2996 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2996 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Pass to verify generated machine code. The following is checked:
 | |
| //
 | |
| // Operand counts: All explicit operands must be present.
 | |
| //
 | |
| // Register classes: All physical and virtual register operands must be
 | |
| // compatible with the register class required by the instruction descriptor.
 | |
| //
 | |
| // Register live intervals: Registers must be defined only once, and must be
 | |
| // defined before use.
 | |
| //
 | |
| // The machine code verifier is enabled with the command-line option
 | |
| // -verify-machineinstrs.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Analysis/EHPersonalities.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/LiveRangeCalc.h"
 | |
| #include "llvm/CodeGen/LiveStacks.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBundle.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/StackMaps.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/MC/MCTargetOptions.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/LowLevelTypeImpl.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   struct MachineVerifier {
 | |
|     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
 | |
| 
 | |
|     unsigned verify(MachineFunction &MF);
 | |
| 
 | |
|     Pass *const PASS;
 | |
|     const char *Banner;
 | |
|     const MachineFunction *MF;
 | |
|     const TargetMachine *TM;
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const MachineRegisterInfo *MRI;
 | |
| 
 | |
|     unsigned foundErrors;
 | |
| 
 | |
|     // Avoid querying the MachineFunctionProperties for each operand.
 | |
|     bool isFunctionRegBankSelected;
 | |
|     bool isFunctionSelected;
 | |
| 
 | |
|     using RegVector = SmallVector<unsigned, 16>;
 | |
|     using RegMaskVector = SmallVector<const uint32_t *, 4>;
 | |
|     using RegSet = DenseSet<unsigned>;
 | |
|     using RegMap = DenseMap<unsigned, const MachineInstr *>;
 | |
|     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
 | |
| 
 | |
|     const MachineInstr *FirstNonPHI;
 | |
|     const MachineInstr *FirstTerminator;
 | |
|     BlockSet FunctionBlocks;
 | |
| 
 | |
|     BitVector regsReserved;
 | |
|     RegSet regsLive;
 | |
|     RegVector regsDefined, regsDead, regsKilled;
 | |
|     RegMaskVector regMasks;
 | |
| 
 | |
|     SlotIndex lastIndex;
 | |
| 
 | |
|     // Add Reg and any sub-registers to RV
 | |
|     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
 | |
|       RV.push_back(Reg);
 | |
|       if (Register::isPhysicalRegister(Reg))
 | |
|         for (const MCPhysReg &SubReg : TRI->subregs(Reg))
 | |
|           RV.push_back(SubReg);
 | |
|     }
 | |
| 
 | |
|     struct BBInfo {
 | |
|       // Is this MBB reachable from the MF entry point?
 | |
|       bool reachable = false;
 | |
| 
 | |
|       // Vregs that must be live in because they are used without being
 | |
|       // defined. Map value is the user.
 | |
|       RegMap vregsLiveIn;
 | |
| 
 | |
|       // Regs killed in MBB. They may be defined again, and will then be in both
 | |
|       // regsKilled and regsLiveOut.
 | |
|       RegSet regsKilled;
 | |
| 
 | |
|       // Regs defined in MBB and live out. Note that vregs passing through may
 | |
|       // be live out without being mentioned here.
 | |
|       RegSet regsLiveOut;
 | |
| 
 | |
|       // Vregs that pass through MBB untouched. This set is disjoint from
 | |
|       // regsKilled and regsLiveOut.
 | |
|       RegSet vregsPassed;
 | |
| 
 | |
|       // Vregs that must pass through MBB because they are needed by a successor
 | |
|       // block. This set is disjoint from regsLiveOut.
 | |
|       RegSet vregsRequired;
 | |
| 
 | |
|       // Set versions of block's predecessor and successor lists.
 | |
|       BlockSet Preds, Succs;
 | |
| 
 | |
|       BBInfo() = default;
 | |
| 
 | |
|       // Add register to vregsRequired if it belongs there. Return true if
 | |
|       // anything changed.
 | |
|       bool addRequired(unsigned Reg) {
 | |
|         if (!Register::isVirtualRegister(Reg))
 | |
|           return false;
 | |
|         if (regsLiveOut.count(Reg))
 | |
|           return false;
 | |
|         return vregsRequired.insert(Reg).second;
 | |
|       }
 | |
| 
 | |
|       // Same for a full set.
 | |
|       bool addRequired(const RegSet &RS) {
 | |
|         bool changed = false;
 | |
|         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | |
|           if (addRequired(*I))
 | |
|             changed = true;
 | |
|         return changed;
 | |
|       }
 | |
| 
 | |
|       // Same for a full map.
 | |
|       bool addRequired(const RegMap &RM) {
 | |
|         bool changed = false;
 | |
|         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
 | |
|           if (addRequired(I->first))
 | |
|             changed = true;
 | |
|         return changed;
 | |
|       }
 | |
| 
 | |
|       // Live-out registers are either in regsLiveOut or vregsPassed.
 | |
|       bool isLiveOut(unsigned Reg) const {
 | |
|         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // Extra register info per MBB.
 | |
|     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
 | |
| 
 | |
|     bool isReserved(unsigned Reg) {
 | |
|       return Reg < regsReserved.size() && regsReserved.test(Reg);
 | |
|     }
 | |
| 
 | |
|     bool isAllocatable(unsigned Reg) const {
 | |
|       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
 | |
|              !regsReserved.test(Reg);
 | |
|     }
 | |
| 
 | |
|     // Analysis information if available
 | |
|     LiveVariables *LiveVars;
 | |
|     LiveIntervals *LiveInts;
 | |
|     LiveStacks *LiveStks;
 | |
|     SlotIndexes *Indexes;
 | |
| 
 | |
|     void visitMachineFunctionBefore();
 | |
|     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
 | |
|     void visitMachineBundleBefore(const MachineInstr *MI);
 | |
| 
 | |
|     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
 | |
|     void verifyPreISelGenericInstruction(const MachineInstr *MI);
 | |
|     void visitMachineInstrBefore(const MachineInstr *MI);
 | |
|     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
 | |
|     void visitMachineInstrAfter(const MachineInstr *MI);
 | |
|     void visitMachineBundleAfter(const MachineInstr *MI);
 | |
|     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
 | |
|     void visitMachineFunctionAfter();
 | |
| 
 | |
|     void report(const char *msg, const MachineFunction *MF);
 | |
|     void report(const char *msg, const MachineBasicBlock *MBB);
 | |
|     void report(const char *msg, const MachineInstr *MI);
 | |
|     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
 | |
|                 LLT MOVRegType = LLT{});
 | |
| 
 | |
|     void report_context(const LiveInterval &LI) const;
 | |
|     void report_context(const LiveRange &LR, unsigned VRegUnit,
 | |
|                         LaneBitmask LaneMask) const;
 | |
|     void report_context(const LiveRange::Segment &S) const;
 | |
|     void report_context(const VNInfo &VNI) const;
 | |
|     void report_context(SlotIndex Pos) const;
 | |
|     void report_context(MCPhysReg PhysReg) const;
 | |
|     void report_context_liverange(const LiveRange &LR) const;
 | |
|     void report_context_lanemask(LaneBitmask LaneMask) const;
 | |
|     void report_context_vreg(unsigned VReg) const;
 | |
|     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
 | |
| 
 | |
|     void verifyInlineAsm(const MachineInstr *MI);
 | |
| 
 | |
|     void checkLiveness(const MachineOperand *MO, unsigned MONum);
 | |
|     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
 | |
|                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | |
|                             LaneBitmask LaneMask = LaneBitmask::getNone());
 | |
|     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
 | |
|                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | |
|                             bool SubRangeCheck = false,
 | |
|                             LaneBitmask LaneMask = LaneBitmask::getNone());
 | |
| 
 | |
|     void markReachable(const MachineBasicBlock *MBB);
 | |
|     void calcRegsPassed();
 | |
|     void checkPHIOps(const MachineBasicBlock &MBB);
 | |
| 
 | |
|     void calcRegsRequired();
 | |
|     void verifyLiveVariables();
 | |
|     void verifyLiveIntervals();
 | |
|     void verifyLiveInterval(const LiveInterval&);
 | |
|     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
 | |
|                               LaneBitmask);
 | |
|     void verifyLiveRangeSegment(const LiveRange&,
 | |
|                                 const LiveRange::const_iterator I, unsigned,
 | |
|                                 LaneBitmask);
 | |
|     void verifyLiveRange(const LiveRange&, unsigned,
 | |
|                          LaneBitmask LaneMask = LaneBitmask::getNone());
 | |
| 
 | |
|     void verifyStackFrame();
 | |
| 
 | |
|     void verifySlotIndexes() const;
 | |
|     void verifyProperties(const MachineFunction &MF);
 | |
|   };
 | |
| 
 | |
|   struct MachineVerifierPass : public MachineFunctionPass {
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
| 
 | |
|     const std::string Banner;
 | |
| 
 | |
|     MachineVerifierPass(std::string banner = std::string())
 | |
|       : MachineFunctionPass(ID), Banner(std::move(banner)) {
 | |
|         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
 | |
|       }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesAll();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override {
 | |
|       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
 | |
|       if (FoundErrors)
 | |
|         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char MachineVerifierPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
 | |
|                 "Verify generated machine code", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
 | |
|   return new MachineVerifierPass(Banner);
 | |
| }
 | |
| 
 | |
| bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
 | |
|     const {
 | |
|   MachineFunction &MF = const_cast<MachineFunction&>(*this);
 | |
|   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
 | |
|   if (AbortOnErrors && FoundErrors)
 | |
|     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
 | |
|   return FoundErrors == 0;
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifySlotIndexes() const {
 | |
|   if (Indexes == nullptr)
 | |
|     return;
 | |
| 
 | |
|   // Ensure the IdxMBB list is sorted by slot indexes.
 | |
|   SlotIndex Last;
 | |
|   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
 | |
|        E = Indexes->MBBIndexEnd(); I != E; ++I) {
 | |
|     assert(!Last.isValid() || I->first > Last);
 | |
|     Last = I->first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyProperties(const MachineFunction &MF) {
 | |
|   // If a pass has introduced virtual registers without clearing the
 | |
|   // NoVRegs property (or set it without allocating the vregs)
 | |
|   // then report an error.
 | |
|   if (MF.getProperties().hasProperty(
 | |
|           MachineFunctionProperties::Property::NoVRegs) &&
 | |
|       MRI->getNumVirtRegs())
 | |
|     report("Function has NoVRegs property but there are VReg operands", &MF);
 | |
| }
 | |
| 
 | |
| unsigned MachineVerifier::verify(MachineFunction &MF) {
 | |
|   foundErrors = 0;
 | |
| 
 | |
|   this->MF = &MF;
 | |
|   TM = &MF.getTarget();
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
| 
 | |
|   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
 | |
|       MachineFunctionProperties::Property::FailedISel);
 | |
| 
 | |
|   // If we're mid-GlobalISel and we already triggered the fallback path then
 | |
|   // it's expected that the MIR is somewhat broken but that's ok since we'll
 | |
|   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
 | |
|   if (isFunctionFailedISel)
 | |
|     return foundErrors;
 | |
| 
 | |
|   isFunctionRegBankSelected = MF.getProperties().hasProperty(
 | |
|       MachineFunctionProperties::Property::RegBankSelected);
 | |
|   isFunctionSelected = MF.getProperties().hasProperty(
 | |
|       MachineFunctionProperties::Property::Selected);
 | |
| 
 | |
|   LiveVars = nullptr;
 | |
|   LiveInts = nullptr;
 | |
|   LiveStks = nullptr;
 | |
|   Indexes = nullptr;
 | |
|   if (PASS) {
 | |
|     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
 | |
|     // We don't want to verify LiveVariables if LiveIntervals is available.
 | |
|     if (!LiveInts)
 | |
|       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
 | |
|     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
 | |
|     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
 | |
|   }
 | |
| 
 | |
|   verifySlotIndexes();
 | |
| 
 | |
|   verifyProperties(MF);
 | |
| 
 | |
|   visitMachineFunctionBefore();
 | |
|   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
 | |
|        MFI!=MFE; ++MFI) {
 | |
|     visitMachineBasicBlockBefore(&*MFI);
 | |
|     // Keep track of the current bundle header.
 | |
|     const MachineInstr *CurBundle = nullptr;
 | |
|     // Do we expect the next instruction to be part of the same bundle?
 | |
|     bool InBundle = false;
 | |
| 
 | |
|     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
 | |
|            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
 | |
|       if (MBBI->getParent() != &*MFI) {
 | |
|         report("Bad instruction parent pointer", &*MFI);
 | |
|         errs() << "Instruction: " << *MBBI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Check for consistent bundle flags.
 | |
|       if (InBundle && !MBBI->isBundledWithPred())
 | |
|         report("Missing BundledPred flag, "
 | |
|                "BundledSucc was set on predecessor",
 | |
|                &*MBBI);
 | |
|       if (!InBundle && MBBI->isBundledWithPred())
 | |
|         report("BundledPred flag is set, "
 | |
|                "but BundledSucc not set on predecessor",
 | |
|                &*MBBI);
 | |
| 
 | |
|       // Is this a bundle header?
 | |
|       if (!MBBI->isInsideBundle()) {
 | |
|         if (CurBundle)
 | |
|           visitMachineBundleAfter(CurBundle);
 | |
|         CurBundle = &*MBBI;
 | |
|         visitMachineBundleBefore(CurBundle);
 | |
|       } else if (!CurBundle)
 | |
|         report("No bundle header", &*MBBI);
 | |
|       visitMachineInstrBefore(&*MBBI);
 | |
|       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
 | |
|         const MachineInstr &MI = *MBBI;
 | |
|         const MachineOperand &Op = MI.getOperand(I);
 | |
|         if (Op.getParent() != &MI) {
 | |
|           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
 | |
|           // functions when replacing operands of a MachineInstr.
