|   // A new HazardRec is created for each DAG and owned by SchedBoundary.
 | |
|   // Destroying and reconstructing it is very expensive though. So keep
 | |
|   // invalid, placeholder HazardRecs.
 | |
|   if (HazardRec && HazardRec->isEnabled()) {
 | |
|     delete HazardRec;
 | |
|     HazardRec = nullptr;
 | |
|   }
 | |
|   Available.clear();
 | |
|   Pending.clear();
 | |
|   CheckPending = false;
 | |
|   CurrCycle = 0;
 | |
|   CurrMOps = 0;
 | |
|   MinReadyCycle = std::numeric_limits<unsigned>::max();
 | |
|   ExpectedLatency = 0;
 | |
|   DependentLatency = 0;
 | |
|   RetiredMOps = 0;
 | |
|   MaxExecutedResCount = 0;
 | |
|   ZoneCritResIdx = 0;
 | |
|   IsResourceLimited = false;
 | |
|   ReservedCycles.clear();
 | |
|   ReservedCyclesIndex.clear();
 | |
| #ifndef NDEBUG
 | |
|   // Track the maximum number of stall cycles that could arise either from the
 | |
|   // latency of a DAG edge or the number of cycles that a processor resource is
 | |
|   // reserved (SchedBoundary::ReservedCycles).
 | |
|   MaxObservedStall = 0;
 | |
| #endif
 | |
|   // Reserve a zero-count for invalid CritResIdx.
 | |
|   ExecutedResCounts.resize(1);
 | |
|   assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
 | |
| }
 | |
| 
 | |
| void SchedRemainder::
 | |
| init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
 | |
|   reset();
 | |
|   if (!SchedModel->hasInstrSchedModel())
 | |
|     return;
 | |
|   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
 | |
|   for (SUnit &SU : DAG->SUnits) {
 | |
|     const MCSchedClassDesc *SC = DAG->getSchedClass(&SU);
 | |
|     RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC)
 | |
|       * SchedModel->getMicroOpFactor();
 | |
|     for (TargetSchedModel::ProcResIter
 | |
|            PI = SchedModel->getWriteProcResBegin(SC),
 | |
|            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|       unsigned PIdx = PI->ProcResourceIdx;
 | |
|       unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | |
|       RemainingCounts[PIdx] += (Factor * PI->Cycles);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SchedBoundary::
 | |
| init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
 | |
|   reset();
 | |
|   DAG = dag;
 | |
|   SchedModel = smodel;
 | |
|   Rem = rem;
 | |
|   if (SchedModel->hasInstrSchedModel()) {
 | |
|     unsigned ResourceCount = SchedModel->getNumProcResourceKinds();
 | |
|     ReservedCyclesIndex.resize(ResourceCount);
 | |
|     ExecutedResCounts.resize(ResourceCount);
 | |
|     unsigned NumUnits = 0;
 | |
| 
 | |
|     for (unsigned i = 0; i < ResourceCount; ++i) {
 | |
|       ReservedCyclesIndex[i] = NumUnits;
 | |
|       NumUnits += SchedModel->getProcResource(i)->NumUnits;
 | |
|     }
 | |
| 
 | |
|     ReservedCycles.resize(NumUnits, InvalidCycle);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
 | |
| /// these "soft stalls" differently than the hard stall cycles based on CPU
 | |
| /// resources and computed by checkHazard(). A fully in-order model
 | |
| /// (MicroOpBufferSize==0) will not make use of this since instructions are not
 | |
| /// available for scheduling until they are ready. However, a weaker in-order
 | |
| /// model may use this for heuristics. For example, if a processor has in-order
 | |
| /// behavior when reading certain resources, this may come into play.
 | |
| unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
 | |
|   if (!SU->isUnbuffered)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
 | |
|   if (ReadyCycle > CurrCycle)
 | |
|     return ReadyCycle - CurrCycle;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Compute the next cycle at which the given processor resource unit
 | |
| /// can be scheduled.
 | |
| unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx,
 | |
|                                                        unsigned Cycles) {
 | |
|   unsigned NextUnreserved = ReservedCycles[InstanceIdx];
 | |
|   // If this resource has never been used, always return cycle zero.
 | |
|   if (NextUnreserved == InvalidCycle)
 | |
|     return 0;
 | |
|   // For bottom-up scheduling add the cycles needed for the current operation.
 | |
|   if (!isTop())
 | |
|     NextUnreserved += Cycles;
 | |
|   return NextUnreserved;
 | |
| }
 | |
| 
 | |
| /// Compute the next cycle at which the given processor resource can be
 | |
| /// scheduled.  Returns the next cycle and the index of the processor resource
 | |
| /// instance in the reserved cycles vector.
 | |
| std::pair<unsigned, unsigned>
 | |
| SchedBoundary::getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
 | |
|   unsigned MinNextUnreserved = InvalidCycle;
 | |
|   unsigned InstanceIdx = 0;
 | |
|   unsigned StartIndex = ReservedCyclesIndex[PIdx];
 | |
|   unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits;
 | |
|   assert(NumberOfInstances > 0 &&
 | |
|          "Cannot have zero instances of a ProcResource");
 | |
| 
 | |
|   for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End;
 | |
|        ++I) {
 | |
|     unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles);
 | |
|     if (MinNextUnreserved > NextUnreserved) {
 | |
|       InstanceIdx = I;
 | |
|       MinNextUnreserved = NextUnreserved;
 | |
|     }
 | |
|   }
 | |
|   return std::make_pair(MinNextUnreserved, InstanceIdx);
 | |
| }
 | |
| 
 | |
| /// Does this SU have a hazard within the current instruction group.
 | |
| ///
 | |
| /// The scheduler supports two modes of hazard recognition. The first is the
 | |
| /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | |
| /// supports highly complicated in-order reservation tables
 | |
| /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
 | |
| ///
 | |
| /// The second is a streamlined mechanism that checks for hazards based on
 | |
| /// simple counters that the scheduler itself maintains. It explicitly checks
 | |
| /// for instruction dispatch limitations, including the number of micro-ops that
 | |
| /// can dispatch per cycle.
 | |
| ///
 | |
| /// TODO: Also check whether the SU must start a new group.
 | |
| bool SchedBoundary::checkHazard(SUnit *SU) {
 | |
|   if (HazardRec->isEnabled()
 | |
|       && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
 | |
|   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
 | |
|     LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
 | |
|                       << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (CurrMOps > 0 &&
 | |
|       ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) ||
 | |
|        (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) {
 | |
|     LLVM_DEBUG(dbgs() << "  hazard: SU(" << SU->NodeNum << ") must "
 | |
|                       << (isTop() ? "begin" : "end") << " group\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
 | |
|     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|     for (const MCWriteProcResEntry &PE :
 | |
|           make_range(SchedModel->getWriteProcResBegin(SC),
 | |
|                      SchedModel->getWriteProcResEnd(SC))) {
 | |
|       unsigned ResIdx = PE.ProcResourceIdx;
 | |
|       unsigned Cycles = PE.Cycles;
 | |
|       unsigned NRCycle, InstanceIdx;
 | |
|       std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(ResIdx, Cycles);
 | |
|       if (NRCycle > CurrCycle) {
 | |
| #ifndef NDEBUG
 | |
|         MaxObservedStall = std::max(Cycles, MaxObservedStall);
 | |
| #endif
 | |
|         LLVM_DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
 | |
|                           << SchedModel->getResourceName(ResIdx)
 | |
|                           << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx]  << ']'
 | |
|                           << "=" << NRCycle << "c\n");
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Find the unscheduled node in ReadySUs with the highest latency.
 | |
| unsigned SchedBoundary::
 | |
| findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
 | |
|   SUnit *LateSU = nullptr;
 | |
|   unsigned RemLatency = 0;
 | |
|   for (SUnit *SU : ReadySUs) {
 | |
|     unsigned L = getUnscheduledLatency(SU);
 | |
|     if (L > RemLatency) {
 | |
|       RemLatency = L;
 | |
|       LateSU = SU;
 | |
|     }
 | |
|   }
 | |
|   if (LateSU) {
 | |
|     LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU("
 | |
|                       << LateSU->NodeNum << ") " << RemLatency << "c\n");
 | |
|   }
 | |
|   return RemLatency;
 | |
| }
 | |
| 
 | |
| // Count resources in this zone and the remaining unscheduled
 | |
| // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
 | |
| // resource index, or zero if the zone is issue limited.
 | |
| unsigned SchedBoundary::
 | |
| getOtherResourceCount(unsigned &OtherCritIdx) {
 | |
|   OtherCritIdx = 0;
 | |
|   if (!SchedModel->hasInstrSchedModel())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned OtherCritCount = Rem->RemIssueCount
 | |
|     + (RetiredMOps * SchedModel->getMicroOpFactor());
 | |
|   LLVM_DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
 | |
|                     << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
 | |
|   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
 | |
|        PIdx != PEnd; ++PIdx) {
 | |
|     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
 | |
|     if (OtherCount > OtherCritCount) {
 | |
|       OtherCritCount = OtherCount;
 | |
|       OtherCritIdx = PIdx;
 | |
|     }
 | |
|   }
 | |
|   if (OtherCritIdx) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "  " << Available.getName() << " + Remain CritRes: "
 | |
|                << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
 | |
|                << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
 | |
|   }
 | |
|   return OtherCritCount;
 | |
| }
 | |
| 
 | |
| void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue,
 | |
|                                 unsigned Idx) {
 | |
|   assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // ReadyCycle was been bumped up to the CurrCycle when this node was
 | |
|   // scheduled, but CurrCycle may have been eagerly advanced immediately after
 | |
|   // scheduling, so may now be greater than ReadyCycle.
