2189 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2189 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/ModuloSchedule.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopUtils.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| #define DEBUG_TYPE "pipeliner"
 | |
| using namespace llvm;
 | |
| 
 | |
| void ModuloSchedule::print(raw_ostream &OS) {
 | |
|   for (MachineInstr *MI : ScheduledInstrs)
 | |
|     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ModuloScheduleExpander implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Return the register values for  the operands of a Phi instruction.
 | |
| /// This function assume the instruction is a Phi.
 | |
| static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
 | |
|                        unsigned &InitVal, unsigned &LoopVal) {
 | |
|   assert(Phi.isPHI() && "Expecting a Phi.");
 | |
| 
 | |
|   InitVal = 0;
 | |
|   LoopVal = 0;
 | |
|   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
 | |
|     if (Phi.getOperand(i + 1).getMBB() != Loop)
 | |
|       InitVal = Phi.getOperand(i).getReg();
 | |
|     else
 | |
|       LoopVal = Phi.getOperand(i).getReg();
 | |
| 
 | |
|   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
 | |
| }
 | |
| 
 | |
| /// Return the Phi register value that comes from the incoming block.
 | |
| static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
 | |
|   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
 | |
|     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
 | |
|       return Phi.getOperand(i).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Return the Phi register value that comes the loop block.
 | |
| static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
 | |
|   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
 | |
|     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
 | |
|       return Phi.getOperand(i).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void ModuloScheduleExpander::expand() {
 | |
|   BB = Schedule.getLoop()->getTopBlock();
 | |
|   Preheader = *BB->pred_begin();
 | |
|   if (Preheader == BB)
 | |
|     Preheader = *std::next(BB->pred_begin());
 | |
| 
 | |
|   // Iterate over the definitions in each instruction, and compute the
 | |
|   // stage difference for each use.  Keep the maximum value.
 | |
|   for (MachineInstr *MI : Schedule.getInstructions()) {
 | |
|     int DefStage = Schedule.getStage(MI);
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
 | |
|       MachineOperand &Op = MI->getOperand(i);
 | |
|       if (!Op.isReg() || !Op.isDef())
 | |
|         continue;
 | |
| 
 | |
|       Register Reg = Op.getReg();
 | |
|       unsigned MaxDiff = 0;
 | |
|       bool PhiIsSwapped = false;
 | |
|       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
 | |
|                                              EI = MRI.use_end();
 | |
|            UI != EI; ++UI) {
 | |
|         MachineOperand &UseOp = *UI;
 | |
|         MachineInstr *UseMI = UseOp.getParent();
 | |
|         int UseStage = Schedule.getStage(UseMI);
 | |
|         unsigned Diff = 0;
 | |
|         if (UseStage != -1 && UseStage >= DefStage)
 | |
|           Diff = UseStage - DefStage;
 | |
|         if (MI->isPHI()) {
 | |
|           if (isLoopCarried(*MI))
 | |
|             ++Diff;
 | |
|           else
 | |
|             PhiIsSwapped = true;
 | |
|         }
 | |
|         MaxDiff = std::max(Diff, MaxDiff);
 | |
|       }
 | |
|       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   generatePipelinedLoop();
 | |
| }
 | |
| 
 | |
| void ModuloScheduleExpander::generatePipelinedLoop() {
 | |
|   LoopInfo = TII->analyzeLoopForPipelining(BB);
 | |
|   assert(LoopInfo && "Must be able to analyze loop!");
 | |
| 
 | |
|   // Create a new basic block for the kernel and add it to the CFG.
 | |
|   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
 | |
| 
 | |
|   unsigned MaxStageCount = Schedule.getNumStages() - 1;
 | |
| 
 | |
|   // Remember the registers that are used in different stages. The index is
 | |
|   // the iteration, or stage, that the instruction is scheduled in.  This is
 | |
|   // a map between register names in the original block and the names created
 | |
|   // in each stage of the pipelined loop.
 | |
|   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
 | |
|   InstrMapTy InstrMap;
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> PrologBBs;
 | |
| 
 | |
|   // Generate the prolog instructions that set up the pipeline.
 | |
|   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
 | |
|   MF.insert(BB->getIterator(), KernelBB);
 | |
| 
 | |
|   // Rearrange the instructions to generate the new, pipelined loop,
 | |
|   // and update register names as needed.
 | |
|   for (MachineInstr *CI : Schedule.getInstructions()) {
 | |
|     if (CI->isPHI())
 | |
|       continue;
 | |
|     unsigned StageNum = Schedule.getStage(CI);
 | |
|     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
 | |
|     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
 | |
|     KernelBB->push_back(NewMI);
 | |
|     InstrMap[NewMI] = CI;
 | |
|   }
 | |
| 
 | |
|   // Copy any terminator instructions to the new kernel, and update
 | |
|   // names as needed.
 | |
|   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
 | |
|                                    E = BB->instr_end();
 | |
|        I != E; ++I) {
 | |
|     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
 | |
|     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
 | |
|     KernelBB->push_back(NewMI);
 | |
|     InstrMap[NewMI] = &*I;
 | |
|   }
 | |
| 
 | |
|   NewKernel = KernelBB;
 | |
|   KernelBB->transferSuccessors(BB);
 | |
|   KernelBB->replaceSuccessor(BB, KernelBB);
 | |
| 
 | |
|   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
 | |
|                        InstrMap, MaxStageCount, MaxStageCount, false);
 | |
|   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
 | |
|                MaxStageCount, MaxStageCount, false);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
 | |
|   // Generate the epilog instructions to complete the pipeline.
 | |
|   generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
 | |
| 
 | |
|   // We need this step because the register allocation doesn't handle some
 | |
|   // situations well, so we insert copies to help out.
 | |
|   splitLifetimes(KernelBB, EpilogBBs);
 | |
| 
 | |
|   // Remove dead instructions due to loop induction variables.
 | |
|   removeDeadInstructions(KernelBB, EpilogBBs);
 | |
| 
 | |
|   // Add branches between prolog and epilog blocks.
 | |
|   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
 | |
| 
 | |
|   delete[] VRMap;
 | |
| }
 | |
| 
 | |
| void ModuloScheduleExpander::cleanup() {
 | |
|   // Remove the original loop since it's no longer referenced.
 | |
|   for (auto &I : *BB)
 | |
|     LIS.RemoveMachineInstrFromMaps(I);
 | |
|   BB->clear();
 | |
|   BB->eraseFromParent();
 | |
| }
 | |
| 
 | |
| /// Generate the pipeline prolog code.
 | |
| void ModuloScheduleExpander::generateProlog(unsigned LastStage,
 | |
|                                             MachineBasicBlock *KernelBB,
 | |
|                                             ValueMapTy *VRMap,
 | |
|                                             MBBVectorTy &PrologBBs) {
 | |
|   MachineBasicBlock *PredBB = Preheader;
 | |
|   InstrMapTy InstrMap;
 | |
| 
 | |
|   // Generate a basic block for each stage, not including the last stage,
 | |
|   // which will be generated in the kernel. Each basic block may contain
 | |
|   // instructions from multiple stages/iterations.
 | |
|   for (unsigned i = 0; i < LastStage; ++i) {
 | |
|     // Create and insert the prolog basic block prior to the original loop
 | |
|     // basic block.  The original loop is removed later.
 | |
|     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
 | |
|     PrologBBs.push_back(NewBB);
 | |
|     MF.insert(BB->getIterator(), NewBB);
 | |
|     NewBB->transferSuccessors(PredBB);
 | |
|     PredBB->addSuccessor(NewBB);
 | |
|     PredBB = NewBB;
 | |
| 
 | |
|     // Generate instructions for each appropriate stage. Process instructions
 | |
|     // in original program order.
 | |
|     for (int StageNum = i; StageNum >= 0; --StageNum) {
 | |
|       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
 | |
|                                        BBE = BB->getFirstTerminator();
 | |
|            BBI != BBE; ++BBI) {
 | |
|         if (Schedule.getStage(&*BBI) == StageNum) {
 | |
|           if (BBI->isPHI())
 | |
|             continue;
 | |
|           MachineInstr *NewMI =
 | |
|               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
 | |
|           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
 | |
|           NewBB->push_back(NewMI);
 | |
|           InstrMap[NewMI] = &*BBI;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     rewritePhiValues(NewBB, i, VRMap, InstrMap);
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "prolog:\n";
 | |
|       NewBB->dump();
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   PredBB->replaceSuccessor(BB, KernelBB);
 | |
| 
 | |
|   // Check if we need to remove the branch from the preheader to the original
 | |
|   // loop, and replace it with a branch to the new loop.
 | |
|   unsigned numBranches = TII->removeBranch(*Preheader);
 | |
|   if (numBranches) {
 | |
|     SmallVector<MachineOperand, 0> Cond;
 | |
|     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate the pipeline epilog code. The epilog code finishes the iterations
 | |
| /// that were started in either the prolog or the kernel.  We create a basic
 | |
| /// block for each stage that needs to complete.
 | |
| void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
 | |
|                                             MachineBasicBlock *KernelBB,
 | |
|                                             ValueMapTy *VRMap,
 | |
|                                             MBBVectorTy &EpilogBBs,
 | |
|                                             MBBVectorTy &PrologBBs) {
 | |
|   // We need to change the branch from the kernel to the first epilog block, so
 | |
|   // this call to analyze branch uses the kernel rather than the original BB.