 | |
|           report("Instruction has operand with wrong parent set", &MI);
 | |
|         }
 | |
| 
 | |
|         visitMachineOperand(&Op, I);
 | |
|       }
 | |
| 
 | |
|       visitMachineInstrAfter(&*MBBI);
 | |
| 
 | |
|       // Was this the last bundled instruction?
 | |
|       InBundle = MBBI->isBundledWithSucc();
 | |
|     }
 | |
|     if (CurBundle)
 | |
|       visitMachineBundleAfter(CurBundle);
 | |
|     if (InBundle)
 | |
|       report("BundledSucc flag set on last instruction in block", &MFI->back());
 | |
|     visitMachineBasicBlockAfter(&*MFI);
 | |
|   }
 | |
|   visitMachineFunctionAfter();
 | |
| 
 | |
|   // Clean up.
 | |
|   regsLive.clear();
 | |
|   regsDefined.clear();
 | |
|   regsDead.clear();
 | |
|   regsKilled.clear();
 | |
|   regMasks.clear();
 | |
|   MBBInfoMap.clear();
 | |
| 
 | |
|   return foundErrors;
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
 | |
|   assert(MF);
 | |
|   errs() << '\n';
 | |
|   if (!foundErrors++) {
 | |
|     if (Banner)
 | |
|       errs() << "# " << Banner << '\n';
 | |
|     if (LiveInts != nullptr)
 | |
|       LiveInts->print(errs());
 | |
|     else
 | |
|       MF->print(errs(), Indexes);
 | |
|   }
 | |
|   errs() << "*** Bad machine code: " << msg << " ***\n"
 | |
|       << "- function:    " << MF->getName() << "\n";
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
 | |
|   assert(MBB);
 | |
|   report(msg, MBB->getParent());
 | |
|   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
 | |
|          << MBB->getName() << " (" << (const void *)MBB << ')';
 | |
|   if (Indexes)
 | |
|     errs() << " [" << Indexes->getMBBStartIdx(MBB)
 | |
|         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
 | |
|   errs() << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
 | |
|   assert(MI);
 | |
|   report(msg, MI->getParent());
 | |
|   errs() << "- instruction: ";
 | |
|   if (Indexes && Indexes->hasIndex(*MI))
 | |
|     errs() << Indexes->getInstructionIndex(*MI) << '\t';
 | |
|   MI->print(errs(), /*SkipOpers=*/true);
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report(const char *msg, const MachineOperand *MO,
 | |
|                              unsigned MONum, LLT MOVRegType) {
 | |
|   assert(MO);
 | |
|   report(msg, MO->getParent());
 | |
|   errs() << "- operand " << MONum << ":   ";
 | |
|   MO->print(errs(), MOVRegType, TRI);
 | |
|   errs() << "\n";
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context(SlotIndex Pos) const {
 | |
|   errs() << "- at:          " << Pos << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context(const LiveInterval &LI) const {
 | |
|   errs() << "- interval:    " << LI << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
 | |
|                                      LaneBitmask LaneMask) const {
 | |
|   report_context_liverange(LR);
 | |
|   report_context_vreg_regunit(VRegUnit);
 | |
|   if (LaneMask.any())
 | |
|     report_context_lanemask(LaneMask);
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context(const LiveRange::Segment &S) const {
 | |
|   errs() << "- segment:     " << S << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context(const VNInfo &VNI) const {
 | |
|   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
 | |
|   errs() << "- liverange:   " << LR << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context(MCPhysReg PReg) const {
 | |
|   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context_vreg(unsigned VReg) const {
 | |
|   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
 | |
|   if (Register::isVirtualRegister(VRegOrUnit)) {
 | |
|     report_context_vreg(VRegOrUnit);
 | |
|   } else {
 | |
|     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
 | |
|   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
 | |
| }
 | |
| 
 | |
| void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
 | |
|   BBInfo &MInfo = MBBInfoMap[MBB];
 | |
|   if (!MInfo.reachable) {
 | |
|     MInfo.reachable = true;
 | |
|     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | |
|            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
 | |
|       markReachable(*SuI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineFunctionBefore() {
 | |
|   lastIndex = SlotIndex();
 | |
|   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
 | |
|                                            : TRI->getReservedRegs(*MF);
 | |
| 
 | |
|   if (!MF->empty())
 | |
|     markReachable(&MF->front());
 | |
| 
 | |
|   // Build a set of the basic blocks in the function.
 | |
|   FunctionBlocks.clear();
 | |
|   for (const auto &MBB : *MF) {
 | |
|     FunctionBlocks.insert(&MBB);
 | |
|     BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
| 
 | |
|     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
 | |
|     if (MInfo.Preds.size() != MBB.pred_size())
 | |
|       report("MBB has duplicate entries in its predecessor list.", &MBB);
 | |
| 
 | |
|     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
 | |
|     if (MInfo.Succs.size() != MBB.succ_size())
 | |
|       report("MBB has duplicate entries in its successor list.", &MBB);
 | |
|   }
 | |
| 
 | |
|   // Check that the register use lists are sane.
 | |
|   MRI->verifyUseLists();
 | |
| 
 | |
|   if (!MF->empty())
 | |
|     verifyStackFrame();
 | |
| }
 | |
| 
 | |
| // Does iterator point to a and b as the first two elements?
 | |
| static bool matchPair(MachineBasicBlock::const_succ_iterator i,
 | |
|                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
 | |
|   if (*i == a)
 | |
|     return *++i == b;
 | |
|   if (*i == b)
 | |
|     return *++i == a;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
 | |
|   FirstTerminator = nullptr;
 | |
|   FirstNonPHI = nullptr;
 | |
| 
 | |
|   if (!MF->getProperties().hasProperty(
 | |
|       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
 | |
|     // If this block has allocatable physical registers live-in, check that
 | |
|     // it is an entry block or landing pad.
 | |
|     for (const auto &LI : MBB->liveins()) {
 | |
|       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
 | |
|           !MBB->isInlineAsmBrDefaultTarget() &&
 | |
|           MBB->getIterator() != MBB->getParent()->begin()) {
 | |
|         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
 | |
|         report_context(LI.PhysReg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Count the number of landing pad successors.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
 | |
|   for (const auto *succ : MBB->successors()) {
 | |
|     if (succ->isEHPad())
 | |
|       LandingPadSuccs.insert(succ);
 | |
|     if (!FunctionBlocks.count(succ))
 | |
|       report("MBB has successor that isn't part of the function.", MBB);
 | |
|     if (!MBBInfoMap[succ].Preds.count(MBB)) {
 | |
|       report("Inconsistent CFG", MBB);
 | |
|       errs() << "MBB is not in the predecessor list of the successor "
 | |
|              << printMBBReference(*succ) << ".\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Count the number of INLINEASM_BR indirect target successors.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 4> IndirectTargetSuccs;
 | |
|   for (const auto *succ : MBB->successors()) {
 | |
|     if (MBB->isInlineAsmBrIndirectTarget(succ))
 | |
|       IndirectTargetSuccs.insert(succ);
 | |
|     if (!FunctionBlocks.count(succ))
 | |
|       report("MBB has successor that isn't part of the function.", MBB);
 | |
|     if (!MBBInfoMap[succ].Preds.count(MBB)) {
 | |
|       report("Inconsistent CFG", MBB);
 | |
|       errs() << "MBB is not in the predecessor list of the successor "
 | |
|              << printMBBReference(*succ) << ".\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check the predecessor list.
 | |
|   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
 | |
|        E = MBB->pred_end(); I != E; ++I) {
 | |
|     if (!FunctionBlocks.count(*I))
 | |
|       report("MBB has predecessor that isn't part of the function.", MBB);
 | |
|     if (!MBBInfoMap[*I].Succs.count(MBB)) {
 | |
|       report("Inconsistent CFG", MBB);
 | |
|       errs() << "MBB is not in the successor list of the predecessor "
 | |
|              << printMBBReference(*(*I)) << ".\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
 | |
|   const BasicBlock *BB = MBB->getBasicBlock();
 | |
|   const Function &F = MF->getFunction();
 | |
|   if (LandingPadSuccs.size() > 1 &&
 | |
|       !(AsmInfo &&
 | |
|         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
 | |
|         BB && isa<SwitchInst>(BB->getTerminator())) &&
 | |
|       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
 | |
|     report("MBB has more than one landing pad successor", MBB);
 | |
| 
 | |
|   // Call analyzeBranch. If it succeeds, there several more conditions to check.
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
 | |
|                           Cond)) {
 | |
|     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
 | |
|     // check whether its answers match up with reality.
 | |
|     if (!TBB && !FBB) {
 | |
|       // Block falls through to its successor.
 | |
|       MachineFunction::const_iterator MBBI = MBB->getIterator();
 | |
|       ++MBBI;
 | |
|       if (MBBI == MF->end()) {
 | |
|         // It's possible that the block legitimately ends with a noreturn
 | |
|         // call or an unreachable, in which case it won't actually fall
 | |
|         // out the bottom of the function.
 | |
|       } else if (MBB->succ_size() == LandingPadSuccs.size() ||
 | |
|                  MBB->succ_size() == IndirectTargetSuccs.size()) {
 | |
|         // It's possible that the block legitimately ends with a noreturn
 | |
|         // call or an unreachable, in which case it won't actually fall
 | |
|         // out of the block.
 | |
|       } else if ((LandingPadSuccs.size() &&
 | |
|                   MBB->succ_size() != 1 + LandingPadSuccs.size()) ||
 | |
|                  (IndirectTargetSuccs.size() &&
 | |
|                   MBB->succ_size() != 1 + IndirectTargetSuccs.size())) {
 | |
|         report("MBB exits via unconditional fall-through but doesn't have "
 | |
|                "exactly one CFG successor!", MBB);
 | |
|       } else if (!MBB->isSuccessor(&*MBBI)) {
 | |
|         report("MBB exits via unconditional fall-through but its successor "
 | |
|                "differs from its CFG successor!", MBB);
 | |
|       }
 | |
|       if (!MBB->empty() && MBB->back().isBarrier() &&
 | |
|           !TII->isPredicated(MBB->back())) {
 | |
|         report("MBB exits via unconditional fall-through but ends with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       }
 | |
|       if (!Cond.empty()) {
 | |
|         report("MBB exits via unconditional fall-through but has a condition!",
 | |
|                MBB);
 | |
|       }
 | |
|     } else if (TBB && !FBB && Cond.empty()) {
 | |
|       // Block unconditionally branches somewhere.
 | |
|       // If the block has exactly one successor, that happens to be a
 | |
|       // landingpad, accept it as valid control flow.
 | |
|       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
 | |
|           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
 | |
|            *MBB->succ_begin() != *LandingPadSuccs.begin()) &&
 | |
|           MBB->succ_size() != 1 + IndirectTargetSuccs.size() &&
 | |
|           (MBB->succ_size() != 1 || IndirectTargetSuccs.size() != 1 ||
 | |
|            *MBB->succ_begin() != *IndirectTargetSuccs.begin())) {
 | |
|         report("MBB exits via unconditional branch but doesn't have "
 | |
|                "exactly one CFG successor!", MBB);
 | |
|       } else if (!MBB->isSuccessor(TBB)) {
 | |
|         report("MBB exits via unconditional branch but the CFG "
 | |
|                "successor doesn't match the actual successor!", MBB);
 | |
|       }
 | |
|       if (MBB->empty()) {
 | |
|         report("MBB exits via unconditional branch but doesn't contain "
 | |
|                "any instructions!", MBB);
 | |
|       } else if (!MBB->back().isBarrier()) {
 | |
|         report("MBB exits via unconditional branch but doesn't end with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       } else if (!MBB->back().isTerminator()) {
 | |
|         report("MBB exits via unconditional branch but the branch isn't a "
 | |
|                "terminator instruction!", MBB);
 | |
|       }
 | |
|     } else if (TBB && !FBB && !Cond.empty()) {
 | |
|       // Block conditionally branches somewhere, otherwise falls through.
 | |
|       MachineFunction::const_iterator MBBI = MBB->getIterator();
 | |
|       ++MBBI;
 | |
|       if (MBBI == MF->end()) {
 | |
|         report("MBB conditionally falls through out of function!", MBB);
 | |
|       } else if (MBB->succ_size() == 1) {
 | |
|         // A conditional branch with only one successor is weird, but allowed.
 | |
|         if (&*MBBI != TBB)
 | |
|           report("MBB exits via conditional branch/fall-through but only has "
 | |
|                  "one CFG successor!", MBB);
 | |
|         else if (TBB != *MBB->succ_begin())
 | |
|           report("MBB exits via conditional branch/fall-through but the CFG "
 | |
|                  "successor don't match the actual successor!", MBB);
 | |
|       } else if (MBB->succ_size() != 2) {
 | |
|         report("MBB exits via conditional branch/fall-through but doesn't have "
 | |
|                "exactly two CFG successors!", MBB);
 | |
|       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
 | |
|         report("MBB exits via conditional branch/fall-through but the CFG "
 | |
|                "successors don't match the actual successors!", MBB);
 | |
|       }
 | |
|       if (MBB->empty()) {
 | |
|         report("MBB exits via conditional branch/fall-through but doesn't "
 | |
|                "contain any instructions!", MBB);
 | |
|       } else if (MBB->back().isBarrier()) {
 | |
|         report("MBB exits via conditional branch/fall-through but ends with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       } else if (!MBB->back().isTerminator()) {
 | |
|         report("MBB exits via conditional branch/fall-through but the branch "
 | |
|                "isn't a terminator instruction!", MBB);
 | |
|       }
 | |
|     } else if (TBB && FBB) {
 | |
|       // Block conditionally branches somewhere, otherwise branches
 | |
|       // somewhere else.