 | |
|   if (ReadyCycle > CurrCycle)
 | |
|     MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
 | |
| #endif
 | |
| 
 | |
|   if (ReadyCycle < MinReadyCycle)
 | |
|     MinReadyCycle = ReadyCycle;
 | |
| 
 | |
|   // Check for interlocks first. For the purpose of other heuristics, an
 | |
|   // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | |
|   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
 | |
|   bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) ||
 | |
|                         checkHazard(SU) || (Available.size() >= ReadyListLimit);
 | |
| 
 | |
|   if (!HazardDetected) {
 | |
|     Available.push(SU);
 | |
| 
 | |
|     if (InPQueue)
 | |
|       Pending.remove(Pending.begin() + Idx);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!InPQueue)
 | |
|     Pending.push(SU);
 | |
| }
 | |
| 
 | |
| /// Move the boundary of scheduled code by one cycle.
 | |
| void SchedBoundary::bumpCycle(unsigned NextCycle) {
 | |
|   if (SchedModel->getMicroOpBufferSize() == 0) {
 | |
|     assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
 | |
|            "MinReadyCycle uninitialized");
 | |
|     if (MinReadyCycle > NextCycle)
 | |
|       NextCycle = MinReadyCycle;
 | |
|   }
 | |
|   // Update the current micro-ops, which will issue in the next cycle.
 | |
|   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
 | |
|   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
 | |
| 
 | |
|   // Decrement DependentLatency based on the next cycle.
 | |
|   if ((NextCycle - CurrCycle) > DependentLatency)
 | |
|     DependentLatency = 0;
 | |
|   else
 | |
|     DependentLatency -= (NextCycle - CurrCycle);
 | |
| 
 | |
|   if (!HazardRec->isEnabled()) {
 | |
|     // Bypass HazardRec virtual calls.
 | |
|     CurrCycle = NextCycle;
 | |
|   } else {
 | |
|     // Bypass getHazardType calls in case of long latency.
 | |
|     for (; CurrCycle != NextCycle; ++CurrCycle) {
 | |
|       if (isTop())
 | |
|         HazardRec->AdvanceCycle();
 | |
|       else
 | |
|         HazardRec->RecedeCycle();
 | |
|     }
 | |
|   }
 | |
|   CheckPending = true;
 | |
|   IsResourceLimited =
 | |
|       checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
 | |
|                          getScheduledLatency(), true);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName()
 | |
|                     << '\n');
 | |
| }
 | |
| 
 | |
| void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
 | |
|   ExecutedResCounts[PIdx] += Count;
 | |
|   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
 | |
|     MaxExecutedResCount = ExecutedResCounts[PIdx];
 | |
| }
 | |
| 
 | |
| /// Add the given processor resource to this scheduled zone.
 | |
| ///
 | |
| /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
 | |
| /// during which this resource is consumed.
 | |
| ///
 | |
| /// \return the next cycle at which the instruction may execute without
 | |
| /// oversubscribing resources.
 | |
| unsigned SchedBoundary::
 | |
| countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
 | |
|   unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | |
|   unsigned Count = Factor * Cycles;
 | |
|   LLVM_DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx) << " +"
 | |
|                     << Cycles << "x" << Factor << "u\n");
 | |
| 
 | |
|   // Update Executed resources counts.
 | |
|   incExecutedResources(PIdx, Count);
 | |
|   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
 | |
|   Rem->RemainingCounts[PIdx] -= Count;
 | |
| 
 | |
|   // Check if this resource exceeds the current critical resource. If so, it
 | |
|   // becomes the critical resource.
 | |
|   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
 | |
|     ZoneCritResIdx = PIdx;
 | |
|     LLVM_DEBUG(dbgs() << "  *** Critical resource "
 | |
|                       << SchedModel->getResourceName(PIdx) << ": "
 | |
|                       << getResourceCount(PIdx) / SchedModel->getLatencyFactor()
 | |
|                       << "c\n");
 | |
|   }
 | |
|   // For reserved resources, record the highest cycle using the resource.
 | |
|   unsigned NextAvailable, InstanceIdx;
 | |
|   std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(PIdx, Cycles);
 | |
|   if (NextAvailable > CurrCycle) {
 | |
|     LLVM_DEBUG(dbgs() << "  Resource conflict: "
 | |
|                       << SchedModel->getResourceName(PIdx)
 | |
|                       << '[' << InstanceIdx - ReservedCyclesIndex[PIdx]  << ']'
 | |
|                       << " reserved until @" << NextAvailable << "\n");
 | |
|   }
 | |
|   return NextAvailable;
 | |
| }
 | |
| 
 | |
| /// Move the boundary of scheduled code by one SUnit.
 | |
| void SchedBoundary::bumpNode(SUnit *SU) {
 | |
|   // Update the reservation table.
 | |
|   if (HazardRec->isEnabled()) {
 | |
|     if (!isTop() && SU->isCall) {
 | |
|       // Calls are scheduled with their preceding instructions. For bottom-up
 | |
|       // scheduling, clear the pipeline state before emitting.
 | |
|       HazardRec->Reset();
 | |
|     }
 | |
|     HazardRec->EmitInstruction(SU);
 | |
|     // Scheduling an instruction may have made pending instructions available.
 | |
|     CheckPending = true;
 | |
|   }
 | |
|   // checkHazard should prevent scheduling multiple instructions per cycle that
 | |
|   // exceed the issue width.
 | |
|   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
 | |
|   assert(
 | |
|       (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
 | |
|       "Cannot schedule this instruction's MicroOps in the current cycle.");
 | |
| 
 | |
|   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
 | |
|   LLVM_DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
 | |
| 
 | |
|   unsigned NextCycle = CurrCycle;
 | |
|   switch (SchedModel->getMicroOpBufferSize()) {
 | |
|   case 0:
 | |
|     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
 | |
|     break;
 | |
|   case 1:
 | |
|     if (ReadyCycle > NextCycle) {
 | |
|       NextCycle = ReadyCycle;
 | |
|       LLVM_DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     // We don't currently model the OOO reorder buffer, so consider all
 | |
|     // scheduled MOps to be "retired". We do loosely model in-order resource
 | |
|     // latency. If this instruction uses an in-order resource, account for any
 | |
|     // likely stall cycles.
 | |
|     if (SU->isUnbuffered && ReadyCycle > NextCycle)
 | |
|       NextCycle = ReadyCycle;
 | |
|     break;
 | |
|   }
 | |
|   RetiredMOps += IncMOps;
 | |
| 
 | |
|   // Update resource counts and critical resource.
 | |
|   if (SchedModel->hasInstrSchedModel()) {
 | |
|     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
 | |
|     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
 | |
|     Rem->RemIssueCount -= DecRemIssue;
 | |
|     if (ZoneCritResIdx) {
 | |
|       // Scale scheduled micro-ops for comparing with the critical resource.
 | |
|       unsigned ScaledMOps =
 | |
|         RetiredMOps * SchedModel->getMicroOpFactor();
 | |
| 
 | |
|       // If scaled micro-ops are now more than the previous critical resource by
 | |
|       // a full cycle, then micro-ops issue becomes critical.
 | |
|       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
 | |
|           >= (int)SchedModel->getLatencyFactor()) {
 | |
|         ZoneCritResIdx = 0;
 | |
|         LLVM_DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
 | |
|                           << ScaledMOps / SchedModel->getLatencyFactor()
 | |
|                           << "c\n");
 | |
|       }
 | |
|     }
 | |
|     for (TargetSchedModel::ProcResIter
 | |
|            PI = SchedModel->getWriteProcResBegin(SC),
 | |
|            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|       unsigned RCycle =
 | |
|         countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
 | |
|       if (RCycle > NextCycle)
 | |
|         NextCycle = RCycle;
 | |
|     }
 | |
|     if (SU->hasReservedResource) {
 | |
|       // For reserved resources, record the highest cycle using the resource.
 | |
|       // For top-down scheduling, this is the cycle in which we schedule this
 | |
|       // instruction plus the number of cycles the operations reserves the
 | |
|       // resource. For bottom-up is it simply the instruction's cycle.
 | |
|       for (TargetSchedModel::ProcResIter
 | |
|              PI = SchedModel->getWriteProcResBegin(SC),
 | |
|              PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|         unsigned PIdx = PI->ProcResourceIdx;
 | |
|         if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
 | |
|           unsigned ReservedUntil, InstanceIdx;
 | |
|           std::tie(ReservedUntil, InstanceIdx) = getNextResourceCycle(PIdx, 0);
 | |
|           if (isTop()) {
 | |
|             ReservedCycles[InstanceIdx] =
 | |
|                 std::max(ReservedUntil, NextCycle + PI->Cycles);
 | |
|           } else
 | |
|             ReservedCycles[InstanceIdx] = NextCycle;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Update ExpectedLatency and DependentLatency.
