653 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			653 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines some helpful functions for dealing with the possibility of
 | |
| // Unix signals occurring while your program is running.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is extremely careful to only do signal-safe things while in a
 | |
| // signal handler. In particular, memory allocation and acquiring a mutex
 | |
| // while in a signal handler should never occur. ManagedStatic isn't usable from
 | |
| // a signal handler for 2 reasons:
 | |
| //
 | |
| //  1. Creating a new one allocates.
 | |
| //  2. The signal handler could fire while llvm_shutdown is being processed, in
 | |
| //     which case the ManagedStatic is in an unknown state because it could
 | |
| //     already have been destroyed, or be in the process of being destroyed.
 | |
| //
 | |
| // Modifying the behavior of the signal handlers (such as registering new ones)
 | |
| // can acquire a mutex, but all this guarantees is that the signal handler
 | |
| // behavior is only modified by one thread at a time. A signal handler can still
 | |
| // fire while this occurs!
 | |
| //
 | |
| // Adding work to a signal handler requires lock-freedom (and assume atomics are
 | |
| // always lock-free) because the signal handler could fire while new work is
 | |
| // being added.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Unix.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Config/config.h"
 | |
| #include "llvm/Demangle/Demangle.h"
 | |
| #include "llvm/Support/FileSystem.h"
 | |
| #include "llvm/Support/FileUtilities.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/Mutex.h"
 | |
| #include "llvm/Support/Program.h"
 | |
| #include "llvm/Support/SaveAndRestore.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <string>
 | |
| #include <sysexits.h>
 | |
| #ifdef HAVE_BACKTRACE
 | |
| # include BACKTRACE_HEADER         // For backtrace().
 | |
| #endif
 | |
| #if HAVE_SIGNAL_H
 | |
| #include <signal.h>
 | |
| #endif
 | |
| #if HAVE_SYS_STAT_H
 | |
| #include <sys/stat.h>
 | |
| #endif
 | |
| #if HAVE_DLFCN_H
 | |
| #include <dlfcn.h>
 | |
| #endif
 | |
| #if HAVE_MACH_MACH_H
 | |
| #include <mach/mach.h>
 | |
| #endif
 | |
| #if HAVE_LINK_H
 | |
| #include <link.h>
 | |
| #endif
 | |
| #ifdef HAVE__UNWIND_BACKTRACE
 | |
| // FIXME: We should be able to use <unwind.h> for any target that has an
 | |
| // _Unwind_Backtrace function, but on FreeBSD the configure test passes
 | |
| // despite the function not existing, and on Android, <unwind.h> conflicts
 | |
| // with <link.h>.
 | |
| #ifdef __GLIBC__
 | |
| #include <unwind.h>
 | |
| #else
 | |
| #undef HAVE__UNWIND_BACKTRACE
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static RETSIGTYPE SignalHandler(int Sig);  // defined below.
 | |
| static RETSIGTYPE InfoSignalHandler(int Sig);  // defined below.
 | |
| 
 | |
| using SignalHandlerFunctionType = void (*)();
 | |
| /// The function to call if ctrl-c is pressed.
 | |
| static std::atomic<SignalHandlerFunctionType> InterruptFunction =
 | |
|     ATOMIC_VAR_INIT(nullptr);
 | |
| static std::atomic<SignalHandlerFunctionType> InfoSignalFunction =
 | |
|     ATOMIC_VAR_INIT(nullptr);
 | |
| /// The function to call on SIGPIPE (one-time use only).
 | |
| static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction =
 | |
|     ATOMIC_VAR_INIT(nullptr);
 | |
| 
 | |
| namespace {
 | |
| /// Signal-safe removal of files.
 | |
| /// Inserting and erasing from the list isn't signal-safe, but removal of files
 | |
| /// themselves is signal-safe. Memory is freed when the head is freed, deletion
 | |
| /// is therefore not signal-safe either.