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
 | |
|   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
 | |
|   if (checkBranch)
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
 | |
|   if (*LoopExitI == KernelBB)
 | |
|     ++LoopExitI;
 | |
|   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
 | |
|   MachineBasicBlock *LoopExitBB = *LoopExitI;
 | |
| 
 | |
|   MachineBasicBlock *PredBB = KernelBB;
 | |
|   MachineBasicBlock *EpilogStart = LoopExitBB;
 | |
|   InstrMapTy InstrMap;
 | |
| 
 | |
|   // Generate a basic block for each stage, not including the last stage,
 | |
|   // which was generated for the kernel.  Each basic block may contain
 | |
|   // instructions from multiple stages/iterations.
 | |
|   int EpilogStage = LastStage + 1;
 | |
|   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
 | |
|     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
 | |
|     EpilogBBs.push_back(NewBB);
 | |
|     MF.insert(BB->getIterator(), NewBB);
 | |
| 
 | |
|     PredBB->replaceSuccessor(LoopExitBB, NewBB);
 | |
|     NewBB->addSuccessor(LoopExitBB);
 | |
| 
 | |
|     if (EpilogStart == LoopExitBB)
 | |
|       EpilogStart = NewBB;
 | |
| 
 | |
|     // Add instructions to the epilog depending on the current block.
 | |
|     // Process instructions in original program order.
 | |
|     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
 | |
|       for (auto &BBI : *BB) {
 | |
|         if (BBI.isPHI())
 | |
|           continue;
 | |
|         MachineInstr *In = &BBI;
 | |
|         if ((unsigned)Schedule.getStage(In) == StageNum) {
 | |
|           // Instructions with memoperands in the epilog are updated with
 | |
|           // conservative values.
 | |
|           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
 | |
|           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
 | |
|           NewBB->push_back(NewMI);
 | |
|           InstrMap[NewMI] = In;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
 | |
|                          InstrMap, LastStage, EpilogStage, i == 1);
 | |
|     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
 | |
|                  LastStage, EpilogStage, i == 1);
 | |
|     PredBB = NewBB;
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "epilog:\n";
 | |
|       NewBB->dump();
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // Fix any Phi nodes in the loop exit block.
 | |
|   LoopExitBB->replacePhiUsesWith(BB, PredBB);
 | |
| 
 | |
|   // Create a branch to the new epilog from the kernel.
 | |
|   // Remove the original branch and add a new branch to the epilog.
 | |
|   TII->removeBranch(*KernelBB);
 | |
|   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
 | |
|   // Add a branch to the loop exit.
 | |
|   if (EpilogBBs.size() > 0) {
 | |
|     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
 | |
|     SmallVector<MachineOperand, 4> Cond1;
 | |
|     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Replace all uses of FromReg that appear outside the specified
 | |
| /// basic block with ToReg.
 | |
| static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
 | |
|                                     MachineBasicBlock *MBB,
 | |
|                                     MachineRegisterInfo &MRI,
 | |
|                                     LiveIntervals &LIS) {
 | |
|   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
 | |
|                                          E = MRI.use_end();
 | |
|        I != E;) {
 | |
|     MachineOperand &O = *I;
 | |
|     ++I;
 | |
|     if (O.getParent()->getParent() != MBB)
 | |
|       O.setReg(ToReg);
 | |
|   }
 | |
|   if (!LIS.hasInterval(ToReg))
 | |
|     LIS.createEmptyInterval(ToReg);
 | |
| }
 | |
| 
 | |
| /// Return true if the register has a use that occurs outside the
 | |
| /// specified loop.
 | |
| static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
 | |
|                             MachineRegisterInfo &MRI) {
 | |
|   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
 | |
|                                          E = MRI.use_end();
 | |
|        I != E; ++I)
 | |
|     if (I->getParent()->getParent() != BB)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Generate Phis for the specific block in the generated pipelined code.
 | |
| /// This function looks at the Phis from the original code to guide the
 | |
| /// creation of new Phis.
 | |
| void ModuloScheduleExpander::generateExistingPhis(
 | |
|     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
 | |
|     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
 | |
|     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
 | |
|   // Compute the stage number for the initial value of the Phi, which
 | |
|   // comes from the prolog. The prolog to use depends on to which kernel/
 | |
|   // epilog that we're adding the Phi.
 | |
|   unsigned PrologStage = 0;
 | |
|   unsigned PrevStage = 0;
 | |
|   bool InKernel = (LastStageNum == CurStageNum);
 | |
|   if (InKernel) {
 | |
|     PrologStage = LastStageNum - 1;
 | |
|     PrevStage = CurStageNum;
 | |
|   } else {
 | |
|     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
 | |
|     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
 | |
|                                    BBE = BB->getFirstNonPHI();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     Register Def = BBI->getOperand(0).getReg();
 | |
| 
 | |
|     unsigned InitVal = 0;
 | |
|     unsigned LoopVal = 0;
 | |
|     getPhiRegs(*BBI, BB, InitVal, LoopVal);
 | |
| 
 | |
|     unsigned PhiOp1 = 0;
 | |
|     // The Phi value from the loop body typically is defined in the loop, but
 | |
|     // not always. So, we need to check if the value is defined in the loop.
 | |
|     unsigned PhiOp2 = LoopVal;
 | |
|     if (VRMap[LastStageNum].count(LoopVal))
 | |
|       PhiOp2 = VRMap[LastStageNum][LoopVal];
 | |
| 
 | |
|     int StageScheduled = Schedule.getStage(&*BBI);
 | |
|     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
 | |
|     unsigned NumStages = getStagesForReg(Def, CurStageNum);
 | |
|     if (NumStages == 0) {
 | |
|       // We don't need to generate a Phi anymore, but we need to rename any uses
 | |
|       // of the Phi value.
 | |
|       unsigned NewReg = VRMap[PrevStage][LoopVal];
 | |
|       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
 | |
|                             InitVal, NewReg);
 | |
|       if (VRMap[CurStageNum].count(LoopVal))
 | |
|         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
 | |
|     }
 | |
|     // Adjust the number of Phis needed depending on the number of prologs left,
 | |
|     // and the distance from where the Phi is first scheduled. The number of
 | |
|     // Phis cannot exceed the number of prolog stages. Each stage can
 | |
|     // potentially define two values.
 | |
|     unsigned MaxPhis = PrologStage + 2;
 | |
|     if (!InKernel && (int)PrologStage <= LoopValStage)
 | |
|       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
 | |
|     unsigned NumPhis = std::min(NumStages, MaxPhis);
 | |
| 
 | |
|     unsigned NewReg = 0;
 | |
|     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
 | |
|     // In the epilog, we may need to look back one stage to get the correct
 | |
|     // Phi name because the epilog and prolog blocks execute the same stage.
 | |
|     // The correct name is from the previous block only when the Phi has
 | |
|     // been completely scheduled prior to the epilog, and Phi value is not
 | |
|     // needed in multiple stages.
 | |
|     int StageDiff = 0;
 | |
|     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
 | |
|         NumPhis == 1)
 | |
|       StageDiff = 1;
 | |
|     // Adjust the computations below when the phi and the loop definition
 | |
|     // are scheduled in different stages.
 | |
|     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
 | |
|       StageDiff = StageScheduled - LoopValStage;
 | |
|     for (unsigned np = 0; np < NumPhis; ++np) {
 | |
|       // If the Phi hasn't been scheduled, then use the initial Phi operand
 | |
|       // value. Otherwise, use the scheduled version of the instruction. This
 | |
|       // is a little complicated when a Phi references another Phi.
 | |
|       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
 | |
|         PhiOp1 = InitVal;
 | |
|       // Check if the Phi has already been scheduled in a prolog stage.
 | |
|       else if (PrologStage >= AccessStage + StageDiff + np &&
 | |
|                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
 | |
|         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
 | |
|       // Check if the Phi has already been scheduled, but the loop instruction
 | |
|       // is either another Phi, or doesn't occur in the loop.
 | |
|       else if (PrologStage >= AccessStage + StageDiff + np) {
 | |
|         // If the Phi references another Phi, we need to examine the other
 | |
|         // Phi to get the correct value.
 | |
|         PhiOp1 = LoopVal;
 | |
|         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
 | |
|         int Indirects = 1;
 | |
|         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
 | |
|           int PhiStage = Schedule.getStage(InstOp1);
 | |
|           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
 | |
|             PhiOp1 = getInitPhiReg(*InstOp1, BB);
 | |
|           else
 | |
|             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
 | |
|           InstOp1 = MRI.getVRegDef(PhiOp1);
 | |
|           int PhiOpStage = Schedule.getStage(InstOp1);
 | |
|           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
 | |
|           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
 | |
|               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
 | |
|             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
 | |
|             break;
 | |
|           }
 | |
|           ++Indirects;
 | |
|         }
 | |
|       } else
 | |
|         PhiOp1 = InitVal;
 | |
|       // If this references a generated Phi in the kernel, get the Phi operand
 | |
|       // from the incoming block.
 | |
|       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
 | |
|         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
 | |
|           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
 | |
| 
 | |
|       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
 | |
|       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
 | |
|       // In the epilog, a map lookup is needed to get the value from the kernel,
 | |
|       // or previous epilog block. How is does this depends on if the
 | |
|       // instruction is scheduled in the previous block.
 | |
|       if (!InKernel) {
 | |
|         int StageDiffAdj = 0;
 | |
|         if (LoopValStage != -1 && StageScheduled > LoopValStage)
 | |
|           StageDiffAdj = StageScheduled - LoopValStage;
 | |
|         // Use the loop value defined in the kernel, unless the kernel
 | |
|         // contains the last definition of the Phi.
 | |
|         if (np == 0 && PrevStage == LastStageNum &&
 | |
|             (StageScheduled != 0 || LoopValStage != 0) &&
 | |
|             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
 | |
|           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
 | |
|         // Use the value defined by the Phi. We add one because we switch
 | |
|         // from looking at the loop value to the Phi definition.
 | |
|         else if (np > 0 && PrevStage == LastStageNum &&
 | |
|                  VRMap[PrevStage - np + 1].count(Def))
 | |
|           PhiOp2 = VRMap[PrevStage - np + 1][Def];
 | |
|         // Use the loop value defined in the kernel.
 | |
|         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
 | |
|                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
 | |
|           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
 | |
|         // Use the value defined by the Phi, unless we're generating the first
 | |
|         // epilog and the Phi refers to a Phi in a different stage.
 | |
|         else if (VRMap[PrevStage - np].count(Def) &&
 | |
|                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
 | |
|                   (LoopValStage == StageScheduled)))
 | |
|           PhiOp2 = VRMap[PrevStage - np][Def];
 | |
|       }
 | |
| 
 | |
|       // Check if we can reuse an existing Phi. This occurs when a Phi
 | |
|       // references another Phi, and the other Phi is scheduled in an
 | |
|       // earlier stage. We can try to reuse an existing Phi up until the last
 | |
|       // stage of the current Phi.
 | |
|       if (LoopDefIsPhi) {
 | |
|         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
 | |
|           int LVNumStages = getStagesForPhi(LoopVal);
 | |
|           int StageDiff = (StageScheduled - LoopValStage);
 | |
|           LVNumStages -= StageDiff;
 | |
|           // Make sure the loop value Phi has been processed already.
 | |
|           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
 | |
|             NewReg = PhiOp2;
 | |
|             unsigned ReuseStage = CurStageNum;
 | |
|             if (isLoopCarried(*PhiInst))
 | |
|               ReuseStage -= LVNumStages;
 | |
|             // Check if the Phi to reuse has been generated yet. If not, then
 | |
|             // there is nothing to reuse.
 | |
|             if (VRMap[ReuseStage - np].count(LoopVal)) {
 | |
|               NewReg = VRMap[ReuseStage - np][LoopVal];
 | |
| 
 | |
|               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
 | |
|                                     Def, NewReg);
 | |
|               // Update the map with the new Phi name.
