4004 lines
		
	
	
		
			143 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4004 lines
		
	
	
		
			143 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/X86BaseInfo.h"
 | |
| #include "MCTargetDesc/X86IntelInstPrinter.h"
 | |
| #include "MCTargetDesc/X86MCExpr.h"
 | |
| #include "MCTargetDesc/X86TargetStreamer.h"
 | |
| #include "TargetInfo/X86TargetInfo.h"
 | |
| #include "X86AsmParserCommon.h"
 | |
| #include "X86Operand.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringSwitch.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/MC/MCInstrInfo.h"
 | |
| #include "llvm/MC/MCParser/MCAsmLexer.h"
 | |
| #include "llvm/MC/MCParser/MCAsmParser.h"
 | |
| #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
 | |
| #include "llvm/MC/MCParser/MCTargetAsmParser.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/MC/MCSection.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSubtargetInfo.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static bool checkScale(unsigned Scale, StringRef &ErrMsg) {
 | |
|   if (Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
 | |
|     ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static const char OpPrecedence[] = {
 | |
|   0, // IC_OR
 | |
|   1, // IC_XOR
 | |
|   2, // IC_AND
 | |
|   3, // IC_LSHIFT
 | |
|   3, // IC_RSHIFT
 | |
|   4, // IC_PLUS
 | |
|   4, // IC_MINUS
 | |
|   5, // IC_MULTIPLY
 | |
|   5, // IC_DIVIDE
 | |
|   5, // IC_MOD
 | |
|   6, // IC_NOT
 | |
|   7, // IC_NEG
 | |
|   8, // IC_RPAREN
 | |
|   9, // IC_LPAREN
 | |
|   0, // IC_IMM
 | |
|   0  // IC_REGISTER
 | |
| };
 | |
| 
 | |
| class X86AsmParser : public MCTargetAsmParser {
 | |
|   ParseInstructionInfo *InstInfo;
 | |
|   bool Code16GCC;
 | |
| 
 | |
|   enum VEXEncoding {
 | |
|     VEXEncoding_Default,
 | |
|     VEXEncoding_VEX2,
 | |
|     VEXEncoding_VEX3,
 | |
|     VEXEncoding_EVEX,
 | |
|   };
 | |
| 
 | |
|   VEXEncoding ForcedVEXEncoding = VEXEncoding_Default;
 | |
| 
 | |
| private:
 | |
|   SMLoc consumeToken() {
 | |
|     MCAsmParser &Parser = getParser();
 | |
|     SMLoc Result = Parser.getTok().getLoc();
 | |
|     Parser.Lex();
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   X86TargetStreamer &getTargetStreamer() {
 | |
|     assert(getParser().getStreamer().getTargetStreamer() &&
 | |
|            "do not have a target streamer");
 | |
|     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
 | |
|     return static_cast<X86TargetStreamer &>(TS);
 | |
|   }
 | |
| 
 | |
|   unsigned MatchInstruction(const OperandVector &Operands, MCInst &Inst,
 | |
|                             uint64_t &ErrorInfo, FeatureBitset &MissingFeatures,
 | |
|                             bool matchingInlineAsm, unsigned VariantID = 0) {
 | |
|     // In Code16GCC mode, match as 32-bit.
 | |
|     if (Code16GCC)
 | |
|       SwitchMode(X86::Mode32Bit);
 | |
|     unsigned rv = MatchInstructionImpl(Operands, Inst, ErrorInfo,
 | |
|                                        MissingFeatures, matchingInlineAsm,
 | |
|                                        VariantID);
 | |
|     if (Code16GCC)
 | |
|       SwitchMode(X86::Mode16Bit);
 | |
|     return rv;
 | |
|   }
 | |
| 
 | |
|   enum InfixCalculatorTok {
 | |
|     IC_OR = 0,
 | |
|     IC_XOR,
 | |
|     IC_AND,
 | |
|     IC_LSHIFT,
 | |
|     IC_RSHIFT,
 | |
|     IC_PLUS,
 | |
|     IC_MINUS,
 | |
|     IC_MULTIPLY,
 | |
|     IC_DIVIDE,
 | |
|     IC_MOD,
 | |
|     IC_NOT,
 | |
|     IC_NEG,
 | |
|     IC_RPAREN,
 | |
|     IC_LPAREN,
 | |
|     IC_IMM,
 | |
|     IC_REGISTER
 | |
|   };
 | |
| 
 | |
|   enum IntelOperatorKind {
 | |
|     IOK_INVALID = 0,
 | |
|     IOK_LENGTH,
 | |
|     IOK_SIZE,
 | |
|     IOK_TYPE,
 | |
|   };
 | |
| 
 | |
|   class InfixCalculator {
 | |
|     typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
 | |
|     SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
 | |
|     SmallVector<ICToken, 4> PostfixStack;
 | |
| 
 | |
|     bool isUnaryOperator(const InfixCalculatorTok Op) {
 | |
|       return Op == IC_NEG || Op == IC_NOT;
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     int64_t popOperand() {
 | |
|       assert (!PostfixStack.empty() && "Poped an empty stack!");
 | |
|       ICToken Op = PostfixStack.pop_back_val();
 | |
|       if (!(Op.first == IC_IMM || Op.first == IC_REGISTER))
 | |
|         return -1; // The invalid Scale value will be caught later by checkScale
 | |
|       return Op.second;
 | |
|     }
 | |
|     void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
 | |
|       assert ((Op == IC_IMM || Op == IC_REGISTER) &&
 | |
|               "Unexpected operand!");
 | |
|       PostfixStack.push_back(std::make_pair(Op, Val));
 | |
|     }
 | |
| 
 | |
|     void popOperator() { InfixOperatorStack.pop_back(); }
 | |
|     void pushOperator(InfixCalculatorTok Op) {
 | |
|       // Push the new operator if the stack is empty.
 | |
|       if (InfixOperatorStack.empty()) {
 | |
|         InfixOperatorStack.push_back(Op);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Push the new operator if it has a higher precedence than the operator
 | |
|       // on the top of the stack or the operator on the top of the stack is a
 | |
|       // left parentheses.
 | |
|       unsigned Idx = InfixOperatorStack.size() - 1;
 | |
|       InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
 | |
|       if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
 | |
|         InfixOperatorStack.push_back(Op);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // The operator on the top of the stack has higher precedence than the
 | |
|       // new operator.
 | |
|       unsigned ParenCount = 0;
 | |
|       while (1) {
 | |
|         // Nothing to process.
 | |
|         if (InfixOperatorStack.empty())
 | |
|           break;
 | |
| 
 | |
|         Idx = InfixOperatorStack.size() - 1;
 | |
|         StackOp = InfixOperatorStack[Idx];
 | |
|         if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
 | |
|           break;
 | |
| 
 | |
|         // If we have an even parentheses count and we see a left parentheses,
 | |
|         // then stop processing.
 | |
|         if (!ParenCount && StackOp == IC_LPAREN)
 | |
|           break;
 | |
| 
 | |
|         if (StackOp == IC_RPAREN) {
 | |
|           ++ParenCount;
 | |
|           InfixOperatorStack.pop_back();
 | |
|         } else if (StackOp == IC_LPAREN) {
 | |
|           --ParenCount;
 | |
|           InfixOperatorStack.pop_back();
 | |
|         } else {
 | |
|           InfixOperatorStack.pop_back();
 | |
|           PostfixStack.push_back(std::make_pair(StackOp, 0));
 | |
|         }
 | |
|       }
 | |
|       // Push the new operator.
 | |
|       InfixOperatorStack.push_back(Op);
 | |
|     }
 | |
| 
 | |
|     int64_t execute() {
 | |
|       // Push any remaining operators onto the postfix stack.