 | |
| class FileToRemoveList {
 | |
|   std::atomic<char *> Filename = ATOMIC_VAR_INIT(nullptr);
 | |
|   std::atomic<FileToRemoveList *> Next = ATOMIC_VAR_INIT(nullptr);
 | |
| 
 | |
|   FileToRemoveList() = default;
 | |
|   // Not signal-safe.
 | |
|   FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {}
 | |
| 
 | |
| public:
 | |
|   // Not signal-safe.
 | |
|   ~FileToRemoveList() {
 | |
|     if (FileToRemoveList *N = Next.exchange(nullptr))
 | |
|       delete N;
 | |
|     if (char *F = Filename.exchange(nullptr))
 | |
|       free(F);
 | |
|   }
 | |
| 
 | |
|   // Not signal-safe.
 | |
|   static void insert(std::atomic<FileToRemoveList *> &Head,
 | |
|                      const std::string &Filename) {
 | |
|     // Insert the new file at the end of the list.
 | |
|     FileToRemoveList *NewHead = new FileToRemoveList(Filename);
 | |
|     std::atomic<FileToRemoveList *> *InsertionPoint = &Head;
 | |
|     FileToRemoveList *OldHead = nullptr;
 | |
|     while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) {
 | |
|       InsertionPoint = &OldHead->Next;
 | |
|       OldHead = nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Not signal-safe.
 | |
|   static void erase(std::atomic<FileToRemoveList *> &Head,
 | |
|                     const std::string &Filename) {
 | |
|     // Use a lock to avoid concurrent erase: the comparison would access
 | |
|     // free'd memory.
 | |
|     static ManagedStatic<sys::SmartMutex<true>> Lock;
 | |
|     sys::SmartScopedLock<true> Writer(*Lock);
 | |
| 
 | |
|     for (FileToRemoveList *Current = Head.load(); Current;
 | |
|          Current = Current->Next.load()) {
 | |
|       if (char *OldFilename = Current->Filename.load()) {
 | |
|         if (OldFilename != Filename)
 | |
|           continue;
 | |
|         // Leave an empty filename.
 | |
|         OldFilename = Current->Filename.exchange(nullptr);
 | |
|         // The filename might have become null between the time we
 | |
|         // compared it and we exchanged it.
 | |
|         if (OldFilename)
 | |
|           free(OldFilename);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Signal-safe.
 | |
|   static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) {
 | |
|     // If cleanup were to occur while we're removing files we'd have a bad time.
 | |
|     // Make sure we're OK by preventing cleanup from doing anything while we're
 | |
|     // removing files. If cleanup races with us and we win we'll have a leak,
 | |
|     // but we won't crash.
 | |
|     FileToRemoveList *OldHead = Head.exchange(nullptr);
 | |
| 
 | |
|     for (FileToRemoveList *currentFile = OldHead; currentFile;
 | |
|          currentFile = currentFile->Next.load()) {
 | |
|       // If erasing was occuring while we're trying to remove files we'd look
 | |
|       // at free'd data. Take away the path and put it back when done.
 | |
|       if (char *path = currentFile->Filename.exchange(nullptr)) {
 | |
|         // Get the status so we can determine if it's a file or directory. If we
 | |
|         // can't stat the file, ignore it.
 | |
|         struct stat buf;
 | |
|         if (stat(path, &buf) != 0)
 | |
|           continue;
 | |
| 
 | |
|         // If this is not a regular file, ignore it. We want to prevent removal
 | |
|         // of special files like /dev/null, even if the compiler is being run
 | |
|         // with the super-user permissions.
 | |
|         if (!S_ISREG(buf.st_mode))
 | |
|           continue;
 | |
| 
 | |
|         // Otherwise, remove the file. We ignore any errors here as there is
 | |
|         // nothing else we can do.
 | |
|         unlink(path);
 | |
| 
 | |
|         // We're done removing the file, erasing can safely proceed.
 | |
|         currentFile->Filename.exchange(path);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // We're done removing files, cleanup can safely proceed.