 | |
|       if (MBB->succ_size() == 1) {
 | |
|         // A conditional branch with only one successor is weird, but allowed.
 | |
|         if (FBB != TBB)
 | |
|           report("MBB exits via conditional branch/branch through but only has "
 | |
|                  "one CFG successor!", MBB);
 | |
|         else if (TBB != *MBB->succ_begin())
 | |
|           report("MBB exits via conditional branch/branch through but the CFG "
 | |
|                  "successor don't match the actual successor!", MBB);
 | |
|       } else if (MBB->succ_size() != 2) {
 | |
|         report("MBB exits via conditional branch/branch but doesn't have "
 | |
|                "exactly two CFG successors!", MBB);
 | |
|       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
 | |
|         report("MBB exits via conditional branch/branch but the CFG "
 | |
|                "successors don't match the actual successors!", MBB);
 | |
|       }
 | |
|       if (MBB->empty()) {
 | |
|         report("MBB exits via conditional branch/branch but doesn't "
 | |
|                "contain any instructions!", MBB);
 | |
|       } else if (!MBB->back().isBarrier()) {
 | |
|         report("MBB exits via conditional branch/branch but doesn't end with a "
 | |
|                "barrier instruction!", MBB);
 | |
|       } else if (!MBB->back().isTerminator()) {
 | |
|         report("MBB exits via conditional branch/branch but the branch "
 | |
|                "isn't a terminator instruction!", MBB);
 | |
|       }
 | |
|       if (Cond.empty()) {
 | |
|         report("MBB exits via conditional branch/branch but there's no "
 | |
|                "condition!", MBB);
 | |
|       }
 | |
|     } else {
 | |
|       report("analyzeBranch returned invalid data!", MBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   regsLive.clear();
 | |
|   if (MRI->tracksLiveness()) {
 | |
|     for (const auto &LI : MBB->liveins()) {
 | |
|       if (!Register::isPhysicalRegister(LI.PhysReg)) {
 | |
|         report("MBB live-in list contains non-physical register", MBB);
 | |
|         continue;
 | |
|       }
 | |
|       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
 | |
|         regsLive.insert(SubReg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const MachineFrameInfo &MFI = MF->getFrameInfo();
 | |
|   BitVector PR = MFI.getPristineRegs(*MF);
 | |
|   for (unsigned I : PR.set_bits()) {
 | |
|     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
 | |
|       regsLive.insert(SubReg);
 | |
|   }
 | |
| 
 | |
|   regsKilled.clear();
 | |
|   regsDefined.clear();
 | |
| 
 | |
|   if (Indexes)
 | |
|     lastIndex = Indexes->getMBBStartIdx(MBB);
 | |
| }
 | |
| 
 | |
| // This function gets called for all bundle headers, including normal
 | |
| // stand-alone unbundled instructions.
 | |
| void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
 | |
|   if (Indexes && Indexes->hasIndex(*MI)) {
 | |
|     SlotIndex idx = Indexes->getInstructionIndex(*MI);
 | |
|     if (!(idx > lastIndex)) {
 | |
|       report("Instruction index out of order", MI);
 | |
|       errs() << "Last instruction was at " << lastIndex << '\n';
 | |
|     }
 | |
|     lastIndex = idx;
 | |
|   }
 | |
| 
 | |
|   // Ensure non-terminators don't follow terminators.
 | |
|   // Ignore predicated terminators formed by if conversion.
 | |
|   // FIXME: If conversion shouldn't need to violate this rule.
 | |
|   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
 | |
|     if (!FirstTerminator)
 | |
|       FirstTerminator = MI;
 | |
|   } else if (FirstTerminator) {
 | |
|     report("Non-terminator instruction after the first terminator", MI);
 | |
|     errs() << "First terminator was:\t" << *FirstTerminator;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The operands on an INLINEASM instruction must follow a template.
 | |
| // Verify that the flag operands make sense.
 | |
| void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
 | |
|   // The first two operands on INLINEASM are the asm string and global flags.
 | |
|   if (MI->getNumOperands() < 2) {
 | |
|     report("Too few operands on inline asm", MI);
 | |
|     return;
 | |
|   }
 | |
|   if (!MI->getOperand(0).isSymbol())
 | |
|     report("Asm string must be an external symbol", MI);
 | |
|   if (!MI->getOperand(1).isImm())
 | |
|     report("Asm flags must be an immediate", MI);
 | |
|   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
 | |
|   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
 | |
|   // and Extra_IsConvergent = 32.
 | |
|   if (!isUInt<6>(MI->getOperand(1).getImm()))
 | |
|     report("Unknown asm flags", &MI->getOperand(1), 1);
 | |
| 
 | |
|   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
 | |
| 
 | |
|   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
 | |
|   unsigned NumOps;
 | |
|   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
 | |
|     const MachineOperand &MO = MI->getOperand(OpNo);
 | |
|     // There may be implicit ops after the fixed operands.
 | |
|     if (!MO.isImm())
 | |
|       break;
 | |
|     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
 | |
|   }
 | |
| 
 | |
|   if (OpNo > MI->getNumOperands())
 | |
|     report("Missing operands in last group", MI);
 | |
| 
 | |
|   // An optional MDNode follows the groups.
 | |
|   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
 | |
|     ++OpNo;
 | |
| 
 | |
|   // All trailing operands must be implicit registers.
 | |
|   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
 | |
|     const MachineOperand &MO = MI->getOperand(OpNo);
 | |
|     if (!MO.isReg() || !MO.isImplicit())
 | |
|       report("Expected implicit register after groups", &MO, OpNo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check that types are consistent when two operands need to have the same
 | |
| /// number of vector elements.
 | |
| /// \return true if the types are valid.
 | |
| bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
 | |
|                                                const MachineInstr *MI) {
 | |
|   if (Ty0.isVector() != Ty1.isVector()) {
 | |
|     report("operand types must be all-vector or all-scalar", MI);
 | |
|     // Generally we try to report as many issues as possible at once, but in
 | |
|     // this case it's not clear what should we be comparing the size of the
 | |
|     // scalar with: the size of the whole vector or its lane. Instead of
 | |
|     // making an arbitrary choice and emitting not so helpful message, let's
 | |
|     // avoid the extra noise and stop here.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
 | |
|     report("operand types must preserve number of vector elements", MI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
 | |
|   if (isFunctionSelected)
 | |
|     report("Unexpected generic instruction in a Selected function", MI);
 | |
| 
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   unsigned NumOps = MI->getNumOperands();
 | |
| 
 | |
|   // Check types.
 | |
|   SmallVector<LLT, 4> Types;
 | |
|   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
 | |
|        I != E; ++I) {
 | |
|     if (!MCID.OpInfo[I].isGenericType())
 | |
|       continue;
 | |
|     // Generic instructions specify type equality constraints between some of
 | |
|     // their operands. Make sure these are consistent.
 | |
|     size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
 | |
|     Types.resize(std::max(TypeIdx + 1, Types.size()));
 | |
| 
 | |
|     const MachineOperand *MO = &MI->getOperand(I);
 | |
|     if (!MO->isReg()) {
 | |
|       report("generic instruction must use register operands", MI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LLT OpTy = MRI->getType(MO->getReg());
 | |
|     // Don't report a type mismatch if there is no actual mismatch, only a
 | |
|     // type missing, to reduce noise:
 | |
|     if (OpTy.isValid()) {
 | |
|       // Only the first valid type for a type index will be printed: don't
 | |
|       // overwrite it later so it's always clear which type was expected:
 | |
|       if (!Types[TypeIdx].isValid())
 | |
|         Types[TypeIdx] = OpTy;
 | |
|       else if (Types[TypeIdx] != OpTy)
 | |
|         report("Type mismatch in generic instruction", MO, I, OpTy);
 | |
|     } else {
 | |
|       // Generic instructions must have types attached to their operands.
 | |
|       report("Generic instruction is missing a virtual register type", MO, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Generic opcodes must not have physical register operands.
 | |
|   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
 | |
|     const MachineOperand *MO = &MI->getOperand(I);
 | |
|     if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
 | |
|       report("Generic instruction cannot have physical register", MO, I);
 | |
|   }
 | |
| 
 | |
|   // Avoid out of bounds in checks below. This was already reported earlier.
 | |
|   if (MI->getNumOperands() < MCID.getNumOperands())
 | |
|     return;
 | |
| 
 | |
|   StringRef ErrorInfo;
 | |
|   if (!TII->verifyInstruction(*MI, ErrorInfo))
 | |
|     report(ErrorInfo.data(), MI);
 | |
| 
 | |
|   // Verify properties of various specific instruction types
 | |
|   switch (MI->getOpcode()) {
 | |
|   case TargetOpcode::G_CONSTANT:
 | |
|   case TargetOpcode::G_FCONSTANT: {
 | |
|     if (MI->getNumOperands() < MCID.getNumOperands())
 | |
|       break;
 | |
| 
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     if (DstTy.isVector())
 | |
|       report("Instruction cannot use a vector result type", MI);
 | |
| 
 | |
|     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
 | |
|       if (!MI->getOperand(1).isCImm()) {
 | |
|         report("G_CONSTANT operand must be cimm", MI);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       const ConstantInt *CI = MI->getOperand(1).getCImm();
 | |
|       if (CI->getBitWidth() != DstTy.getSizeInBits())
 | |
|         report("inconsistent constant size", MI);
 | |
|     } else {
 | |
|       if (!MI->getOperand(1).isFPImm()) {
 | |
|         report("G_FCONSTANT operand must be fpimm", MI);
 | |
|         break;
 | |
|       }
 | |
|       const ConstantFP *CF = MI->getOperand(1).getFPImm();
 | |
| 
 | |
|       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
 | |
|           DstTy.getSizeInBits()) {
 | |
|         report("inconsistent constant size", MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_LOAD:
 | |
|   case TargetOpcode::G_STORE:
 | |
|   case TargetOpcode::G_ZEXTLOAD:
 | |
|   case TargetOpcode::G_SEXTLOAD: {
 | |
|     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!PtrTy.isPointer())
 | |
|       report("Generic memory instruction must access a pointer", MI);
 | |
| 
 | |
|     // Generic loads and stores must have a single MachineMemOperand
 | |
|     // describing that access.
 | |
|     if (!MI->hasOneMemOperand()) {
 | |
|       report("Generic instruction accessing memory must have one mem operand",
 | |
|              MI);
 | |
|     } else {
 | |
|       const MachineMemOperand &MMO = **MI->memoperands_begin();
 | |
|       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
 | |
|           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
 | |
|         if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
 | |
|           report("Generic extload must have a narrower memory type", MI);
 | |
|       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
 | |
|         if (MMO.getSize() > ValTy.getSizeInBytes())
 | |
|           report("load memory size cannot exceed result size", MI);
 | |
|       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
 | |
|         if (ValTy.getSizeInBytes() < MMO.getSize())
 | |
|           report("store memory size cannot exceed value size", MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_PHI: {
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     if (!DstTy.isValid() ||
 | |
|         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
 | |
|                      [this, &DstTy](const MachineOperand &MO) {
 | |
|                        if (!MO.isReg())
 | |
|                          return true;
 | |
|                        LLT Ty = MRI->getType(MO.getReg());
 | |
|                        if (!Ty.isValid() || (Ty != DstTy))
 | |
|                          return false;
 | |
|                        return true;
 | |
|                      }))
 | |
|       report("Generic Instruction G_PHI has operands with incompatible/missing "
 | |
|              "types",
 | |
|              MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_BITCAST: {
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!DstTy.isValid() || !SrcTy.isValid())
 | |
|       break;
 | |
| 
 | |
|     if (SrcTy.isPointer() != DstTy.isPointer())
 | |
|       report("bitcast cannot convert between pointers and other types", MI);
 | |
| 
 | |
|     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
 | |
|       report("bitcast sizes must match", MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_INTTOPTR:
 | |
|   case TargetOpcode::G_PTRTOINT:
 | |
|   case TargetOpcode::G_ADDRSPACE_CAST: {
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!DstTy.isValid() || !SrcTy.isValid())
 | |
|       break;
 | |
| 
 | |
|     verifyVectorElementMatch(DstTy, SrcTy, MI);
 | |
| 
 | |
|     DstTy = DstTy.getScalarType();
 | |
|     SrcTy = SrcTy.getScalarType();
 | |
| 
 | |
|     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
 | |
|       if (!DstTy.isPointer())
 | |
|         report("inttoptr result type must be a pointer", MI);
 | |
|       if (SrcTy.isPointer())
 | |
|         report("inttoptr source type must not be a pointer", MI);
 | |
|     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
 | |
|       if (!SrcTy.isPointer())
 | |
|         report("ptrtoint source type must be a pointer", MI);
 | |
|       if (DstTy.isPointer())
 | |
|         report("ptrtoint result type must not be a pointer", MI);
 | |
|     } else {
 | |
|       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
 | |
|       if (!SrcTy.isPointer() || !DstTy.isPointer())
 | |
|         report("addrspacecast types must be pointers", MI);
 | |
|       else {
 | |
|         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
 | |
|           report("addrspacecast must convert different address spaces", MI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_PTR_ADD: {
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
 | |
|     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
 | |
|       break;
 | |
| 
 | |
|     if (!PtrTy.getScalarType().isPointer())
 | |
|       report("gep first operand must be a pointer", MI);
 | |
| 
 | |
|     if (OffsetTy.getScalarType().isPointer())
 | |
|       report("gep offset operand must not be a pointer", MI);
 | |
| 
 | |
|     // TODO: Is the offset allowed to be a scalar with a vector?