 | |
|       while (!InfixOperatorStack.empty()) {
 | |
|         InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
 | |
|         if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
 | |
|           PostfixStack.push_back(std::make_pair(StackOp, 0));
 | |
|       }
 | |
| 
 | |
|       if (PostfixStack.empty())
 | |
|         return 0;
 | |
| 
 | |
|       SmallVector<ICToken, 16> OperandStack;
 | |
|       for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
 | |
|         ICToken Op = PostfixStack[i];
 | |
|         if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
 | |
|           OperandStack.push_back(Op);
 | |
|         } else if (isUnaryOperator(Op.first)) {
 | |
|           assert (OperandStack.size() > 0 && "Too few operands.");
 | |
|           ICToken Operand = OperandStack.pop_back_val();
 | |
|           assert (Operand.first == IC_IMM &&
 | |
|                   "Unary operation with a register!");
 | |
|           switch (Op.first) {
 | |
|           default:
 | |
|             report_fatal_error("Unexpected operator!");
 | |
|             break;
 | |
|           case IC_NEG:
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, -Operand.second));
 | |
|             break;
 | |
|           case IC_NOT:
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, ~Operand.second));
 | |
|             break;
 | |
|           }
 | |
|         } else {
 | |
|           assert (OperandStack.size() > 1 && "Too few operands.");
 | |
|           int64_t Val;
 | |
|           ICToken Op2 = OperandStack.pop_back_val();
 | |
|           ICToken Op1 = OperandStack.pop_back_val();
 | |
|           switch (Op.first) {
 | |
|           default:
 | |
|             report_fatal_error("Unexpected operator!");
 | |
|             break;
 | |
|           case IC_PLUS:
 | |
|             Val = Op1.second + Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_MINUS:
 | |
|             Val = Op1.second - Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_MULTIPLY:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Multiply operation with an immediate and a register!");
 | |
|             Val = Op1.second * Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_DIVIDE:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Divide operation with an immediate and a register!");
 | |
|             assert (Op2.second != 0 && "Division by zero!");
 | |
|             Val = Op1.second / Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_MOD:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Modulo operation with an immediate and a register!");
 | |
|             Val = Op1.second % Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_OR:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Or operation with an immediate and a register!");
 | |
|             Val = Op1.second | Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_XOR:
 | |
|             assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|               "Xor operation with an immediate and a register!");
 | |
|             Val = Op1.second ^ Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_AND:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "And operation with an immediate and a register!");
 | |
|             Val = Op1.second & Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_LSHIFT:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Left shift operation with an immediate and a register!");
 | |
|             Val = Op1.second << Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           case IC_RSHIFT:
 | |
|             assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
 | |
|                     "Right shift operation with an immediate and a register!");
 | |
|             Val = Op1.second >> Op2.second;
 | |
|             OperandStack.push_back(std::make_pair(IC_IMM, Val));
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       assert (OperandStack.size() == 1 && "Expected a single result.");
 | |
|       return OperandStack.pop_back_val().second;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   enum IntelExprState {
 | |
|     IES_INIT,
 | |
|     IES_OR,
 | |
|     IES_XOR,
 | |
|     IES_AND,
 | |
|     IES_LSHIFT,
 | |
|     IES_RSHIFT,
 | |
|     IES_PLUS,
 | |
|     IES_MINUS,
 | |
|     IES_OFFSET,
 | |
|     IES_NOT,
 | |
|     IES_MULTIPLY,
 | |
|     IES_DIVIDE,
 | |
|     IES_MOD,
 | |
|     IES_LBRAC,
 | |
|     IES_RBRAC,
 | |
|     IES_LPAREN,
 | |
|     IES_RPAREN,
 | |
|     IES_REGISTER,
 | |
|     IES_INTEGER,
 | |
|     IES_IDENTIFIER,
 | |
|     IES_ERROR
 | |
|   };
 | |
| 
 | |
|   class IntelExprStateMachine {
 | |
|     IntelExprState State, PrevState;
 | |
|     unsigned BaseReg, IndexReg, TmpReg, Scale;
 | |
|     int64_t Imm;
 | |
|     const MCExpr *Sym;
 | |
|     StringRef SymName;
 | |
|     InfixCalculator IC;
 | |
|     InlineAsmIdentifierInfo Info;
 | |
|     short BracCount;
 | |
|     bool MemExpr;
 | |
|     bool OffsetOperator;
 | |
|     SMLoc OffsetOperatorLoc;
 | |
| 
 | |
|     bool setSymRef(const MCExpr *Val, StringRef ID, StringRef &ErrMsg) {
 | |
|       if (Sym) {
 | |
|         ErrMsg = "cannot use more than one symbol in memory operand";
 | |
|         return true;
 | |
|       }
 | |
|       Sym = Val;
 | |
|       SymName = ID;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     IntelExprStateMachine()
 | |
|         : State(IES_INIT), PrevState(IES_ERROR), BaseReg(0), IndexReg(0),
 | |
|           TmpReg(0), Scale(0), Imm(0), Sym(nullptr), BracCount(0),
 | |
|           MemExpr(false), OffsetOperator(false) {}
 | |
| 
 | |
|     void addImm(int64_t imm) { Imm += imm; }
 | |
|     short getBracCount() { return BracCount; }
 | |
|     bool isMemExpr() { return MemExpr; }
 | |
|     bool isOffsetOperator() { return OffsetOperator; }
 | |
|     SMLoc getOffsetLoc() { return OffsetOperatorLoc; }
 | |
|     unsigned getBaseReg() { return BaseReg; }
 | |
|     unsigned getIndexReg() { return IndexReg; }
 | |
|     unsigned getScale() { return Scale; }
 | |
|     const MCExpr *getSym() { return Sym; }
 | |
|     StringRef getSymName() { return SymName; }
 | |
|     int64_t getImm() { return Imm + IC.execute(); }
 | |
|     bool isValidEndState() {
 | |
|       return State == IES_RBRAC || State == IES_INTEGER;
 | |
|     }
 | |
|     bool hadError() { return State == IES_ERROR; }
 | |
|     InlineAsmIdentifierInfo &getIdentifierInfo() { return Info; }
 | |
| 
 | |
|     void onOr() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_OR;
 | |
|         IC.pushOperator(IC_OR);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onXor() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_XOR;
 | |
|         IC.pushOperator(IC_XOR);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onAnd() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_AND;
 | |
|         IC.pushOperator(IC_AND);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onLShift() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_LSHIFT;
 | |
|         IC.pushOperator(IC_LSHIFT);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onRShift() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|         State = IES_RSHIFT;
 | |
|         IC.pushOperator(IC_RSHIFT);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     bool onPlus(StringRef &ErrMsg) {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|       case IES_REGISTER:
 | |
|       case IES_OFFSET:
 | |
|         State = IES_PLUS;
 | |
|         IC.pushOperator(IC_PLUS);
 | |
|         if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | |
|           // If we already have a BaseReg, then assume this is the IndexReg with
 | |
|           // no explicit scale.
 | |
|           if (!BaseReg) {
 | |
|             BaseReg = TmpReg;
 | |
|           } else {
 | |
|             if (IndexReg) {
 | |
|               ErrMsg = "BaseReg/IndexReg already set!";
 | |
|               return true;
 | |
|             }
 | |
|             IndexReg = TmpReg;
 | |
|             Scale = 0;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|       return false;
 | |
|     }
 | |
|     bool onMinus(StringRef &ErrMsg) {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_OR:
 | |
|       case IES_XOR:
 | |
|       case IES_AND:
 | |
|       case IES_LSHIFT:
 | |
|       case IES_RSHIFT:
 | |
|       case IES_PLUS:
 | |
|       case IES_NOT:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_MOD:
 | |
|       case IES_LPAREN:
 | |
|       case IES_RPAREN:
 | |
|       case IES_LBRAC:
 | |
|       case IES_RBRAC:
 | |
|       case IES_INTEGER:
 | |
|       case IES_REGISTER:
 | |
|       case IES_INIT:
 | |
|       case IES_OFFSET:
 | |
|         State = IES_MINUS;
 | |
|         // push minus operator if it is not a negate operator
 | |
|         if (CurrState == IES_REGISTER || CurrState == IES_RPAREN ||
 | |
|             CurrState == IES_INTEGER  || CurrState == IES_RBRAC  ||
 | |
|             CurrState == IES_OFFSET)
 | |
|           IC.pushOperator(IC_MINUS);
 | |
|         else if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | |
|           // We have negate operator for Scale: it's illegal
 | |
|           ErrMsg = "Scale can't be negative";
 | |
|           return true;
 | |
|         } else
 | |
|           IC.pushOperator(IC_NEG);
 | |
|         if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | |
|           // If we already have a BaseReg, then assume this is the IndexReg with
 | |
|           // no explicit scale.
 | |
|           if (!BaseReg) {
 | |
|             BaseReg = TmpReg;
 | |
|           } else {
 | |
|             if (IndexReg) {
 | |
|               ErrMsg = "BaseReg/IndexReg already set!";
 | |
|               return true;
 | |
|             }
 | |
|             IndexReg = TmpReg;
 | |
|             Scale = 0;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|       return false;
 | |
|     }
 | |
|     void onNot() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_OR:
 | |
|       case IES_XOR:
 | |
|       case IES_AND:
 | |
|       case IES_LSHIFT:
 | |
|       case IES_RSHIFT:
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_MOD:
 | |
|       case IES_LPAREN:
 | |
|       case IES_LBRAC:
 | |
|       case IES_INIT:
 | |
|         State = IES_NOT;
 | |
|         IC.pushOperator(IC_NOT);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     bool onRegister(unsigned Reg, StringRef &ErrMsg) {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_LPAREN:
 | |
|       case IES_LBRAC:
 | |
|         State = IES_REGISTER;
 | |
|         TmpReg = Reg;
 | |
|         IC.pushOperand(IC_REGISTER);
 | |
|         break;
 | |
|       case IES_MULTIPLY:
 | |
|         // Index Register - Scale * Register
 | |
|         if (PrevState == IES_INTEGER) {
 | |
|           if (IndexReg) {
 | |
|             ErrMsg = "BaseReg/IndexReg already set!";
 | |
|             return true;
 | |
|           }
 | |
|           State = IES_REGISTER;
 | |
|           IndexReg = Reg;
 | |
|           // Get the scale and replace the 'Scale * Register' with '0'.
 | |
|           Scale = IC.popOperand();
 | |
|           if (checkScale(Scale, ErrMsg))
 | |
|             return true;
 | |
|           IC.pushOperand(IC_IMM);
 | |
|           IC.popOperator();
 | |
|         } else {
 | |
|           State = IES_ERROR;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|       return false;
 | |
|     }
 | |
|     bool onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName,
 | |
|                           const InlineAsmIdentifierInfo &IDInfo,
 | |
|                           bool ParsingMSInlineAsm, StringRef &ErrMsg) {
 | |
|       // InlineAsm: Treat an enum value as an integer
 | |
|       if (ParsingMSInlineAsm)
 | |
|         if (IDInfo.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
 | |
|           return onInteger(IDInfo.Enum.EnumVal, ErrMsg);
 | |
|       // Treat a symbolic constant like an integer
 | |
|       if (auto *CE = dyn_cast<MCConstantExpr>(SymRef))
 | |
|         return onInteger(CE->getValue(), ErrMsg);
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|       case IES_INIT:
 | |
|       case IES_LBRAC:
 | |
|         if (setSymRef(SymRef, SymRefName, ErrMsg))
 | |
|           return true;
 | |
|         MemExpr = true;
 | |
|         State = IES_INTEGER;
 | |
|         IC.pushOperand(IC_IMM);
 | |
|         if (ParsingMSInlineAsm)
 | |
|           Info = IDInfo;
 | |
|         break;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|     bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|       case IES_OR:
 | |
|       case IES_XOR:
 | |
|       case IES_AND:
 | |
|       case IES_LSHIFT:
 | |
|       case IES_RSHIFT:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_MOD:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_LPAREN:
 | |
|       case IES_INIT:
 | |
|       case IES_LBRAC:
 | |
|         State = IES_INTEGER;
 | |
|         if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
 | |
|           // Index Register - Register * Scale
 | |
|           if (IndexReg) {
 | |
|             ErrMsg = "BaseReg/IndexReg already set!";
 | |
|             return true;
 | |
|           }
 | |
|           IndexReg = TmpReg;
 | |
|           Scale = TmpInt;
 | |
|           if (checkScale(Scale, ErrMsg))
 | |
|             return true;
 | |
|           // Get the scale and replace the 'Register * Scale' with '0'.
 | |
|           IC.popOperator();
 | |
|         } else {
 | |
|           IC.pushOperand(IC_IMM, TmpInt);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|       return false;
 | |
|     }
 | |
|     void onStar() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_REGISTER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_MULTIPLY;
 | |
|         IC.pushOperator(IC_MULTIPLY);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     void onDivide() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_DIVIDE;
 | |
|         IC.pushOperator(IC_DIVIDE);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     void onMod() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_MOD;
 | |
|         IC.pushOperator(IC_MOD);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     bool onLBrac() {
 | |
|       if (BracCount)
 | |
|         return true;
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_RBRAC:
 | |
|       case IES_INTEGER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_PLUS;
 | |
|         IC.pushOperator(IC_PLUS);
 | |
|         break;
 | |
|       case IES_INIT:
 | |
|         assert(!BracCount && "BracCount should be zero on parsing's start");
 | |
|         State = IES_LBRAC;
 | |
|         break;
 | |
|       }
 | |
|       MemExpr = true;
 | |
|       BracCount++;
 | |
|       return false;
 | |
|     }
 | |
|     bool onRBrac() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_OFFSET:
 | |
|       case IES_REGISTER:
 | |
|       case IES_RPAREN:
 | |
|         if (BracCount-- != 1)
 | |
|           return true;
 | |
|         State = IES_RBRAC;
 | |
|         if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
 | |
|           // If we already have a BaseReg, then assume this is the IndexReg with
 | |
|           // no explicit scale.