 | |
|               VRMap[CurStageNum - np][Def] = NewReg;
 | |
|               PhiOp2 = NewReg;
 | |
|               if (VRMap[LastStageNum - np - 1].count(LoopVal))
 | |
|                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
 | |
| 
 | |
|               if (IsLast && np == NumPhis - 1)
 | |
|                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if (InKernel && StageDiff > 0 &&
 | |
|             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
 | |
|           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
 | |
|       }
 | |
| 
 | |
|       const TargetRegisterClass *RC = MRI.getRegClass(Def);
 | |
|       NewReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|       MachineInstrBuilder NewPhi =
 | |
|           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
 | |
|                   TII->get(TargetOpcode::PHI), NewReg);
 | |
|       NewPhi.addReg(PhiOp1).addMBB(BB1);
 | |
|       NewPhi.addReg(PhiOp2).addMBB(BB2);
 | |
|       if (np == 0)
 | |
|         InstrMap[NewPhi] = &*BBI;
 | |
| 
 | |
|       // We define the Phis after creating the new pipelined code, so
 | |
|       // we need to rename the Phi values in scheduled instructions.
 | |
| 
 | |
|       unsigned PrevReg = 0;
 | |
|       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
 | |
|         PrevReg = VRMap[PrevStage - np][LoopVal];
 | |
|       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
 | |
|                             NewReg, PrevReg);
 | |
|       // If the Phi has been scheduled, use the new name for rewriting.
 | |
|       if (VRMap[CurStageNum - np].count(Def)) {
 | |
|         unsigned R = VRMap[CurStageNum - np][Def];
 | |
|         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
 | |
|                               NewReg);
 | |
|       }
 | |
| 
 | |
|       // Check if we need to rename any uses that occurs after the loop. The
 | |
|       // register to replace depends on whether the Phi is scheduled in the
 | |
|       // epilog.
 | |
|       if (IsLast && np == NumPhis - 1)
 | |
|         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
 | |
| 
 | |
|       // In the kernel, a dependent Phi uses the value from this Phi.
 | |
|       if (InKernel)
 | |
|         PhiOp2 = NewReg;
 | |
| 
 | |
|       // Update the map with the new Phi name.
 | |
|       VRMap[CurStageNum - np][Def] = NewReg;
 | |
|     }
 | |
| 
 | |
|     while (NumPhis++ < NumStages) {
 | |
|       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
 | |
|                             NewReg, 0);
 | |
|     }
 | |
| 
 | |
|     // Check if we need to rename a Phi that has been eliminated due to
 | |
|     // scheduling.
 | |
|     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
 | |
|       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Generate Phis for the specified block in the generated pipelined code.
 | |
| /// These are new Phis needed because the definition is scheduled after the
 | |
| /// use in the pipelined sequence.
 | |
| void ModuloScheduleExpander::generatePhis(
 | |
|     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
 | |
|     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
 | |
|     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
 | |
|   // Compute the stage number that contains the initial Phi value, and
 | |
|   // the Phi from the previous stage.
 | |
|   unsigned PrologStage = 0;
 | |
|   unsigned PrevStage = 0;
 | |
|   unsigned StageDiff = CurStageNum - LastStageNum;
 | |
|   bool InKernel = (StageDiff == 0);
 | |
|   if (InKernel) {
 | |
|     PrologStage = LastStageNum - 1;
 | |
|     PrevStage = CurStageNum;
 | |
|   } else {
 | |
|     PrologStage = LastStageNum - StageDiff;
 | |
|     PrevStage = LastStageNum + StageDiff - 1;
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
 | |
|                                    BBE = BB->instr_end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = BBI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isDef() ||
 | |
|           !Register::isVirtualRegister(MO.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       int StageScheduled = Schedule.getStage(&*BBI);
 | |
|       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
 | |
|       Register Def = MO.getReg();
 | |
|       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
 | |
|       // An instruction scheduled in stage 0 and is used after the loop
 | |
|       // requires a phi in the epilog for the last definition from either
 | |
|       // the kernel or prolog.
 | |
|       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
 | |
|           hasUseAfterLoop(Def, BB, MRI))
 | |
|         NumPhis = 1;
 | |
|       if (!InKernel && (unsigned)StageScheduled > PrologStage)
 | |
|         continue;
 | |
| 
 | |
|       unsigned PhiOp2 = VRMap[PrevStage][Def];
 | |
|       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
 | |
|         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
 | |
|           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
 | |
|       // The number of Phis can't exceed the number of prolog stages. The
 | |
|       // prolog stage number is zero based.
 | |
|       if (NumPhis > PrologStage + 1 - StageScheduled)
 | |
|         NumPhis = PrologStage + 1 - StageScheduled;
 | |
|       for (unsigned np = 0; np < NumPhis; ++np) {
 | |
|         unsigned PhiOp1 = VRMap[PrologStage][Def];
 | |
|         if (np <= PrologStage)
 | |
|           PhiOp1 = VRMap[PrologStage - np][Def];
 | |
|         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
 | |
|           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
 | |
|             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
 | |
|           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
 | |
|             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
 | |
|         }
 | |
|         if (!InKernel)
 | |
|           PhiOp2 = VRMap[PrevStage - np][Def];
 | |
| 
 | |
|         const TargetRegisterClass *RC = MRI.getRegClass(Def);
 | |
|         Register NewReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|         MachineInstrBuilder NewPhi =
 | |
|             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
 | |
|                     TII->get(TargetOpcode::PHI), NewReg);
 | |
|         NewPhi.addReg(PhiOp1).addMBB(BB1);
 | |
|         NewPhi.addReg(PhiOp2).addMBB(BB2);
 | |
|         if (np == 0)
 | |
|           InstrMap[NewPhi] = &*BBI;
 | |
| 
 | |
|         // Rewrite uses and update the map. The actions depend upon whether
 | |
|         // we generating code for the kernel or epilog blocks.
 | |
|         if (InKernel) {
 | |
|           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
 | |
|                                 NewReg);
 | |
|           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
 | |
|                                 NewReg);
 | |
| 
 | |
|           PhiOp2 = NewReg;
 | |
|           VRMap[PrevStage - np - 1][Def] = NewReg;
 | |
|         } else {
 | |
|           VRMap[CurStageNum - np][Def] = NewReg;
 | |
|           if (np == NumPhis - 1)
 | |
|             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
 | |
|                                   NewReg);
 | |
|         }
 | |
|         if (IsLast && np == NumPhis - 1)
 | |
|           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove instructions that generate values with no uses.
 | |
| /// Typically, these are induction variable operations that generate values
 | |
| /// used in the loop itself.  A dead instruction has a definition with
 | |
| /// no uses, or uses that occur in the original loop only.
 | |
| void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
 | |
|                                                     MBBVectorTy &EpilogBBs) {
 | |
|   // For each epilog block, check that the value defined by each instruction
 | |
|   // is used.  If not, delete it.
 | |
|   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
 | |
|                                      MBE = EpilogBBs.rend();
 | |
|        MBB != MBE; ++MBB)
 | |
|     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
 | |
|                                                    ME = (*MBB)->instr_rend();
 | |
|          MI != ME;) {
 | |
|       // From DeadMachineInstructionElem. Don't delete inline assembly.
 | |
|       if (MI->isInlineAsm()) {
 | |
|         ++MI;
 | |
|         continue;
 | |
|       }
 | |
|       bool SawStore = false;
 | |
|       // Check if it's safe to remove the instruction due to side effects.
 | |
|       // We can, and want to, remove Phis here.
 | |
|       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
 | |
|         ++MI;
 | |
|         continue;
 | |
|       }
 | |
|       bool used = true;
 | |
|       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | |
|                                       MOE = MI->operands_end();
 | |
|            MOI != MOE; ++MOI) {
 | |
|         if (!MOI->isReg() || !MOI->isDef())
 | |
|           continue;
 | |
|         Register reg = MOI->getReg();
 | |
|         // Assume physical registers are used, unless they are marked dead.
 | |
|         if (Register::isPhysicalRegister(reg)) {
 | |
|           used = !MOI->isDead();
 | |
|           if (used)
 | |
|             break;
 | |
|           continue;
 | |
|         }
 | |
|         unsigned realUses = 0;
 | |
|         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
 | |
|                                                EI = MRI.use_end();
 | |
|              UI != EI; ++UI) {
 | |
|           // Check if there are any uses that occur only in the original
 | |
|           // loop.  If so, that's not a real use.
 | |
|           if (UI->getParent()->getParent() != BB) {
 | |
|             realUses++;
 | |
|             used = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (realUses > 0)
 | |
|           break;
 | |
|         used = false;
 | |
|       }
 | |
|       if (!used) {
 | |
|         LIS.RemoveMachineInstrFromMaps(*MI);
 | |
|         MI++->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       ++MI;
 | |
|     }
 | |
|   // In the kernel block, check if we can remove a Phi that generates a value
 | |
|   // used in an instruction removed in the epilog block.
 | |
|   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
 | |
|                                    BBE = KernelBB->getFirstNonPHI();
 | |
|        BBI != BBE;) {
 | |
|     MachineInstr *MI = &*BBI;
 | |
|     ++BBI;
 | |
|     Register reg = MI->getOperand(0).getReg();
 | |
|     if (MRI.use_begin(reg) == MRI.use_end()) {
 | |
|       LIS.RemoveMachineInstrFromMaps(*MI);
 | |
|       MI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For loop carried definitions, we split the lifetime of a virtual register
 | |
| /// that has uses past the definition in the next iteration. A copy with a new
 | |
| /// virtual register is inserted before the definition, which helps with
 | |
| /// generating a better register assignment.
 | |
| ///
 | |
| ///   v1 = phi(a, v2)     v1 = phi(a, v2)
 | |
| ///   v2 = phi(b, v3)     v2 = phi(b, v3)
 | |
| ///   v3 = ..             v4 = copy v1
 | |
| ///   .. = V1             v3 = ..
 | |
| ///                       .. = v4
 | |
| void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
 | |
|                                             MBBVectorTy &EpilogBBs) {
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   for (auto &PHI : KernelBB->phis()) {
 | |
|     Register Def = PHI.getOperand(0).getReg();
 | |
|     // Check for any Phi definition that used as an operand of another Phi
 | |
|     // in the same block.
 | |
|     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
 | |
|                                                  E = MRI.use_instr_end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isPHI() && I->getParent() == KernelBB) {
 | |
|         // Get the loop carried definition.
 | |
|         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
 | |
|         if (!LCDef)
 | |
|           continue;
 | |
|         MachineInstr *MI = MRI.getVRegDef(LCDef);
 | |
|         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
 | |
|           continue;
 | |
|         // Search through the rest of the block looking for uses of the Phi
 | |
|         // definition. If one occurs, then split the lifetime.
 | |
|         unsigned SplitReg = 0;
 | |
|         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
 | |
|                                     KernelBB->instr_end()))
 | |
|           if (BBJ.readsRegister(Def)) {
 | |
|             // We split the lifetime when we find the first use.
 | |
|             if (SplitReg == 0) {
 | |
|               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
 | |
|               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
 | |
|                       TII->get(TargetOpcode::COPY), SplitReg)
 | |
|                   .addReg(Def);
 | |
|             }
 | |
|             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
 | |
|           }
 | |
|         if (!SplitReg)
 | |
|           continue;
 | |
|         // Search through each of the epilog blocks for any uses to be renamed.