 | |
|     Head.exchange(OldHead);
 | |
|   }
 | |
| };
 | |
| static std::atomic<FileToRemoveList *> FilesToRemove = ATOMIC_VAR_INIT(nullptr);
 | |
| 
 | |
| /// Clean up the list in a signal-friendly manner.
 | |
| /// Recall that signals can fire during llvm_shutdown. If this occurs we should
 | |
| /// either clean something up or nothing at all, but we shouldn't crash!
 | |
| struct FilesToRemoveCleanup {
 | |
|   // Not signal-safe.
 | |
|   ~FilesToRemoveCleanup() {
 | |
|     FileToRemoveList *Head = FilesToRemove.exchange(nullptr);
 | |
|     if (Head)
 | |
|       delete Head;
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static StringRef Argv0;
 | |
| 
 | |
| /// Signals that represent requested termination. There's no bug or failure, or
 | |
| /// if there is, it's not our direct responsibility. For whatever reason, our
 | |
| /// continued execution is no longer desirable.
 | |
| static const int IntSigs[] = {
 | |
|   SIGHUP, SIGINT, SIGTERM, SIGUSR2
 | |
| };
 | |
| 
 | |
| /// Signals that represent that we have a bug, and our prompt termination has
 | |
| /// been ordered.
 | |
| static const int KillSigs[] = {
 | |
|   SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT
 | |
| #ifdef SIGSYS
 | |
|   , SIGSYS
 | |
| #endif
 | |
| #ifdef SIGXCPU
 | |
|   , SIGXCPU
 | |
| #endif
 | |
| #ifdef SIGXFSZ
 | |
|   , SIGXFSZ
 | |
| #endif
 | |
| #ifdef SIGEMT
 | |
|   , SIGEMT
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /// Signals that represent requests for status.
 | |
| static const int InfoSigs[] = {
 | |
|   SIGUSR1
 | |
| #ifdef SIGINFO
 | |
|   , SIGINFO
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static const size_t NumSigs =
 | |
|     array_lengthof(IntSigs) + array_lengthof(KillSigs) +
 | |
|     array_lengthof(InfoSigs) + 1 /* SIGPIPE */;
 | |
| 
 | |
| 
 | |
| static std::atomic<unsigned> NumRegisteredSignals = ATOMIC_VAR_INIT(0);
 | |
| static struct {
 | |
|   struct sigaction SA;
 | |
|   int SigNo;
 | |
| } RegisteredSignalInfo[NumSigs];
 | |
| 
 | |
| #if defined(HAVE_SIGALTSTACK)
 | |
| // Hold onto both the old and new alternate signal stack so that it's not
 | |
| // reported as a leak. We don't make any attempt to remove our alt signal
 | |
| // stack if we remove our signal handlers; that can't be done reliably if
 | |
| // someone else is also trying to do the same thing.
 | |
| static stack_t OldAltStack;
 | |
| static void* NewAltStackPointer;
 | |
| 
 | |
| static void CreateSigAltStack() {
 | |
|   const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024;
 | |
| 
 | |
|   // If we're executing on the alternate stack, or we already have an alternate
 | |
|   // signal stack that we're happy with, there's nothing for us to do. Don't
 | |
|   // reduce the size, some other part of the process might need a larger stack
 | |
|   // than we do.
 | |
|   if (sigaltstack(nullptr, &OldAltStack) != 0 ||
 | |
|       OldAltStack.ss_flags & SS_ONSTACK ||
 | |
|       (OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize))
 | |
|     return;
 | |
| 
 | |
|   stack_t AltStack = {};
 | |
|   AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize));
 | |
|   NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak.
 | |
|   AltStack.ss_size = AltStackSize;
 | |
|   if (sigaltstack(&AltStack, &OldAltStack) != 0)
 | |
|     free(AltStack.ss_sp);
 | |
| }
 | |
| #else
 | |
| static void CreateSigAltStack() {}
 | |
| #endif
 | |
| 
 | |
| static void RegisterHandlers() { // Not signal-safe.