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_SEXT:
 | |
|   case TargetOpcode::G_ZEXT:
 | |
|   case TargetOpcode::G_ANYEXT:
 | |
|   case TargetOpcode::G_TRUNC:
 | |
|   case TargetOpcode::G_FPEXT:
 | |
|   case TargetOpcode::G_FPTRUNC: {
 | |
|     // Number of operands and presense of types is already checked (and
 | |
|     // reported in case of any issues), so no need to report them again. As
 | |
|     // we're trying to report as many issues as possible at once, however, the
 | |
|     // instructions aren't guaranteed to have the right number of operands or
 | |
|     // types attached to them at this point
 | |
|     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!DstTy.isValid() || !SrcTy.isValid())
 | |
|       break;
 | |
| 
 | |
|     LLT DstElTy = DstTy.getScalarType();
 | |
|     LLT SrcElTy = SrcTy.getScalarType();
 | |
|     if (DstElTy.isPointer() || SrcElTy.isPointer())
 | |
|       report("Generic extend/truncate can not operate on pointers", MI);
 | |
| 
 | |
|     verifyVectorElementMatch(DstTy, SrcTy, MI);
 | |
| 
 | |
|     unsigned DstSize = DstElTy.getSizeInBits();
 | |
|     unsigned SrcSize = SrcElTy.getSizeInBits();
 | |
|     switch (MI->getOpcode()) {
 | |
|     default:
 | |
|       if (DstSize <= SrcSize)
 | |
|         report("Generic extend has destination type no larger than source", MI);
 | |
|       break;
 | |
|     case TargetOpcode::G_TRUNC:
 | |
|     case TargetOpcode::G_FPTRUNC:
 | |
|       if (DstSize >= SrcSize)
 | |
|         report("Generic truncate has destination type no smaller than source",
 | |
|                MI);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_SELECT: {
 | |
|     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!SelTy.isValid() || !CondTy.isValid())
 | |
|       break;
 | |
| 
 | |
|     // Scalar condition select on a vector is valid.
 | |
|     if (CondTy.isVector())
 | |
|       verifyVectorElementMatch(SelTy, CondTy, MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_MERGE_VALUES: {
 | |
|     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
 | |
|     // e.g. s2N = MERGE sN, sN
 | |
|     // Merging multiple scalars into a vector is not allowed, should use
 | |
|     // G_BUILD_VECTOR for that.
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (DstTy.isVector() || SrcTy.isVector())
 | |
|       report("G_MERGE_VALUES cannot operate on vectors", MI);
 | |
| 
 | |
|     const unsigned NumOps = MI->getNumOperands();
 | |
|     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
 | |
|       report("G_MERGE_VALUES result size is inconsistent", MI);
 | |
| 
 | |
|     for (unsigned I = 2; I != NumOps; ++I) {
 | |
|       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
 | |
|         report("G_MERGE_VALUES source types do not match", MI);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_UNMERGE_VALUES: {
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
 | |
|     // For now G_UNMERGE can split vectors.
 | |
|     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
 | |
|       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
 | |
|         report("G_UNMERGE_VALUES destination types do not match", MI);
 | |
|     }
 | |
|     if (SrcTy.getSizeInBits() !=
 | |
|         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
 | |
|       report("G_UNMERGE_VALUES source operand does not cover dest operands",
 | |
|              MI);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_BUILD_VECTOR: {
 | |
|     // Source types must be scalars, dest type a vector. Total size of scalars
 | |
|     // must match the dest vector size.
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!DstTy.isVector() || SrcEltTy.isVector()) {
 | |
|       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (DstTy.getElementType() != SrcEltTy)
 | |
|       report("G_BUILD_VECTOR result element type must match source type", MI);
 | |
| 
 | |
|     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
 | |
|       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
 | |
| 
 | |
|     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
 | |
|       if (MRI->getType(MI->getOperand(1).getReg()) !=
 | |
|           MRI->getType(MI->getOperand(i).getReg()))
 | |
|         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
 | |
|     // Source types must be scalars, dest type a vector. Scalar types must be
 | |
|     // larger than the dest vector elt type, as this is a truncating operation.
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!DstTy.isVector() || SrcEltTy.isVector())
 | |
|       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
 | |
|              MI);
 | |
|     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
 | |
|       if (MRI->getType(MI->getOperand(1).getReg()) !=
 | |
|           MRI->getType(MI->getOperand(i).getReg()))
 | |
|         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
 | |
|                MI);
 | |
|     }
 | |
|     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
 | |
|       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
 | |
|              "dest elt type",
 | |
|              MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_CONCAT_VECTORS: {
 | |
|     // Source types should be vectors, and total size should match the dest
 | |
|     // vector size.
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     if (!DstTy.isVector() || !SrcTy.isVector())
 | |
|       report("G_CONCAT_VECTOR requires vector source and destination operands",
 | |
|              MI);
 | |
|     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
 | |
|       if (MRI->getType(MI->getOperand(1).getReg()) !=
 | |
|           MRI->getType(MI->getOperand(i).getReg()))
 | |
|         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
 | |
|     }
 | |
|     if (DstTy.getNumElements() !=
 | |
|         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
 | |
|       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_ICMP:
 | |
|   case TargetOpcode::G_FCMP: {
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
 | |
| 
 | |
|     if ((DstTy.isVector() != SrcTy.isVector()) ||
 | |
|         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
 | |
|       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_EXTRACT: {
 | |
|     const MachineOperand &SrcOp = MI->getOperand(1);
 | |
|     if (!SrcOp.isReg()) {
 | |
|       report("extract source must be a register", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     const MachineOperand &OffsetOp = MI->getOperand(2);
 | |
|     if (!OffsetOp.isImm()) {
 | |
|       report("extract offset must be a constant", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
 | |
|     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
 | |
|     if (SrcSize == DstSize)
 | |
|       report("extract source must be larger than result", MI);
 | |
| 
 | |
|     if (DstSize + OffsetOp.getImm() > SrcSize)
 | |
|       report("extract reads past end of register", MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_INSERT: {
 | |
|     const MachineOperand &SrcOp = MI->getOperand(2);
 | |
|     if (!SrcOp.isReg()) {
 | |
|       report("insert source must be a register", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     const MachineOperand &OffsetOp = MI->getOperand(3);
 | |
|     if (!OffsetOp.isImm()) {
 | |
|       report("insert offset must be a constant", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
 | |
|     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
 | |
| 
 | |
|     if (DstSize <= SrcSize)
 | |
|       report("inserted size must be smaller than total register", MI);
 | |
| 
 | |
|     if (SrcSize + OffsetOp.getImm() > DstSize)
 | |
|       report("insert writes past end of register", MI);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_JUMP_TABLE: {
 | |
|     if (!MI->getOperand(1).isJTI())
 | |
|       report("G_JUMP_TABLE source operand must be a jump table index", MI);
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     if (!DstTy.isPointer())
 | |
|       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_BRJT: {
 | |
|     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
 | |
|       report("G_BRJT src operand 0 must be a pointer type", MI);
 | |
| 
 | |
|     if (!MI->getOperand(1).isJTI())
 | |
|       report("G_BRJT src operand 1 must be a jump table index", MI);
 | |
| 
 | |
|     const auto &IdxOp = MI->getOperand(2);
 | |
|     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
 | |
|       report("G_BRJT src operand 2 must be a scalar reg type", MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_INTRINSIC:
 | |
|   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
 | |
|     // TODO: Should verify number of def and use operands, but the current
 | |
|     // interface requires passing in IR types for mangling.
 | |
|     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
 | |
|     if (!IntrIDOp.isIntrinsicID()) {
 | |
|       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
 | |
|     unsigned IntrID = IntrIDOp.getIntrinsicID();
 | |
|     if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
 | |
|       AttributeList Attrs
 | |
|         = Intrinsic::getAttributes(MF->getFunction().getContext(),
 | |
|                                    static_cast<Intrinsic::ID>(IntrID));
 | |
|       bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
 | |
|       if (NoSideEffects && DeclHasSideEffects) {
 | |
|         report("G_INTRINSIC used with intrinsic that accesses memory", MI);
 | |
|         break;
 | |
|       }
 | |
|       if (!NoSideEffects && !DeclHasSideEffects) {
 | |
|         report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     switch (IntrID) {
 | |
|     case Intrinsic::memcpy:
 | |
|       if (MI->getNumOperands() != 5)
 | |
|         report("Expected memcpy intrinsic to have 5 operands", MI);
 | |
|       break;
 | |
|     case Intrinsic::memmove:
 | |
|       if (MI->getNumOperands() != 5)
 | |
|         report("Expected memmove intrinsic to have 5 operands", MI);
 | |
|       break;
 | |
|     case Intrinsic::memset:
 | |
|       if (MI->getNumOperands() != 5)
 | |
|         report("Expected memset intrinsic to have 5 operands", MI);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_SEXT_INREG: {
 | |
|     if (!MI->getOperand(2).isImm()) {
 | |
|       report("G_SEXT_INREG expects an immediate operand #2", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
 | |
|     verifyVectorElementMatch(DstTy, SrcTy, MI);
 | |
| 
 | |
|     int64_t Imm = MI->getOperand(2).getImm();
 | |
|     if (Imm <= 0)
 | |
|       report("G_SEXT_INREG size must be >= 1", MI);
 | |
|     if (Imm >= SrcTy.getScalarSizeInBits())
 | |
|       report("G_SEXT_INREG size must be less than source bit width", MI);
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_SHUFFLE_VECTOR: {
 | |
|     const MachineOperand &MaskOp = MI->getOperand(3);
 | |
|     if (!MaskOp.isShuffleMask()) {
 | |
|       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
 | |
|     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
 | |
|     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
 | |
| 
 | |
|     if (Src0Ty != Src1Ty)
 | |
|       report("Source operands must be the same type", MI);
 | |
| 
 | |
|     if (Src0Ty.getScalarType() != DstTy.getScalarType())
 | |
|       report("G_SHUFFLE_VECTOR cannot change element type", MI);
 | |
| 
 | |
|     // Don't check that all operands are vector because scalars are used in
 | |
|     // place of 1 element vectors.
 | |
|     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
 | |
|     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
 | |
| 
 | |
|     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
 | |
| 
 | |
|     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
 | |
|       report("Wrong result type for shufflemask", MI);
 | |
| 
 | |
|     for (int Idx : MaskIdxes) {
 | |
|       if (Idx < 0)
 | |
|         continue;
 | |
| 
 | |
|       if (Idx >= 2 * SrcNumElts)
 | |
|         report("Out of bounds shuffle index", MI);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::G_DYN_STACKALLOC: {
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &AllocOp = MI->getOperand(1);
 | |
|     const MachineOperand &AlignOp = MI->getOperand(2);
 | |
| 
 | |
|     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
 | |
|       report("dst operand 0 must be a pointer type", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
 | |
|       report("src operand 1 must be a scalar reg type", MI);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!AlignOp.isImm()) {
 | |
|       report("src operand 2 must be an immediate type", MI);
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   if (MI->getNumOperands() < MCID.getNumOperands()) {
 | |
|     report("Too few operands", MI);
 | |
|     errs() << MCID.getNumOperands() << " operands expected, but "
 | |
|            << MI->getNumOperands() << " given.\n";
 | |
|   }
 | |
| 
 | |
|   if (MI->isPHI()) {
 | |
|     if (MF->getProperties().hasProperty(
 | |
|             MachineFunctionProperties::Property::NoPHIs))
 | |
|       report("Found PHI instruction with NoPHIs property set", MI);
 | |
| 
 | |
|     if (FirstNonPHI)
 | |
|       report("Found PHI instruction after non-PHI", MI);
 | |
|   } else if (FirstNonPHI == nullptr)
 | |
|     FirstNonPHI = MI;
 | |
| 
 | |
|   // Check the tied operands.
 | |
|   if (MI->isInlineAsm())
 | |
|     verifyInlineAsm(MI);
 | |
| 
 | |
|   // Check the MachineMemOperands for basic consistency.
 | |
|   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
 | |
|                                   E = MI->memoperands_end();
 | |
|        I != E; ++I) {
 | |
|     if ((*I)->isLoad() && !MI->mayLoad())
 | |
|       report("Missing mayLoad flag", MI);
 | |
|     if ((*I)->isStore() && !MI->mayStore())
 | |
|       report("Missing mayStore flag", MI);
 | |
|   }
 | |
| 
 | |
|   // Debug values must not have a slot index.
 | |
|   // Other instructions must have one, unless they are inside a bundle.
 | |
|   if (LiveInts) {
 | |
|     bool mapped = !LiveInts->isNotInMIMap(*MI);
 | |
|     if (MI->isDebugInstr()) {
 | |
|       if (mapped)
 | |
|         report("Debug instruction has a slot index", MI);
 | |
|     } else if (MI->isInsideBundle()) {
 | |
|       if (mapped)
 | |
|         report("Instruction inside bundle has a slot index", MI);
 | |
|     } else {
 | |
|       if (!mapped)
 | |
|         report("Missing slot index", MI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isPreISelGenericOpcode(MCID.getOpcode())) {
 | |
|     verifyPreISelGenericInstruction(MI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   StringRef ErrorInfo;
 | |
|   if (!TII->verifyInstruction(*MI, ErrorInfo))
 | |
|     report(ErrorInfo.data(), MI);
 | |
| 
 | |
|   // Verify properties of various specific instruction types
 | |
|   switch (MI->getOpcode()) {
 | |
|   case TargetOpcode::COPY: {
 | |
|     if (foundErrors)
 | |
|       break;
 | |
|     const MachineOperand &DstOp = MI->getOperand(0);
 | |
|     const MachineOperand &SrcOp = MI->getOperand(1);
 | |
|     LLT DstTy = MRI->getType(DstOp.getReg());
 | |
|     LLT SrcTy = MRI->getType(SrcOp.getReg());
 | |
|     if (SrcTy.isValid() && DstTy.isValid()) {
 | |
|       // If both types are valid, check that the types are the same.