 | |
|         for (auto &Epilog : EpilogBBs)
 | |
|           for (auto &I : *Epilog)
 | |
|             if (I.readsRegister(Def))
 | |
|               I.substituteRegister(Def, SplitReg, 0, *TRI);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove the incoming block from the Phis in a basic block.
 | |
| static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
 | |
|   for (MachineInstr &MI : *BB) {
 | |
|     if (!MI.isPHI())
 | |
|       break;
 | |
|     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
 | |
|       if (MI.getOperand(i + 1).getMBB() == Incoming) {
 | |
|         MI.RemoveOperand(i + 1);
 | |
|         MI.RemoveOperand(i);
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create branches from each prolog basic block to the appropriate epilog
 | |
| /// block.  These edges are needed if the loop ends before reaching the
 | |
| /// kernel.
 | |
| void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
 | |
|                                          MBBVectorTy &PrologBBs,
 | |
|                                          MachineBasicBlock *KernelBB,
 | |
|                                          MBBVectorTy &EpilogBBs,
 | |
|                                          ValueMapTy *VRMap) {
 | |
|   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
 | |
|   MachineBasicBlock *LastPro = KernelBB;
 | |
|   MachineBasicBlock *LastEpi = KernelBB;
 | |
| 
 | |
|   // Start from the blocks connected to the kernel and work "out"
 | |
|   // to the first prolog and the last epilog blocks.
 | |
|   SmallVector<MachineInstr *, 4> PrevInsts;
 | |
|   unsigned MaxIter = PrologBBs.size() - 1;
 | |
|   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
 | |
|     // Add branches to the prolog that go to the corresponding
 | |
|     // epilog, and the fall-thru prolog/kernel block.
 | |
|     MachineBasicBlock *Prolog = PrologBBs[j];
 | |
|     MachineBasicBlock *Epilog = EpilogBBs[i];
 | |
| 
 | |
|     SmallVector<MachineOperand, 4> Cond;
 | |
|     Optional<bool> StaticallyGreater =
 | |
|         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
 | |
|     unsigned numAdded = 0;
 | |
|     if (!StaticallyGreater.hasValue()) {
 | |
|       Prolog->addSuccessor(Epilog);
 | |
|       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
 | |
|     } else if (*StaticallyGreater == false) {
 | |
|       Prolog->addSuccessor(Epilog);
 | |
|       Prolog->removeSuccessor(LastPro);
 | |
|       LastEpi->removeSuccessor(Epilog);
 | |
|       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
 | |
|       removePhis(Epilog, LastEpi);
 | |
|       // Remove the blocks that are no longer referenced.
 | |
|       if (LastPro != LastEpi) {
 | |
|         LastEpi->clear();
 | |
|         LastEpi->eraseFromParent();
 | |
|       }
 | |
|       if (LastPro == KernelBB) {
 | |
|         LoopInfo->disposed();
 | |
|         NewKernel = nullptr;
 | |
|       }
 | |
|       LastPro->clear();
 | |
|       LastPro->eraseFromParent();
 | |
|     } else {
 | |
|       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
 | |
|       removePhis(Epilog, Prolog);
 | |
|     }
 | |
|     LastPro = Prolog;
 | |
|     LastEpi = Epilog;
 | |
|     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
 | |
|                                                    E = Prolog->instr_rend();
 | |
|          I != E && numAdded > 0; ++I, --numAdded)
 | |
|       updateInstruction(&*I, false, j, 0, VRMap);
 | |
|   }
 | |
| 
 | |
|   if (NewKernel) {
 | |
|     LoopInfo->setPreheader(PrologBBs[MaxIter]);
 | |
|     LoopInfo->adjustTripCount(-(MaxIter + 1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if we can compute the amount the instruction changes
 | |
| /// during each iteration. Set Delta to the amount of the change.
 | |
| bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   const MachineOperand *BaseOp;
 | |
|   int64_t Offset;
 | |
|   bool OffsetIsScalable;
 | |
|   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: This algorithm assumes instructions have fixed-size offsets.
 | |
|   if (OffsetIsScalable)
 | |
|     return false;
 | |
| 
 | |
|   if (!BaseOp->isReg())
 | |
|     return false;
 | |
| 
 | |
|   Register BaseReg = BaseOp->getReg();
 | |
| 
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   // Check if there is a Phi. If so, get the definition in the loop.
 | |
|   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
 | |
|   if (BaseDef && BaseDef->isPHI()) {
 | |
|     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
 | |
|     BaseDef = MRI.getVRegDef(BaseReg);
 | |
|   }
 | |
|   if (!BaseDef)
 | |
|     return false;
 | |
| 
 | |
|   int D = 0;
 | |
|   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
 | |
|     return false;
 | |
| 
 | |
|   Delta = D;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Update the memory operand with a new offset when the pipeliner
 | |
| /// generates a new copy of the instruction that refers to a
 | |
| /// different memory location.
 | |
| void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
 | |
|                                                MachineInstr &OldMI,
 | |
|                                                unsigned Num) {
 | |
|   if (Num == 0)
 | |
|     return;
 | |
|   // If the instruction has memory operands, then adjust the offset
 | |
|   // when the instruction appears in different stages.
 | |
|   if (NewMI.memoperands_empty())
 | |
|     return;
 | |
|   SmallVector<MachineMemOperand *, 2> NewMMOs;
 | |
|   for (MachineMemOperand *MMO : NewMI.memoperands()) {
 | |
|     // TODO: Figure out whether isAtomic is really necessary (see D57601).
 | |
|     if (MMO->isVolatile() || MMO->isAtomic() ||
 | |
|         (MMO->isInvariant() && MMO->isDereferenceable()) ||
 | |
|         (!MMO->getValue())) {
 | |
|       NewMMOs.push_back(MMO);
 | |
|       continue;
 | |
|     }
 | |
|     unsigned Delta;
 | |
|     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
 | |
|       int64_t AdjOffset = Delta * Num;
 | |
|       NewMMOs.push_back(
 | |
|           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
 | |
|     } else {
 | |
|       NewMMOs.push_back(
 | |
|           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
 | |
|     }
 | |
|   }
 | |
|   NewMI.setMemRefs(MF, NewMMOs);
 | |
| }
 | |
| 
 | |
| /// Clone the instruction for the new pipelined loop and update the
 | |
| /// memory operands, if needed.
 | |
| MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
 | |
|                                                  unsigned CurStageNum,
 | |
|                                                  unsigned InstStageNum) {
 | |
|   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
 | |
|   // Check for tied operands in inline asm instructions. This should be handled
 | |
|   // elsewhere, but I'm not sure of the best solution.
 | |
|   if (OldMI->isInlineAsm())
 | |
|     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
 | |
|       const auto &MO = OldMI->getOperand(i);
 | |
|       if (MO.isReg() && MO.isUse())
 | |
|         break;
 | |
|       unsigned UseIdx;
 | |
|       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
 | |
|         NewMI->tieOperands(i, UseIdx);
 | |
|     }
 | |
|   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// Clone the instruction for the new pipelined loop. If needed, this
 | |
| /// function updates the instruction using the values saved in the
 | |
| /// InstrChanges structure.
 | |
| MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
 | |
|     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
 | |
|   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
 | |
|   auto It = InstrChanges.find(OldMI);
 | |
|   if (It != InstrChanges.end()) {
 | |
|     std::pair<unsigned, int64_t> RegAndOffset = It->second;
 | |
|     unsigned BasePos, OffsetPos;
 | |
|     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
 | |
|       return nullptr;
 | |
|     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
 | |
|     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
 | |
|     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
 | |
|       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
 | |
|     NewMI->getOperand(OffsetPos).setImm(NewOffset);
 | |
|   }
 | |
|   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// Update the machine instruction with new virtual registers.  This
 | |
| /// function may change the defintions and/or uses.
 | |
| void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
 | |
|                                                bool LastDef,
 | |
|                                                unsigned CurStageNum,
 | |
|                                                unsigned InstrStageNum,
 | |
|                                                ValueMapTy *VRMap) {
 | |
|   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = NewMI->getOperand(i);
 | |
|     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
 | |
|       continue;
 | |
|     Register reg = MO.getReg();
 | |
|     if (MO.isDef()) {
 | |
|       // Create a new virtual register for the definition.
 | |
|       const TargetRegisterClass *RC = MRI.getRegClass(reg);
 | |
|       Register NewReg = MRI.createVirtualRegister(RC);
 | |
|       MO.setReg(NewReg);
 | |
|       VRMap[CurStageNum][reg] = NewReg;
 | |
|       if (LastDef)
 | |
|         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
 | |
|     } else if (MO.isUse()) {
 | |
|       MachineInstr *Def = MRI.getVRegDef(reg);
 | |
|       // Compute the stage that contains the last definition for instruction.
 | |
|       int DefStageNum = Schedule.getStage(Def);
 | |
|       unsigned StageNum = CurStageNum;
 | |
|       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
 | |
|         // Compute the difference in stages between the defintion and the use.
 | |
|         unsigned StageDiff = (InstrStageNum - DefStageNum);
 | |
|         // Make an adjustment to get the last definition.
 | |
|         StageNum -= StageDiff;
 | |
|       }
 | |
|       if (VRMap[StageNum].count(reg))
 | |
|         MO.setReg(VRMap[StageNum][reg]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return the instruction in the loop that defines the register.
 | |
| /// If the definition is a Phi, then follow the Phi operand to
 | |
| /// the instruction in the loop.
 | |
| MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
 | |
|   SmallPtrSet<MachineInstr *, 8> Visited;
 | |
|   MachineInstr *Def = MRI.getVRegDef(Reg);
 | |
|   while (Def->isPHI()) {
 | |
|     if (!Visited.insert(Def).second)
 | |
|       break;
 | |
|     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
 | |
|       if (Def->getOperand(i + 1).getMBB() == BB) {
 | |
|         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| /// Return the new name for the value from the previous stage.
 | |
| unsigned ModuloScheduleExpander::getPrevMapVal(
 | |
|     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
 | |
|     ValueMapTy *VRMap, MachineBasicBlock *BB) {
 | |
|   unsigned PrevVal = 0;
 | |
|   if (StageNum > PhiStage) {
 | |
|     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
 | |
|     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
 | |
|       // The name is defined in the previous stage.
 | |
|       PrevVal = VRMap[StageNum - 1][LoopVal];
 | |
|     else if (VRMap[StageNum].count(LoopVal))
 | |
|       // The previous name is defined in the current stage when the instruction
 | |
|       // order is swapped.
 | |
|       PrevVal = VRMap[StageNum][LoopVal];
 | |
|     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
 | |
|       // The loop value hasn't yet been scheduled.
 | |
|       PrevVal = LoopVal;
 | |
|     else if (StageNum == PhiStage + 1)
 | |
|       // The loop value is another phi, which has not been scheduled.
 | |
|       PrevVal = getInitPhiReg(*LoopInst, BB);
 | |
|     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
 | |
|       // The loop value is another phi, which has been scheduled.