 | |
|   // The mutex prevents other threads from registering handlers while we're
 | |
|   // doing it. We also have to protect the handlers and their count because
 | |
|   // a signal handler could fire while we're registeting handlers.
 | |
|   static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex;
 | |
|   sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex);
 | |
| 
 | |
|   // If the handlers are already registered, we're done.
 | |
|   if (NumRegisteredSignals.load() != 0)
 | |
|     return;
 | |
| 
 | |
|   // Create an alternate stack for signal handling. This is necessary for us to
 | |
|   // be able to reliably handle signals due to stack overflow.
 | |
|   CreateSigAltStack();
 | |
| 
 | |
|   enum class SignalKind { IsKill, IsInfo };
 | |
|   auto registerHandler = [&](int Signal, SignalKind Kind) {
 | |
|     unsigned Index = NumRegisteredSignals.load();
 | |
|     assert(Index < array_lengthof(RegisteredSignalInfo) &&
 | |
|            "Out of space for signal handlers!");
 | |
| 
 | |
|     struct sigaction NewHandler;
 | |
| 
 | |
|     switch (Kind) {
 | |
|     case SignalKind::IsKill:
 | |
|       NewHandler.sa_handler = SignalHandler;
 | |
|       NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK;
 | |
|       break;
 | |
|     case SignalKind::IsInfo:
 | |
|       NewHandler.sa_handler = InfoSignalHandler;
 | |
|       NewHandler.sa_flags = SA_ONSTACK;
 | |
|       break;
 | |
|     }
 | |
|     sigemptyset(&NewHandler.sa_mask);
 | |
| 
 | |
|     // Install the new handler, save the old one in RegisteredSignalInfo.
 | |
|     sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA);
 | |
|     RegisteredSignalInfo[Index].SigNo = Signal;
 | |
|     ++NumRegisteredSignals;
 | |
|   };
 | |
| 
 | |
|   for (auto S : IntSigs)
 | |
|     registerHandler(S, SignalKind::IsKill);
 | |
|   for (auto S : KillSigs)
 | |
|     registerHandler(S, SignalKind::IsKill);
 | |
|   if (OneShotPipeSignalFunction)
 | |
|     registerHandler(SIGPIPE, SignalKind::IsKill);
 | |
|   for (auto S : InfoSigs)
 | |
|     registerHandler(S, SignalKind::IsInfo);
 | |
| }
 | |
| 
 | |
| static void UnregisterHandlers() {
 | |
|   // Restore all of the signal handlers to how they were before we showed up.
 | |
|   for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) {
 | |
|     sigaction(RegisteredSignalInfo[i].SigNo,
 | |
|               &RegisteredSignalInfo[i].SA, nullptr);
 | |
|     --NumRegisteredSignals;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Process the FilesToRemove list.
 | |
| static void RemoveFilesToRemove() {
 | |
|   FileToRemoveList::removeAllFiles(FilesToRemove);
 | |
| }
 | |
| 
 | |
| void sys::CleanupOnSignal(uintptr_t Context) {
 | |
|   int Sig = (int)Context;
 | |
| 
 | |
|   if (llvm::is_contained(InfoSigs, Sig)) {
 | |
|     InfoSignalHandler(Sig);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   RemoveFilesToRemove();
 | |
| 
 | |
|   if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE)
 | |
|     return;
 | |
| 
 | |
|   llvm::sys::RunSignalHandlers();
 | |
| }
 | |
| 
 | |
| // The signal handler that runs.
 | |
| static RETSIGTYPE SignalHandler(int Sig) {
 | |
|   // Restore the signal behavior to default, so that the program actually
 | |
|   // crashes when we return and the signal reissues.  This also ensures that if
 | |
|   // we crash in our signal handler that the program will terminate immediately
 | |
|   // instead of recursing in the signal handler.
 | |
|   UnregisterHandlers();
 | |
| 
 | |
|   // Unmask all potentially blocked kill signals.