 | |
|   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
 | |
|   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
 | |
|   if (SU->getDepth() > TopLatency) {
 | |
|     TopLatency = SU->getDepth();
 | |
|     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " TopLatency SU("
 | |
|                       << SU->NodeNum << ") " << TopLatency << "c\n");
 | |
|   }
 | |
|   if (SU->getHeight() > BotLatency) {
 | |
|     BotLatency = SU->getHeight();
 | |
|     LLVM_DEBUG(dbgs() << "  " << Available.getName() << " BotLatency SU("
 | |
|                       << SU->NodeNum << ") " << BotLatency << "c\n");
 | |
|   }
 | |
|   // If we stall for any reason, bump the cycle.
 | |
|   if (NextCycle > CurrCycle)
 | |
|     bumpCycle(NextCycle);
 | |
|   else
 | |
|     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
 | |
|     // resource limited. If a stall occurred, bumpCycle does this.
 | |
|     IsResourceLimited =
 | |
|         checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(),
 | |
|                            getScheduledLatency(), true);
 | |
| 
 | |
|   // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
 | |
|   // resets CurrMOps. Loop to handle instructions with more MOps than issue in
 | |
|   // one cycle.  Since we commonly reach the max MOps here, opportunistically
 | |
|   // bump the cycle to avoid uselessly checking everything in the readyQ.
 | |
|   CurrMOps += IncMOps;
 | |
| 
 | |
|   // Bump the cycle count for issue group constraints.
 | |
|   // This must be done after NextCycle has been adjust for all other stalls.
 | |
|   // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set
 | |
|   // currCycle to X.
 | |
|   if ((isTop() &&  SchedModel->mustEndGroup(SU->getInstr())) ||
 | |
|       (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) {
 | |
|     LLVM_DEBUG(dbgs() << "  Bump cycle to " << (isTop() ? "end" : "begin")
 | |
|                       << " group\n");
 | |
|     bumpCycle(++NextCycle);
 | |
|   }
 | |
| 
 | |
|   while (CurrMOps >= SchedModel->getIssueWidth()) {
 | |
|     LLVM_DEBUG(dbgs() << "  *** Max MOps " << CurrMOps << " at cycle "
 | |
|                       << CurrCycle << '\n');
 | |
|     bumpCycle(++NextCycle);
 | |
|   }
 | |
|   LLVM_DEBUG(dumpScheduledState());
 | |
| }
 | |
| 
 | |
| /// Release pending ready nodes in to the available queue. This makes them
 | |
| /// visible to heuristics.
 | |
| void SchedBoundary::releasePending() {
 | |
|   // If the available queue is empty, it is safe to reset MinReadyCycle.
 | |
|   if (Available.empty())
 | |
|     MinReadyCycle = std::numeric_limits<unsigned>::max();
 | |
| 
 | |
|   // Check to see if any of the pending instructions are ready to issue.  If
 | |
|   // so, add them to the available queue.
 | |
|   for (unsigned I = 0, E = Pending.size(); I < E; ++I) {
 | |
|     SUnit *SU = *(Pending.begin() + I);
 | |
|     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | |
| 
 | |
|     if (ReadyCycle < MinReadyCycle)
 | |
|       MinReadyCycle = ReadyCycle;
 | |
| 
 | |
|     if (Available.size() >= ReadyListLimit)
 | |
|       break;
 | |
| 
 | |
|     releaseNode(SU, ReadyCycle, true, I);
 | |
|     if (E != Pending.size()) {
 | |
|       --I;
 | |
|       --E;
 | |
|     }
 | |
|   }
 | |
|   CheckPending = false;
 | |
| }
 | |
| 
 | |
| /// Remove SU from the ready set for this boundary.
 | |
| void SchedBoundary::removeReady(SUnit *SU) {
 | |
|   if (Available.isInQueue(SU))
 | |
|     Available.remove(Available.find(SU));
 | |
|   else {
 | |
|     assert(Pending.isInQueue(SU) && "bad ready count");
 | |
|     Pending.remove(Pending.find(SU));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If this queue only has one ready candidate, return it. As a side effect,
 | |
| /// defer any nodes that now hit a hazard, and advance the cycle until at least
 | |
| /// one node is ready. If multiple instructions are ready, return NULL.
 | |
| SUnit *SchedBoundary::pickOnlyChoice() {
 | |
|   if (CheckPending)
 | |
|     releasePending();
 | |
| 
 | |
|   if (CurrMOps > 0) {
 | |
|     // Defer any ready instrs that now have a hazard.
 | |
|     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
 | |
|       if (checkHazard(*I)) {
 | |
|         Pending.push(*I);
 | |
|         I = Available.remove(I);
 | |
|         continue;
 | |
|       }
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0; Available.empty(); ++i) {
 | |
| //  FIXME: Re-enable assert once PR20057 is resolved.
 | |
| //    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
 | |
| //           "permanent hazard");
 | |
|     (void)i;
 | |
|     bumpCycle(CurrCycle + 1);
 | |
|     releasePending();
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(Pending.dump());
 | |
|   LLVM_DEBUG(Available.dump());
 | |
| 
 | |
|   if (Available.size() == 1)
 | |
|     return *Available.begin();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| // This is useful information to dump after bumpNode.
 | |
| // Note that the Queue contents are more useful before pickNodeFromQueue.
 | |
| LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const {
 | |
|   unsigned ResFactor;
 | |
|   unsigned ResCount;
 | |
|   if (ZoneCritResIdx) {
 | |
|     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
 | |
|     ResCount = getResourceCount(ZoneCritResIdx);
 | |
|   } else {
 | |
|     ResFactor = SchedModel->getMicroOpFactor();
 | |
|     ResCount = RetiredMOps * ResFactor;
 | |
|   }
 | |
|   unsigned LFactor = SchedModel->getLatencyFactor();
 | |
|   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
 | |
|          << "  Retired: " << RetiredMOps;
 | |
|   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
 | |
|   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
 | |
|          << ResCount / ResFactor << " "
 | |
|          << SchedModel->getResourceName(ZoneCritResIdx)
 | |
|          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
 | |
|          << (IsResourceLimited ? "  - Resource" : "  - Latency")
 | |
|          << " limited.\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GenericScheduler - Generic implementation of MachineSchedStrategy.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void GenericSchedulerBase::SchedCandidate::
 | |
| initResourceDelta(const ScheduleDAGMI *DAG,
 | |
|                   const TargetSchedModel *SchedModel) {
 | |
|   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
 | |
|     return;
 | |
| 
 | |
|   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|   for (TargetSchedModel::ProcResIter
 | |
|          PI = SchedModel->getWriteProcResBegin(SC),
 | |
|          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
 | |
|       ResDelta.CritResources += PI->Cycles;
 | |
|     if (PI->ProcResourceIdx == Policy.DemandResIdx)
 | |
|       ResDelta.DemandedResources += PI->Cycles;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Compute remaining latency. We need this both to determine whether the
 | |
| /// overall schedule has become latency-limited and whether the instructions
 | |
| /// outside this zone are resource or latency limited.
 | |
| ///
 | |
| /// The "dependent" latency is updated incrementally during scheduling as the
 | |
| /// max height/depth of scheduled nodes minus the cycles since it was
 | |
| /// scheduled:
 | |
| ///   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
 | |
| ///
 | |
| /// The "independent" latency is the max ready queue depth:
 | |
| ///   ILat = max N.depth for N in Available|Pending
 | |
| ///
 | |
| /// RemainingLatency is the greater of independent and dependent latency.
 | |
| ///
 | |
| /// These computations are expensive, especially in DAGs with many edges, so
 | |
| /// only do them if necessary.
 | |
| static unsigned computeRemLatency(SchedBoundary &CurrZone) {
 | |
|   unsigned RemLatency = CurrZone.getDependentLatency();
 | |
|   RemLatency = std::max(RemLatency,
 | |
|                         CurrZone.findMaxLatency(CurrZone.Available.elements()));
 | |
|   RemLatency = std::max(RemLatency,
 | |
|                         CurrZone.findMaxLatency(CurrZone.Pending.elements()));
 | |
|   return RemLatency;
 | |
| }
 | |
| 
 | |
| /// Returns true if the current cycle plus remaning latency is greater than
 | |
| /// the critical path in the scheduling region.
 | |
| bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy,
 | |
|                                                SchedBoundary &CurrZone,
 | |
|                                                bool ComputeRemLatency,
 | |
|                                                unsigned &RemLatency) const {
 | |
|   // The current cycle is already greater than the critical path, so we are
 | |
|   // already latency limited and don't need to compute the remaining latency.
 | |
|   if (CurrZone.getCurrCycle() > Rem.CriticalPath)
 | |
|     return true;
 | |
| 
 | |
|   // If we haven't scheduled anything yet, then we aren't latency limited.
 | |
|   if (CurrZone.getCurrCycle() == 0)
 | |
|     return false;
 | |
| 
 | |
|   if (ComputeRemLatency)
 | |
|     RemLatency = computeRemLatency(CurrZone);
 | |
| 
 | |
|   return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath;
 | |
| }
 | |
| 
 | |
| /// Set the CandPolicy given a scheduling zone given the current resources and
 | |
| /// latencies inside and outside the zone.