 | |
|       if (SrcTy != DstTy) {
 | |
|         report("Copy Instruction is illegal with mismatching types", MI);
 | |
|         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
 | |
|       }
 | |
|     }
 | |
|     if (SrcTy.isValid() || DstTy.isValid()) {
 | |
|       // If one of them have valid types, let's just check they have the same
 | |
|       // size.
 | |
|       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
 | |
|       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
 | |
|       assert(SrcSize && "Expecting size here");
 | |
|       assert(DstSize && "Expecting size here");
 | |
|       if (SrcSize != DstSize)
 | |
|         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
 | |
|           report("Copy Instruction is illegal with mismatching sizes", MI);
 | |
|           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
 | |
|                  << "\n";
 | |
|         }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case TargetOpcode::STATEPOINT:
 | |
|     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
 | |
|         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
 | |
|         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
 | |
|       report("meta operands to STATEPOINT not constant!", MI);
 | |
|     break;
 | |
| 
 | |
|     auto VerifyStackMapConstant = [&](unsigned Offset) {
 | |
|       if (!MI->getOperand(Offset).isImm() ||
 | |
|           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
 | |
|           !MI->getOperand(Offset + 1).isImm())
 | |
|         report("stack map constant to STATEPOINT not well formed!", MI);
 | |
|     };
 | |
|     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
 | |
|     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
 | |
|     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
 | |
|     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
 | |
| 
 | |
|     // TODO: verify we have properly encoded deopt arguments
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
 | |
|   const MachineInstr *MI = MO->getParent();
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   unsigned NumDefs = MCID.getNumDefs();
 | |
|   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
 | |
|     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
 | |
| 
 | |
|   // The first MCID.NumDefs operands must be explicit register defines
 | |
|   if (MONum < NumDefs) {
 | |
|     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
 | |
|     if (!MO->isReg())
 | |
|       report("Explicit definition must be a register", MO, MONum);
 | |
|     else if (!MO->isDef() && !MCOI.isOptionalDef())
 | |
|       report("Explicit definition marked as use", MO, MONum);
 | |
|     else if (MO->isImplicit())
 | |
|       report("Explicit definition marked as implicit", MO, MONum);
 | |
|   } else if (MONum < MCID.getNumOperands()) {
 | |
|     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
 | |
|     // Don't check if it's the last operand in a variadic instruction. See,
 | |
|     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
 | |
|     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
 | |
|     if (!IsOptional) {
 | |
|       if (MO->isReg()) {
 | |
|         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
 | |
|           report("Explicit operand marked as def", MO, MONum);
 | |
|         if (MO->isImplicit())
 | |
|           report("Explicit operand marked as implicit", MO, MONum);
 | |
|       }
 | |
| 
 | |
|       // Check that an instruction has register operands only as expected.
 | |
|       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
 | |
|           !MO->isReg() && !MO->isFI())
 | |
|         report("Expected a register operand.", MO, MONum);
 | |
|       if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
 | |
|            MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
 | |
|         report("Expected a non-register operand.", MO, MONum);
 | |
|     }
 | |
| 
 | |
|     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
 | |
|     if (TiedTo != -1) {
 | |
|       if (!MO->isReg())
 | |
|         report("Tied use must be a register", MO, MONum);
 | |
|       else if (!MO->isTied())
 | |
|         report("Operand should be tied", MO, MONum);
 | |
|       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
 | |
|         report("Tied def doesn't match MCInstrDesc", MO, MONum);
 | |
|       else if (Register::isPhysicalRegister(MO->getReg())) {
 | |
|         const MachineOperand &MOTied = MI->getOperand(TiedTo);
 | |
|         if (!MOTied.isReg())
 | |
|           report("Tied counterpart must be a register", &MOTied, TiedTo);
 | |
|         else if (Register::isPhysicalRegister(MOTied.getReg()) &&
 | |
|                  MO->getReg() != MOTied.getReg())
 | |
|           report("Tied physical registers must match.", &MOTied, TiedTo);
 | |
|       }
 | |
|     } else if (MO->isReg() && MO->isTied())
 | |
|       report("Explicit operand should not be tied", MO, MONum);
 | |
|   } else {
 | |
|     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
 | |
|     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
 | |
|       report("Extra explicit operand on non-variadic instruction", MO, MONum);
 | |
|   }
 | |
| 
 | |
|   switch (MO->getType()) {
 | |
|   case MachineOperand::MO_Register: {
 | |
|     const Register Reg = MO->getReg();
 | |
|     if (!Reg)
 | |
|       return;
 | |
|     if (MRI->tracksLiveness() && !MI->isDebugValue())
 | |
|       checkLiveness(MO, MONum);
 | |
| 
 | |
|     // Verify the consistency of tied operands.
 | |
|     if (MO->isTied()) {
 | |
|       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
 | |
|       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
 | |
|       if (!OtherMO.isReg())
 | |
|         report("Must be tied to a register", MO, MONum);
 | |
|       if (!OtherMO.isTied())
 | |
|         report("Missing tie flags on tied operand", MO, MONum);
 | |
|       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
 | |
|         report("Inconsistent tie links", MO, MONum);
 | |
|       if (MONum < MCID.getNumDefs()) {
 | |
|         if (OtherIdx < MCID.getNumOperands()) {
 | |
|           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
 | |
|             report("Explicit def tied to explicit use without tie constraint",
 | |
|                    MO, MONum);
 | |
|         } else {
 | |
|           if (!OtherMO.isImplicit())
 | |
|             report("Explicit def should be tied to implicit use", MO, MONum);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Verify two-address constraints after leaving SSA form.
 | |
|     unsigned DefIdx;
 | |
|     if (!MRI->isSSA() && MO->isUse() &&
 | |
|         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
 | |
|         Reg != MI->getOperand(DefIdx).getReg())
 | |
|       report("Two-address instruction operands must be identical", MO, MONum);
 | |
| 
 | |
|     // Check register classes.
 | |
|     unsigned SubIdx = MO->getSubReg();
 | |
| 
 | |
|     if (Register::isPhysicalRegister(Reg)) {
 | |
|       if (SubIdx) {
 | |
|         report("Illegal subregister index for physical register", MO, MONum);
 | |
|         return;
 | |
|       }
 | |
|       if (MONum < MCID.getNumOperands()) {
 | |
|         if (const TargetRegisterClass *DRC =
 | |
|               TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | |
|           if (!DRC->contains(Reg)) {
 | |
|             report("Illegal physical register for instruction", MO, MONum);
 | |
|             errs() << printReg(Reg, TRI) << " is not a "
 | |
|                    << TRI->getRegClassName(DRC) << " register.\n";
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (MO->isRenamable()) {
 | |
|         if (MRI->isReserved(Reg)) {
 | |
|           report("isRenamable set on reserved register", MO, MONum);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
 | |
|         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
 | |
|         return;
 | |
|       }
 | |
|     } else {
 | |
|       // Virtual register.
 | |
|       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
 | |
|       if (!RC) {
 | |
|         // This is a generic virtual register.
 | |
| 
 | |
|         // If we're post-Select, we can't have gvregs anymore.
 | |
|         if (isFunctionSelected) {
 | |
|           report("Generic virtual register invalid in a Selected function",
 | |
|                  MO, MONum);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // The gvreg must have a type and it must not have a SubIdx.
 | |
|         LLT Ty = MRI->getType(Reg);
 | |
|         if (!Ty.isValid()) {
 | |
|           report("Generic virtual register must have a valid type", MO,
 | |
|                  MONum);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
 | |
| 
 | |
|         // If we're post-RegBankSelect, the gvreg must have a bank.
 | |
|         if (!RegBank && isFunctionRegBankSelected) {
 | |
|           report("Generic virtual register must have a bank in a "
 | |
|                  "RegBankSelected function",
 | |
|                  MO, MONum);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // Make sure the register fits into its register bank if any.
 | |
|         if (RegBank && Ty.isValid() &&
 | |
|             RegBank->getSize() < Ty.getSizeInBits()) {
 | |
|           report("Register bank is too small for virtual register", MO,
 | |
|                  MONum);
 | |
|           errs() << "Register bank " << RegBank->getName() << " too small("
 | |
|                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
 | |
|                  << "-bits\n";
 | |
|           return;
 | |
|         }
 | |
|         if (SubIdx)  {
 | |
|           report("Generic virtual register does not allow subregister index", MO,
 | |
|                  MONum);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // If this is a target specific instruction and this operand
 | |
|         // has register class constraint, the virtual register must
 | |
|         // comply to it.
 | |
|         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
 | |
|             MONum < MCID.getNumOperands() &&
 | |
|             TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | |
|           report("Virtual register does not match instruction constraint", MO,
 | |
|                  MONum);
 | |
|           errs() << "Expect register class "
 | |
|                  << TRI->getRegClassName(
 | |
|                         TII->getRegClass(MCID, MONum, TRI, *MF))
 | |
|                  << " but got nothing\n";
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       }
 | |
|       if (SubIdx) {
 | |
|         const TargetRegisterClass *SRC =
 | |
|           TRI->getSubClassWithSubReg(RC, SubIdx);
 | |
|         if (!SRC) {
 | |
|           report("Invalid subregister index for virtual register", MO, MONum);
 | |
|           errs() << "Register class " << TRI->getRegClassName(RC)
 | |
|               << " does not support subreg index " << SubIdx << "\n";
 | |
|           return;
 | |
|         }
 | |
|         if (RC != SRC) {
 | |
|           report("Invalid register class for subregister index", MO, MONum);
 | |
|           errs() << "Register class " << TRI->getRegClassName(RC)
 | |
|               << " does not fully support subreg index " << SubIdx << "\n";
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       if (MONum < MCID.getNumOperands()) {
 | |
|         if (const TargetRegisterClass *DRC =
 | |
|               TII->getRegClass(MCID, MONum, TRI, *MF)) {
 | |
|           if (SubIdx) {
 | |
|             const TargetRegisterClass *SuperRC =
 | |
|                 TRI->getLargestLegalSuperClass(RC, *MF);
 | |
|             if (!SuperRC) {
 | |
|               report("No largest legal super class exists.", MO, MONum);
 | |
|               return;
 | |
|             }
 | |
|             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
 | |
|             if (!DRC) {
 | |
|               report("No matching super-reg register class.", MO, MONum);
 | |
|               return;
 | |
|             }
 | |
|           }
 | |
|           if (!RC->hasSuperClassEq(DRC)) {
 | |
|             report("Illegal virtual register for instruction", MO, MONum);
 | |
|             errs() << "Expected a " << TRI->getRegClassName(DRC)
 | |
|                 << " register, but got a " << TRI->getRegClassName(RC)
 | |
|                 << " register\n";
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MachineOperand::MO_RegisterMask:
 | |
|     regMasks.push_back(MO->getRegMask());
 | |
|     break;
 | |
| 
 | |
|   case MachineOperand::MO_MachineBasicBlock:
 | |
|     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
 | |
|       report("PHI operand is not in the CFG", MO, MONum);
 | |
|     break;
 | |
| 
 | |
|   case MachineOperand::MO_FrameIndex:
 | |
|     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
 | |
|         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
 | |
|       int FI = MO->getIndex();
 | |
|       LiveInterval &LI = LiveStks->getInterval(FI);
 | |
|       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
 | |
| 
 | |
|       bool stores = MI->mayStore();
 | |
|       bool loads = MI->mayLoad();
 | |
|       // For a memory-to-memory move, we need to check if the frame
 | |
|       // index is used for storing or loading, by inspecting the
 | |
|       // memory operands.
 | |
|       if (stores && loads) {
 | |
|         for (auto *MMO : MI->memoperands()) {
 | |
|           const PseudoSourceValue *PSV = MMO->getPseudoValue();
 | |
|           if (PSV == nullptr) continue;
 | |
|           const FixedStackPseudoSourceValue *Value =
 | |
|             dyn_cast<FixedStackPseudoSourceValue>(PSV);
 | |
|           if (Value == nullptr) continue;
 | |
|           if (Value->getFrameIndex() != FI) continue;
 | |
| 
 | |
|           if (MMO->isStore())
 | |
|             loads = false;
 | |
|           else
 | |
|             stores = false;
 | |
|           break;
 | |
|         }
 | |
|         if (loads == stores)
 | |
|           report("Missing fixed stack memoperand.", MI);
 | |
|       }
 | |
|       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
 | |
|         report("Instruction loads from dead spill slot", MO, MONum);
 | |
|         errs() << "Live stack: " << LI << '\n';
 | |
|       }
 | |
|       if (stores && !LI.liveAt(Idx.getRegSlot())) {
 | |
|         report("Instruction stores to dead spill slot", MO, MONum);
 | |
|         errs() << "Live stack: " << LI << '\n';
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
 | |
|     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | |
|     LaneBitmask LaneMask) {
 | |
|   LiveQueryResult LRQ = LR.Query(UseIdx);
 | |
|   // Check if we have a segment at the use, note however that we only need one
 | |
|   // live subregister range, the others may be dead.
 | |
|   if (!LRQ.valueIn() && LaneMask.none()) {
 | |
|     report("No live segment at use", MO, MONum);
 | |
|     report_context_liverange(LR);
 | |
|     report_context_vreg_regunit(VRegOrUnit);
 | |
|     report_context(UseIdx);
 | |
|   }
 | |
|   if (MO->isKill() && !LRQ.isKill()) {
 | |
|     report("Live range continues after kill flag", MO, MONum);
 | |
|     report_context_liverange(LR);
 | |
|     report_context_vreg_regunit(VRegOrUnit);
 | |
|     if (LaneMask.any())
 | |
|       report_context_lanemask(LaneMask);
 | |
|     report_context(UseIdx);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
 | |
|     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
 | |
|     bool SubRangeCheck, LaneBitmask LaneMask) {
 | |
|   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
 | |
|     assert(VNI && "NULL valno is not allowed");
 | |
|     if (VNI->def != DefIdx) {
 | |
|       report("Inconsistent valno->def", MO, MONum);
 | |
|       report_context_liverange(LR);
 | |
|       report_context_vreg_regunit(VRegOrUnit);
 | |
|       if (LaneMask.any())
 | |
|         report_context_lanemask(LaneMask);
 | |
|       report_context(*VNI);
 | |
|       report_context(DefIdx);
 | |
|     }
 | |
|   } else {
 | |
|     report("No live segment at def", MO, MONum);
 | |
|     report_context_liverange(LR);
 | |
|     report_context_vreg_regunit(VRegOrUnit);
 | |
|     if (LaneMask.any())
 | |
|       report_context_lanemask(LaneMask);
 | |
|     report_context(DefIdx);
 | |
|   }
 | |
|   // Check that, if the dead def flag is present, LiveInts agree.