 | |
|           if (!BaseReg) {
 | |
|             BaseReg = TmpReg;
 | |
|           } else {
 | |
|             assert (!IndexReg && "BaseReg/IndexReg already set!");
 | |
|             IndexReg = TmpReg;
 | |
|             Scale = 0;
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|       return false;
 | |
|     }
 | |
|     void onLParen() {
 | |
|       IntelExprState CurrState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_PLUS:
 | |
|       case IES_MINUS:
 | |
|       case IES_NOT:
 | |
|       case IES_OR:
 | |
|       case IES_XOR:
 | |
|       case IES_AND:
 | |
|       case IES_LSHIFT:
 | |
|       case IES_RSHIFT:
 | |
|       case IES_MULTIPLY:
 | |
|       case IES_DIVIDE:
 | |
|       case IES_MOD:
 | |
|       case IES_LPAREN:
 | |
|       case IES_INIT:
 | |
|       case IES_LBRAC:
 | |
|         State = IES_LPAREN;
 | |
|         IC.pushOperator(IC_LPAREN);
 | |
|         break;
 | |
|       }
 | |
|       PrevState = CurrState;
 | |
|     }
 | |
|     void onRParen() {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         State = IES_ERROR;
 | |
|         break;
 | |
|       case IES_INTEGER:
 | |
|       case IES_OFFSET:
 | |
|       case IES_REGISTER:
 | |
|       case IES_RPAREN:
 | |
|         State = IES_RPAREN;
 | |
|         IC.pushOperator(IC_RPAREN);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     bool onOffset(const MCExpr *Val, SMLoc OffsetLoc, StringRef ID,
 | |
|                   const InlineAsmIdentifierInfo &IDInfo, bool ParsingMSInlineAsm,
 | |
|                   StringRef &ErrMsg) {
 | |
|       PrevState = State;
 | |
|       switch (State) {
 | |
|       default:
 | |
|         ErrMsg = "unexpected offset operator expression";
 | |
|         return true;
 | |
|       case IES_PLUS:
 | |
|       case IES_INIT:
 | |
|       case IES_LBRAC:
 | |
|         if (setSymRef(Val, ID, ErrMsg))
 | |
|           return true;
 | |
|         OffsetOperator = true;
 | |
|         OffsetOperatorLoc = OffsetLoc;
 | |
|         State = IES_OFFSET;
 | |
|         // As we cannot yet resolve the actual value (offset), we retain
 | |
|         // the requested semantics by pushing a '0' to the operands stack
 | |
|         IC.pushOperand(IC_IMM);
 | |
|         if (ParsingMSInlineAsm) {
 | |
|           Info = IDInfo;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None,
 | |
|              bool MatchingInlineAsm = false) {
 | |
|     MCAsmParser &Parser = getParser();
 | |
|     if (MatchingInlineAsm) {
 | |
|       if (!getLexer().isAtStartOfStatement())
 | |
|         Parser.eatToEndOfStatement();
 | |
|       return false;
 | |
|     }
 | |
|     return Parser.Error(L, Msg, Range);
 | |
|   }
 | |
| 
 | |
|   std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg, SMRange R = SMRange()) {
 | |
|     Error(Loc, Msg, R);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
 | |
|                      bool RestoreOnFailure);
 | |
| 
 | |
|   std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
 | |
|   std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
 | |
|   bool IsSIReg(unsigned Reg);
 | |
|   unsigned GetSIDIForRegClass(unsigned RegClassID, unsigned Reg, bool IsSIReg);
 | |
|   void
 | |
|   AddDefaultSrcDestOperands(OperandVector &Operands,
 | |
|                             std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
 | |
|                             std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
 | |
|   bool VerifyAndAdjustOperands(OperandVector &OrigOperands,
 | |
|                                OperandVector &FinalOperands);
 | |
|   std::unique_ptr<X86Operand> ParseOperand();
 | |
|   std::unique_ptr<X86Operand> ParseATTOperand();
 | |
|   std::unique_ptr<X86Operand> ParseIntelOperand();
 | |
|   bool ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
 | |
|                                 InlineAsmIdentifierInfo &Info, SMLoc &End);
 | |
|   bool ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End);
 | |
|   unsigned IdentifyIntelInlineAsmOperator(StringRef Name);
 | |
|   unsigned ParseIntelInlineAsmOperator(unsigned OpKind);
 | |
|   std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start);
 | |
|   bool ParseIntelNamedOperator(StringRef Name, IntelExprStateMachine &SM,
 | |
|                                bool &ParseError, SMLoc &End);
 | |
|   void RewriteIntelExpression(IntelExprStateMachine &SM, SMLoc Start,
 | |
|                               SMLoc End);
 | |
|   bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
 | |
|   bool ParseIntelInlineAsmIdentifier(const MCExpr *&Val, StringRef &Identifier,
 | |
|                                      InlineAsmIdentifierInfo &Info,
 | |
|                                      bool IsUnevaluatedOperand, SMLoc &End,
 | |
|                                      bool IsParsingOffsetOperator = false);
 | |
| 
 | |
|   std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg,
 | |
|                                               const MCExpr *&Disp,
 | |
|                                               const SMLoc &StartLoc,
 | |
|                                               SMLoc &EndLoc);
 | |
| 
 | |
|   X86::CondCode ParseConditionCode(StringRef CCode);
 | |
| 
 | |
|   bool ParseIntelMemoryOperandSize(unsigned &Size);
 | |
|   std::unique_ptr<X86Operand>
 | |
|   CreateMemForMSInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
 | |
|                           unsigned IndexReg, unsigned Scale, SMLoc Start,
 | |
|                           SMLoc End, unsigned Size, StringRef Identifier,
 | |
|                           const InlineAsmIdentifierInfo &Info);
 | |
| 
 | |
|   bool parseDirectiveEven(SMLoc L);
 | |
|   bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
 | |
| 
 | |
|   /// CodeView FPO data directives.
 | |
|   bool parseDirectiveFPOProc(SMLoc L);
 | |
|   bool parseDirectiveFPOSetFrame(SMLoc L);
 | |
|   bool parseDirectiveFPOPushReg(SMLoc L);
 | |
|   bool parseDirectiveFPOStackAlloc(SMLoc L);
 | |
|   bool parseDirectiveFPOStackAlign(SMLoc L);
 | |
|   bool parseDirectiveFPOEndPrologue(SMLoc L);
 | |
|   bool parseDirectiveFPOEndProc(SMLoc L);
 | |
|   bool parseDirectiveFPOData(SMLoc L);
 | |
| 
 | |
|   /// SEH directives.
 | |
|   bool parseSEHRegisterNumber(unsigned RegClassID, unsigned &RegNo);
 | |
|   bool parseDirectiveSEHPushReg(SMLoc);
 | |
|   bool parseDirectiveSEHSetFrame(SMLoc);
 | |
|   bool parseDirectiveSEHSaveReg(SMLoc);
 | |
|   bool parseDirectiveSEHSaveXMM(SMLoc);
 | |
|   bool parseDirectiveSEHPushFrame(SMLoc);
 | |
| 
 | |
|   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
 | |
| 
 | |
|   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
 | |
|   bool processInstruction(MCInst &Inst, const OperandVector &Ops);
 | |
| 
 | |
|   /// Wrapper around MCStreamer::emitInstruction(). Possibly adds
 | |
|   /// instrumentation around Inst.
 | |
|   void emitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
 | |
| 
 | |
|   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                OperandVector &Operands, MCStreamer &Out,
 | |
|                                uint64_t &ErrorInfo,
 | |
|                                bool MatchingInlineAsm) override;
 | |
| 
 | |
|   void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
 | |
|                          MCStreamer &Out, bool MatchingInlineAsm);
 | |
| 
 | |
|   bool ErrorMissingFeature(SMLoc IDLoc, const FeatureBitset &MissingFeatures,
 | |
|                            bool MatchingInlineAsm);
 | |
| 
 | |
|   bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                   OperandVector &Operands, MCStreamer &Out,
 | |
|                                   uint64_t &ErrorInfo,
 | |
|                                   bool MatchingInlineAsm);
 | |
| 
 | |
|   bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                     OperandVector &Operands, MCStreamer &Out,
 | |
|                                     uint64_t &ErrorInfo,
 | |
|                                     bool MatchingInlineAsm);
 | |
| 
 | |
|   bool OmitRegisterFromClobberLists(unsigned RegNo) override;
 | |
| 
 | |
|   /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
 | |
|   /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
 | |
|   /// return false if no parsing errors occurred, true otherwise.
 | |
|   bool HandleAVX512Operand(OperandVector &Operands,
 | |
|                            const MCParsedAsmOperand &Op);
 | |
| 
 | |
|   bool ParseZ(std::unique_ptr<X86Operand> &Z, const SMLoc &StartLoc);
 | |
| 
 | |
|   bool is64BitMode() const {
 | |
|     // FIXME: Can tablegen auto-generate this?
 | |
|     return getSTI().getFeatureBits()[X86::Mode64Bit];
 | |
|   }
 | |
|   bool is32BitMode() const {
 | |
|     // FIXME: Can tablegen auto-generate this?
 | |
|     return getSTI().getFeatureBits()[X86::Mode32Bit];
 | |
|   }
 | |
|   bool is16BitMode() const {
 | |
|     // FIXME: Can tablegen auto-generate this?
 | |
|     return getSTI().getFeatureBits()[X86::Mode16Bit];
 | |
|   }
 | |
|   void SwitchMode(unsigned mode) {
 | |
|     MCSubtargetInfo &STI = copySTI();
 | |
|     FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
 | |
|     FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
 | |
|     FeatureBitset FB = ComputeAvailableFeatures(
 | |
|       STI.ToggleFeature(OldMode.flip(mode)));
 | |
|     setAvailableFeatures(FB);
 | |
| 
 | |
|     assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
 | |
|   }
 | |
| 
 | |
|   unsigned getPointerWidth() {
 | |
|     if (is16BitMode()) return 16;
 | |
|     if (is32BitMode()) return 32;
 | |
|     if (is64BitMode()) return 64;
 | |
|     llvm_unreachable("invalid mode");
 | |
|   }
 | |
| 
 | |
|   bool isParsingIntelSyntax() {
 | |
|     return getParser().getAssemblerDialect();
 | |
|   }
 | |
| 
 | |
|   /// @name Auto-generated Matcher Functions
 | |
|   /// {
 | |
| 
 | |
| #define GET_ASSEMBLER_HEADER
 | |
| #include "X86GenAsmMatcher.inc"
 | |
| 
 | |
|   /// }
 | |
| 
 | |
| public:
 | |
|   enum X86MatchResultTy {
 | |
|     Match_Unsupported = FIRST_TARGET_MATCH_RESULT_TY,
 | |
| #define GET_OPERAND_DIAGNOSTIC_TYPES
 | |
| #include "X86GenAsmMatcher.inc"
 | |
|   };
 | |
| 
 | |
|   X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
 | |
|                const MCInstrInfo &mii, const MCTargetOptions &Options)
 | |
|       : MCTargetAsmParser(Options, sti, mii),  InstInfo(nullptr),
 | |
|         Code16GCC(false) {
 | |
| 
 | |
|     Parser.addAliasForDirective(".word", ".2byte");
 | |
| 
 | |
|     // Initialize the set of available features.