 | |
|       PrevVal =
 | |
|           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
 | |
|                         LoopStage, VRMap, BB);
 | |
|   }
 | |
|   return PrevVal;
 | |
| }
 | |
| 
 | |
| /// Rewrite the Phi values in the specified block to use the mappings
 | |
| /// from the initial operand. Once the Phi is scheduled, we switch
 | |
| /// to using the loop value instead of the Phi value, so those names
 | |
| /// do not need to be rewritten.
 | |
| void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
 | |
|                                               unsigned StageNum,
 | |
|                                               ValueMapTy *VRMap,
 | |
|                                               InstrMapTy &InstrMap) {
 | |
|   for (auto &PHI : BB->phis()) {
 | |
|     unsigned InitVal = 0;
 | |
|     unsigned LoopVal = 0;
 | |
|     getPhiRegs(PHI, BB, InitVal, LoopVal);
 | |
|     Register PhiDef = PHI.getOperand(0).getReg();
 | |
| 
 | |
|     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
 | |
|     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
 | |
|     unsigned NumPhis = getStagesForPhi(PhiDef);
 | |
|     if (NumPhis > StageNum)
 | |
|       NumPhis = StageNum;
 | |
|     for (unsigned np = 0; np <= NumPhis; ++np) {
 | |
|       unsigned NewVal =
 | |
|           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
 | |
|       if (!NewVal)
 | |
|         NewVal = InitVal;
 | |
|       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
 | |
|                             NewVal);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Rewrite a previously scheduled instruction to use the register value
 | |
| /// from the new instruction. Make sure the instruction occurs in the
 | |
| /// basic block, and we don't change the uses in the new instruction.
 | |
| void ModuloScheduleExpander::rewriteScheduledInstr(
 | |
|     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
 | |
|     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
 | |
|     unsigned PrevReg) {
 | |
|   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
 | |
|   int StagePhi = Schedule.getStage(Phi) + PhiNum;
 | |
|   // Rewrite uses that have been scheduled already to use the new
 | |
|   // Phi register.
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
 | |
|                                          EI = MRI.use_end();
 | |
|        UI != EI;) {
 | |
|     MachineOperand &UseOp = *UI;
 | |
|     MachineInstr *UseMI = UseOp.getParent();
 | |
|     ++UI;
 | |
|     if (UseMI->getParent() != BB)
 | |
|       continue;
 | |
|     if (UseMI->isPHI()) {
 | |
|       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
 | |
|         continue;
 | |
|       if (getLoopPhiReg(*UseMI, BB) != OldReg)
 | |
|         continue;
 | |
|     }
 | |
|     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
 | |
|     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
 | |
|     MachineInstr *OrigMI = OrigInstr->second;
 | |
|     int StageSched = Schedule.getStage(OrigMI);
 | |
|     int CycleSched = Schedule.getCycle(OrigMI);
 | |
|     unsigned ReplaceReg = 0;
 | |
|     // This is the stage for the scheduled instruction.
 | |
|     if (StagePhi == StageSched && Phi->isPHI()) {
 | |
|       int CyclePhi = Schedule.getCycle(Phi);
 | |
|       if (PrevReg && InProlog)
 | |
|         ReplaceReg = PrevReg;
 | |
|       else if (PrevReg && !isLoopCarried(*Phi) &&
 | |
|                (CyclePhi <= CycleSched || OrigMI->isPHI()))
 | |
|         ReplaceReg = PrevReg;
 | |
|       else
 | |
|         ReplaceReg = NewReg;
 | |
|     }
 | |
|     // The scheduled instruction occurs before the scheduled Phi, and the
 | |
|     // Phi is not loop carried.
 | |
|     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
 | |
|       ReplaceReg = NewReg;
 | |
|     if (StagePhi > StageSched && Phi->isPHI())
 | |
|       ReplaceReg = NewReg;
 | |
|     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
 | |
|       ReplaceReg = NewReg;
 | |
|     if (ReplaceReg) {
 | |
|       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
 | |
|       UseOp.setReg(ReplaceReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
 | |
|   if (!Phi.isPHI())
 | |
|     return false;
 | |
|   int DefCycle = Schedule.getCycle(&Phi);
 | |
|   int DefStage = Schedule.getStage(&Phi);
 | |
| 
 | |
|   unsigned InitVal = 0;
 | |
|   unsigned LoopVal = 0;
 | |
|   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
 | |
|   MachineInstr *Use = MRI.getVRegDef(LoopVal);
 | |
|   if (!Use || Use->isPHI())
 | |
|     return true;
 | |
|   int LoopCycle = Schedule.getCycle(Use);
 | |
|   int LoopStage = Schedule.getStage(Use);
 | |
|   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // PeelingModuloScheduleExpander implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This is a reimplementation of ModuloScheduleExpander that works by creating
 | |
| // a fully correct steady-state kernel and peeling off the prolog and epilogs.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| // Remove any dead phis in MBB. Dead phis either have only one block as input
 | |
| // (in which case they are the identity) or have no uses.
 | |
| void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
 | |
|                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
 | |
|   bool Changed = true;
 | |
|   while (Changed) {
 | |
|     Changed = false;
 | |
|     for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
 | |
|       MachineInstr &MI = *I++;
 | |
|       assert(MI.isPHI());
 | |
|       if (MRI.use_empty(MI.getOperand(0).getReg())) {
 | |
|         if (LIS)
 | |
|           LIS->RemoveMachineInstrFromMaps(MI);
 | |
|         MI.eraseFromParent();
 | |
|         Changed = true;
 | |
|       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
 | |
|         MRI.constrainRegClass(MI.getOperand(1).getReg(),
 | |
|                               MRI.getRegClass(MI.getOperand(0).getReg()));
 | |
|         MRI.replaceRegWith(MI.getOperand(0).getReg(),
 | |
|                            MI.getOperand(1).getReg());
 | |
|         if (LIS)
 | |
|           LIS->RemoveMachineInstrFromMaps(MI);
 | |
|         MI.eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Rewrites the kernel block in-place to adhere to the given schedule.
 | |
| /// KernelRewriter holds all of the state required to perform the rewriting.
 | |
| class KernelRewriter {
 | |
|   ModuloSchedule &S;
 | |
|   MachineBasicBlock *BB;
 | |
|   MachineBasicBlock *PreheaderBB, *ExitBB;
 | |
|   MachineRegisterInfo &MRI;
 | |
|   const TargetInstrInfo *TII;
 | |
|   LiveIntervals *LIS;
 | |
| 
 | |
|   // Map from register class to canonical undef register for that class.
 | |
|   DenseMap<const TargetRegisterClass *, Register> Undefs;
 | |
|   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
 | |
|   // this map is only used when InitReg is non-undef.
 | |
|   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
 | |
|   // Map from LoopReg to phi register where the InitReg is undef.
 | |
|   DenseMap<Register, Register> UndefPhis;
 | |
| 
 | |
|   // Reg is used by MI. Return the new register MI should use to adhere to the
 | |
|   // schedule. Insert phis as necessary.
 | |
|   Register remapUse(Register Reg, MachineInstr &MI);
 | |
|   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
 | |
|   // If InitReg is not given it is chosen arbitrarily. It will either be undef
 | |
|   // or will be chosen so as to share another phi.
 | |
|   Register phi(Register LoopReg, Optional<Register> InitReg = {},
 | |
|                const TargetRegisterClass *RC = nullptr);
 | |
|   // Create an undef register of the given register class.
 | |
|   Register undef(const TargetRegisterClass *RC);
 | |
| 
 | |
| public:
 | |
|   KernelRewriter(MachineLoop &L, ModuloSchedule &S,
 | |
|                  LiveIntervals *LIS = nullptr);
 | |
|   void rewrite();
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
 | |
|                                LiveIntervals *LIS)
 | |
|     : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
 | |
|       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
 | |
|       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
 | |
|   PreheaderBB = *BB->pred_begin();
 | |
|   if (PreheaderBB == BB)
 | |
|     PreheaderBB = *std::next(BB->pred_begin());
 | |
| }
 | |
| 
 | |
| void KernelRewriter::rewrite() {
 | |
|   // Rearrange the loop to be in schedule order. Note that the schedule may
 | |
|   // contain instructions that are not owned by the loop block (InstrChanges and
 | |
|   // friends), so we gracefully handle unowned instructions and delete any
 | |
|   // instructions that weren't in the schedule.
 | |
|   auto InsertPt = BB->getFirstTerminator();
 | |
|   MachineInstr *FirstMI = nullptr;
 | |
|   for (MachineInstr *MI : S.getInstructions()) {
 | |
|     if (MI->isPHI())
 | |
|       continue;
 | |
|     if (MI->getParent())
 | |
|       MI->removeFromParent();
 | |
|     BB->insert(InsertPt, MI);
 | |
|     if (!FirstMI)
 | |
|       FirstMI = MI;
 | |
|   }
 | |
|   assert(FirstMI && "Failed to find first MI in schedule");
 | |
| 
 | |
|   // At this point all of the scheduled instructions are between FirstMI
 | |
|   // and the end of the block. Kill from the first non-phi to FirstMI.
 | |
|   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
 | |
|     if (LIS)
 | |
|       LIS->RemoveMachineInstrFromMaps(*I);
 | |
|     (I++)->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Now remap every instruction in the loop.
 | |
|   for (MachineInstr &MI : *BB) {
 | |
|     if (MI.isPHI() || MI.isTerminator())
 | |
|       continue;
 | |
|     for (MachineOperand &MO : MI.uses()) {
 | |
|       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
 | |
|         continue;
 | |
|       Register Reg = remapUse(MO.getReg(), MI);
 | |
|       MO.setReg(Reg);
 | |
|     }
 | |
|   }
 | |
|   EliminateDeadPhis(BB, MRI, LIS);
 | |
| 
 | |
|   // Ensure a phi exists for all instructions that are either referenced by
 | |
|   // an illegal phi or by an instruction outside the loop. This allows us to
 | |
|   // treat remaps of these values the same as "normal" values that come from
 | |
|   // loop-carried phis.
 | |
|   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
 | |
|     if (MI->isPHI()) {
 | |
|       Register R = MI->getOperand(0).getReg();
 | |
|       phi(R);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (MachineOperand &Def : MI->defs()) {
 | |
|       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
 | |
|         if (MI.getParent() != BB) {
 | |
|           phi(Def.getReg());
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
 | |
|   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
 | |
|   if (!Producer)
 | |
|     return Reg;
 | |
| 
 | |
|   int ConsumerStage = S.getStage(&MI);
 | |
|   if (!Producer->isPHI()) {
 | |
|     // Non-phi producers are simple to remap. Insert as many phis as the
 | |
|     // difference between the consumer and producer stages.
 | |
|     if (Producer->getParent() != BB)
 | |
|       // Producer was not inside the loop. Use the register as-is.