 | |
|   sigset_t SigMask;
 | |
|   sigfillset(&SigMask);
 | |
|   sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);
 | |
| 
 | |
|   {
 | |
|     RemoveFilesToRemove();
 | |
| 
 | |
|     if (Sig == SIGPIPE)
 | |
|       if (auto OldOneShotPipeFunction =
 | |
|               OneShotPipeSignalFunction.exchange(nullptr))
 | |
|         return OldOneShotPipeFunction();
 | |
| 
 | |
|     if (std::find(std::begin(IntSigs), std::end(IntSigs), Sig)
 | |
|         != std::end(IntSigs)) {
 | |
|       if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr))
 | |
|         return OldInterruptFunction();
 | |
| 
 | |
|       raise(Sig);   // Execute the default handler.
 | |
|       return;
 | |
|    }
 | |
|   }
 | |
| 
 | |
|   // Otherwise if it is a fault (like SEGV) run any handler.
 | |
|   llvm::sys::RunSignalHandlers();
 | |
| 
 | |
| #ifdef __s390__
 | |
|   // On S/390, certain signals are delivered with PSW Address pointing to
 | |
|   // *after* the faulting instruction.  Simply returning from the signal
 | |
|   // handler would continue execution after that point, instead of
 | |
|   // re-raising the signal.  Raise the signal manually in those cases.
 | |
|   if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP)
 | |
|     raise(Sig);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static RETSIGTYPE InfoSignalHandler(int Sig) {
 | |
|   SaveAndRestore<int> SaveErrnoDuringASignalHandler(errno);
 | |
|   if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction)
 | |
|     CurrentInfoFunction();
 | |
| }
 | |
| 
 | |
| void llvm::sys::RunInterruptHandlers() {
 | |
|   RemoveFilesToRemove();
 | |
| }
 | |
| 
 | |
| void llvm::sys::SetInterruptFunction(void (*IF)()) {
 | |
|   InterruptFunction.exchange(IF);
 | |
|   RegisterHandlers();
 | |
| }
 | |
| 
 | |
| void llvm::sys::SetInfoSignalFunction(void (*Handler)()) {
 | |
|   InfoSignalFunction.exchange(Handler);
 | |
|   RegisterHandlers();
 | |
| }
 | |
| 
 | |
| void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) {
 | |
|   OneShotPipeSignalFunction.exchange(Handler);
 | |
|   RegisterHandlers();
 | |
| }
 | |
| 
 | |
| void llvm::sys::DefaultOneShotPipeSignalHandler() {
 | |
|   // Send a special return code that drivers can check for, from sysexits.h.
 | |
|   exit(EX_IOERR);
 | |
| }
 | |
| 
 | |
| // The public API
 | |
| bool llvm::sys::RemoveFileOnSignal(StringRef Filename,
 | |
|                                    std::string* ErrMsg) {
 | |
|   // Ensure that cleanup will occur as soon as one file is added.
 | |
|   static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup;
 | |
|   *FilesToRemoveCleanup;
 | |
|   FileToRemoveList::insert(FilesToRemove, Filename.str());
 | |
|   RegisterHandlers();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // The public API
 | |
| void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) {
 | |
|   FileToRemoveList::erase(FilesToRemove, Filename.str());
 | |
| }
 | |
| 
 | |
| /// Add a function to be called when a signal is delivered to the process. The
 | |
| /// handler can have a cookie passed to it to identify what instance of the
 | |
| /// handler it is.
 | |
| void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr,
 | |
|                                  void *Cookie) { // Signal-safe.