 | |
|     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
 | |
|   }
 | |
| 
 | |
|   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
 | |
|   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
 | |
|                                         SMLoc &EndLoc) override;
 | |
| 
 | |
|   bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
 | |
| 
 | |
|   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | |
|                         SMLoc NameLoc, OperandVector &Operands) override;
 | |
| 
 | |
|   bool ParseDirective(AsmToken DirectiveID) override;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// @name Auto-generated Match Functions
 | |
| /// {
 | |
| 
 | |
| static unsigned MatchRegisterName(StringRef Name);
 | |
| 
 | |
| /// }
 | |
| 
 | |
| static bool CheckBaseRegAndIndexRegAndScale(unsigned BaseReg, unsigned IndexReg,
 | |
|                                             unsigned Scale, bool Is64BitMode,
 | |
|                                             StringRef &ErrMsg) {
 | |
|   // If we have both a base register and an index register make sure they are
 | |
|   // both 64-bit or 32-bit registers.
 | |
|   // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
 | |
| 
 | |
|   if (BaseReg != 0 &&
 | |
|       !(BaseReg == X86::RIP || BaseReg == X86::EIP ||
 | |
|         X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) ||
 | |
|         X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) ||
 | |
|         X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg))) {
 | |
|     ErrMsg = "invalid base+index expression";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (IndexReg != 0 &&
 | |
|       !(IndexReg == X86::EIZ || IndexReg == X86::RIZ ||
 | |
|         X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg))) {
 | |
|     ErrMsg = "invalid base+index expression";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (((BaseReg == X86::RIP || BaseReg == X86::EIP) && IndexReg != 0) ||
 | |
|       IndexReg == X86::EIP || IndexReg == X86::RIP ||
 | |
|       IndexReg == X86::ESP || IndexReg == X86::RSP) {
 | |
|     ErrMsg = "invalid base+index expression";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
 | |
|   // and then only in non-64-bit modes.
 | |
|   if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | |
|       (Is64BitMode || (BaseReg != X86::BX && BaseReg != X86::BP &&
 | |
|                        BaseReg != X86::SI && BaseReg != X86::DI))) {
 | |
|     ErrMsg = "invalid 16-bit base register";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (BaseReg == 0 &&
 | |
|       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
 | |
|     ErrMsg = "16-bit memory operand may not include only index register";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (BaseReg != 0 && IndexReg != 0) {
 | |
|     if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
 | |
|         (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | |
|          X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | |
|          IndexReg == X86::EIZ)) {
 | |
|       ErrMsg = "base register is 64-bit, but index register is not";
 | |
|       return true;
 | |
|     }
 | |
|     if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
 | |
|         (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
 | |
|          X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg) ||
 | |
|          IndexReg == X86::RIZ)) {
 | |
|       ErrMsg = "base register is 32-bit, but index register is not";
 | |
|       return true;
 | |
|     }
 | |
|     if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
 | |
|       if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
 | |
|           X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
 | |
|         ErrMsg = "base register is 16-bit, but index register is not";
 | |
|         return true;
 | |
|       }
 | |
|       if ((BaseReg != X86::BX && BaseReg != X86::BP) ||
 | |
|           (IndexReg != X86::SI && IndexReg != X86::DI)) {
 | |
|         ErrMsg = "invalid 16-bit base/index register combination";
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // RIP/EIP-relative addressing is only supported in 64-bit mode.
 | |
|   if (!Is64BitMode && BaseReg != 0 &&
 | |
|       (BaseReg == X86::RIP || BaseReg == X86::EIP)) {
 | |
|     ErrMsg = "IP-relative addressing requires 64-bit mode";
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return checkScale(Scale, ErrMsg);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
 | |
|                                  SMLoc &EndLoc, bool RestoreOnFailure) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   MCAsmLexer &Lexer = getLexer();
 | |
|   RegNo = 0;
 | |
| 
 | |
|   SmallVector<AsmToken, 5> Tokens;
 | |
|   auto OnFailure = [RestoreOnFailure, &Lexer, &Tokens]() {
 | |
|     if (RestoreOnFailure) {
 | |
|       while (!Tokens.empty()) {
 | |
|         Lexer.UnLex(Tokens.pop_back_val());
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   const AsmToken &PercentTok = Parser.getTok();
 | |
|   StartLoc = PercentTok.getLoc();
 | |
| 
 | |
|   // If we encounter a %, ignore it. This code handles registers with and
 | |
|   // without the prefix, unprefixed registers can occur in cfi directives.
 | |
|   if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) {
 | |
|     Tokens.push_back(PercentTok);
 | |
|     Parser.Lex(); // Eat percent token.
 | |
|   }
 | |
| 
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   EndLoc = Tok.getEndLoc();
 | |
| 
 | |
|   if (Tok.isNot(AsmToken::Identifier)) {
 | |
|     OnFailure();
 | |
|     if (isParsingIntelSyntax()) return true;
 | |
|     return Error(StartLoc, "invalid register name",
 | |
|                  SMRange(StartLoc, EndLoc));
 | |
|   }
 | |
| 
 | |
|   RegNo = MatchRegisterName(Tok.getString());
 | |
| 
 | |
|   // If the match failed, try the register name as lowercase.
 | |
|   if (RegNo == 0)
 | |
|     RegNo = MatchRegisterName(Tok.getString().lower());
 | |
| 
 | |
|   // The "flags" and "mxcsr" registers cannot be referenced directly.
 | |
|   // Treat it as an identifier instead.
 | |
|   if (isParsingMSInlineAsm() && isParsingIntelSyntax() &&
 | |
|       (RegNo == X86::EFLAGS || RegNo == X86::MXCSR))
 | |
|     RegNo = 0;
 | |
| 
 | |
|   if (!is64BitMode()) {
 | |
|     // FIXME: This should be done using Requires<Not64BitMode> and
 | |
|     // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
 | |
|     // checked.
 | |
|     // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
 | |
|     // REX prefix.
 | |
|     if (RegNo == X86::RIZ || RegNo == X86::RIP ||
 | |
|         X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
 | |
|         X86II::isX86_64NonExtLowByteReg(RegNo) ||
 | |
|         X86II::isX86_64ExtendedReg(RegNo)) {
 | |
|       StringRef RegName = Tok.getString();
 | |
|       OnFailure();
 | |
|       if (!RestoreOnFailure) {
 | |
|         Parser.Lex(); // Eat register name.
 | |
|       }
 | |
|       return Error(StartLoc,
 | |
|                    "register %" + RegName + " is only available in 64-bit mode",
 | |
|                    SMRange(StartLoc, EndLoc));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
 | |
|   if (RegNo == X86::ST0) {
 | |
|     Tokens.push_back(Tok);
 | |
|     Parser.Lex(); // Eat 'st'
 | |
| 
 | |
|     // Check to see if we have '(4)' after %st.
 | |
|     if (Lexer.isNot(AsmToken::LParen))
 | |
|       return false;
 | |
|     // Lex the paren.
 | |
|     Tokens.push_back(Parser.getTok());
 | |
|     Parser.Lex();
 | |
| 
 | |
|     const AsmToken &IntTok = Parser.getTok();
 | |
|     if (IntTok.isNot(AsmToken::Integer)) {
 | |
|       OnFailure();
 | |
|       return Error(IntTok.getLoc(), "expected stack index");
 | |
|     }
 | |
|     switch (IntTok.getIntVal()) {
 | |
|     case 0: RegNo = X86::ST0; break;
 | |
|     case 1: RegNo = X86::ST1; break;
 | |
|     case 2: RegNo = X86::ST2; break;
 | |
|     case 3: RegNo = X86::ST3; break;
 | |
|     case 4: RegNo = X86::ST4; break;
 | |
|     case 5: RegNo = X86::ST5; break;
 | |
|     case 6: RegNo = X86::ST6; break;
 | |
|     case 7: RegNo = X86::ST7; break;
 | |
|     default:
 | |
|       OnFailure();
 | |
|       return Error(IntTok.getLoc(), "invalid stack index");
 | |
|     }
 | |
| 
 | |
|     // Lex IntTok
 | |
|     Tokens.push_back(IntTok);
 | |
|     Parser.Lex();
 | |
|     if (Lexer.isNot(AsmToken::RParen)) {
 | |
|       OnFailure();
 | |
|       return Error(Parser.getTok().getLoc(), "expected ')'");
 | |
|     }
 | |
| 
 | |
|     EndLoc = Parser.getTok().getEndLoc();
 | |
|     Parser.Lex(); // Eat ')'
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EndLoc = Parser.getTok().getEndLoc();
 | |
| 
 | |
|   // If this is "db[0-15]", match it as an alias
 | |
|   // for dr[0-15].