 | |
|   if (MO->isDead()) {
 | |
|     LiveQueryResult LRQ = LR.Query(DefIdx);
 | |
|     if (!LRQ.isDeadDef()) {
 | |
|       assert(Register::isVirtualRegister(VRegOrUnit) &&
 | |
|              "Expecting a virtual register.");
 | |
|       // A dead subreg def only tells us that the specific subreg is dead. There
 | |
|       // could be other non-dead defs of other subregs, or we could have other
 | |
|       // parts of the register being live through the instruction. So unless we
 | |
|       // are checking liveness for a subrange it is ok for the live range to
 | |
|       // continue, given that we have a dead def of a subregister.
 | |
|       if (SubRangeCheck || MO->getSubReg() == 0) {
 | |
|         report("Live range continues after dead def flag", MO, MONum);
 | |
|         report_context_liverange(LR);
 | |
|         report_context_vreg_regunit(VRegOrUnit);
 | |
|         if (LaneMask.any())
 | |
|           report_context_lanemask(LaneMask);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
 | |
|   const MachineInstr *MI = MO->getParent();
 | |
|   const unsigned Reg = MO->getReg();
 | |
| 
 | |
|   // Both use and def operands can read a register.
 | |
|   if (MO->readsReg()) {
 | |
|     if (MO->isKill())
 | |
|       addRegWithSubRegs(regsKilled, Reg);
 | |
| 
 | |
|     // Check that LiveVars knows this kill.
 | |
|     if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
 | |
|       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | |
|       if (!is_contained(VI.Kills, MI))
 | |
|         report("Kill missing from LiveVariables", MO, MONum);
 | |
|     }
 | |
| 
 | |
|     // Check LiveInts liveness and kill.
 | |
|     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
 | |
|       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
 | |
|       // Check the cached regunit intervals.
 | |
|       if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) {
 | |
|         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
 | |
|           if (MRI->isReservedRegUnit(*Units))
 | |
|             continue;
 | |
|           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
 | |
|             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (Register::isVirtualRegister(Reg)) {
 | |
|         if (LiveInts->hasInterval(Reg)) {
 | |
|           // This is a virtual register interval.
 | |
|           const LiveInterval &LI = LiveInts->getInterval(Reg);
 | |
|           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
 | |
| 
 | |
|           if (LI.hasSubRanges() && !MO->isDef()) {
 | |
|             unsigned SubRegIdx = MO->getSubReg();
 | |
|             LaneBitmask MOMask = SubRegIdx != 0
 | |
|                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
 | |
|                                : MRI->getMaxLaneMaskForVReg(Reg);
 | |
|             LaneBitmask LiveInMask;
 | |
|             for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | |
|               if ((MOMask & SR.LaneMask).none())
 | |
|                 continue;
 | |
|               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
 | |
|               LiveQueryResult LRQ = SR.Query(UseIdx);
 | |
|               if (LRQ.valueIn())
 | |
|                 LiveInMask |= SR.LaneMask;
 | |
|             }
 | |
|             // At least parts of the register has to be live at the use.
 | |
|             if ((LiveInMask & MOMask).none()) {
 | |
|               report("No live subrange at use", MO, MONum);
 | |
|               report_context(LI);
 | |
|               report_context(UseIdx);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           report("Virtual register has no live interval", MO, MONum);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Use of a dead register.
 | |
|     if (!regsLive.count(Reg)) {
 | |
|       if (Register::isPhysicalRegister(Reg)) {
 | |
|         // Reserved registers may be used even when 'dead'.
 | |
|         bool Bad = !isReserved(Reg);
 | |
|         // We are fine if just any subregister has a defined value.
 | |
|         if (Bad) {
 | |
| 
 | |
|           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
 | |
|             if (regsLive.count(SubReg)) {
 | |
|               Bad = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         // If there is an additional implicit-use of a super register we stop
 | |
|         // here. By definition we are fine if the super register is not
 | |
|         // (completely) dead, if the complete super register is dead we will
 | |
|         // get a report for its operand.
 | |
|         if (Bad) {
 | |
|           for (const MachineOperand &MOP : MI->uses()) {
 | |
|             if (!MOP.isReg() || !MOP.isImplicit())
 | |
|               continue;
 | |
| 
 | |
|             if (!Register::isPhysicalRegister(MOP.getReg()))
 | |
|               continue;
 | |
| 
 | |
|             for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
 | |
|               if (SubReg == Reg) {
 | |
|                 Bad = false;
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if (Bad)
 | |
|           report("Using an undefined physical register", MO, MONum);
 | |
|       } else if (MRI->def_empty(Reg)) {
 | |
|         report("Reading virtual register without a def", MO, MONum);
 | |
|       } else {
 | |
|         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | |
|         // We don't know which virtual registers are live in, so only complain
 | |
|         // if vreg was killed in this MBB. Otherwise keep track of vregs that
 | |
|         // must be live in. PHI instructions are handled separately.
 | |
|         if (MInfo.regsKilled.count(Reg))
 | |
|           report("Using a killed virtual register", MO, MONum);
 | |
|         else if (!MI->isPHI())
 | |
|           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MO->isDef()) {
 | |
|     // Register defined.
 | |
|     // TODO: verify that earlyclobber ops are not used.
 | |
|     if (MO->isDead())
 | |
|       addRegWithSubRegs(regsDead, Reg);
 | |
|     else
 | |
|       addRegWithSubRegs(regsDefined, Reg);
 | |
| 
 | |
|     // Verify SSA form.
 | |
|     if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
 | |
|         std::next(MRI->def_begin(Reg)) != MRI->def_end())
 | |
|       report("Multiple virtual register defs in SSA form", MO, MONum);
 | |
| 
 | |
|     // Check LiveInts for a live segment, but only for virtual registers.
 | |
|     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
 | |
|       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
 | |
|       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
 | |
| 
 | |
|       if (Register::isVirtualRegister(Reg)) {
 | |
|         if (LiveInts->hasInterval(Reg)) {
 | |
|           const LiveInterval &LI = LiveInts->getInterval(Reg);
 | |
|           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
 | |
| 
 | |
|           if (LI.hasSubRanges()) {
 | |
|             unsigned SubRegIdx = MO->getSubReg();
 | |
|             LaneBitmask MOMask = SubRegIdx != 0
 | |
|               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
 | |
|               : MRI->getMaxLaneMaskForVReg(Reg);
 | |
|             for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | |
|               if ((SR.LaneMask & MOMask).none())
 | |
|                 continue;
 | |
|               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           report("Virtual register has no Live interval", MO, MONum);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
 | |
| 
 | |
| // This function gets called after visiting all instructions in a bundle. The
 | |
| // argument points to the bundle header.
 | |
| // Normal stand-alone instructions are also considered 'bundles', and this
 | |
| // function is called for all of them.
 | |
| void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
 | |
|   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | |
|   set_union(MInfo.regsKilled, regsKilled);
 | |
|   set_subtract(regsLive, regsKilled); regsKilled.clear();
 | |
|   // Kill any masked registers.
 | |
|   while (!regMasks.empty()) {
 | |
|     const uint32_t *Mask = regMasks.pop_back_val();
 | |
|     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
 | |
|       if (Register::isPhysicalRegister(*I) &&
 | |
|           MachineOperand::clobbersPhysReg(Mask, *I))
 | |
|         regsDead.push_back(*I);
 | |
|   }
 | |
|   set_subtract(regsLive, regsDead);   regsDead.clear();
 | |
|   set_union(regsLive, regsDefined);   regsDefined.clear();
 | |
| }
 | |
| 
 | |
| void
 | |
| MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
 | |
|   MBBInfoMap[MBB].regsLiveOut = regsLive;
 | |
|   regsLive.clear();
 | |
| 
 | |
|   if (Indexes) {
 | |
|     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
 | |
|     if (!(stop > lastIndex)) {
 | |
|       report("Block ends before last instruction index", MBB);
 | |
|       errs() << "Block ends at " << stop
 | |
|           << " last instruction was at " << lastIndex << '\n';
 | |
|     }
 | |
|     lastIndex = stop;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // This implements a set of registers that serves as a filter: can filter other
 | |
| // sets by passing through elements not in the filter and blocking those that
 | |
| // are. Any filter implicitly includes the full set of physical registers upon
 | |
| // creation, thus filtering them all out. The filter itself as a set only grows,
 | |
| // and needs to be as efficient as possible.
 | |
| struct VRegFilter {
 | |
|   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
 | |
|   // no duplicates. Both virtual and physical registers are fine.
 | |
|   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
 | |
|     SmallVector<unsigned, 0> VRegsBuffer;
 | |
|     filterAndAdd(FromRegSet, VRegsBuffer);
 | |
|   }
 | |
|   // Filter \p FromRegSet through the filter and append passed elements into \p
 | |
|   // ToVRegs. All elements appended are then added to the filter itself.
 | |
|   // \returns true if anything changed.
 | |
|   template <typename RegSetT>
 | |
|   bool filterAndAdd(const RegSetT &FromRegSet,
 | |
|                     SmallVectorImpl<unsigned> &ToVRegs) {
 | |
|     unsigned SparseUniverse = Sparse.size();
 | |
|     unsigned NewSparseUniverse = SparseUniverse;
 | |
|     unsigned NewDenseSize = Dense.size();
 | |
|     size_t Begin = ToVRegs.size();
 | |
|     for (unsigned Reg : FromRegSet) {
 | |
|       if (!Register::isVirtualRegister(Reg))
 | |
|         continue;
 | |
|       unsigned Index = Register::virtReg2Index(Reg);
 | |
|       if (Index < SparseUniverseMax) {
 | |
|         if (Index < SparseUniverse && Sparse.test(Index))
 | |
|           continue;
 | |
|         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
 | |
|       } else {
 | |
|         if (Dense.count(Reg))
 | |
|           continue;
 | |
|         ++NewDenseSize;
 | |
|       }
 | |
|       ToVRegs.push_back(Reg);
 | |
|     }
 | |
|     size_t End = ToVRegs.size();
 | |
|     if (Begin == End)
 | |
|       return false;
 | |
|     // Reserving space in sets once performs better than doing so continuously
 | |
|     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
 | |
|     // tuned all the way down) and double iteration (the second one is over a
 | |
|     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
 | |
|     Sparse.resize(NewSparseUniverse);
 | |
|     Dense.reserve(NewDenseSize);
 | |
|     for (unsigned I = Begin; I < End; ++I) {
 | |
|       unsigned Reg = ToVRegs[I];
 | |
|       unsigned Index = Register::virtReg2Index(Reg);
 | |
|       if (Index < SparseUniverseMax)
 | |
|         Sparse.set(Index);
 | |
|       else
 | |
|         Dense.insert(Reg);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
 | |
|   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
 | |
|   // are tracked by Dense. The only purpose of the threashold and the Dense set
 | |
|   // is to have a reasonably growing memory usage in pathological cases (large
 | |
|   // number of very sparse VRegFilter instances live at the same time). In
 | |
|   // practice even in the worst-by-execution time cases having all elements
 | |
|   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
 | |
|   // space efficient than if tracked by Dense. The threashold is set to keep the
 | |
|   // worst-case memory usage within 2x of figures determined empirically for
 | |
|   // "all Dense" scenario in such worst-by-execution-time cases.
 | |
|   BitVector Sparse;
 | |
|   DenseSet<unsigned> Dense;
 | |
| };
 | |
| 
 | |
| // Implements both a transfer function and a (binary, in-place) join operator
 | |
| // for a dataflow over register sets with set union join and filtering transfer
 | |
| // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
 | |
| // Maintains out_b as its state, allowing for O(n) iteration over it at any
 | |
| // time, where n is the size of the set (as opposed to O(U) where U is the
 | |
| // universe). filter_b implicitly contains all physical registers at all times.
 | |
| class FilteringVRegSet {
 | |
|   VRegFilter Filter;
 | |
|   SmallVector<unsigned, 0> VRegs;
 | |
| 
 | |
| public:
 | |
|   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
 | |
|   // Both virtual and physical registers are fine.
 | |
|   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
 | |
|     Filter.add(RS);
 | |
|   }
 | |
|   // Passes \p RS through the filter_b (transfer function) and adds what's left
 | |
|   // to itself (out_b).
 | |
|   template <typename RegSetT> bool add(const RegSetT &RS) {
 | |
|     // Double-duty the Filter: to maintain VRegs a set (and the join operation
 | |
|     // a set union) just add everything being added here to the Filter as well.
 | |
|     return Filter.filterAndAdd(RS, VRegs);
 | |
|   }
 | |
|   using const_iterator = decltype(VRegs)::const_iterator;
 | |
|   const_iterator begin() const { return VRegs.begin(); }
 | |
|   const_iterator end() const { return VRegs.end(); }
 | |
|   size_t size() const { return VRegs.size(); }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| // Calculate the largest possible vregsPassed sets. These are the registers that
 | |
| // can pass through an MBB live, but may not be live every time. It is assumed
 | |
| // that all vregsPassed sets are empty before the call.