 | |
| void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA,
 | |
|                                      SchedBoundary &CurrZone,
 | |
|                                      SchedBoundary *OtherZone) {
 | |
|   // Apply preemptive heuristics based on the total latency and resources
 | |
|   // inside and outside this zone. Potential stalls should be considered before
 | |
|   // following this policy.
 | |
| 
 | |
|   // Compute the critical resource outside the zone.
 | |
|   unsigned OtherCritIdx = 0;
 | |
|   unsigned OtherCount =
 | |
|     OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
 | |
| 
 | |
|   bool OtherResLimited = false;
 | |
|   unsigned RemLatency = 0;
 | |
|   bool RemLatencyComputed = false;
 | |
|   if (SchedModel->hasInstrSchedModel() && OtherCount != 0) {
 | |
|     RemLatency = computeRemLatency(CurrZone);
 | |
|     RemLatencyComputed = true;
 | |
|     OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(),
 | |
|                                          OtherCount, RemLatency, false);
 | |
|   }
 | |
| 
 | |
|   // Schedule aggressively for latency in PostRA mode. We don't check for
 | |
|   // acyclic latency during PostRA, and highly out-of-order processors will
 | |
|   // skip PostRA scheduling.
 | |
|   if (!OtherResLimited &&
 | |
|       (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
 | |
|                                        RemLatency))) {
 | |
|     Policy.ReduceLatency |= true;
 | |
|     LLVM_DEBUG(dbgs() << "  " << CurrZone.Available.getName()
 | |
|                       << " RemainingLatency " << RemLatency << " + "
 | |
|                       << CurrZone.getCurrCycle() << "c > CritPath "
 | |
|                       << Rem.CriticalPath << "\n");
 | |
|   }
 | |
|   // If the same resource is limiting inside and outside the zone, do nothing.
 | |
|   if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
 | |
|     return;
 | |
| 
 | |
|   LLVM_DEBUG(if (CurrZone.isResourceLimited()) {
 | |
|     dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
 | |
|            << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n";
 | |
|   } if (OtherResLimited) dbgs()
 | |
|                  << "  RemainingLimit: "
 | |
|                  << SchedModel->getResourceName(OtherCritIdx) << "\n";
 | |
|              if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs()
 | |
|              << "  Latency limited both directions.\n");
 | |
| 
 | |
|   if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
 | |
|     Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
 | |
| 
 | |
|   if (OtherResLimited)
 | |
|     Policy.DemandResIdx = OtherCritIdx;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| const char *GenericSchedulerBase::getReasonStr(
 | |
|   GenericSchedulerBase::CandReason Reason) {
 | |
|   switch (Reason) {
 | |
|   case NoCand:         return "NOCAND    ";
 | |
|   case Only1:          return "ONLY1     ";
 | |
|   case PhysReg:        return "PHYS-REG  ";
 | |
|   case RegExcess:      return "REG-EXCESS";
 | |
|   case RegCritical:    return "REG-CRIT  ";
 | |
|   case Stall:          return "STALL     ";
 | |
|   case Cluster:        return "CLUSTER   ";
 | |
|   case Weak:           return "WEAK      ";
 | |
|   case RegMax:         return "REG-MAX   ";
 | |
|   case ResourceReduce: return "RES-REDUCE";
 | |
|   case ResourceDemand: return "RES-DEMAND";
 | |
|   case TopDepthReduce: return "TOP-DEPTH ";
 | |
|   case TopPathReduce:  return "TOP-PATH  ";
 | |
|   case BotHeightReduce:return "BOT-HEIGHT";
 | |
|   case BotPathReduce:  return "BOT-PATH  ";
 | |
|   case NextDefUse:     return "DEF-USE   ";
 | |
|   case NodeOrder:      return "ORDER     ";
 | |
|   };
 | |
|   llvm_unreachable("Unknown reason!");
 | |
| }
 | |
| 
 | |
| void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
 | |
|   PressureChange P;
 | |
|   unsigned ResIdx = 0;
 | |
|   unsigned Latency = 0;
 | |
|   switch (Cand.Reason) {
 | |
|   default:
 | |
|     break;
 | |
|   case RegExcess:
 | |
|     P = Cand.RPDelta.Excess;
 | |
|     break;
 | |
|   case RegCritical:
 | |
|     P = Cand.RPDelta.CriticalMax;
 | |
|     break;
 | |
|   case RegMax:
 | |
|     P = Cand.RPDelta.CurrentMax;
 | |
|     break;
 | |
|   case ResourceReduce:
 | |
|     ResIdx = Cand.Policy.ReduceResIdx;
 | |
|     break;
 | |
|   case ResourceDemand:
 | |
|     ResIdx = Cand.Policy.DemandResIdx;
 | |
|     break;
 | |
|   case TopDepthReduce:
 | |
|     Latency = Cand.SU->getDepth();
 | |
|     break;
 | |
|   case TopPathReduce:
 | |
|     Latency = Cand.SU->getHeight();
 | |
|     break;
 | |
|   case BotHeightReduce:
 | |
|     Latency = Cand.SU->getHeight();
 | |
|     break;
 | |
|   case BotPathReduce:
 | |
|     Latency = Cand.SU->getDepth();
 | |
|     break;
 | |
|   }
 | |
|   dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | |
|   if (P.isValid())
 | |
|     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
 | |
|            << ":" << P.getUnitInc() << " ";
 | |
|   else
 | |
|     dbgs() << "      ";
 | |
|   if (ResIdx)
 | |
|     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
 | |
|   else
 | |
|     dbgs() << "         ";
 | |
|   if (Latency)
 | |
|     dbgs() << " " << Latency << " cycles ";
 | |
|   else
 | |
|     dbgs() << "          ";
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace llvm {
 | |
| /// Return true if this heuristic determines order.
 | |
| bool tryLess(int TryVal, int CandVal,
 | |
|              GenericSchedulerBase::SchedCandidate &TryCand,
 | |
|              GenericSchedulerBase::SchedCandidate &Cand,
 | |
|              GenericSchedulerBase::CandReason Reason) {
 | |
|   if (TryVal < CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal > CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool tryGreater(int TryVal, int CandVal,
 | |
|                 GenericSchedulerBase::SchedCandidate &TryCand,
 | |
|                 GenericSchedulerBase::SchedCandidate &Cand,
 | |
|                 GenericSchedulerBase::CandReason Reason) {
 | |
|   if (TryVal > CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal < CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
 | |
|                 GenericSchedulerBase::SchedCandidate &Cand,
 | |
|                 SchedBoundary &Zone) {
 | |
|   if (Zone.isTop()) {
 | |
|     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
 | |
|       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | |
|                   TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
 | |
|         return true;
 | |
|     }
 | |
|     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | |
|                    TryCand, Cand, GenericSchedulerBase::TopPathReduce))
 | |
|       return true;
 | |
|   } else {
 | |
|     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
 | |
|       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | |
|                   TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
 | |
|         return true;
 | |
|     }
 | |
|     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | |
|                    TryCand, Cand, GenericSchedulerBase::BotPathReduce))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| } // end namespace llvm
 | |
| 
 | |
| static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) {
 | |
|   LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
 | |
|                     << GenericSchedulerBase::getReasonStr(Reason) << '\n');
 | |
| }
 | |
| 
 | |
| static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) {
 | |
|   tracePick(Cand.Reason, Cand.AtTop);
 | |
| }
 | |
| 
 | |
| void GenericScheduler::initialize(ScheduleDAGMI *dag) {
 | |
|   assert(dag->hasVRegLiveness() &&
 | |
|          "(PreRA)GenericScheduler needs vreg liveness");
 | |
|   DAG = static_cast<ScheduleDAGMILive*>(dag);
 | |
|   SchedModel = DAG->getSchedModel();
 | |
|   TRI = DAG->TRI;
 | |
| 
 | |
|   Rem.init(DAG, SchedModel);
 | |
|   Top.init(DAG, SchedModel, &Rem);
 | |
|   Bot.init(DAG, SchedModel, &Rem);
 | |
| 
 | |
|   // Initialize resource counts.
 | |
| 
 | |
|   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
 | |
|   // are disabled, then these HazardRecs will be disabled.
 | |
|   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | |
|   if (!Top.HazardRec) {
 | |
|     Top.HazardRec =
 | |
|         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
 | |
|             Itin, DAG);
 | |
|   }
 | |
|   if (!Bot.HazardRec) {
 | |
|     Bot.HazardRec =
 | |
|         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
 | |
|             Itin, DAG);
 | |
|   }
 | |
|   TopCand.SU = nullptr;
 | |
|   BotCand.SU = nullptr;
 | |
| }
 | |
| 
 | |
| /// Initialize the per-region scheduling policy.
 | |
| void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
 | |
|                                   MachineBasicBlock::iterator End,
 | |
|                                   unsigned NumRegionInstrs) {
 | |
|   const MachineFunction &MF = *Begin->getMF();
 | |
|   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
 | |
| 
 | |
|   // Avoid setting up the register pressure tracker for small regions to save
 | |
|   // compile time. As a rough heuristic, only track pressure when the number of
 | |
|   // schedulable instructions exceeds half the integer register file.
 | |
|   RegionPolicy.ShouldTrackPressure = true;
 | |
|   for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
 | |
|     MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
 | |
|     if (TLI->isTypeLegal(LegalIntVT)) {
 | |
|       unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
 | |
|         TLI->getRegClassFor(LegalIntVT));
 | |
|       RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For generic targets, we default to bottom-up, because it's simpler and more
 | |
|   // compile-time optimizations have been implemented in that direction.