 | |
|   insertSignalHandler(FnPtr, Cookie);
 | |
|   RegisterHandlers();
 | |
| }
 | |
| 
 | |
| #if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H &&    \
 | |
|     (defined(__linux__) || defined(__FreeBSD__) ||                             \
 | |
|      defined(__FreeBSD_kernel__) || defined(__NetBSD__))
 | |
| struct DlIteratePhdrData {
 | |
|   void **StackTrace;
 | |
|   int depth;
 | |
|   bool first;
 | |
|   const char **modules;
 | |
|   intptr_t *offsets;
 | |
|   const char *main_exec_name;
 | |
| };
 | |
| 
 | |
| static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
 | |
|   DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
 | |
|   const char *name = data->first ? data->main_exec_name : info->dlpi_name;
 | |
|   data->first = false;
 | |
|   for (int i = 0; i < info->dlpi_phnum; i++) {
 | |
|     const auto *phdr = &info->dlpi_phdr[i];
 | |
|     if (phdr->p_type != PT_LOAD)
 | |
|       continue;
 | |
|     intptr_t beg = info->dlpi_addr + phdr->p_vaddr;
 | |
|     intptr_t end = beg + phdr->p_memsz;
 | |
|     for (int j = 0; j < data->depth; j++) {
 | |
|       if (data->modules[j])
 | |
|         continue;
 | |
|       intptr_t addr = (intptr_t)data->StackTrace[j];
 | |
|       if (beg <= addr && addr < end) {
 | |
|         data->modules[j] = name;
 | |
|         data->offsets[j] = addr - info->dlpi_addr;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// If this is an ELF platform, we can find all loaded modules and their virtual
 | |
| /// addresses with dl_iterate_phdr.
 | |
| static bool findModulesAndOffsets(void **StackTrace, int Depth,
 | |
|                                   const char **Modules, intptr_t *Offsets,
 | |
|                                   const char *MainExecutableName,
 | |
|                                   StringSaver &StrPool) {
 | |
|   DlIteratePhdrData data = {StackTrace, Depth,   true,
 | |
|                             Modules,    Offsets, MainExecutableName};
 | |
|   dl_iterate_phdr(dl_iterate_phdr_cb, &data);
 | |
|   return true;
 | |
| }
 | |
| #else
 | |
| /// This platform does not have dl_iterate_phdr, so we do not yet know how to
 | |
| /// find all loaded DSOs.
 | |
| static bool findModulesAndOffsets(void **StackTrace, int Depth,
 | |
|                                   const char **Modules, intptr_t *Offsets,
 | |
|                                   const char *MainExecutableName,
 | |
|                                   StringSaver &StrPool) {
 | |
|   return false;
 | |
| }
 | |
| #endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ...
 | |
| 
 | |
| #if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE)
 | |
| static int unwindBacktrace(void **StackTrace, int MaxEntries) {
 | |
|   if (MaxEntries < 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Skip the first frame ('unwindBacktrace' itself).
 | |
|   int Entries = -1;
 | |
| 
 | |
|   auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code {
 | |
|     // Apparently we need to detect reaching the end of the stack ourselves.
 | |
|     void *IP = (void *)_Unwind_GetIP(Context);
 | |
|     if (!IP)
 | |
|       return _URC_END_OF_STACK;
 | |
| 
 | |
|     assert(Entries < MaxEntries && "recursively called after END_OF_STACK?");
 | |
|     if (Entries >= 0)
 | |
|       StackTrace[Entries] = IP;
 | |
| 
 | |
|     if (++Entries == MaxEntries)
 | |
|       return _URC_END_OF_STACK;
 | |
|     return _URC_NO_REASON;
 | |
|   };
 | |
| 
 | |
|   _Unwind_Backtrace(
 | |
|       [](_Unwind_Context *Context, void *Handler) {
 | |
|         return (*static_cast<decltype(HandleFrame) *>(Handler))(Context);
 | |
|       },
 | |
|       static_cast<void *>(&HandleFrame));
 | |
|   return std::max(Entries, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // In the case of a program crash or fault, print out a stack trace so that the
 | |
| // user has an indication of why and where we died.
 | |
| //
 | |
| // On glibc systems we have the 'backtrace' function, which works nicely, but
 | |
| // doesn't demangle symbols.
 | |
| void llvm::sys::PrintStackTrace(raw_ostream &OS) {
 | |
| #if ENABLE_BACKTRACES
 | |
|   static void *StackTrace[256];
 | |
|   int depth = 0;
 | |
| #if defined(HAVE_BACKTRACE)
 | |
|   // Use backtrace() to output a backtrace on Linux systems with glibc.