 | |
| void MachineVerifier::calcRegsPassed() {
 | |
|   // This is a forward dataflow, doing it in RPO. A standard map serves as a
 | |
|   // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
 | |
|   // number to MBB mapping all at once.
 | |
|   std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
 | |
|   DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
 | |
|   if (MF->empty()) {
 | |
|     // ReversePostOrderTraversal doesn't handle empty functions.
 | |
|     return;
 | |
|   }
 | |
|   std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
 | |
|   for (const MachineBasicBlock *MBB :
 | |
|        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
 | |
|     // Careful with the evaluation order, fetch next number before allocating.
 | |
|     unsigned Number = RPONumbers.size();
 | |
|     RPONumbers[MBB] = Number;
 | |
|     // Set-up the transfer functions for all blocks.
 | |
|     const BBInfo &MInfo = MBBInfoMap[MBB];
 | |
|     VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
 | |
|     VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
 | |
|   }
 | |
|   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
 | |
|   // have any vregsPassed.
 | |
|   for (const MachineBasicBlock &MBB : *MF) {
 | |
|     const BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
|     if (!MInfo.reachable)
 | |
|       continue;
 | |
|     for (const MachineBasicBlock *Succ : MBB.successors()) {
 | |
|       unsigned SuccNumber = RPONumbers[Succ];
 | |
|       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
 | |
|       if (SuccSet.add(MInfo.regsLiveOut))
 | |
|         RPOWorklist.emplace(SuccNumber, Succ);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iteratively push vregsPassed to successors.
 | |
|   while (!RPOWorklist.empty()) {
 | |
|     auto Next = RPOWorklist.begin();
 | |
|     const MachineBasicBlock *MBB = Next->second;
 | |
|     RPOWorklist.erase(Next);
 | |
|     FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
 | |
|     for (const MachineBasicBlock *Succ : MBB->successors()) {
 | |
|       if (Succ == MBB)
 | |
|         continue;
 | |
|       unsigned SuccNumber = RPONumbers[Succ];
 | |
|       FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
 | |
|       if (SuccSet.add(MSet))
 | |
|         RPOWorklist.emplace(SuccNumber, Succ);
 | |
|     }
 | |
|   }
 | |
|   // Copy the results back to BBInfos.
 | |
|   for (const MachineBasicBlock &MBB : *MF) {
 | |
|     BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
|     if (!MInfo.reachable)
 | |
|       continue;
 | |
|     const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
 | |
|     MInfo.vregsPassed.reserve(MSet.size());
 | |
|     MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Calculate the set of virtual registers that must be passed through each basic
 | |
| // block in order to satisfy the requirements of successor blocks. This is very
 | |
| // similar to calcRegsPassed, only backwards.
 | |
| void MachineVerifier::calcRegsRequired() {
 | |
|   // First push live-in regs to predecessors' vregsRequired.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 8> todo;
 | |
|   for (const auto &MBB : *MF) {
 | |
|     BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
|     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
 | |
|            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
 | |
|       BBInfo &PInfo = MBBInfoMap[*PrI];
 | |
|       if (PInfo.addRequired(MInfo.vregsLiveIn))
 | |
|         todo.insert(*PrI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Iteratively push vregsRequired to predecessors. This will converge to the
 | |
|   // same final state regardless of DenseSet iteration order.
 | |
|   while (!todo.empty()) {
 | |
|     const MachineBasicBlock *MBB = *todo.begin();
 | |
|     todo.erase(MBB);
 | |
|     BBInfo &MInfo = MBBInfoMap[MBB];
 | |
|     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | |
|            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | |
|       if (*PrI == MBB)
 | |
|         continue;
 | |
|       BBInfo &SInfo = MBBInfoMap[*PrI];
 | |
|       if (SInfo.addRequired(MInfo.vregsRequired))
 | |
|         todo.insert(*PrI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check PHI instructions at the beginning of MBB. It is assumed that
 | |
| // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
 | |
| void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
 | |
|   BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
| 
 | |
|   SmallPtrSet<const MachineBasicBlock*, 8> seen;
 | |
|   for (const MachineInstr &Phi : MBB) {
 | |
|     if (!Phi.isPHI())
 | |
|       break;
 | |
|     seen.clear();
 | |
| 
 | |
|     const MachineOperand &MODef = Phi.getOperand(0);
 | |
|     if (!MODef.isReg() || !MODef.isDef()) {
 | |
|       report("Expected first PHI operand to be a register def", &MODef, 0);
 | |
|       continue;
 | |
|     }
 | |
|     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
 | |
|         MODef.isEarlyClobber() || MODef.isDebug())
 | |
|       report("Unexpected flag on PHI operand", &MODef, 0);
 | |
|     Register DefReg = MODef.getReg();
 | |
|     if (!Register::isVirtualRegister(DefReg))
 | |
|       report("Expected first PHI operand to be a virtual register", &MODef, 0);
 | |
| 
 | |
|     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
 | |
|       const MachineOperand &MO0 = Phi.getOperand(I);
 | |
|       if (!MO0.isReg()) {
 | |
|         report("Expected PHI operand to be a register", &MO0, I);
 | |
|         continue;
 | |
|       }
 | |
|       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
 | |
|           MO0.isDebug() || MO0.isTied())
 | |
|         report("Unexpected flag on PHI operand", &MO0, I);
 | |
| 
 | |
|       const MachineOperand &MO1 = Phi.getOperand(I + 1);
 | |
|       if (!MO1.isMBB()) {
 | |
|         report("Expected PHI operand to be a basic block", &MO1, I + 1);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       const MachineBasicBlock &Pre = *MO1.getMBB();
 | |
|       if (!Pre.isSuccessor(&MBB)) {
 | |
|         report("PHI input is not a predecessor block", &MO1, I + 1);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (MInfo.reachable) {
 | |
|         seen.insert(&Pre);
 | |
|         BBInfo &PrInfo = MBBInfoMap[&Pre];
 | |
|         if (!MO0.isUndef() && PrInfo.reachable &&
 | |
|             !PrInfo.isLiveOut(MO0.getReg()))
 | |
|           report("PHI operand is not live-out from predecessor", &MO0, I);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Did we see all predecessors?
 | |
|     if (MInfo.reachable) {
 | |
|       for (MachineBasicBlock *Pred : MBB.predecessors()) {
 | |
|         if (!seen.count(Pred)) {
 | |
|           report("Missing PHI operand", &Phi);
 | |
|           errs() << printMBBReference(*Pred)
 | |
|                  << " is a predecessor according to the CFG.\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::visitMachineFunctionAfter() {
 | |
|   calcRegsPassed();
 | |
| 
 | |
|   for (const MachineBasicBlock &MBB : *MF)
 | |
|     checkPHIOps(MBB);
 | |
| 
 | |
|   // Now check liveness info if available
 | |
|   calcRegsRequired();
 | |
| 
 | |
|   // Check for killed virtual registers that should be live out.
 | |
|   for (const auto &MBB : *MF) {
 | |
|     BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
|     for (RegSet::iterator
 | |
|          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
 | |
|          ++I)
 | |
|       if (MInfo.regsKilled.count(*I)) {
 | |
|         report("Virtual register killed in block, but needed live out.", &MBB);
 | |
|         errs() << "Virtual register " << printReg(*I)
 | |
|                << " is used after the block.\n";
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (!MF->empty()) {
 | |
|     BBInfo &MInfo = MBBInfoMap[&MF->front()];
 | |
|     for (RegSet::iterator
 | |
|          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
 | |
|          ++I) {
 | |
|       report("Virtual register defs don't dominate all uses.", MF);
 | |
|       report_context_vreg(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LiveVars)
 | |
|     verifyLiveVariables();
 | |
|   if (LiveInts)
 | |
|     verifyLiveIntervals();
 | |
| 
 | |
|   // Check live-in list of each MBB. If a register is live into MBB, check
 | |
|   // that the register is in regsLiveOut of each predecessor block. Since
 | |
|   // this must come from a definition in the predecesssor or its live-in
 | |
|   // list, this will catch a live-through case where the predecessor does not
 | |
|   // have the register in its live-in list.  This currently only checks
 | |
|   // registers that have no aliases, are not allocatable and are not
 | |
|   // reserved, which could mean a condition code register for instance.
 | |
|   if (MRI->tracksLiveness())
 | |
|     for (const auto &MBB : *MF)
 | |
|       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
 | |
|         MCPhysReg LiveInReg = P.PhysReg;
 | |
|         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
 | |
|         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
 | |
|           continue;
 | |
|         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
 | |
|           BBInfo &PInfo = MBBInfoMap[Pred];
 | |
|           if (!PInfo.regsLiveOut.count(LiveInReg)) {
 | |
|             report("Live in register not found to be live out from predecessor.",
 | |
|                    &MBB);
 | |
|             errs() << TRI->getName(LiveInReg)
 | |
|                    << " not found to be live out from "
 | |
|                    << printMBBReference(*Pred) << "\n";
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   for (auto CSInfo : MF->getCallSitesInfo())
 | |
|     if (!CSInfo.first->isCall())
 | |
|       report("Call site info referencing instruction that is not call", MF);
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveVariables() {
 | |
|   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = Register::index2VirtReg(i);
 | |
|     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
 | |
|     for (const auto &MBB : *MF) {
 | |
|       BBInfo &MInfo = MBBInfoMap[&MBB];
 | |
| 
 | |
|       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
 | |
|       if (MInfo.vregsRequired.count(Reg)) {
 | |
|         if (!VI.AliveBlocks.test(MBB.getNumber())) {
 | |
|           report("LiveVariables: Block missing from AliveBlocks", &MBB);
 | |
|           errs() << "Virtual register " << printReg(Reg)
 | |
|                  << " must be live through the block.\n";
 | |
|         }
 | |
|       } else {
 | |
|         if (VI.AliveBlocks.test(MBB.getNumber())) {
 | |
|           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
 | |
|           errs() << "Virtual register " << printReg(Reg)
 | |
|                  << " is not needed live through the block.\n";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveIntervals() {
 | |
|   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = Register::index2VirtReg(i);
 | |
| 
 | |
|     // Spilling and splitting may leave unused registers around. Skip them.
 | |
|     if (MRI->reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
| 
 | |
|     if (!LiveInts->hasInterval(Reg)) {
 | |
|       report("Missing live interval for virtual register", MF);
 | |
|       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const LiveInterval &LI = LiveInts->getInterval(Reg);
 | |
|     assert(Reg == LI.reg && "Invalid reg to interval mapping");
 | |
|     verifyLiveInterval(LI);
 | |
|   }
 | |
| 
 | |
|   // Verify all the cached regunit intervals.
 | |
|   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
 | |
|     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
 | |
|       verifyLiveRange(*LR, i);
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
 | |
|                                            const VNInfo *VNI, unsigned Reg,
 | |
|                                            LaneBitmask LaneMask) {
 | |
|   if (VNI->isUnused())
 | |
|     return;
 | |
| 
 | |
|   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
 | |
| 
 | |
|   if (!DefVNI) {
 | |
|     report("Value not live at VNInfo def and not marked unused", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(*VNI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (DefVNI != VNI) {
 | |
|     report("Live segment at def has different VNInfo", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(*VNI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
 | |
|   if (!MBB) {
 | |
|     report("Invalid VNInfo definition index", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(*VNI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (VNI->isPHIDef()) {
 | |
|     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
 | |
|       report("PHIDef VNInfo is not defined at MBB start", MBB);
 | |
|       report_context(LR, Reg, LaneMask);
 | |
|       report_context(*VNI);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Non-PHI def.
 | |
|   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
 | |
|   if (!MI) {
 | |
|     report("No instruction at VNInfo def index", MBB);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(*VNI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Reg != 0) {
 | |
|     bool hasDef = false;
 | |
|     bool isEarlyClobber = false;
 | |
|     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
 | |
|       if (!MOI->isReg() || !MOI->isDef())
 | |
|         continue;
 | |
|       if (Register::isVirtualRegister(Reg)) {
 | |
|         if (MOI->getReg() != Reg)
 | |
|           continue;
 | |
|       } else {
 | |
|         if (!Register::isPhysicalRegister(MOI->getReg()) ||
 | |
|             !TRI->hasRegUnit(MOI->getReg(), Reg))
 | |
|           continue;
 | |
|       }
 | |
|       if (LaneMask.any() &&
 | |
|           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
 | |
|         continue;
 | |
|       hasDef = true;
 | |
|       if (MOI->isEarlyClobber())
 | |
|         isEarlyClobber = true;
 | |
|     }
 | |
| 
 | |
|     if (!hasDef) {
 | |
|       report("Defining instruction does not modify register", MI);
 | |
|       report_context(LR, Reg, LaneMask);
 | |
|       report_context(*VNI);
 | |
|     }
 | |
| 
 | |
|     // Early clobber defs begin at USE slots, but other defs must begin at
 | |
|     // DEF slots.
 | |
|     if (isEarlyClobber) {
 | |
|       if (!VNI->def.isEarlyClobber()) {
 | |
|         report("Early clobber def must be at an early-clobber slot", MBB);
 | |
|         report_context(LR, Reg, LaneMask);
 | |
|         report_context(*VNI);
 | |
|       }
 | |
|     } else if (!VNI->def.isRegister()) {
 | |
|       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
 | |
|       report_context(LR, Reg, LaneMask);
 | |
|       report_context(*VNI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
 | |
|                                              const LiveRange::const_iterator I,
 | |
|                                              unsigned Reg, LaneBitmask LaneMask)
 | |
| {
 | |
|   const LiveRange::Segment &S = *I;
 | |
|   const VNInfo *VNI = S.valno;
 | |
|   assert(VNI && "Live segment has no valno");
 | |
| 
 | |
|   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
 | |
|     report("Foreign valno in live segment", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|     report_context(*VNI);
 | |
|   }
 | |
| 
 | |
|   if (VNI->isUnused()) {
 | |
|     report("Live segment valno is marked unused", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|   }
 | |
| 
 | |
|   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
 | |
|   if (!MBB) {
 | |
|     report("Bad start of live segment, no basic block", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|     return;
 | |
|   }
 | |
|   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
 | |
|   if (S.start != MBBStartIdx && S.start != VNI->def) {
 | |
|     report("Live segment must begin at MBB entry or valno def", MBB);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|   }
 | |
| 
 | |
|   const MachineBasicBlock *EndMBB =
 | |
|     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
 | |
|   if (!EndMBB) {
 | |
|     report("Bad end of live segment, no basic block", MF);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // No more checks for live-out segments.