 | |
|   RegionPolicy.OnlyBottomUp = true;
 | |
| 
 | |
|   // Allow the subtarget to override default policy.
 | |
|   MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs);
 | |
| 
 | |
|   // After subtarget overrides, apply command line options.
 | |
|   if (!EnableRegPressure) {
 | |
|     RegionPolicy.ShouldTrackPressure = false;
 | |
|     RegionPolicy.ShouldTrackLaneMasks = false;
 | |
|   }
 | |
| 
 | |
|   // Check -misched-topdown/bottomup can force or unforce scheduling direction.
 | |
|   // e.g. -misched-bottomup=false allows scheduling in both directions.
 | |
|   assert((!ForceTopDown || !ForceBottomUp) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
|   if (ForceBottomUp.getNumOccurrences() > 0) {
 | |
|     RegionPolicy.OnlyBottomUp = ForceBottomUp;
 | |
|     if (RegionPolicy.OnlyBottomUp)
 | |
|       RegionPolicy.OnlyTopDown = false;
 | |
|   }
 | |
|   if (ForceTopDown.getNumOccurrences() > 0) {
 | |
|     RegionPolicy.OnlyTopDown = ForceTopDown;
 | |
|     if (RegionPolicy.OnlyTopDown)
 | |
|       RegionPolicy.OnlyBottomUp = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void GenericScheduler::dumpPolicy() const {
 | |
|   // Cannot completely remove virtual function even in release mode.
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
|   dbgs() << "GenericScheduler RegionPolicy: "
 | |
|          << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
 | |
|          << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
 | |
|          << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
 | |
|          << "\n";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
 | |
| /// critical path by more cycles than it takes to drain the instruction buffer.
 | |
| /// We estimate an upper bounds on in-flight instructions as:
 | |
| ///
 | |
| /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
 | |
| /// InFlightIterations = AcyclicPath / CyclesPerIteration
 | |
| /// InFlightResources = InFlightIterations * LoopResources
 | |
| ///
 | |
| /// TODO: Check execution resources in addition to IssueCount.
 | |
| void GenericScheduler::checkAcyclicLatency() {
 | |
|   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
 | |
|     return;
 | |
| 
 | |
|   // Scaled number of cycles per loop iteration.
 | |
|   unsigned IterCount =
 | |
|     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
 | |
|              Rem.RemIssueCount);
 | |
|   // Scaled acyclic critical path.
 | |
|   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
 | |
|   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
 | |
|   unsigned InFlightCount =
 | |
|     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
 | |
|   unsigned BufferLimit =
 | |
|     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
 | |
| 
 | |
|   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
 | |
| 
 | |
|   LLVM_DEBUG(
 | |
|       dbgs() << "IssueCycles="
 | |
|              << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
 | |
|              << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
 | |
|              << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
 | |
|              << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
 | |
|              << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
 | |
|       if (Rem.IsAcyclicLatencyLimited) dbgs() << "  ACYCLIC LATENCY LIMIT\n");
 | |
| }
 | |
| 
 | |
| void GenericScheduler::registerRoots() {
 | |
|   Rem.CriticalPath = DAG->ExitSU.getDepth();
 | |
| 
 | |
|   // Some roots may not feed into ExitSU. Check all of them in case.
 | |
|   for (const SUnit *SU : Bot.Available) {
 | |
|     if (SU->getDepth() > Rem.CriticalPath)
 | |
|       Rem.CriticalPath = SU->getDepth();
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
 | |
|   if (DumpCriticalPathLength) {
 | |
|     errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
 | |
|   }
 | |
| 
 | |
|   if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) {
 | |
|     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
 | |
|     checkAcyclicLatency();
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| bool tryPressure(const PressureChange &TryP,
 | |
|                  const PressureChange &CandP,
 | |
|                  GenericSchedulerBase::SchedCandidate &TryCand,
 | |
|                  GenericSchedulerBase::SchedCandidate &Cand,
 | |
|                  GenericSchedulerBase::CandReason Reason,
 | |
|                  const TargetRegisterInfo *TRI,
 | |
|                  const MachineFunction &MF) {
 | |
|   // If one candidate decreases and the other increases, go with it.
 | |
|   // Invalid candidates have UnitInc==0.
 | |
|   if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
 | |
|                  Reason)) {
 | |
|     return true;
 | |
|   }
 | |
|   // Do not compare the magnitude of pressure changes between top and bottom
 | |
|   // boundary.
 | |
|   if (Cand.AtTop != TryCand.AtTop)
 | |
|     return false;
 | |
| 
 | |
|   // If both candidates affect the same set in the same boundary, go with the
 | |
|   // smallest increase.
 | |
|   unsigned TryPSet = TryP.getPSetOrMax();
 | |
|   unsigned CandPSet = CandP.getPSetOrMax();
 | |
|   if (TryPSet == CandPSet) {
 | |
|     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
 | |
|                    Reason);
 | |
|   }
 | |
| 
 | |
|   int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
 | |
|                                  std::numeric_limits<int>::max();
 | |
| 
 | |
|   int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
 | |
|                                    std::numeric_limits<int>::max();
 | |
| 
 | |
|   // If the candidates are decreasing pressure, reverse priority.
 | |
|   if (TryP.getUnitInc() < 0)
 | |
|     std::swap(TryRank, CandRank);
 | |
|   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
 | |
| }
 | |
| 
 | |
| unsigned getWeakLeft(const SUnit *SU, bool isTop) {
 | |
|   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
 | |
| }
 | |
| 
 | |
| /// Minimize physical register live ranges. Regalloc wants them adjacent to
 | |
| /// their physreg def/use.
 | |
| ///
 | |
| /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
 | |
| /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
 | |
| /// with the operation that produces or consumes the physreg. We'll do this when
 | |
| /// regalloc has support for parallel copies.
 | |
| int biasPhysReg(const SUnit *SU, bool isTop) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
| 
 | |
|   if (MI->isCopy()) {
 | |
|     unsigned ScheduledOper = isTop ? 1 : 0;
 | |
|     unsigned UnscheduledOper = isTop ? 0 : 1;
 | |
|     // If we have already scheduled the physreg produce/consumer, immediately
 | |
|     // schedule the copy.
 | |
|     if (Register::isPhysicalRegister(MI->getOperand(ScheduledOper).getReg()))
 | |
|       return 1;
 | |
|     // If the physreg is at the boundary, defer it. Otherwise schedule it
 | |
|     // immediately to free the dependent. We can hoist the copy later.
 | |
|     bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
 | |
|     if (Register::isPhysicalRegister(MI->getOperand(UnscheduledOper).getReg()))
 | |
|       return AtBoundary ? -1 : 1;
 | |
|   }
 | |
| 
 | |
|   if (MI->isMoveImmediate()) {
 | |
|     // If we have a move immediate and all successors have been assigned, bias
 | |
|     // towards scheduling this later. Make sure all register defs are to
 | |
|     // physical registers.
 | |
|     bool DoBias = true;
 | |
|     for (const MachineOperand &Op : MI->defs()) {
 | |
|       if (Op.isReg() && !Register::isPhysicalRegister(Op.getReg())) {
 | |
|         DoBias = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (DoBias)
 | |
|       return isTop ? -1 : 1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| } // end namespace llvm
 | |
| 
 | |
| void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU,
 | |
|                                      bool AtTop,
 | |
|                                      const RegPressureTracker &RPTracker,
 | |
|                                      RegPressureTracker &TempTracker) {
 | |
|   Cand.SU = SU;
 | |
|   Cand.AtTop = AtTop;
 | |
|   if (DAG->isTrackingPressure()) {
 | |
|     if (AtTop) {
 | |
|       TempTracker.getMaxDownwardPressureDelta(
 | |
|         Cand.SU->getInstr(),
 | |
|         Cand.RPDelta,
 | |
|         DAG->getRegionCriticalPSets(),
 | |
|         DAG->getRegPressure().MaxSetPressure);
 | |
|     } else {
 | |
|       if (VerifyScheduling) {
 | |
|         TempTracker.getMaxUpwardPressureDelta(
 | |
|           Cand.SU->getInstr(),
 | |
|           &DAG->getPressureDiff(Cand.SU),
 | |
|           Cand.RPDelta,
 | |
|           DAG->getRegionCriticalPSets(),
 | |
|           DAG->getRegPressure().MaxSetPressure);
 | |
|       } else {
 | |
|         RPTracker.getUpwardPressureDelta(
 | |
|           Cand.SU->getInstr(),
 | |
|           DAG->getPressureDiff(Cand.SU),
 | |
|           Cand.RPDelta,
 | |
|           DAG->getRegionCriticalPSets(),
 | |
|           DAG->getRegPressure().MaxSetPressure);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs()
 | |
|              << "  Try  SU(" << Cand.SU->NodeNum << ") "
 | |
|              << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":"
 | |
|              << Cand.RPDelta.Excess.getUnitInc() << "\n");
 | |
| }
 | |
| 
 | |
| /// Apply a set of heuristics to a new candidate. Heuristics are currently
 | |
| /// hierarchical. This may be more efficient than a graduated cost model because
 | |
| /// we don't need to evaluate all aspects of the model for each node in the
 | |
| /// queue. But it's really done to make the heuristics easier to debug and
 | |
| /// statistically analyze.
 | |
| ///
 | |
| /// \param Cand provides the policy and current best candidate.
 | |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | |
| /// \param Zone describes the scheduled zone that we are extending, or nullptr
 | |
| //              if Cand is from a different zone than TryCand.
 | |
| void GenericScheduler::tryCandidate(SchedCandidate &Cand,
 | |
|                                     SchedCandidate &TryCand,
 | |
|                                     SchedBoundary *Zone) const {
 | |
|   // Initialize the candidate if needed.