 | |
|       return Reg;
 | |
|     int ProducerStage = S.getStage(Producer);
 | |
|     assert(ConsumerStage != -1 &&
 | |
|            "In-loop consumer should always be scheduled!");
 | |
|     assert(ConsumerStage >= ProducerStage);
 | |
|     unsigned StageDiff = ConsumerStage - ProducerStage;
 | |
| 
 | |
|     for (unsigned I = 0; I < StageDiff; ++I)
 | |
|       Reg = phi(Reg);
 | |
|     return Reg;
 | |
|   }
 | |
| 
 | |
|   // First, dive through the phi chain to find the defaults for the generated
 | |
|   // phis.
 | |
|   SmallVector<Optional<Register>, 4> Defaults;
 | |
|   Register LoopReg = Reg;
 | |
|   auto LoopProducer = Producer;
 | |
|   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
 | |
|     LoopReg = getLoopPhiReg(*LoopProducer, BB);
 | |
|     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
 | |
|     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
 | |
|     assert(LoopProducer);
 | |
|   }
 | |
|   int LoopProducerStage = S.getStage(LoopProducer);
 | |
| 
 | |
|   Optional<Register> IllegalPhiDefault;
 | |
| 
 | |
|   if (LoopProducerStage == -1) {
 | |
|     // Do nothing.
 | |
|   } else if (LoopProducerStage > ConsumerStage) {
 | |
|     // This schedule is only representable if ProducerStage == ConsumerStage+1.
 | |
|     // In addition, Consumer's cycle must be scheduled after Producer in the
 | |
|     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
 | |
|     // functions.
 | |
| #ifndef NDEBUG // Silence unused variables in non-asserts mode.
 | |
|     int LoopProducerCycle = S.getCycle(LoopProducer);
 | |
|     int ConsumerCycle = S.getCycle(&MI);
 | |
| #endif
 | |
|     assert(LoopProducerCycle <= ConsumerCycle);
 | |
|     assert(LoopProducerStage == ConsumerStage + 1);
 | |
|     // Peel off the first phi from Defaults and insert a phi between producer
 | |
|     // and consumer. This phi will not be at the front of the block so we
 | |
|     // consider it illegal. It will only exist during the rewrite process; it
 | |
|     // needs to exist while we peel off prologs because these could take the
 | |
|     // default value. After that we can replace all uses with the loop producer
 | |
|     // value.
 | |
|     IllegalPhiDefault = Defaults.front();
 | |
|     Defaults.erase(Defaults.begin());
 | |
|   } else {
 | |
|     assert(ConsumerStage >= LoopProducerStage);
 | |
|     int StageDiff = ConsumerStage - LoopProducerStage;
 | |
|     if (StageDiff > 0) {
 | |
|       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
 | |
|                         << " to " << (Defaults.size() + StageDiff) << "\n");
 | |
|       // If we need more phis than we have defaults for, pad out with undefs for
 | |
|       // the earliest phis, which are at the end of the defaults chain (the
 | |
|       // chain is in reverse order).
 | |
|       Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
 | |
|                                                        ? Optional<Register>()
 | |
|                                                        : Defaults.back());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we know the number of stages to jump back, insert the phi chain.
 | |
|   auto DefaultI = Defaults.rbegin();
 | |
|   while (DefaultI != Defaults.rend())
 | |
|     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
 | |
| 
 | |
|   if (IllegalPhiDefault.hasValue()) {
 | |
|     // The consumer optionally consumes LoopProducer in the same iteration
 | |
|     // (because the producer is scheduled at an earlier cycle than the consumer)
 | |
|     // or the initial value. To facilitate this we create an illegal block here
 | |
|     // by embedding a phi in the middle of the block. We will fix this up
 | |
|     // immediately prior to pruning.
 | |
|     auto RC = MRI.getRegClass(Reg);
 | |
|     Register R = MRI.createVirtualRegister(RC);
 | |
|     BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
 | |
|         .addReg(IllegalPhiDefault.getValue())
 | |
|         .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
 | |
|         .addReg(LoopReg)
 | |
|         .addMBB(BB); // Block choice is arbitrary and has no effect.
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   return LoopReg;
 | |
| }
 | |
| 
 | |
| Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
 | |
|                              const TargetRegisterClass *RC) {
 | |
|   // If the init register is not undef, try and find an existing phi.
 | |
|   if (InitReg.hasValue()) {
 | |
|     auto I = Phis.find({LoopReg, InitReg.getValue()});
 | |
|     if (I != Phis.end())
 | |
|       return I->second;
 | |
|   } else {
 | |
|     for (auto &KV : Phis) {
 | |
|       if (KV.first.first == LoopReg)
 | |
|         return KV.second;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // InitReg is either undef or no existing phi takes InitReg as input. Try and
 | |
|   // find a phi that takes undef as input.
 | |
|   auto I = UndefPhis.find(LoopReg);
 | |
|   if (I != UndefPhis.end()) {
 | |
|     Register R = I->second;
 | |
|     if (!InitReg.hasValue())
 | |
|       // Found a phi taking undef as input, and this input is undef so return
 | |
|       // without any more changes.
 | |
|       return R;
 | |
|     // Found a phi taking undef as input, so rewrite it to take InitReg.
 | |
|     MachineInstr *MI = MRI.getVRegDef(R);
 | |
|     MI->getOperand(1).setReg(InitReg.getValue());
 | |
|     Phis.insert({{LoopReg, InitReg.getValue()}, R});
 | |
|     MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
 | |
|     UndefPhis.erase(I);
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   // Failed to find any existing phi to reuse, so create a new one.
 | |
|   if (!RC)
 | |
|     RC = MRI.getRegClass(LoopReg);
 | |
|   Register R = MRI.createVirtualRegister(RC);
 | |
|   if (InitReg.hasValue())
 | |
|     MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
 | |
|   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
 | |
|       .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
 | |
|       .addMBB(PreheaderBB)
 | |
|       .addReg(LoopReg)
 | |
|       .addMBB(BB);
 | |
|   if (!InitReg.hasValue())
 | |
|     UndefPhis[LoopReg] = R;
 | |
|   else
 | |
|     Phis[{LoopReg, *InitReg}] = R;
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| Register KernelRewriter::undef(const TargetRegisterClass *RC) {
 | |
|   Register &R = Undefs[RC];
 | |
|   if (R == 0) {
 | |
|     // Create an IMPLICIT_DEF that defines this register if we need it.
 | |
|     // All uses of this should be removed by the time we have finished unrolling
 | |
|     // prologs and epilogs.
 | |
|     R = MRI.createVirtualRegister(RC);
 | |
|     auto *InsertBB = &PreheaderBB->getParent()->front();
 | |
|     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
 | |
|             TII->get(TargetOpcode::IMPLICIT_DEF), R);
 | |
|   }
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Describes an operand in the kernel of a pipelined loop. Characteristics of
 | |
| /// the operand are discovered, such as how many in-loop PHIs it has to jump
 | |
| /// through and defaults for these phis.
 | |
| class KernelOperandInfo {
 | |
|   MachineBasicBlock *BB;
 | |
|   MachineRegisterInfo &MRI;
 | |
|   SmallVector<Register, 4> PhiDefaults;
 | |
|   MachineOperand *Source;
 | |
|   MachineOperand *Target;
 | |
| 
 | |
| public:
 | |
|   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
 | |
|                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
 | |
|       : MRI(MRI) {
 | |
|     Source = MO;
 | |
|     BB = MO->getParent()->getParent();
 | |
|     while (isRegInLoop(MO)) {
 | |
|       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
 | |
|       if (MI->isFullCopy()) {
 | |
|         MO = &MI->getOperand(1);
 | |
|         continue;
 | |
|       }
 | |
|       if (!MI->isPHI())
 | |
|         break;
 | |
|       // If this is an illegal phi, don't count it in distance.
 | |
|       if (IllegalPhis.count(MI)) {
 | |
|         MO = &MI->getOperand(3);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Register Default = getInitPhiReg(*MI, BB);
 | |
|       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
 | |
|                                             : &MI->getOperand(3);
 | |
|       PhiDefaults.push_back(Default);
 | |
|     }
 | |
|     Target = MO;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const KernelOperandInfo &Other) const {
 | |
|     return PhiDefaults.size() == Other.PhiDefaults.size();
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &OS) const {
 | |
|     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
 | |
|        << *Source->getParent();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool isRegInLoop(MachineOperand *MO) {
 | |
|     return MO->isReg() && MO->getReg().isVirtual() &&
 | |
|            MRI.getVRegDef(MO->getReg())->getParent() == BB;
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
 | |
|   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
 | |
|   if (LPD == LPD_Front)
 | |
|     PeeledFront.push_back(NewBB);
 | |
|   else
 | |
|     PeeledBack.push_front(NewBB);
 | |
|   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
 | |
|        ++I, ++NI) {
 | |
|     CanonicalMIs[&*I] = &*I;
 | |
|     CanonicalMIs[&*NI] = &*I;
 | |
|     BlockMIs[{NewBB, &*I}] = &*NI;
 | |
|     BlockMIs[{BB, &*I}] = &*I;
 | |
|   }
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
 | |
|                                                        int MinStage) {
 | |
|   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
 | |
|        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
 | |
|     MachineInstr *MI = &*I++;
 | |
|     int Stage = getStage(MI);
 | |
|     if (Stage == -1 || Stage >= MinStage)
 | |
|       continue;
 | |
| 
 | |
|     for (MachineOperand &DefMO : MI->defs()) {
 | |
|       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
 | |
|       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
 | |
|         // Only PHIs can use values from this block by construction.
 | |
|         // Match with the equivalent PHI in B.
 | |
|         assert(UseMI.isPHI());
 | |
|         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
 | |
|                                                MI->getParent());
 | |
|         Subs.emplace_back(&UseMI, Reg);
 | |
|       }
 | |
|       for (auto &Sub : Subs)
 | |
|         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
 | |
|                                       *MRI.getTargetRegisterInfo());
 | |
|     }
 | |
|     if (LIS)
 | |
|       LIS->RemoveMachineInstrFromMaps(*MI);
 | |
|     MI->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
 | |
|     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
 | |
|   auto InsertPt = DestBB->getFirstNonPHI();
 | |
|   DenseMap<Register, Register> Remaps;
 | |
|   for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
 | |
|     MachineInstr *MI = &*I++;
 | |
|     if (MI->isPHI()) {
 | |
|       // This is an illegal PHI. If we move any instructions using an illegal
 | |
|       // PHI, we need to create a legal Phi
 | |
|       Register PhiR = MI->getOperand(0).getReg();
 | |
|       auto RC = MRI.getRegClass(PhiR);
 | |
|       Register NR = MRI.createVirtualRegister(RC);
 | |
|       MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), DebugLoc(),
 | |
|                                  TII->get(TargetOpcode::PHI), NR)
 | |
|                              .addReg(PhiR)
 | |
|                              .addMBB(SourceBB);
 | |
|       BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
 | |
|       CanonicalMIs[NI] = CanonicalMIs[MI];
 | |
|       Remaps[PhiR] = NR;
 | |
|       continue;
 | |
|     }
 | |
|     if (getStage(MI) != Stage)
 | |
|       continue;
 | |
|     MI->removeFromParent();
 | |
|     DestBB->insert(InsertPt, MI);
 | |
|     auto *KernelMI = CanonicalMIs[MI];
 | |
|     BlockMIs[{DestBB, KernelMI}] = MI;
 | |
|     BlockMIs.erase({SourceBB, KernelMI});
 | |
|   }
 | |
|   SmallVector<MachineInstr *, 4> PhiToDelete;
 | |
|   for (MachineInstr &MI : DestBB->phis()) {
 | |
|     assert(MI.getNumOperands() == 3);
 | |
|     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
 | |
|     // If the instruction referenced by the phi is moved inside the block
 | |
|     // we don't need the phi anymore.