 | |
|   if (!depth)
 | |
|     depth = backtrace(StackTrace, static_cast<int>(array_lengthof(StackTrace)));
 | |
| #endif
 | |
| #if defined(HAVE__UNWIND_BACKTRACE)
 | |
|   // Try _Unwind_Backtrace() if backtrace() failed.
 | |
|   if (!depth)
 | |
|     depth = unwindBacktrace(StackTrace,
 | |
|                         static_cast<int>(array_lengthof(StackTrace)));
 | |
| #endif
 | |
|   if (!depth)
 | |
|     return;
 | |
| 
 | |
|   if (printSymbolizedStackTrace(Argv0, StackTrace, depth, OS))
 | |
|     return;
 | |
| #if HAVE_DLFCN_H && HAVE_DLADDR
 | |
|   int width = 0;
 | |
|   for (int i = 0; i < depth; ++i) {
 | |
|     Dl_info dlinfo;
 | |
|     dladdr(StackTrace[i], &dlinfo);
 | |
|     const char* name = strrchr(dlinfo.dli_fname, '/');
 | |
| 
 | |
|     int nwidth;
 | |
|     if (!name) nwidth = strlen(dlinfo.dli_fname);
 | |
|     else       nwidth = strlen(name) - 1;
 | |
| 
 | |
|     if (nwidth > width) width = nwidth;
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < depth; ++i) {
 | |
|     Dl_info dlinfo;
 | |
|     dladdr(StackTrace[i], &dlinfo);
 | |
| 
 | |
|     OS << format("%-2d", i);
 | |
| 
 | |
|     const char* name = strrchr(dlinfo.dli_fname, '/');
 | |
|     if (!name) OS << format(" %-*s", width, dlinfo.dli_fname);
 | |
|     else       OS << format(" %-*s", width, name+1);
 | |
| 
 | |
|     OS << format(" %#0*lx", (int)(sizeof(void*) * 2) + 2,
 | |
|                  (unsigned long)StackTrace[i]);
 | |
| 
 | |
|     if (dlinfo.dli_sname != nullptr) {
 | |
|       OS << ' ';
 | |
|       int res;
 | |
|       char* d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res);
 | |
|       if (!d) OS << dlinfo.dli_sname;
 | |
|       else    OS << d;
 | |
|       free(d);
 | |
| 
 | |
|       OS << format(" + %tu", (static_cast<const char*>(StackTrace[i])-
 | |
|                               static_cast<const char*>(dlinfo.dli_saddr)));
 | |
|     }
 | |
|     OS << '\n';
 | |
|   }
 | |
| #elif defined(HAVE_BACKTRACE)
 | |
|   backtrace_symbols_fd(StackTrace, depth, STDERR_FILENO);
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void PrintStackTraceSignalHandler(void *) {
 | |
|   sys::PrintStackTrace(llvm::errs());
 | |
| }
 | |
| 
 | |
| void llvm::sys::DisableSystemDialogsOnCrash() {}
 | |
| 
 | |
| /// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the
 | |
| /// process, print a stack trace and then exit.
 | |
| void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0,
 | |
|                                              bool DisableCrashReporting) {
 | |
|   ::Argv0 = Argv0;
 | |
| 
 | |
|   AddSignalHandler(PrintStackTraceSignalHandler, nullptr);
 | |
| 
 | |
| #if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES
 | |
|   // Environment variable to disable any kind of crash dialog.
 | |
|   if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) {
 | |
|     mach_port_t self = mach_task_self();
 | |
| 
 | |
|     exception_mask_t mask = EXC_MASK_CRASH;
 | |
| 
 | |
|     kern_return_t ret = task_set_exception_ports(self,
 | |
|                              mask,
 | |
|                              MACH_PORT_NULL,
 | |
|                              EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES,
 | |
|                              THREAD_STATE_NONE);
 | |
|     (void)ret;
 | |
|   }
 | |
| #endif
 | |
| }
 |