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Bias PhysReg Defs and copies to their uses and defined respectively.
 | |
|   if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
 | |
|                  biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
 | |
|     return;
 | |
| 
 | |
|   // Avoid exceeding the target's limit.
 | |
|   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
 | |
|                                                Cand.RPDelta.Excess,
 | |
|                                                TryCand, Cand, RegExcess, TRI,
 | |
|                                                DAG->MF))
 | |
|     return;
 | |
| 
 | |
|   // Avoid increasing the max critical pressure in the scheduled region.
 | |
|   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
 | |
|                                                Cand.RPDelta.CriticalMax,
 | |
|                                                TryCand, Cand, RegCritical, TRI,
 | |
|                                                DAG->MF))
 | |
|     return;
 | |
| 
 | |
|   // We only compare a subset of features when comparing nodes between
 | |
|   // Top and Bottom boundary. Some properties are simply incomparable, in many
 | |
|   // other instances we should only override the other boundary if something
 | |
|   // is a clear good pick on one boundary. Skip heuristics that are more
 | |
|   // "tie-breaking" in nature.
 | |
|   bool SameBoundary = Zone != nullptr;
 | |
|   if (SameBoundary) {
 | |
|     // For loops that are acyclic path limited, aggressively schedule for
 | |
|     // latency. Within an single cycle, whenever CurrMOps > 0, allow normal
 | |
|     // heuristics to take precedence.
 | |
|     if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
 | |
|         tryLatency(TryCand, Cand, *Zone))
 | |
|       return;
 | |
| 
 | |
|     // Prioritize instructions that read unbuffered resources by stall cycles.
 | |
|     if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
 | |
|                 Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Keep clustered nodes together to encourage downstream peephole
 | |
|   // optimizations which may reduce resource requirements.
 | |
|   //
 | |
|   // This is a best effort to set things up for a post-RA pass. Optimizations
 | |
|   // like generating loads of multiple registers should ideally be done within
 | |
|   // the scheduler pass by combining the loads during DAG postprocessing.
 | |
|   const SUnit *CandNextClusterSU =
 | |
|     Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
 | |
|   const SUnit *TryCandNextClusterSU =
 | |
|     TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
 | |
|   if (tryGreater(TryCand.SU == TryCandNextClusterSU,
 | |
|                  Cand.SU == CandNextClusterSU,
 | |
|                  TryCand, Cand, Cluster))
 | |
|     return;
 | |
| 
 | |
|   if (SameBoundary) {
 | |
|     // Weak edges are for clustering and other constraints.
 | |
|     if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
 | |
|                 getWeakLeft(Cand.SU, Cand.AtTop),
 | |
|                 TryCand, Cand, Weak))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Avoid increasing the max pressure of the entire region.
 | |
|   if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
 | |
|                                                Cand.RPDelta.CurrentMax,
 | |
|                                                TryCand, Cand, RegMax, TRI,
 | |
|                                                DAG->MF))
 | |
|     return;
 | |
| 
 | |
|   if (SameBoundary) {
 | |
|     // Avoid critical resource consumption and balance the schedule.
 | |
|     TryCand.initResourceDelta(DAG, SchedModel);
 | |
|     if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | |
|                 TryCand, Cand, ResourceReduce))
 | |
|       return;
 | |
|     if (tryGreater(TryCand.ResDelta.DemandedResources,
 | |
|                    Cand.ResDelta.DemandedResources,
 | |
|                    TryCand, Cand, ResourceDemand))
 | |
|       return;
 | |
| 
 | |
|     // Avoid serializing long latency dependence chains.
 | |
|     // For acyclic path limited loops, latency was already checked above.
 | |
|     if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
 | |
|         !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
 | |
|       return;
 | |
| 
 | |
|     // Fall through to original instruction order.
 | |
|     if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | |
|         || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
 | |
|       TryCand.Reason = NodeOrder;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Pick the best candidate from the queue.
 | |
| ///
 | |
| /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | |
| /// DAG building. To adjust for the current scheduling location we need to
 | |
| /// maintain the number of vreg uses remaining to be top-scheduled.
 | |
| void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
 | |
|                                          const CandPolicy &ZonePolicy,
 | |
|                                          const RegPressureTracker &RPTracker,
 | |
|                                          SchedCandidate &Cand) {
 | |
|   // getMaxPressureDelta temporarily modifies the tracker.
 | |
|   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | |
| 
 | |
|   ReadyQueue &Q = Zone.Available;
 | |
|   for (SUnit *SU : Q) {
 | |
| 
 | |
|     SchedCandidate TryCand(ZonePolicy);
 | |
|     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker);
 | |
|     // Pass SchedBoundary only when comparing nodes from the same boundary.
 | |
|     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
 | |
|     tryCandidate(Cand, TryCand, ZoneArg);
 | |
|     if (TryCand.Reason != NoCand) {
 | |
|       // Initialize resource delta if needed in case future heuristics query it.
 | |
|       if (TryCand.ResDelta == SchedResourceDelta())
 | |
|         TryCand.initResourceDelta(DAG, SchedModel);
 | |
|       Cand.setBest(TryCand);
 | |
|       LLVM_DEBUG(traceCandidate(Cand));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Pick the best candidate node from either the top or bottom queue.
 | |
| SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
 | |
|   // Schedule as far as possible in the direction of no choice. This is most
 | |
|   // efficient, but also provides the best heuristics for CriticalPSets.
 | |
|   if (SUnit *SU = Bot.pickOnlyChoice()) {
 | |
|     IsTopNode = false;
 | |
|     tracePick(Only1, false);
 | |
|     return SU;
 | |
|   }
 | |
|   if (SUnit *SU = Top.pickOnlyChoice()) {
 | |
|     IsTopNode = true;
 | |
|     tracePick(Only1, true);
 | |
|     return SU;
 | |
|   }
 | |
|   // Set the bottom-up policy based on the state of the current bottom zone and
 | |
|   // the instructions outside the zone, including the top zone.
 | |
|   CandPolicy BotPolicy;
 | |
|   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
 | |
|   // Set the top-down policy based on the state of the current top zone and
 | |
|   // the instructions outside the zone, including the bottom zone.
 | |
|   CandPolicy TopPolicy;
 | |
|   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
 | |
| 
 | |
|   // See if BotCand is still valid (because we previously scheduled from Top).
 | |
|   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
 | |
|   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
 | |
|       BotCand.Policy != BotPolicy) {
 | |
|     BotCand.reset(CandPolicy());
 | |
|     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
 | |
|     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | |
|   } else {
 | |
|     LLVM_DEBUG(traceCandidate(BotCand));
 | |
| #ifndef NDEBUG
 | |
|     if (VerifyScheduling) {
 | |
|       SchedCandidate TCand;
 | |
|       TCand.reset(CandPolicy());
 | |
|       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
 | |
|       assert(TCand.SU == BotCand.SU &&
 | |
|              "Last pick result should correspond to re-picking right now");
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Check if the top Q has a better candidate.
 | |
|   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
 | |
|   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
 | |
|       TopCand.Policy != TopPolicy) {
 | |
|     TopCand.reset(CandPolicy());
 | |
|     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
 | |
|     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | |
|   } else {
 | |
|     LLVM_DEBUG(traceCandidate(TopCand));
 | |
| #ifndef NDEBUG
 | |
|     if (VerifyScheduling) {
 | |
|       SchedCandidate TCand;
 | |
|       TCand.reset(CandPolicy());
 | |
|       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
 | |
|       assert(TCand.SU == TopCand.SU &&
 | |
|            "Last pick result should correspond to re-picking right now");
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   // Pick best from BotCand and TopCand.