 | |
|     if (getStage(Def) == Stage) {
 | |
|       Register PhiReg = MI.getOperand(0).getReg();
 | |
|       MRI.replaceRegWith(MI.getOperand(0).getReg(),
 | |
|                          Def->getOperand(0).getReg());
 | |
|       MI.getOperand(0).setReg(PhiReg);
 | |
|       PhiToDelete.push_back(&MI);
 | |
|     }
 | |
|   }
 | |
|   for (auto *P : PhiToDelete)
 | |
|     P->eraseFromParent();
 | |
|   InsertPt = DestBB->getFirstNonPHI();
 | |
|   // Helper to clone Phi instructions into the destination block. We clone Phi
 | |
|   // greedily to avoid combinatorial explosion of Phi instructions.
 | |
|   auto clonePhi = [&](MachineInstr *Phi) {
 | |
|     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
 | |
|     DestBB->insert(InsertPt, NewMI);
 | |
|     Register OrigR = Phi->getOperand(0).getReg();
 | |
|     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
 | |
|     NewMI->getOperand(0).setReg(R);
 | |
|     NewMI->getOperand(1).setReg(OrigR);
 | |
|     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
 | |
|     Remaps[OrigR] = R;
 | |
|     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
 | |
|     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
 | |
|     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
 | |
|     return R;
 | |
|   };
 | |
|   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
 | |
|     for (MachineOperand &MO : I->uses()) {
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       if (Remaps.count(MO.getReg()))
 | |
|         MO.setReg(Remaps[MO.getReg()]);
 | |
|       else {
 | |
|         // If we are using a phi from the source block we need to add a new phi
 | |
|         // pointing to the old one.
 | |
|         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
 | |
|         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
 | |
|           Register R = clonePhi(Use);
 | |
|           MO.setReg(R);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Register
 | |
| PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
 | |
|                                                   MachineInstr *Phi) {
 | |
|   unsigned distance = PhiNodeLoopIteration[Phi];
 | |
|   MachineInstr *CanonicalUse = CanonicalPhi;
 | |
|   for (unsigned I = 0; I < distance; ++I) {
 | |
|     assert(CanonicalUse->isPHI());
 | |
|     assert(CanonicalUse->getNumOperands() == 5);
 | |
|     unsigned LoopRegIdx = 3, InitRegIdx = 1;
 | |
|     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
 | |
|       std::swap(LoopRegIdx, InitRegIdx);
 | |
|     CanonicalUse =
 | |
|         MRI.getVRegDef(CanonicalUse->getOperand(LoopRegIdx).getReg());
 | |
|   }
 | |
|   return CanonicalUse->getOperand(0).getReg();
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
 | |
|   BitVector LS(Schedule.getNumStages(), true);
 | |
|   BitVector AS(Schedule.getNumStages(), true);
 | |
|   LiveStages[BB] = LS;
 | |
|   AvailableStages[BB] = AS;
 | |
| 
 | |
|   // Peel out the prologs.
 | |
|   LS.reset();
 | |
|   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
 | |
|     LS[I] = 1;
 | |
|     Prologs.push_back(peelKernel(LPD_Front));
 | |
|     LiveStages[Prologs.back()] = LS;
 | |
|     AvailableStages[Prologs.back()] = LS;
 | |
|   }
 | |
| 
 | |
|   // Create a block that will end up as the new loop exiting block (dominated by
 | |
|   // all prologs and epilogs). It will only contain PHIs, in the same order as
 | |
|   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
 | |
|   // that the exiting block is a (sub) clone of BB. This in turn gives us the
 | |
|   // property that any value deffed in BB but used outside of BB is used by a
 | |
|   // PHI in the exiting block.
 | |
|   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
 | |
|   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
 | |
|   // Push out the epilogs, again in reverse order.
 | |
|   // We can't assume anything about the minumum loop trip count at this point,
 | |
|   // so emit a fairly complex epilog.
 | |
| 
 | |
|   // We first peel number of stages minus one epilogue. Then we remove dead
 | |
|   // stages and reorder instructions based on their stage. If we have 3 stages
 | |
|   // we generate first:
 | |
|   // E0[3, 2, 1]
 | |
|   // E1[3', 2']
 | |
|   // E2[3'']
 | |
|   // And then we move instructions based on their stages to have:
 | |
|   // E0[3]
 | |
|   // E1[2, 3']
 | |
|   // E2[1, 2', 3'']
 | |
|   // The transformation is legal because we only move instructions past
 | |
|   // instructions of a previous loop iteration.
 | |
|   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
 | |
|     Epilogs.push_back(peelKernel(LPD_Back));
 | |
|     MachineBasicBlock *B = Epilogs.back();
 | |
|     filterInstructions(B, Schedule.getNumStages() - I);
 | |
|     // Keep track at which iteration each phi belongs to. We need it to know
 | |
|     // what version of the variable to use during prologue/epilogue stitching.
 | |
|     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
 | |
|     for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
 | |
|       PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
 | |
|   }
 | |
|   for (size_t I = 0; I < Epilogs.size(); I++) {
 | |
|     LS.reset();
 | |
|     for (size_t J = I; J < Epilogs.size(); J++) {
 | |
|       int Iteration = J;
 | |
|       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
 | |
|       // Move stage one block at a time so that Phi nodes are updated correctly.
 | |
|       for (size_t K = Iteration; K > I; K--)
 | |
|         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
 | |
|       LS[Stage] = 1;
 | |
|     }
 | |
|     LiveStages[Epilogs[I]] = LS;
 | |
|     AvailableStages[Epilogs[I]] = AS;
 | |
|   }
 | |
| 
 | |
|   // Now we've defined all the prolog and epilog blocks as a fallthrough
 | |
|   // sequence, add the edges that will be followed if the loop trip count is
 | |
|   // lower than the number of stages (connecting prologs directly with epilogs).
 | |
|   auto PI = Prologs.begin();
 | |
|   auto EI = Epilogs.begin();
 | |
|   assert(Prologs.size() == Epilogs.size());
 | |
|   for (; PI != Prologs.end(); ++PI, ++EI) {
 | |
|     MachineBasicBlock *Pred = *(*EI)->pred_begin();
 | |
|     (*PI)->addSuccessor(*EI);
 | |
|     for (MachineInstr &MI : (*EI)->phis()) {
 | |
|       Register Reg = MI.getOperand(1).getReg();
 | |
|       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
 | |
|       if (Use && Use->getParent() == Pred) {
 | |
|         MachineInstr *CanonicalUse = CanonicalMIs[Use];
 | |
|         if (CanonicalUse->isPHI()) {
 | |
|           // If the use comes from a phi we need to skip as many phi as the
 | |
|           // distance between the epilogue and the kernel. Trace through the phi
 | |
|           // chain to find the right value.
 | |
|           Reg = getPhiCanonicalReg(CanonicalUse, Use);
 | |
|         }
 | |
|         Reg = getEquivalentRegisterIn(Reg, *PI);
 | |
|       }
 | |
|       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
 | |
|       MI.addOperand(MachineOperand::CreateMBB(*PI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Create a list of all blocks in order.
 | |
|   SmallVector<MachineBasicBlock *, 8> Blocks;
 | |
|   llvm::copy(PeeledFront, std::back_inserter(Blocks));
 | |
|   Blocks.push_back(BB);
 | |
|   llvm::copy(PeeledBack, std::back_inserter(Blocks));
 | |
| 
 | |
|   // Iterate in reverse order over all instructions, remapping as we go.
 | |
|   for (MachineBasicBlock *B : reverse(Blocks)) {
 | |
|     for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
 | |
|          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
 | |
|       MachineInstr *MI = &*I++;
 | |
|       rewriteUsesOf(MI);
 | |
|     }
 | |
|   }
 | |
|   for (auto *MI : IllegalPhisToDelete) {
 | |
|     if (LIS)
 | |
|       LIS->RemoveMachineInstrFromMaps(*MI);
 | |
|     MI->eraseFromParent();
 | |
|   }
 | |
|   IllegalPhisToDelete.clear();
 | |
| 
 | |
|   // Now all remapping has been done, we're free to optimize the generated code.
 | |
|   for (MachineBasicBlock *B : reverse(Blocks))
 | |
|     EliminateDeadPhis(B, MRI, LIS);
 | |
|   EliminateDeadPhis(ExitingBB, MRI, LIS);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
 | |
|   MachineFunction &MF = *BB->getParent();
 | |
|   MachineBasicBlock *Exit = *BB->succ_begin();
 | |
|   if (Exit == BB)
 | |
|     Exit = *std::next(BB->succ_begin());
 | |
| 
 | |
|   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
 | |
|   MF.insert(std::next(BB->getIterator()), NewBB);
 | |
| 
 | |
|   // Clone all phis in BB into NewBB and rewrite.
 | |
|   for (MachineInstr &MI : BB->phis()) {
 | |
|     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
 | |
|     Register OldR = MI.getOperand(3).getReg();
 | |
|     Register R = MRI.createVirtualRegister(RC);
 | |
|     SmallVector<MachineInstr *, 4> Uses;
 | |
|     for (MachineInstr &Use : MRI.use_instructions(OldR))
 | |
|       if (Use.getParent() != BB)
 | |
|         Uses.push_back(&Use);
 | |
|     for (MachineInstr *Use : Uses)
 | |
|       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
 | |
|                               *MRI.getTargetRegisterInfo());
 | |
|     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
 | |
|         .addReg(OldR)
 | |
|         .addMBB(BB);
 | |
|     BlockMIs[{NewBB, &MI}] = NI;
 | |
|     CanonicalMIs[NI] = &MI;
 | |
|   }
 | |
|   BB->replaceSuccessor(Exit, NewBB);
 | |
|   Exit->replacePhiUsesWith(BB, NewBB);
 | |
|   NewBB->addSuccessor(Exit);
 | |
| 
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
 | |
|   (void)CanAnalyzeBr;
 | |
|   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
 | |
|   TII->removeBranch(*BB);
 | |
|   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
 | |
|                     Cond, DebugLoc());
 | |
|   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| Register
 | |
| PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
 | |
|                                                        MachineBasicBlock *BB) {
 | |
|   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
 | |
|   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
 | |
|   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
 | |
|   if (MI->isPHI()) {
 | |
|     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
 | |
|     // and it is produced by this block.