 | |
|   if (RegNo == 0 && Tok.getString().startswith("db")) {
 | |
|     if (Tok.getString().size() == 3) {
 | |
|       switch (Tok.getString()[2]) {
 | |
|       case '0': RegNo = X86::DR0; break;
 | |
|       case '1': RegNo = X86::DR1; break;
 | |
|       case '2': RegNo = X86::DR2; break;
 | |
|       case '3': RegNo = X86::DR3; break;
 | |
|       case '4': RegNo = X86::DR4; break;
 | |
|       case '5': RegNo = X86::DR5; break;
 | |
|       case '6': RegNo = X86::DR6; break;
 | |
|       case '7': RegNo = X86::DR7; break;
 | |
|       case '8': RegNo = X86::DR8; break;
 | |
|       case '9': RegNo = X86::DR9; break;
 | |
|       }
 | |
|     } else if (Tok.getString().size() == 4 && Tok.getString()[2] == '1') {
 | |
|       switch (Tok.getString()[3]) {
 | |
|       case '0': RegNo = X86::DR10; break;
 | |
|       case '1': RegNo = X86::DR11; break;
 | |
|       case '2': RegNo = X86::DR12; break;
 | |
|       case '3': RegNo = X86::DR13; break;
 | |
|       case '4': RegNo = X86::DR14; break;
 | |
|       case '5': RegNo = X86::DR15; break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (RegNo != 0) {
 | |
|       EndLoc = Parser.getTok().getEndLoc();
 | |
|       Parser.Lex(); // Eat it.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (RegNo == 0) {
 | |
|     OnFailure();
 | |
|     if (isParsingIntelSyntax()) return true;
 | |
|     return Error(StartLoc, "invalid register name",
 | |
|                  SMRange(StartLoc, EndLoc));
 | |
|   }
 | |
| 
 | |
|   Parser.Lex(); // Eat identifier token.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
 | |
|                                  SMLoc &EndLoc) {
 | |
|   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
 | |
| }
 | |
| 
 | |
| OperandMatchResultTy X86AsmParser::tryParseRegister(unsigned &RegNo,
 | |
|                                                     SMLoc &StartLoc,
 | |
|                                                     SMLoc &EndLoc) {
 | |
|   bool Result =
 | |
|       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
 | |
|   bool PendingErrors = getParser().hasPendingError();
 | |
|   getParser().clearPendingErrors();
 | |
|   if (PendingErrors)
 | |
|     return MatchOperand_ParseFail;
 | |
|   if (Result)
 | |
|     return MatchOperand_NoMatch;
 | |
|   return MatchOperand_Success;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
 | |
|   bool Parse32 = is32BitMode() || Code16GCC;
 | |
|   unsigned Basereg = is64BitMode() ? X86::RSI : (Parse32 ? X86::ESI : X86::SI);
 | |
|   const MCExpr *Disp = MCConstantExpr::create(0, getContext());
 | |
|   return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
 | |
|                                /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
 | |
|                                Loc, Loc, 0);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
 | |
|   bool Parse32 = is32BitMode() || Code16GCC;
 | |
|   unsigned Basereg = is64BitMode() ? X86::RDI : (Parse32 ? X86::EDI : X86::DI);
 | |
|   const MCExpr *Disp = MCConstantExpr::create(0, getContext());
 | |
|   return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
 | |
|                                /*BaseReg=*/Basereg, /*IndexReg=*/0, /*Scale=*/1,
 | |
|                                Loc, Loc, 0);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::IsSIReg(unsigned Reg) {
 | |
|   switch (Reg) {
 | |
|   default: llvm_unreachable("Only (R|E)SI and (R|E)DI are expected!");
 | |
|   case X86::RSI:
 | |
|   case X86::ESI:
 | |
|   case X86::SI:
 | |
|     return true;
 | |
|   case X86::RDI:
 | |
|   case X86::EDI:
 | |
|   case X86::DI:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86AsmParser::GetSIDIForRegClass(unsigned RegClassID, unsigned Reg,
 | |
|                                           bool IsSIReg) {
 | |
|   switch (RegClassID) {
 | |
|   default: llvm_unreachable("Unexpected register class");
 | |
|   case X86::GR64RegClassID:
 | |
|     return IsSIReg ? X86::RSI : X86::RDI;
 | |
|   case X86::GR32RegClassID:
 | |
|     return IsSIReg ? X86::ESI : X86::EDI;
 | |
|   case X86::GR16RegClassID:
 | |
|     return IsSIReg ? X86::SI : X86::DI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86AsmParser::AddDefaultSrcDestOperands(
 | |
|     OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
 | |
|     std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
 | |
|   if (isParsingIntelSyntax()) {
 | |
|     Operands.push_back(std::move(Dst));
 | |
|     Operands.push_back(std::move(Src));
 | |
|   }
 | |
|   else {
 | |
|     Operands.push_back(std::move(Src));
 | |
|     Operands.push_back(std::move(Dst));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::VerifyAndAdjustOperands(OperandVector &OrigOperands,
 | |
|                                            OperandVector &FinalOperands) {
 | |
| 
 | |
|   if (OrigOperands.size() > 1) {
 | |
|     // Check if sizes match, OrigOperands also contains the instruction name
 | |
|     assert(OrigOperands.size() == FinalOperands.size() + 1 &&
 | |
|            "Operand size mismatch");
 | |
| 
 | |
|     SmallVector<std::pair<SMLoc, std::string>, 2> Warnings;
 | |
|     // Verify types match
 | |
|     int RegClassID = -1;
 | |
|     for (unsigned int i = 0; i < FinalOperands.size(); ++i) {
 | |
|       X86Operand &OrigOp = static_cast<X86Operand &>(*OrigOperands[i + 1]);
 | |
|       X86Operand &FinalOp = static_cast<X86Operand &>(*FinalOperands[i]);
 | |
| 
 | |
|       if (FinalOp.isReg() &&
 | |
|           (!OrigOp.isReg() || FinalOp.getReg() != OrigOp.getReg()))
 | |
|         // Return false and let a normal complaint about bogus operands happen
 | |
|         return false;
 | |
| 
 | |
|       if (FinalOp.isMem()) {
 | |
| 
 | |
|         if (!OrigOp.isMem())
 | |
|           // Return false and let a normal complaint about bogus operands happen
 | |
|           return false;
 | |
| 
 | |
|         unsigned OrigReg = OrigOp.Mem.BaseReg;
 | |
|         unsigned FinalReg = FinalOp.Mem.BaseReg;
 | |
| 
 | |
|         // If we've already encounterd a register class, make sure all register
 | |
|         // bases are of the same register class
 | |
|         if (RegClassID != -1 &&
 | |
|             !X86MCRegisterClasses[RegClassID].contains(OrigReg)) {
 | |
|           return Error(OrigOp.getStartLoc(),
 | |
|                        "mismatching source and destination index registers");
 | |
|         }
 | |
| 
 | |
|         if (X86MCRegisterClasses[X86::GR64RegClassID].contains(OrigReg))
 | |
|           RegClassID = X86::GR64RegClassID;
 | |
|         else if (X86MCRegisterClasses[X86::GR32RegClassID].contains(OrigReg))
 | |
|           RegClassID = X86::GR32RegClassID;
 | |
|         else if (X86MCRegisterClasses[X86::GR16RegClassID].contains(OrigReg))
 | |
|           RegClassID = X86::GR16RegClassID;
 | |
|         else
 | |
|           // Unexpected register class type
 | |
|           // Return false and let a normal complaint about bogus operands happen
 | |
|           return false;
 | |
| 
 | |
|         bool IsSI = IsSIReg(FinalReg);
 | |
|         FinalReg = GetSIDIForRegClass(RegClassID, FinalReg, IsSI);
 | |
| 
 | |
|         if (FinalReg != OrigReg) {
 | |
|           std::string RegName = IsSI ? "ES:(R|E)SI" : "ES:(R|E)DI";
 | |
|           Warnings.push_back(std::make_pair(
 | |
|               OrigOp.getStartLoc(),
 | |
|               "memory operand is only for determining the size, " + RegName +
 | |
|                   " will be used for the location"));
 | |
|         }
 | |
| 
 | |
|         FinalOp.Mem.Size = OrigOp.Mem.Size;
 | |
|         FinalOp.Mem.SegReg = OrigOp.Mem.SegReg;
 | |
|         FinalOp.Mem.BaseReg = FinalReg;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Produce warnings only if all the operands passed the adjustment - prevent
 | |
|     // legal cases like "movsd (%rax), %xmm0" mistakenly produce warnings
 | |
|     for (auto &WarningMsg : Warnings) {
 | |
|       Warning(WarningMsg.first, WarningMsg.second);
 | |
|     }
 | |
| 
 | |
|     // Remove old operands
 | |
|     for (unsigned int i = 0; i < FinalOperands.size(); ++i)
 | |
|       OrigOperands.pop_back();
 | |
|   }
 | |
|   // OrigOperands.append(FinalOperands.begin(), FinalOperands.end());
 | |
|   for (unsigned int i = 0; i < FinalOperands.size(); ++i)
 | |
|     OrigOperands.push_back(std::move(FinalOperands[i]));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
 | |
|   if (isParsingIntelSyntax())
 | |
|     return ParseIntelOperand();
 | |
|   return ParseATTOperand();
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::CreateMemForMSInlineAsm(
 | |
|     unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
 | |
|     unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
 | |
|     const InlineAsmIdentifierInfo &Info) {
 | |
|   // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
 | |
|   // some other label reference.
 | |
|   if (Info.isKind(InlineAsmIdentifierInfo::IK_Label)) {
 | |
|     // Insert an explicit size if the user didn't have one.
 | |
|     if (!Size) {
 | |
|       Size = getPointerWidth();
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
 | |
|                                           /*Len=*/0, Size);
 | |
|     }
 | |
|     // Create an absolute memory reference in order to match against
 | |
|     // instructions taking a PC relative operand.
 | |
|     return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
 | |
|                                  Identifier, Info.Label.Decl);
 | |
|   }
 | |
|   // We either have a direct symbol reference, or an offset from a symbol.  The
 | |
|   // parser always puts the symbol on the LHS, so look there for size
 | |
|   // calculation purposes.
 | |
|   unsigned FrontendSize = 0;
 | |
|   void *Decl = nullptr;
 | |
|   bool IsGlobalLV = false;
 | |
|   if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
 | |
|     // Size is in terms of bits in this context.
 | |
|     FrontendSize = Info.Var.Type * 8;
 | |
|     Decl = Info.Var.Decl;
 | |
|     IsGlobalLV = Info.Var.IsGlobalLV;
 | |
|   }
 | |
|   // It is widely common for MS InlineAsm to use a global variable and one/two
 | |
|   // registers in a mmory expression, and though unaccessible via rip/eip.
 | |
|   if (IsGlobalLV && (BaseReg || IndexReg)) {
 | |
|     return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End);
 | |
|   // Otherwise, we set the base register to a non-zero value
 | |
|   // if we don't know the actual value at this time.  This is necessary to
 | |
|   // get the matching correct in some cases.