 | |
|   assert(BotCand.isValid());
 | |
|   assert(TopCand.isValid());
 | |
|   SchedCandidate Cand = BotCand;
 | |
|   TopCand.Reason = NoCand;
 | |
|   tryCandidate(Cand, TopCand, nullptr);
 | |
|   if (TopCand.Reason != NoCand) {
 | |
|     Cand.setBest(TopCand);
 | |
|     LLVM_DEBUG(traceCandidate(Cand));
 | |
|   }
 | |
| 
 | |
|   IsTopNode = Cand.AtTop;
 | |
|   tracePick(Cand);
 | |
|   return Cand.SU;
 | |
| }
 | |
| 
 | |
| /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | |
| SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
 | |
|   if (DAG->top() == DAG->bottom()) {
 | |
|     assert(Top.Available.empty() && Top.Pending.empty() &&
 | |
|            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | |
|     return nullptr;
 | |
|   }
 | |
|   SUnit *SU;
 | |
|   do {
 | |
|     if (RegionPolicy.OnlyTopDown) {
 | |
|       SU = Top.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         TopCand.reset(NoPolicy);
 | |
|         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
 | |
|         assert(TopCand.Reason != NoCand && "failed to find a candidate");
 | |
|         tracePick(TopCand);
 | |
|         SU = TopCand.SU;
 | |
|       }
 | |
|       IsTopNode = true;
 | |
|     } else if (RegionPolicy.OnlyBottomUp) {
 | |
|       SU = Bot.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         BotCand.reset(NoPolicy);
 | |
|         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
 | |
|         assert(BotCand.Reason != NoCand && "failed to find a candidate");
 | |
|         tracePick(BotCand);
 | |
|         SU = BotCand.SU;
 | |
|       }
 | |
|       IsTopNode = false;
 | |
|     } else {
 | |
|       SU = pickNodeBidirectional(IsTopNode);
 | |
|     }
 | |
|   } while (SU->isScheduled);
 | |
| 
 | |
|   if (SU->isTopReady())
 | |
|     Top.removeReady(SU);
 | |
|   if (SU->isBottomReady())
 | |
|     Bot.removeReady(SU);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
 | |
|                     << *SU->getInstr());
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) {
 | |
|   MachineBasicBlock::iterator InsertPos = SU->getInstr();
 | |
|   if (!isTop)
 | |
|     ++InsertPos;
 | |
|   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
 | |
| 
 | |
|   // Find already scheduled copies with a single physreg dependence and move
 | |
|   // them just above the scheduled instruction.
 | |
|   for (SDep &Dep : Deps) {
 | |
|     if (Dep.getKind() != SDep::Data ||
 | |
|         !Register::isPhysicalRegister(Dep.getReg()))
 | |
|       continue;
 | |
|     SUnit *DepSU = Dep.getSUnit();
 | |
|     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
 | |
|       continue;
 | |
|     MachineInstr *Copy = DepSU->getInstr();
 | |
|     if (!Copy->isCopy() && !Copy->isMoveImmediate())
 | |
|       continue;
 | |
|     LLVM_DEBUG(dbgs() << "  Rescheduling physreg copy ";
 | |
|                DAG->dumpNode(*Dep.getSUnit()));
 | |
|     DAG->moveInstruction(Copy, InsertPos);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update the scheduler's state after scheduling a node. This is the same node
 | |
| /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
 | |
| /// update it's state based on the current cycle before MachineSchedStrategy
 | |
| /// does.
 | |
| ///
 | |
| /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
 | |
| /// them here. See comments in biasPhysReg.
 | |
| void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | |
|   if (IsTopNode) {
 | |
|     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
 | |
|     Top.bumpNode(SU);
 | |
|     if (SU->hasPhysRegUses)
 | |
|       reschedulePhysReg(SU, true);
 | |
|   } else {
 | |
|     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
 | |
|     Bot.bumpNode(SU);
 | |
|     if (SU->hasPhysRegDefs)
 | |
|       reschedulePhysReg(SU, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create the standard converging machine scheduler. This will be used as the
 | |
| /// default scheduler if the target does not set a default.
 | |
| ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) {
 | |
|   ScheduleDAGMILive *DAG =
 | |
|       new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C));
 | |
|   // Register DAG post-processors.
 | |
|   //
 | |
|   // FIXME: extend the mutation API to allow earlier mutations to instantiate
 | |
|   // data and pass it to later mutations. Have a single mutation that gathers
 | |
|   // the interesting nodes in one pass.
 | |
|   DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI));
 | |
|   return DAG;
 | |
| }
 | |
| 
 | |
| static ScheduleDAGInstrs *createConveringSched(MachineSchedContext *C) {
 | |
|   return createGenericSchedLive(C);
 | |
| }
 | |
| 
 | |
| static MachineSchedRegistry
 | |
| GenericSchedRegistry("converge", "Standard converging scheduler.",
 | |
|                      createConveringSched);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
 | |
|   DAG = Dag;
 | |
|   SchedModel = DAG->getSchedModel();
 | |
|   TRI = DAG->TRI;
 | |
| 
 | |
|   Rem.init(DAG, SchedModel);
 | |
|   Top.init(DAG, SchedModel, &Rem);
 | |
|   BotRoots.clear();
 | |
| 
 | |
|   // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
 | |
|   // or are disabled, then these HazardRecs will be disabled.
 | |
|   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | |
|   if (!Top.HazardRec) {
 | |
|     Top.HazardRec =
 | |
|         DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
 | |
|             Itin, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PostGenericScheduler::registerRoots() {
 | |
|   Rem.CriticalPath = DAG->ExitSU.getDepth();
 | |
| 
 | |
|   // Some roots may not feed into ExitSU. Check all of them in case.
 | |
|   for (const SUnit *SU : BotRoots) {
 | |
|     if (SU->getDepth() > Rem.CriticalPath)
 | |
|       Rem.CriticalPath = SU->getDepth();
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
 | |
|   if (DumpCriticalPathLength) {
 | |
|     errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Apply a set of heuristics to a new candidate for PostRA scheduling.
 | |
| ///
 | |
| /// \param Cand provides the policy and current best candidate.
 | |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | |
| void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
 | |
|                                         SchedCandidate &TryCand) {
 | |
|   // Initialize the candidate if needed.
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Prioritize instructions that read unbuffered resources by stall cycles.
 | |
|   if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
 | |
|               Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
 | |
|     return;
 | |
| 
 | |
|   // Keep clustered nodes together.
 | |
|   if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(),
 | |
|                  Cand.SU == DAG->getNextClusterSucc(),
 | |
|                  TryCand, Cand, Cluster))
 | |
|     return;
 | |
| 
 | |
|   // Avoid critical resource consumption and balance the schedule.
 | |
|   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | |
|               TryCand, Cand, ResourceReduce))
 | |
|     return;
 | |
|   if (tryGreater(TryCand.ResDelta.DemandedResources,
 | |
|                  Cand.ResDelta.DemandedResources,
 | |
|                  TryCand, Cand, ResourceDemand))
 | |
|     return;
 | |
| 
 | |
|   // Avoid serializing long latency dependence chains.
 | |
|   if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Fall through to original instruction order.
 | |
|   if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | |
|     TryCand.Reason = NodeOrder;
 | |
| }
 | |
| 
 | |
| void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
 | |
|   ReadyQueue &Q = Top.Available;
 | |
|   for (SUnit *SU : Q) {
 | |
|     SchedCandidate TryCand(Cand.Policy);
 | |
|     TryCand.SU = SU;
 | |
|     TryCand.AtTop = true;
 | |
|     TryCand.initResourceDelta(DAG, SchedModel);
 | |
|     tryCandidate(Cand, TryCand);
 | |
|     if (TryCand.Reason != NoCand) {
 | |
|       Cand.setBest(TryCand);
 | |
|       LLVM_DEBUG(traceCandidate(Cand));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Pick the next node to schedule.
 | |
| SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
 | |
|   if (DAG->top() == DAG->bottom()) {
 | |
|     assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
 | |
|     return nullptr;
 | |
|   }
 | |
|   SUnit *SU;
 | |
|   do {
 | |
|     SU = Top.pickOnlyChoice();
 | |
|     if (SU) {
 | |
|       tracePick(Only1, true);
 | |
|     } else {
 | |
|       CandPolicy NoPolicy;
 | |
|       SchedCandidate TopCand(NoPolicy);
 | |
|       // Set the top-down policy based on the state of the current top zone and
 | |
|       // the instructions outside the zone, including the bottom zone.
 | |
|       setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
 | |
|       pickNodeFromQueue(TopCand);
 | |
|       assert(TopCand.Reason != NoCand && "failed to find a candidate");
 | |
|       tracePick(TopCand);
 | |
|       SU = TopCand.SU;
 | |
|     }
 | |
|   } while (SU->isScheduled);
 | |
| 
 | |
|   IsTopNode = true;
 | |
|   Top.removeReady(SU);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
 | |
|                     << *SU->getInstr());
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| /// Called after ScheduleDAGMI has scheduled an instruction and updated
 | |
| /// scheduled/remaining flags in the DAG nodes.
 | |
| void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | |
|   SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
 | |
|   Top.bumpNode(SU);
 | |
| }
 | |
| 
 | |
| ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C),
 | |
|                            /*RemoveKillFlags=*/true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ILP Scheduler. Currently for experimental analysis of heuristics.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Order nodes by the ILP metric.
 | |
| struct ILPOrder {
 | |
|   const SchedDFSResult *DFSResult = nullptr;
 | |
|   const BitVector *ScheduledTrees = nullptr;
 | |
|   bool MaximizeILP;
 | |
| 
 | |
|   ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {}
 | |
| 
 | |
|   /// Apply a less-than relation on node priority.
 | |
|   ///
 | |
|   /// (Return true if A comes after B in the Q.)
 | |
|   bool operator()(const SUnit *A, const SUnit *B) const {
 | |
|     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
 | |
|     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
 | |
|     if (SchedTreeA != SchedTreeB) {
 | |
|       // Unscheduled trees have lower priority.
 | |
|       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
 | |
|         return ScheduledTrees->test(SchedTreeB);
 | |
| 
 | |
|       // Trees with shallower connections have have lower priority.