 | |
|     Register PhiR = MI->getOperand(0).getReg();
 | |
|     Register R = MI->getOperand(3).getReg();
 | |
|     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
 | |
|     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
 | |
|       R = MI->getOperand(1).getReg();
 | |
|     MRI.setRegClass(R, MRI.getRegClass(PhiR));
 | |
|     MRI.replaceRegWith(PhiR, R);
 | |
|     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
 | |
|     // later to figure out how to remap registers.
 | |
|     MI->getOperand(0).setReg(PhiR);
 | |
|     IllegalPhisToDelete.push_back(MI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   int Stage = getStage(MI);
 | |
|   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
 | |
|       LiveStages[MI->getParent()].test(Stage))
 | |
|     // Instruction is live, no rewriting to do.
 | |
|     return;
 | |
| 
 | |
|   for (MachineOperand &DefMO : MI->defs()) {
 | |
|     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
 | |
|     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
 | |
|       // Only PHIs can use values from this block by construction.
 | |
|       // Match with the equivalent PHI in B.
 | |
|       assert(UseMI.isPHI());
 | |
|       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
 | |
|                                              MI->getParent());
 | |
|       Subs.emplace_back(&UseMI, Reg);
 | |
|     }
 | |
|     for (auto &Sub : Subs)
 | |
|       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
 | |
|                                     *MRI.getTargetRegisterInfo());
 | |
|   }
 | |
|   if (LIS)
 | |
|     LIS->RemoveMachineInstrFromMaps(*MI);
 | |
|   MI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::fixupBranches() {
 | |
|   // Work outwards from the kernel.
 | |
|   bool KernelDisposed = false;
 | |
|   int TC = Schedule.getNumStages() - 1;
 | |
|   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
 | |
|        ++PI, ++EI, --TC) {
 | |
|     MachineBasicBlock *Prolog = *PI;
 | |
|     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
 | |
|     MachineBasicBlock *Epilog = *EI;
 | |
|     SmallVector<MachineOperand, 4> Cond;
 | |
|     TII->removeBranch(*Prolog);
 | |
|     Optional<bool> StaticallyGreater =
 | |
|         Info->createTripCountGreaterCondition(TC, *Prolog, Cond);
 | |
|     if (!StaticallyGreater.hasValue()) {
 | |
|       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
 | |
|       // Dynamically branch based on Cond.
 | |
|       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
 | |
|     } else if (*StaticallyGreater == false) {
 | |
|       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
 | |
|       // Prolog never falls through; branch to epilog and orphan interior
 | |
|       // blocks. Leave it to unreachable-block-elim to clean up.
 | |
|       Prolog->removeSuccessor(Fallthrough);
 | |
|       for (MachineInstr &P : Fallthrough->phis()) {
 | |
|         P.RemoveOperand(2);
 | |
|         P.RemoveOperand(1);
 | |
|       }
 | |
|       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
 | |
|       KernelDisposed = true;
 | |
|     } else {
 | |
|       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
 | |
|       // Prolog always falls through; remove incoming values in epilog.
 | |
|       Prolog->removeSuccessor(Epilog);
 | |
|       for (MachineInstr &P : Epilog->phis()) {
 | |
|         P.RemoveOperand(4);
 | |
|         P.RemoveOperand(3);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!KernelDisposed) {
 | |
|     Info->adjustTripCount(-(Schedule.getNumStages() - 1));
 | |
|     Info->setPreheader(Prologs.back());
 | |
|   } else {
 | |
|     Info->disposed();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::rewriteKernel() {
 | |
|   KernelRewriter KR(*Schedule.getLoop(), Schedule);
 | |
|   KR.rewrite();
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::expand() {
 | |
|   BB = Schedule.getLoop()->getTopBlock();
 | |
|   Preheader = Schedule.getLoop()->getLoopPreheader();
 | |
|   LLVM_DEBUG(Schedule.dump());
 | |
|   Info = TII->analyzeLoopForPipelining(BB);
 | |
|   assert(Info);
 | |
| 
 | |
|   rewriteKernel();
 | |
|   peelPrologAndEpilogs();
 | |
|   fixupBranches();
 | |
| }
 | |
| 
 | |
| void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
 | |
|   BB = Schedule.getLoop()->getTopBlock();
 | |
|   Preheader = Schedule.getLoop()->getLoopPreheader();
 | |
| 
 | |
|   // Dump the schedule before we invalidate and remap all its instructions.
 | |
|   // Stash it in a string so we can print it if we found an error.
 | |
|   std::string ScheduleDump;
 | |
|   raw_string_ostream OS(ScheduleDump);
 | |
|   Schedule.print(OS);
 | |
|   OS.flush();
 | |
| 
 | |
|   // First, run the normal ModuleScheduleExpander. We don't support any
 | |
|   // InstrChanges.
 | |
|   assert(LIS && "Requires LiveIntervals!");
 | |
|   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
 | |
|                              ModuloScheduleExpander::InstrChangesTy());
 | |
|   MSE.expand();
 | |
|   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
 | |
|   if (!ExpandedKernel) {
 | |
|     // The expander optimized away the kernel. We can't do any useful checking.
 | |
|     MSE.cleanup();
 | |
|     return;
 | |
|   }
 | |
|   // Before running the KernelRewriter, re-add BB into the CFG.
 | |
|   Preheader->addSuccessor(BB);
 | |
| 
 | |
|   // Now run the new expansion algorithm.
 | |
|   KernelRewriter KR(*Schedule.getLoop(), Schedule);
 | |
|   KR.rewrite();
 | |
|   peelPrologAndEpilogs();
 | |
| 
 | |
|   // Collect all illegal phis that the new algorithm created. We'll give these
 | |
|   // to KernelOperandInfo.
 | |
|   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
 | |
|   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
 | |
|     if (NI->isPHI())
 | |
|       IllegalPhis.insert(&*NI);
 | |
|   }
 | |
| 
 | |
|   // Co-iterate across both kernels. We expect them to be identical apart from
 | |
|   // phis and full COPYs (we look through both).
 | |
|   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
 | |
|   auto OI = ExpandedKernel->begin();
 | |
|   auto NI = BB->begin();
 | |
|   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
 | |
|     while (OI->isPHI() || OI->isFullCopy())
 | |
|       ++OI;
 | |
|     while (NI->isPHI() || NI->isFullCopy())
 | |
|       ++NI;
 | |
|     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
 | |
|     // Analyze every operand separately.
 | |
|     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
 | |
|          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
 | |
|       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
 | |
|                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
 | |
|   }
 | |
| 
 | |
|   bool Failed = false;
 | |
|   for (auto &OldAndNew : KOIs) {
 | |
|     if (OldAndNew.first == OldAndNew.second)
 | |
|       continue;
 | |
|     Failed = true;
 | |
|     errs() << "Modulo kernel validation error: [\n";
 | |
|     errs() << " [golden] ";
 | |
|     OldAndNew.first.print(errs());
 | |
|     errs() << "          ";
 | |
|     OldAndNew.second.print(errs());
 | |
|     errs() << "]\n";
 | |
|   }
 | |
| 
 | |
|   if (Failed) {
 | |
|     errs() << "Golden reference kernel:\n";
 | |
|     ExpandedKernel->print(errs());
 | |
|     errs() << "New kernel:\n";
 | |
|     BB->print(errs());
 | |
|     errs() << ScheduleDump;
 | |
|     report_fatal_error(
 | |
|         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
 | |
|   }
 | |
| 
 | |
|   // Cleanup by removing BB from the CFG again as the original
 | |
|   // ModuloScheduleExpander intended.
 | |
|   Preheader->removeSuccessor(BB);
 | |
|   MSE.cleanup();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ModuloScheduleTestPass implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| // This pass constructs a ModuloSchedule from its module and runs
 | |
| // ModuloScheduleExpander.
 | |
| //
 | |
| // The module is expected to contain a single-block analyzable loop.
 | |
| // The total order of instructions is taken from the loop as-is.
 | |
| // Instructions are expected to be annotated with a PostInstrSymbol.
 | |
| // This PostInstrSymbol must have the following format:
 | |
| //  "Stage=%d Cycle=%d".
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class ModuloScheduleTest : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   ModuloScheduleTest() : MachineFunctionPass(ID) {
 | |
|     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
|   void runOnLoop(MachineFunction &MF, MachineLoop &L);
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MachineLoopInfo>();
 | |
|     AU.addRequired<LiveIntervals>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char ModuloScheduleTest::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
 | |
|                       "Modulo Schedule test pass", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
 | |
|                     "Modulo Schedule test pass", false, false)
 | |
| 
 | |
| bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | |
|   for (auto *L : MLI) {
 | |
|     if (L->getTopBlock() != L->getBottomBlock())
 | |
|       continue;
 | |
|     runOnLoop(MF, *L);
 | |
|     return false;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
 | |
|   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
 | |
|   std::pair<StringRef, StringRef> StageTokenAndValue =
 | |
|       getToken(StageAndCycle.first, "-");
 | |
|   std::pair<StringRef, StringRef> CycleTokenAndValue =
 | |
|       getToken(StageAndCycle.second, "-");
 | |
|   if (StageTokenAndValue.first != "Stage" ||
 | |
|       CycleTokenAndValue.first != "_Cycle") {
 | |
|     llvm_unreachable(
 | |
|         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
 | |
|   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
 | |
| 
 | |
|   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
 | |
| }
 | |
| 
 | |
| void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
 | |
|   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
 | |
|   MachineBasicBlock *BB = L.getTopBlock();
 | |
|   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
 | |
| 
 | |
|   DenseMap<MachineInstr *, int> Cycle, Stage;
 | |
|   std::vector<MachineInstr *> Instrs;
 | |
|   for (MachineInstr &MI : *BB) {
 | |
|     if (MI.isTerminator())
 | |
|       continue;
 | |
|     Instrs.push_back(&MI);
 | |
|     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
 | |
|       dbgs() << "Parsing post-instr symbol for " << MI;
 | |
|       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
 | |
|                     std::move(Stage));
 | |
|   ModuloScheduleExpander MSE(
 | |
|       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
 | |
|   MSE.expand();
 | |
|   MSE.cleanup();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ModuloScheduleTestAnnotater implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ModuloScheduleTestAnnotater::annotate() {
 | |
|   for (MachineInstr *MI : S.getInstructions()) {
 | |
|     SmallVector<char, 16> SV;
 | |
|     raw_svector_ostream OS(SV);
 | |
|     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
 | |
|     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
 | |
|     MI->setPostInstrSymbol(MF, Sym);
 | |
|   }
 | |
| }
 |