 | |
|   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
 | |
|     return;
 | |
| 
 | |
|   // RegUnit intervals are allowed dead phis.
 | |
|   if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
 | |
|       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
 | |
|     return;
 | |
| 
 | |
|   // The live segment is ending inside EndMBB
 | |
|   const MachineInstr *MI =
 | |
|     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
 | |
|   if (!MI) {
 | |
|     report("Live segment doesn't end at a valid instruction", EndMBB);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The block slot must refer to a basic block boundary.
 | |
|   if (S.end.isBlock()) {
 | |
|     report("Live segment ends at B slot of an instruction", EndMBB);
 | |
|     report_context(LR, Reg, LaneMask);
 | |
|     report_context(S);
 | |
|   }
 | |
| 
 | |
|   if (S.end.isDead()) {
 | |
|     // Segment ends on the dead slot.
 | |
|     // That means there must be a dead def.
 | |
|     if (!SlotIndex::isSameInstr(S.start, S.end)) {
 | |
|       report("Live segment ending at dead slot spans instructions", EndMBB);
 | |
|       report_context(LR, Reg, LaneMask);
 | |
|       report_context(S);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // A live segment can only end at an early-clobber slot if it is being
 | |
|   // redefined by an early-clobber def.
 | |
|   if (S.end.isEarlyClobber()) {
 | |
|     if (I+1 == LR.end() || (I+1)->start != S.end) {
 | |
|       report("Live segment ending at early clobber slot must be "
 | |
|              "redefined by an EC def in the same instruction", EndMBB);
 | |
|       report_context(LR, Reg, LaneMask);
 | |
|       report_context(S);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The following checks only apply to virtual registers. Physreg liveness
 | |
|   // is too weird to check.
 | |
|   if (Register::isVirtualRegister(Reg)) {
 | |
|     // A live segment can end with either a redefinition, a kill flag on a
 | |
|     // use, or a dead flag on a def.
 | |
|     bool hasRead = false;
 | |
|     bool hasSubRegDef = false;
 | |
|     bool hasDeadDef = false;
 | |
|     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
 | |
|       if (!MOI->isReg() || MOI->getReg() != Reg)
 | |
|         continue;
 | |
|       unsigned Sub = MOI->getSubReg();
 | |
|       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
 | |
|                                  : LaneBitmask::getAll();
 | |
|       if (MOI->isDef()) {
 | |
|         if (Sub != 0) {
 | |
|           hasSubRegDef = true;
 | |
|           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
 | |
|           // mask for subregister defs. Read-undef defs will be handled by
 | |
|           // readsReg below.
 | |
|           SLM = ~SLM;
 | |
|         }
 | |
|         if (MOI->isDead())
 | |
|           hasDeadDef = true;
 | |
|       }
 | |
|       if (LaneMask.any() && (LaneMask & SLM).none())
 | |
|         continue;
 | |
|       if (MOI->readsReg())
 | |
|         hasRead = true;
 | |
|     }
 | |
|     if (S.end.isDead()) {
 | |
|       // Make sure that the corresponding machine operand for a "dead" live
 | |
|       // range has the dead flag. We cannot perform this check for subregister
 | |
|       // liveranges as partially dead values are allowed.
 | |
|       if (LaneMask.none() && !hasDeadDef) {
 | |
|         report("Instruction ending live segment on dead slot has no dead flag",
 | |
|                MI);
 | |
|         report_context(LR, Reg, LaneMask);
 | |
|         report_context(S);
 | |
|       }
 | |
|     } else {
 | |
|       if (!hasRead) {
 | |
|         // When tracking subregister liveness, the main range must start new
 | |
|         // values on partial register writes, even if there is no read.
 | |
|         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
 | |
|             !hasSubRegDef) {
 | |
|           report("Instruction ending live segment doesn't read the register",
 | |
|                  MI);
 | |
|           report_context(LR, Reg, LaneMask);
 | |
|           report_context(S);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now check all the basic blocks in this live segment.
 | |
|   MachineFunction::const_iterator MFI = MBB->getIterator();
 | |
|   // Is this live segment the beginning of a non-PHIDef VN?
 | |
|   if (S.start == VNI->def && !VNI->isPHIDef()) {
 | |
|     // Not live-in to any blocks.
 | |
|     if (MBB == EndMBB)
 | |
|       return;
 | |
|     // Skip this block.
 | |
|     ++MFI;
 | |
|   }
 | |
| 
 | |
|   SmallVector<SlotIndex, 4> Undefs;
 | |
|   if (LaneMask.any()) {
 | |
|     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
 | |
|     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
 | |
|   }
 | |
| 
 | |
|   while (true) {
 | |
|     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
 | |
|     // We don't know how to track physregs into a landing pad.
 | |
|     if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
 | |
|       if (&*MFI == EndMBB)
 | |
|         break;
 | |
|       ++MFI;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Is VNI a PHI-def in the current block?
 | |
|     bool IsPHI = VNI->isPHIDef() &&
 | |
|       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
 | |
| 
 | |
|     // Check that VNI is live-out of all predecessors.
 | |
|     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
 | |
|          PE = MFI->pred_end(); PI != PE; ++PI) {
 | |
|       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
 | |
|       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
 | |
| 
 | |
|       // All predecessors must have a live-out value. However for a phi
 | |
|       // instruction with subregister intervals
 | |
|       // only one of the subregisters (not necessarily the current one) needs to
 | |
|       // be defined.
 | |
|       if (!PVNI && (LaneMask.none() || !IsPHI)) {
 | |
|         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
 | |
|           continue;
 | |
|         report("Register not marked live out of predecessor", *PI);
 | |
|         report_context(LR, Reg, LaneMask);
 | |
|         report_context(*VNI);
 | |
|         errs() << " live into " << printMBBReference(*MFI) << '@'
 | |
|                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
 | |
|                << PEnd << '\n';
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Only PHI-defs can take different predecessor values.
 | |
|       if (!IsPHI && PVNI != VNI) {
 | |
|         report("Different value live out of predecessor", *PI);
 | |
|         report_context(LR, Reg, LaneMask);
 | |
|         errs() << "Valno #" << PVNI->id << " live out of "
 | |
|                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
 | |
|                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
 | |
|                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
 | |
|       }
 | |
|     }
 | |
|     if (&*MFI == EndMBB)
 | |
|       break;
 | |
|     ++MFI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
 | |
|                                       LaneBitmask LaneMask) {
 | |
|   for (const VNInfo *VNI : LR.valnos)
 | |
|     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
 | |
| 
 | |
|   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
 | |
|     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
 | |
| }
 | |
| 
 | |
| void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
 | |
|   unsigned Reg = LI.reg;
 | |
|   assert(Register::isVirtualRegister(Reg));
 | |
|   verifyLiveRange(LI, Reg);
 | |
| 
 | |
|   LaneBitmask Mask;
 | |
|   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
 | |
|   for (const LiveInterval::SubRange &SR : LI.subranges()) {
 | |
|     if ((Mask & SR.LaneMask).any()) {
 | |
|       report("Lane masks of sub ranges overlap in live interval", MF);
 | |
|       report_context(LI);
 | |
|     }
 | |
|     if ((SR.LaneMask & ~MaxMask).any()) {
 | |
|       report("Subrange lanemask is invalid", MF);
 | |
|       report_context(LI);
 | |
|     }
 | |
|     if (SR.empty()) {
 | |
|       report("Subrange must not be empty", MF);
 | |
|       report_context(SR, LI.reg, SR.LaneMask);
 | |
|     }
 | |
|     Mask |= SR.LaneMask;
 | |
|     verifyLiveRange(SR, LI.reg, SR.LaneMask);
 | |
|     if (!LI.covers(SR)) {
 | |
|       report("A Subrange is not covered by the main range", MF);
 | |
|       report_context(LI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check the LI only has one connected component.
 | |
|   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
 | |
|   unsigned NumComp = ConEQ.Classify(LI);
 | |
|   if (NumComp > 1) {
 | |
|     report("Multiple connected components in live interval", MF);
 | |
|     report_context(LI);
 | |
|     for (unsigned comp = 0; comp != NumComp; ++comp) {
 | |
|       errs() << comp << ": valnos";
 | |
|       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
 | |
|            E = LI.vni_end(); I!=E; ++I)
 | |
|         if (comp == ConEQ.getEqClass(*I))
 | |
|           errs() << ' ' << (*I)->id;
 | |
|       errs() << '\n';
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
 | |
|   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
 | |
|   // value is zero.
 | |
|   // We use a bool plus an integer to capture the stack state.
 | |
|   struct StackStateOfBB {
 | |
|     StackStateOfBB() = default;
 | |
|     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
 | |
|       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
 | |
|       ExitIsSetup(ExitSetup) {}
 | |
| 
 | |
|     // Can be negative, which means we are setting up a frame.
 | |
|     int EntryValue = 0;
 | |
|     int ExitValue = 0;
 | |
|     bool EntryIsSetup = false;
 | |
|     bool ExitIsSetup = false;
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
 | |
| /// by a FrameDestroy <n>, stack adjustments are identical on all
 | |
| /// CFG edges to a merge point, and frame is destroyed at end of a return block.
 | |
| void MachineVerifier::verifyStackFrame() {
 | |
|   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
 | |
|   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
 | |
|   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
 | |
|     return;
 | |
| 
 | |
|   SmallVector<StackStateOfBB, 8> SPState;
 | |
|   SPState.resize(MF->getNumBlockIDs());
 | |
|   df_iterator_default_set<const MachineBasicBlock*> Reachable;
 | |
| 
 | |
|   // Visit the MBBs in DFS order.
 | |
|   for (df_ext_iterator<const MachineFunction *,
 | |
|                        df_iterator_default_set<const MachineBasicBlock *>>
 | |
|        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
 | |
|        DFI != DFE; ++DFI) {
 | |
|     const MachineBasicBlock *MBB = *DFI;
 | |
| 
 | |
|     StackStateOfBB BBState;
 | |
|     // Check the exit state of the DFS stack predecessor.
 | |
|     if (DFI.getPathLength() >= 2) {
 | |
|       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
 | |
|       assert(Reachable.count(StackPred) &&
 | |
|              "DFS stack predecessor is already visited.\n");
 | |
|       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
 | |
|       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
 | |
|       BBState.ExitValue = BBState.EntryValue;
 | |
|       BBState.ExitIsSetup = BBState.EntryIsSetup;
 | |
|     }
 | |
| 
 | |
|     // Update stack state by checking contents of MBB.
 | |
|     for (const auto &I : *MBB) {
 | |
|       if (I.getOpcode() == FrameSetupOpcode) {
 | |
|         if (BBState.ExitIsSetup)
 | |
|           report("FrameSetup is after another FrameSetup", &I);
 | |
|         BBState.ExitValue -= TII->getFrameTotalSize(I);
 | |
|         BBState.ExitIsSetup = true;
 | |
|       }
 | |
| 
 | |
|       if (I.getOpcode() == FrameDestroyOpcode) {
 | |
|         int Size = TII->getFrameTotalSize(I);
 | |
|         if (!BBState.ExitIsSetup)
 | |
|           report("FrameDestroy is not after a FrameSetup", &I);
 | |
|         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
 | |
|                                                BBState.ExitValue;
 | |
|         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
 | |
|           report("FrameDestroy <n> is after FrameSetup <m>", &I);
 | |
|           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
 | |
|               << AbsSPAdj << ">.\n";
 | |
|         }
 | |
|         BBState.ExitValue += Size;
 | |
|         BBState.ExitIsSetup = false;
 | |
|       }
 | |
|     }
 | |
|     SPState[MBB->getNumber()] = BBState;
 | |
| 
 | |
|     // Make sure the exit state of any predecessor is consistent with the entry
 | |
|     // state.
 | |
|     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
 | |
|          E = MBB->pred_end(); I != E; ++I) {
 | |
|       if (Reachable.count(*I) &&
 | |
|           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
 | |
|            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
 | |
|         report("The exit stack state of a predecessor is inconsistent.", MBB);
 | |
|         errs() << "Predecessor " << printMBBReference(*(*I))
 | |
|                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
 | |
|                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
 | |
|                << printMBBReference(*MBB) << " has entry state ("
 | |
|                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Make sure the entry state of any successor is consistent with the exit
 | |
|     // state.
 | |
|     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
 | |
|          E = MBB->succ_end(); I != E; ++I) {
 | |
|       if (Reachable.count(*I) &&
 | |
|           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
 | |
|            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
 | |
|         report("The entry stack state of a successor is inconsistent.", MBB);
 | |
|         errs() << "Successor " << printMBBReference(*(*I))
 | |
|                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
 | |
|                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
 | |
|                << printMBBReference(*MBB) << " has exit state ("
 | |
|                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Make sure a basic block with return ends with zero stack adjustment.
 | |
|     if (!MBB->empty() && MBB->back().isReturn()) {
 | |
|       if (BBState.ExitIsSetup)
 | |
|         report("A return block ends with a FrameSetup.", MBB);
 | |
|       if (BBState.ExitValue)
 | |
|         report("A return block ends with a nonzero stack adjustment.", MBB);
 | |
|     }
 | |
|   }
 | |
| }
 |