 | |
|   } else {
 | |
|     BaseReg = BaseReg ? BaseReg : 1;
 | |
|     return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | |
|                                  IndexReg, Scale, Start, End, Size, Identifier,
 | |
|                                  Decl, FrontendSize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Some binary bitwise operators have a named synonymous
 | |
| // Query a candidate string for being such a named operator
 | |
| // and if so - invoke the appropriate handler
 | |
| bool X86AsmParser::ParseIntelNamedOperator(StringRef Name,
 | |
|                                            IntelExprStateMachine &SM,
 | |
|                                            bool &ParseError, SMLoc &End) {
 | |
|   // A named operator should be either lower or upper case, but not a mix
 | |
|   if (Name.compare(Name.lower()) && Name.compare(Name.upper()))
 | |
|     return false;
 | |
|   if (Name.equals_lower("not")) {
 | |
|     SM.onNot();
 | |
|   } else if (Name.equals_lower("or")) {
 | |
|     SM.onOr();
 | |
|   } else if (Name.equals_lower("shl")) {
 | |
|     SM.onLShift();
 | |
|   } else if (Name.equals_lower("shr")) {
 | |
|     SM.onRShift();
 | |
|   } else if (Name.equals_lower("xor")) {
 | |
|     SM.onXor();
 | |
|   } else if (Name.equals_lower("and")) {
 | |
|     SM.onAnd();
 | |
|   } else if (Name.equals_lower("mod")) {
 | |
|     SM.onMod();
 | |
|   } else if (Name.equals_lower("offset")) {
 | |
|     SMLoc OffsetLoc = getTok().getLoc();
 | |
|     const MCExpr *Val = nullptr;
 | |
|     StringRef ID;
 | |
|     InlineAsmIdentifierInfo Info;
 | |
|     ParseError = ParseIntelOffsetOperator(Val, ID, Info, End);
 | |
|     if (ParseError)
 | |
|       return true;
 | |
|     StringRef ErrMsg;
 | |
|     ParseError =
 | |
|         SM.onOffset(Val, OffsetLoc, ID, Info, isParsingMSInlineAsm(), ErrMsg);
 | |
|     if (ParseError)
 | |
|       return Error(SMLoc::getFromPointer(Name.data()), ErrMsg);
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   if (!Name.equals_lower("offset"))
 | |
|     End = consumeToken();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   StringRef ErrMsg;
 | |
| 
 | |
|   AsmToken::TokenKind PrevTK = AsmToken::Error;
 | |
|   bool Done = false;
 | |
|   while (!Done) {
 | |
|     bool UpdateLocLex = true;
 | |
|     AsmToken::TokenKind TK = getLexer().getKind();
 | |
| 
 | |
|     switch (TK) {
 | |
|     default:
 | |
|       if ((Done = SM.isValidEndState()))
 | |
|         break;
 | |
|       return Error(Tok.getLoc(), "unknown token in expression");
 | |
|     case AsmToken::EndOfStatement:
 | |
|       Done = true;
 | |
|       break;
 | |
|     case AsmToken::Real:
 | |
|       // DotOperator: [ebx].0
 | |
|       UpdateLocLex = false;
 | |
|       if (ParseIntelDotOperator(SM, End))
 | |
|         return true;
 | |
|       break;
 | |
|     case AsmToken::At:
 | |
|     case AsmToken::String:
 | |
|     case AsmToken::Identifier: {
 | |
|       SMLoc IdentLoc = Tok.getLoc();
 | |
|       StringRef Identifier = Tok.getString();
 | |
|       UpdateLocLex = false;
 | |
|       // Register
 | |
|       unsigned Reg;
 | |
|       if (Tok.is(AsmToken::Identifier) && !ParseRegister(Reg, IdentLoc, End)) {
 | |
|         if (SM.onRegister(Reg, ErrMsg))
 | |
|           return Error(Tok.getLoc(), ErrMsg);
 | |
|         break;
 | |
|       }
 | |
|       // Operator synonymous ("not", "or" etc.)
 | |
|       bool ParseError = false;
 | |
|       if (ParseIntelNamedOperator(Identifier, SM, ParseError, End)) {
 | |
|         if (ParseError)
 | |
|           return true;
 | |
|         break;
 | |
|       }
 | |
|       // Symbol reference, when parsing assembly content
 | |
|       InlineAsmIdentifierInfo Info;
 | |
|       const MCExpr *Val;
 | |
|       if (!isParsingMSInlineAsm()) {
 | |
|         if (getParser().parsePrimaryExpr(Val, End)) {
 | |
|           return Error(Tok.getLoc(), "Unexpected identifier!");
 | |
|         } else if (SM.onIdentifierExpr(Val, Identifier, Info, false, ErrMsg)) {
 | |
|           return Error(IdentLoc, ErrMsg);
 | |
|         } else
 | |
|           break;
 | |
|       }
 | |
|       // MS InlineAsm operators (TYPE/LENGTH/SIZE)
 | |
|       if (unsigned OpKind = IdentifyIntelInlineAsmOperator(Identifier)) {
 | |
|         if (int64_t Val = ParseIntelInlineAsmOperator(OpKind)) {
 | |
|           if (SM.onInteger(Val, ErrMsg))
 | |
|             return Error(IdentLoc, ErrMsg);
 | |
|         } else
 | |
|           return true;
 | |
|         break;
 | |
|       }
 | |
|       // MS Dot Operator expression
 | |
|       if (Identifier.count('.') && PrevTK == AsmToken::RBrac) {
 | |
|         if (ParseIntelDotOperator(SM, End))
 | |
|           return true;
 | |
|         break;
 | |
|       }
 | |
|       // MS InlineAsm identifier
 | |
|       // Call parseIdentifier() to combine @ with the identifier behind it.
 | |
|       if (TK == AsmToken::At && Parser.parseIdentifier(Identifier))
 | |
|         return Error(IdentLoc, "expected identifier");
 | |
|       if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info, false, End))
 | |
|         return true;
 | |
|       else if (SM.onIdentifierExpr(Val, Identifier, Info, true, ErrMsg))
 | |
|         return Error(IdentLoc, ErrMsg);
 | |
|       break;
 | |
|     }
 | |
|     case AsmToken::Integer: {
 | |
|       // Look for 'b' or 'f' following an Integer as a directional label
 | |
|       SMLoc Loc = getTok().getLoc();
 | |
|       int64_t IntVal = getTok().getIntVal();
 | |
|       End = consumeToken();
 | |
|       UpdateLocLex = false;
 | |
|       if (getLexer().getKind() == AsmToken::Identifier) {
 | |
|         StringRef IDVal = getTok().getString();
 | |
|         if (IDVal == "f" || IDVal == "b") {
 | |
|           MCSymbol *Sym =
 | |
|               getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
 | |
|           MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | |
|           const MCExpr *Val =
 | |
|               MCSymbolRefExpr::create(Sym, Variant, getContext());
 | |
|           if (IDVal == "b" && Sym->isUndefined())
 | |
|             return Error(Loc, "invalid reference to undefined symbol");
 | |
|           StringRef Identifier = Sym->getName();
 | |
|           InlineAsmIdentifierInfo Info;
 | |
|           if (SM.onIdentifierExpr(Val, Identifier, Info, isParsingMSInlineAsm(),
 | |
|                                   ErrMsg))
 | |
|             return Error(Loc, ErrMsg);
 | |
|           End = consumeToken();
 | |
|         } else {
 | |
|           if (SM.onInteger(IntVal, ErrMsg))
 | |
|             return Error(Loc, ErrMsg);
 | |
|         }
 | |
|       } else {
 | |
|         if (SM.onInteger(IntVal, ErrMsg))
 | |
|           return Error(Loc, ErrMsg);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case AsmToken::Plus:
 | |
|       if (SM.onPlus(ErrMsg))
 | |
|         return Error(getTok().getLoc(), ErrMsg);
 | |
|       break;
 | |
|     case AsmToken::Minus:
 | |
|       if (SM.onMinus(ErrMsg))
 | |
|         return Error(getTok().getLoc(), ErrMsg);
 | |
|       break;
 | |
|     case AsmToken::Tilde:   SM.onNot(); break;
 | |
|     case AsmToken::Star:    SM.onStar(); break;
 | |
|     case AsmToken::Slash:   SM.onDivide(); break;
 | |
|     case AsmToken::Percent: SM.onMod(); break;
 | |
|     case AsmToken::Pipe:    SM.onOr(); break;
 | |
|     case AsmToken::Caret:   SM.onXor(); break;
 | |
|     case AsmToken::Amp:     SM.onAnd(); break;
 | |
|     case AsmToken::LessLess:
 | |
|                             SM.onLShift(); break;
 | |
|     case AsmToken::GreaterGreater:
 | |
|                             SM.onRShift(); break;
 | |
|     case AsmToken::LBrac:
 | |
|       if (SM.onLBrac())
 | |
|         return Error(Tok.getLoc(), "unexpected bracket encountered");
 | |
|       break;
 | |
|     case AsmToken::RBrac:
 | |
|       if (SM.onRBrac())
 | |
|         return Error(Tok.getLoc(), "unexpected bracket encountered");
 | |
|       break;
 | |
|     case AsmToken::LParen:  SM.onLParen(); break;
 | |
|     case AsmToken::RParen:  SM.onRParen(); break;
 | |
|     }
 | |
|     if (SM.hadError())
 | |
|       return Error(Tok.getLoc(), "unknown token in expression");
 | |
| 
 | |
|     if (!Done && UpdateLocLex)
 | |
|       End = consumeToken();
 | |
| 
 | |
|     PrevTK = TK;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86AsmParser::RewriteIntelExpression(IntelExprStateMachine &SM,
 | |
|                                           SMLoc Start, SMLoc End) {
 | |
|   SMLoc Loc = Start;
 | |
|   unsigned ExprLen = End.getPointer() - Start.getPointer();
 | |
|   // Skip everything before a symbol displacement (if we have one)
 | |
|   if (SM.getSym() && !SM.isOffsetOperator()) {
 | |
|     StringRef SymName = SM.getSymName();
 | |
|     if (unsigned Len = SymName.data() - Start.getPointer())
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_Skip, Start, Len);
 | |
|     Loc = SMLoc::getFromPointer(SymName.data() + SymName.size());
 | |
|     ExprLen = End.getPointer() - (SymName.data() + SymName.size());
 | |
|     // If we have only a symbol than there's no need for complex rewrite,
 | |
|     // simply skip everything after it
 | |
|     if (!(SM.getBaseReg() || SM.getIndexReg() || SM.getImm())) {
 | |
|       if (ExprLen)
 | |
|         InstInfo->AsmRewrites->emplace_back(AOK_Skip, Loc, ExprLen);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   // Build an Intel Expression rewrite
 | |
|   StringRef BaseRegStr;
 | |
|   StringRef IndexRegStr;
 | |
|   StringRef OffsetNameStr;
 | |
|   if (SM.getBaseReg())
 | |
|     BaseRegStr = X86IntelInstPrinter::getRegisterName(SM.getBaseReg());
 | |
|   if (SM.getIndexReg())
 | |
|     IndexRegStr = X86IntelInstPrinter::getRegisterName(SM.getIndexReg());
 | |
|   if (SM.isOffsetOperator())
 | |
|     OffsetNameStr = SM.getSymName();
 | |
|   // Emit it
 | |
|   IntelExpr Expr(BaseRegStr, IndexRegStr, SM.getScale(), OffsetNameStr,
 | |
|                  SM.getImm(), SM.isMemExpr());
 | |
|   InstInfo->AsmRewrites->emplace_back(Loc, ExprLen, Expr);
 | |
| }
 | |
| 
 | |
| // Inline assembly may use variable names with namespace alias qualifiers.