 | |
|       if (DFSResult->getSubtreeLevel(SchedTreeA)
 | |
|           != DFSResult->getSubtreeLevel(SchedTreeB)) {
 | |
|         return DFSResult->getSubtreeLevel(SchedTreeA)
 | |
|           < DFSResult->getSubtreeLevel(SchedTreeB);
 | |
|       }
 | |
|     }
 | |
|     if (MaximizeILP)
 | |
|       return DFSResult->getILP(A) < DFSResult->getILP(B);
 | |
|     else
 | |
|       return DFSResult->getILP(A) > DFSResult->getILP(B);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Schedule based on the ILP metric.
 | |
| class ILPScheduler : public MachineSchedStrategy {
 | |
|   ScheduleDAGMILive *DAG = nullptr;
 | |
|   ILPOrder Cmp;
 | |
| 
 | |
|   std::vector<SUnit*> ReadyQ;
 | |
| 
 | |
| public:
 | |
|   ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {}
 | |
| 
 | |
|   void initialize(ScheduleDAGMI *dag) override {
 | |
|     assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
 | |
|     DAG = static_cast<ScheduleDAGMILive*>(dag);
 | |
|     DAG->computeDFSResult();
 | |
|     Cmp.DFSResult = DAG->getDFSResult();
 | |
|     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
 | |
|     ReadyQ.clear();
 | |
|   }
 | |
| 
 | |
|   void registerRoots() override {
 | |
|     // Restore the heap in ReadyQ with the updated DFS results.
 | |
|     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| 
 | |
|   /// Implement MachineSchedStrategy interface.
 | |
|   /// -----------------------------------------
 | |
| 
 | |
|   /// Callback to select the highest priority node from the ready Q.
 | |
|   SUnit *pickNode(bool &IsTopNode) override {
 | |
|     if (ReadyQ.empty()) return nullptr;
 | |
|     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|     SUnit *SU = ReadyQ.back();
 | |
|     ReadyQ.pop_back();
 | |
|     IsTopNode = false;
 | |
|     LLVM_DEBUG(dbgs() << "Pick node "
 | |
|                       << "SU(" << SU->NodeNum << ") "
 | |
|                       << " ILP: " << DAG->getDFSResult()->getILP(SU)
 | |
|                       << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU)
 | |
|                       << " @"
 | |
|                       << DAG->getDFSResult()->getSubtreeLevel(
 | |
|                              DAG->getDFSResult()->getSubtreeID(SU))
 | |
|                       << '\n'
 | |
|                       << "Scheduling " << *SU->getInstr());
 | |
|     return SU;
 | |
|   }
 | |
| 
 | |
|   /// Scheduler callback to notify that a new subtree is scheduled.
 | |
|   void scheduleTree(unsigned SubtreeID) override {
 | |
|     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| 
 | |
|   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
 | |
|   /// DFSResults, and resort the priority Q.
 | |
|   void schedNode(SUnit *SU, bool IsTopNode) override {
 | |
|     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
 | |
|   }
 | |
| 
 | |
|   void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
 | |
| 
 | |
|   void releaseBottomNode(SUnit *SU) override {
 | |
|     ReadyQ.push_back(SU);
 | |
|     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true));
 | |
| }
 | |
| static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false));
 | |
| }
 | |
| 
 | |
| static MachineSchedRegistry ILPMaxRegistry(
 | |
|   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
 | |
| static MachineSchedRegistry ILPMinRegistry(
 | |
|   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Machine Instruction Shuffler for Correctness Testing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| namespace {
 | |
| 
 | |
| /// Apply a less-than relation on the node order, which corresponds to the
 | |
| /// instruction order prior to scheduling. IsReverse implements greater-than.
 | |
| template<bool IsReverse>
 | |
| struct SUnitOrder {
 | |
|   bool operator()(SUnit *A, SUnit *B) const {
 | |
|     if (IsReverse)
 | |
|       return A->NodeNum > B->NodeNum;
 | |
|     else
 | |
|       return A->NodeNum < B->NodeNum;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Reorder instructions as much as possible.
 | |
| class InstructionShuffler : public MachineSchedStrategy {
 | |
|   bool IsAlternating;
 | |
|   bool IsTopDown;
 | |
| 
 | |
|   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
 | |
|   // gives nodes with a higher number higher priority causing the latest
 | |
|   // instructions to be scheduled first.
 | |
|   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
 | |
|     TopQ;
 | |
| 
 | |
|   // When scheduling bottom-up, use greater-than as the queue priority.
 | |
|   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
 | |
|     BottomQ;
 | |
| 
 | |
| public:
 | |
|   InstructionShuffler(bool alternate, bool topdown)
 | |
|     : IsAlternating(alternate), IsTopDown(topdown) {}
 | |
| 
 | |
|   void initialize(ScheduleDAGMI*) override {
 | |
|     TopQ.clear();
 | |
|     BottomQ.clear();
 | |
|   }
 | |
| 
 | |
|   /// Implement MachineSchedStrategy interface.
 | |
|   /// -----------------------------------------
 | |
| 
 | |
|   SUnit *pickNode(bool &IsTopNode) override {
 | |
|     SUnit *SU;
 | |
|     if (IsTopDown) {
 | |
|       do {
 | |
|         if (TopQ.empty()) return nullptr;
 | |
|         SU = TopQ.top();
 | |
|         TopQ.pop();
 | |
|       } while (SU->isScheduled);
 | |
|       IsTopNode = true;
 | |
|     } else {
 | |
|       do {
 | |
|         if (BottomQ.empty()) return nullptr;
 | |
|         SU = BottomQ.top();
 | |
|         BottomQ.pop();
 | |
|       } while (SU->isScheduled);
 | |
|       IsTopNode = false;
 | |
|     }
 | |
|     if (IsAlternating)
 | |
|       IsTopDown = !IsTopDown;
 | |
|     return SU;
 | |
|   }
 | |
| 
 | |
|   void schedNode(SUnit *SU, bool IsTopNode) override {}
 | |
| 
 | |
|   void releaseTopNode(SUnit *SU) override {
 | |
|     TopQ.push(SU);
 | |
|   }
 | |
|   void releaseBottomNode(SUnit *SU) override {
 | |
|     BottomQ.push(SU);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
 | |
|   bool Alternate = !ForceTopDown && !ForceBottomUp;
 | |
|   bool TopDown = !ForceBottomUp;
 | |
|   assert((TopDown || !ForceTopDown) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
|   return new ScheduleDAGMILive(
 | |
|       C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
 | |
| }
 | |
| 
 | |
| static MachineSchedRegistry ShufflerRegistry(
 | |
|   "shuffle", "Shuffle machine instructions alternating directions",
 | |
|   createInstructionShuffler);
 | |
| #endif // !NDEBUG
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GraphWriter support for ScheduleDAGMILive.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| namespace llvm {
 | |
| 
 | |
| template<> struct GraphTraits<
 | |
|   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
 | |
| 
 | |
| template<>
 | |
| struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
 | |
|   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
 | |
| 
 | |
|   static std::string getGraphName(const ScheduleDAG *G) {
 | |
|     return std::string(G->MF.getName());
 | |
|   }
 | |
| 
 | |
|   static bool renderGraphFromBottomUp() {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   static bool isNodeHidden(const SUnit *Node) {
 | |
|     if (ViewMISchedCutoff == 0)
 | |
|       return false;
 | |
|     return (Node->Preds.size() > ViewMISchedCutoff
 | |
|          || Node->Succs.size() > ViewMISchedCutoff);
 | |
|   }
 | |
| 
 | |
|   /// If you want to override the dot attributes printed for a particular
 | |
|   /// edge, override this method.
 | |
|   static std::string getEdgeAttributes(const SUnit *Node,
 | |
|                                        SUnitIterator EI,
 | |
|                                        const ScheduleDAG *Graph) {
 | |
|     if (EI.isArtificialDep())
 | |
|       return "color=cyan,style=dashed";
 | |
|     if (EI.isCtrlDep())
 | |
|       return "color=blue,style=dashed";
 | |
|     return "";
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
 | |
|     std::string Str;
 | |
|     raw_string_ostream SS(Str);
 | |
|     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
 | |
|     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
 | |
|       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
 | |
|     SS << "SU:" << SU->NodeNum;
 | |
|     if (DFS)
 | |
|       SS << " I:" << DFS->getNumInstrs(SU);
 | |
|     return SS.str();
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
 | |
|     return G->getGraphNodeLabel(SU);
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
 | |
|     std::string Str("shape=Mrecord");
 | |
|     const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
 | |
|     const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
 | |
|       static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
 | |
|     if (DFS) {
 | |
|       Str += ",style=filled,fillcolor=\"#";
 | |
|       Str += DOT::getColorString(DFS->getSubtreeID(N));
 | |
|       Str += '"';
 | |
|     }
 | |
|     return Str;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end namespace llvm
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
 | |
| /// rendered using 'dot'.
 | |
| void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
 | |
| #ifndef NDEBUG
 | |
|   ViewGraph(this, Name, false, Title);
 | |
| #else
 | |
|   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
 | |
|          << "systems with Graphviz or gv!\n";
 | |
| #endif  // NDEBUG
 | |
| }
 | |
| 
 | |
| /// Out-of-line implementation with no arguments is handy for gdb.
 | |
| void ScheduleDAGMI::viewGraph() {
 | |
|   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
 | |
| }
 |