 | |
| bool X86AsmParser::ParseIntelInlineAsmIdentifier(
 | |
|     const MCExpr *&Val, StringRef &Identifier, InlineAsmIdentifierInfo &Info,
 | |
|     bool IsUnevaluatedOperand, SMLoc &End, bool IsParsingOffsetOperator) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   assert(isParsingMSInlineAsm() && "Expected to be parsing inline assembly.");
 | |
|   Val = nullptr;
 | |
| 
 | |
|   StringRef LineBuf(Identifier.data());
 | |
|   SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
 | |
| 
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc Loc = Tok.getLoc();
 | |
| 
 | |
|   // Advance the token stream until the end of the current token is
 | |
|   // after the end of what the frontend claimed.
 | |
|   const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
 | |
|   do {
 | |
|     End = Tok.getEndLoc();
 | |
|     getLexer().Lex();
 | |
|   } while (End.getPointer() < EndPtr);
 | |
|   Identifier = LineBuf;
 | |
| 
 | |
|   // The frontend should end parsing on an assembler token boundary, unless it
 | |
|   // failed parsing.
 | |
|   assert((End.getPointer() == EndPtr ||
 | |
|           Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) &&
 | |
|           "frontend claimed part of a token?");
 | |
| 
 | |
|   // If the identifier lookup was unsuccessful, assume that we are dealing with
 | |
|   // a label.
 | |
|   if (Info.isKind(InlineAsmIdentifierInfo::IK_Invalid)) {
 | |
|     StringRef InternalName =
 | |
|       SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
 | |
|                                          Loc, false);
 | |
|     assert(InternalName.size() && "We should have an internal name here.");
 | |
|     // Push a rewrite for replacing the identifier name with the internal name,
 | |
|     // unless we are parsing the operand of an offset operator
 | |
|     if (!IsParsingOffsetOperator)
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
 | |
|                                           InternalName);
 | |
|     else
 | |
|       Identifier = InternalName;
 | |
|   } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal))
 | |
|     return false;
 | |
|   // Create the symbol reference.
 | |
|   MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
 | |
|   MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
 | |
|   Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //ParseRoundingModeOp - Parse AVX-512 rounding mode operand
 | |
| std::unique_ptr<X86Operand>
 | |
| X86AsmParser::ParseRoundingModeOp(SMLoc Start) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   // Eat "{" and mark the current place.
 | |
|   const SMLoc consumedToken = consumeToken();
 | |
|   if (Tok.isNot(AsmToken::Identifier))
 | |
|     return ErrorOperand(Tok.getLoc(), "Expected an identifier after {");
 | |
|   if (Tok.getIdentifier().startswith("r")){
 | |
|     int rndMode = StringSwitch<int>(Tok.getIdentifier())
 | |
|       .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
 | |
|       .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
 | |
|       .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
 | |
|       .Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
 | |
|       .Default(-1);
 | |
|     if (-1 == rndMode)
 | |
|       return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
 | |
|      Parser.Lex();  // Eat "r*" of r*-sae
 | |
|     if (!getLexer().is(AsmToken::Minus))
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected - at this point");
 | |
|     Parser.Lex();  // Eat "-"
 | |
|     Parser.Lex();  // Eat the sae
 | |
|     if (!getLexer().is(AsmToken::RCurly))
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected } at this point");
 | |
|     SMLoc End = Tok.getEndLoc();
 | |
|     Parser.Lex();  // Eat "}"
 | |
|     const MCExpr *RndModeOp =
 | |
|       MCConstantExpr::create(rndMode, Parser.getContext());
 | |
|     return X86Operand::CreateImm(RndModeOp, Start, End);
 | |
|   }
 | |
|   if(Tok.getIdentifier().equals("sae")){
 | |
|     Parser.Lex();  // Eat the sae
 | |
|     if (!getLexer().is(AsmToken::RCurly))
 | |
|       return ErrorOperand(Tok.getLoc(), "Expected } at this point");
 | |
|     Parser.Lex();  // Eat "}"
 | |
|     return X86Operand::CreateToken("{sae}", consumedToken);
 | |
|   }
 | |
|   return ErrorOperand(Tok.getLoc(), "unknown token in expression");
 | |
| }
 | |
| 
 | |
| /// Parse the '.' operator.
 | |
| bool X86AsmParser::ParseIntelDotOperator(IntelExprStateMachine &SM, SMLoc &End) {
 | |
|   const AsmToken &Tok = getTok();
 | |
|   unsigned Offset;
 | |
| 
 | |
|   // Drop the optional '.'.
 | |
|   StringRef DotDispStr = Tok.getString();
 | |
|   if (DotDispStr.startswith("."))
 | |
|     DotDispStr = DotDispStr.drop_front(1);
 | |
| 
 | |
|   // .Imm gets lexed as a real.
 | |
|   if (Tok.is(AsmToken::Real)) {
 | |
|     APInt DotDisp;
 | |
|     DotDispStr.getAsInteger(10, DotDisp);
 | |
|     Offset = DotDisp.getZExtValue();
 | |
|   } else if (isParsingMSInlineAsm() && Tok.is(AsmToken::Identifier)) {
 | |
|     std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
 | |
|     if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
 | |
|                                            Offset))
 | |
|       return Error(Tok.getLoc(), "Unable to lookup field reference!");
 | |
|   } else
 | |
|     return Error(Tok.getLoc(), "Unexpected token type!");
 | |
| 
 | |
|   // Eat the DotExpression and update End
 | |
|   End = SMLoc::getFromPointer(DotDispStr.data());
 | |
|   const char *DotExprEndLoc = DotDispStr.data() + DotDispStr.size();
 | |
|   while (Tok.getLoc().getPointer() < DotExprEndLoc)
 | |
|     Lex();
 | |
|   SM.addImm(Offset);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Parse the 'offset' operator.
 | |
| /// This operator is used to specify the location of a given operand
 | |
| bool X86AsmParser::ParseIntelOffsetOperator(const MCExpr *&Val, StringRef &ID,
 | |
|                                             InlineAsmIdentifierInfo &Info,
 | |
|                                             SMLoc &End) {
 | |
|   // Eat offset, mark start of identifier.
 | |
|   SMLoc Start = Lex().getLoc();
 | |
|   ID = getTok().getString();
 | |
|   if (!isParsingMSInlineAsm()) {
 | |
|     if ((getTok().isNot(AsmToken::Identifier) &&
 | |
|          getTok().isNot(AsmToken::String)) ||
 | |
|         getParser().parsePrimaryExpr(Val, End))
 | |
|       return Error(Start, "unexpected token!");
 | |
|   } else if (ParseIntelInlineAsmIdentifier(Val, ID, Info, false, End, true)) {
 | |
|     return Error(Start, "unable to lookup expression");
 | |
|   } else if (Info.isKind(InlineAsmIdentifierInfo::IK_EnumVal)) {
 | |
|     return Error(Start, "offset operator cannot yet handle constants");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Query a candidate string for being an Intel assembly operator
 | |
| // Report back its kind, or IOK_INVALID if does not evaluated as a known one
 | |
| unsigned X86AsmParser::IdentifyIntelInlineAsmOperator(StringRef Name) {
 | |
|   return StringSwitch<unsigned>(Name)
 | |
|     .Cases("TYPE","type",IOK_TYPE)
 | |
|     .Cases("SIZE","size",IOK_SIZE)
 | |
|     .Cases("LENGTH","length",IOK_LENGTH)
 | |
|     .Default(IOK_INVALID);
 | |
| }
 | |
| 
 | |
| /// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators.  The LENGTH operator
 | |
| /// returns the number of elements in an array.  It returns the value 1 for
 | |
| /// non-array variables.  The SIZE operator returns the size of a C or C++
 | |
| /// variable.  A variable's size is the product of its LENGTH and TYPE.  The
 | |
| /// TYPE operator returns the size of a C or C++ type or variable. If the
 | |
| /// variable is an array, TYPE returns the size of a single element.
 | |
| unsigned X86AsmParser::ParseIntelInlineAsmOperator(unsigned OpKind) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   Parser.Lex(); // Eat operator.
 | |
| 
 | |
|   const MCExpr *Val = nullptr;
 | |
|   InlineAsmIdentifierInfo Info;
 | |
|   SMLoc Start = Tok.getLoc(), End;
 | |
|   StringRef Identifier = Tok.getString();
 | |
|   if (ParseIntelInlineAsmIdentifier(Val, Identifier, Info,
 | |
|                                     /*Unevaluated=*/true, End))
 | |
|     return 0;
 | |
| 
 | |
|   if (!Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
 | |
|     Error(Start, "unable to lookup expression");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   unsigned CVal = 0;
 | |
|   switch(OpKind) {
 | |
|   default: llvm_unreachable("Unexpected operand kind!");
 | |
|   case IOK_LENGTH: CVal = Info.Var.Length; break;
 | |
|   case IOK_SIZE: CVal = Info.Var.Size; break;
 | |
|   case IOK_TYPE: CVal = Info.Var.Type; break;
 | |
|   }
 | |
| 
 | |
|   return CVal;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseIntelMemoryOperandSize(unsigned &Size) {
 | |
|   Size = StringSwitch<unsigned>(getTok().getString())
 | |
|     .Cases("BYTE", "byte", 8)
 | |
|     .Cases("WORD", "word", 16)
 | |
|     .Cases("DWORD", "dword", 32)
 | |
|     .Cases("FLOAT", "float", 32)
 | |
|     .Cases("LONG", "long", 32)
 | |
|     .Cases("FWORD", "fword", 48)
 | |
|     .Cases("DOUBLE", "double", 64)
 | |
|     .Cases("QWORD", "qword", 64)
 | |
|     .Cases("MMWORD","mmword", 64)
 | |
|     .Cases("XWORD", "xword", 80)
 | |
|     .Cases("TBYTE", "tbyte", 80)
 | |
|     .Cases("XMMWORD", "xmmword", 128)
 | |
|     .Cases("YMMWORD", "ymmword", 256)
 | |
|     .Cases("ZMMWORD", "zmmword", 512)
 | |
|     .Default(0);
 | |
|   if (Size) {
 | |
|     const AsmToken &Tok = Lex(); // Eat operand size (e.g., byte, word).
 | |
|     if (!(Tok.getString().equals("PTR") || Tok.getString().equals("ptr")))
 | |
|       return Error(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
 | |
|     Lex(); // Eat ptr.
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   const AsmToken &Tok = Parser.getTok();
 | |
|   SMLoc Start, End;
 | |
| 
 | |
|   // Parse optional Size directive.
 | |
|   unsigned Size;
 | |
|   if (ParseIntelMemoryOperandSize(Size))
 | |
|     return nullptr;
 | |
|   bool PtrInOperand = bool(Size);
 | |
| 
 | |
|   Start = Tok.getLoc();
 | |
| 
 | |
|   // Rounding mode operand.
 | |
|   if (getLexer().is(AsmToken::LCurly))
 | |
|     return ParseRoundingModeOp(Start);
 | |
| 
 | |
|   // Register operand.
 | |
|   unsigned RegNo = 0;
 | |
|   if (Tok.is(AsmToken::Identifier) && !ParseRegister(RegNo, Start, End)) {
 | |
|     if (RegNo == X86::RIP)
 | |
|       return ErrorOperand(Start, "rip can only be used as a base register");
 | |
|     // A Register followed by ':' is considered a segment override
 | |
|     if (Tok.isNot(AsmToken::Colon))
 | |
|       return !PtrInOperand ? X86Operand::CreateReg(RegNo, Start, End) :
 | |
|         ErrorOperand(Start, "expected memory operand after 'ptr', "
 | |
|                             "found register operand instead");
 | |
|     // An alleged segment override. check if we have a valid segment register
 | |
|     if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
 | |
|       return ErrorOperand(Start, "invalid segment register");
 | |
|     // Eat ':' and update Start location
 | |
|     Start = Lex().getLoc();
 | |
|   }
 | |
| 
 | |
|   // Immediates and Memory
 | |
|   IntelExprStateMachine SM;
 | |
|   if (ParseIntelExpression(SM, End))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (isParsingMSInlineAsm())
 | |
|     RewriteIntelExpression(SM, Start, Tok.getLoc());
 | |
| 
 | |
|   int64_t Imm = SM.getImm();
 | |
|   const MCExpr *Disp = SM.getSym();
 | |
|   const MCExpr *ImmDisp = MCConstantExpr::create(Imm, getContext());
 | |
|   if (Disp && Imm)
 | |
|     Disp = MCBinaryExpr::createAdd(Disp, ImmDisp, getContext());
 | |
|   if (!Disp)
 | |
|     Disp = ImmDisp;
 | |
| 
 | |
|   // RegNo != 0 specifies a valid segment register,
 | |
|   // and we are parsing a segment override
 | |
|   if (!SM.isMemExpr() && !RegNo) {
 | |
|     if (isParsingMSInlineAsm() && SM.isOffsetOperator()) {
 | |
|       const InlineAsmIdentifierInfo Info = SM.getIdentifierInfo();
 | |
|       if (Info.isKind(InlineAsmIdentifierInfo::IK_Var)) {
 | |
|         // Disp includes the address of a variable; make sure this is recorded
 | |
|         // for later handling.
 | |
|         return X86Operand::CreateImm(Disp, Start, End, SM.getSymName(),
 | |
|                                      Info.Var.Decl, Info.Var.IsGlobalLV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return X86Operand::CreateImm(Disp, Start, End);
 | |
|   }
 | |
| 
 | |
|   StringRef ErrMsg;
 | |
|   unsigned BaseReg = SM.getBaseReg();
 | |
|   unsigned IndexReg = SM.getIndexReg();
 | |
|   unsigned Scale = SM.getScale();
 | |
| 
 | |
|   if (Scale == 0 && BaseReg != X86::ESP && BaseReg != X86::RSP &&
 | |
|       (IndexReg == X86::ESP || IndexReg == X86::RSP))
 | |
|     std::swap(BaseReg, IndexReg);
 | |
| 
 | |
|   // If BaseReg is a vector register and IndexReg is not, swap them unless
 | |
|   // Scale was specified in which case it would be an error.
 | |
|   if (Scale == 0 &&
 | |
|       !(X86MCRegisterClasses[X86::VR128XRegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::VR256XRegClassID].contains(IndexReg) ||
 | |
|         X86MCRegisterClasses[X86::VR512RegClassID].contains(IndexReg)) &&
 | |
|       (X86MCRegisterClasses[X86::VR128XRegClassID].contains(BaseReg) ||
 | |
|        X86MCRegisterClasses[X86::VR256XRegClassID].contains(BaseReg) ||
 | |
|        X86MCRegisterClasses[X86::VR512RegClassID].contains(BaseReg)))
 | |
|     std::swap(BaseReg, IndexReg);
 | |
| 
 | |
|   if (Scale != 0 &&
 | |
|       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg))
 | |
|     return ErrorOperand(Start, "16-bit addresses cannot have a scale");
 | |
| 
 | |
|   // If there was no explicit scale specified, change it to 1.
 | |
|   if (Scale == 0)
 | |
|     Scale = 1;
 | |
| 
 | |
|   // If this is a 16-bit addressing mode with the base and index in the wrong
 | |
|   // order, swap them so CheckBaseRegAndIndexRegAndScale doesn't fail. It is
 | |
|   // shared with att syntax where order matters.
 | |
|   if ((BaseReg == X86::SI || BaseReg == X86::DI) &&
 | |
|       (IndexReg == X86::BX || IndexReg == X86::BP))
 | |
|     std::swap(BaseReg, IndexReg);
 | |
| 
 | |
|   if ((BaseReg || IndexReg) &&
 | |
|       CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
 | |
|                                       ErrMsg))
 | |
|     return ErrorOperand(Start, ErrMsg);
 | |
|   if (isParsingMSInlineAsm())
 | |
|     return CreateMemForMSInlineAsm(RegNo, Disp, BaseReg, IndexReg, Scale, Start,
 | |
|                                    End, Size, SM.getSymName(),
 | |
|                                    SM.getIdentifierInfo());
 | |
|   if (!(BaseReg || IndexReg || RegNo))
 | |
|     return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
 | |
|   return X86Operand::CreateMem(getPointerWidth(), RegNo, Disp,
 | |
|                                BaseReg, IndexReg, Scale, Start, End, Size);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   switch (getLexer().getKind()) {
 | |
|   case AsmToken::Dollar: {
 | |
|     // $42 or $ID -> immediate.
 | |
|     SMLoc Start = Parser.getTok().getLoc(), End;
 | |
|     Parser.Lex();
 | |
|     const MCExpr *Val;
 | |
|     // This is an immediate, so we should not parse a register. Do a precheck
 | |
|     // for '%' to supercede intra-register parse errors.
 | |
|     SMLoc L = Parser.getTok().getLoc();
 | |
|     if (check(getLexer().is(AsmToken::Percent), L,
 | |
|               "expected immediate expression") ||
 | |
|         getParser().parseExpression(Val, End) ||
 | |
|         check(isa<X86MCExpr>(Val), L, "expected immediate expression"))
 | |
|       return nullptr;
 | |
|     return X86Operand::CreateImm(Val, Start, End);
 | |
|   }
 | |
|   case AsmToken::LCurly: {
 | |
|     SMLoc Start = Parser.getTok().getLoc();
 | |
|     return ParseRoundingModeOp(Start);
 | |
|   }
 | |
|   default: {
 | |
|     // This a memory operand or a register. We have some parsing complications
 | |
|     // as a '(' may be part of an immediate expression or the addressing mode
 | |
|     // block. This is complicated by the fact that an assembler-level variable
 | |
|     // may refer either to a register or an immediate expression.
 | |
| 
 | |
|     SMLoc Loc = Parser.getTok().getLoc(), EndLoc;
 | |
|     const MCExpr *Expr = nullptr;
 | |
|     unsigned Reg = 0;
 | |
|     if (getLexer().isNot(AsmToken::LParen)) {
 | |
|       // No '(' so this is either a displacement expression or a register.
 | |
|       if (Parser.parseExpression(Expr, EndLoc))
 | |
|         return nullptr;
 | |
|       if (auto *RE = dyn_cast<X86MCExpr>(Expr)) {
 | |
|         // Segment Register. Reset Expr and copy value to register.
 | |
|         Expr = nullptr;
 | |
|         Reg = RE->getRegNo();
 | |
| 
 | |
|         // Sanity check register.
 | |
|         if (Reg == X86::EIZ || Reg == X86::RIZ)
 | |
|           return ErrorOperand(
 | |
|               Loc, "%eiz and %riz can only be used as index registers",
 | |
|               SMRange(Loc, EndLoc));
 | |
|         if (Reg == X86::RIP)
 | |
|           return ErrorOperand(Loc, "%rip can only be used as a base register",
 | |
|                               SMRange(Loc, EndLoc));
 | |
|         // Return register that are not segment prefixes immediately.
 | |
|         if (!Parser.parseOptionalToken(AsmToken::Colon))
 | |
|           return X86Operand::CreateReg(Reg, Loc, EndLoc);
 | |
|         if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(Reg))
 | |
|           return ErrorOperand(Loc, "invalid segment register");
 | |
|       }
 | |
|     }
 | |
|     // This is a Memory operand.
 | |
|     return ParseMemOperand(Reg, Expr, Loc, EndLoc);
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // X86::COND_INVALID if not a recognized condition code or alternate mnemonic,
 | |
| // otherwise the EFLAGS Condition Code enumerator.
 | |
| X86::CondCode X86AsmParser::ParseConditionCode(StringRef CC) {
 | |
|   return StringSwitch<X86::CondCode>(CC)
 | |
|       .Case("o", X86::COND_O)          // Overflow
 | |
|       .Case("no", X86::COND_NO)        // No Overflow
 | |
|       .Cases("b", "nae", X86::COND_B)  // Below/Neither Above nor Equal
 | |
|       .Cases("ae", "nb", X86::COND_AE) // Above or Equal/Not Below
 | |
|       .Cases("e", "z", X86::COND_E)    // Equal/Zero
 | |
|       .Cases("ne", "nz", X86::COND_NE) // Not Equal/Not Zero
 | |
|       .Cases("be", "na", X86::COND_BE) // Below or Equal/Not Above
 | |
|       .Cases("a", "nbe", X86::COND_A)  // Above/Neither Below nor Equal
 | |
|       .Case("s", X86::COND_S)          // Sign
 | |
|       .Case("ns", X86::COND_NS)        // No Sign
 | |
|       .Cases("p", "pe", X86::COND_P)   // Parity/Parity Even
 | |
|       .Cases("np", "po", X86::COND_NP) // No Parity/Parity Odd
 | |
|       .Cases("l", "nge", X86::COND_L)  // Less/Neither Greater nor Equal
 | |
|       .Cases("ge", "nl", X86::COND_GE) // Greater or Equal/Not Less
 | |
|       .Cases("le", "ng", X86::COND_LE) // Less or Equal/Not Greater
 | |
|       .Cases("g", "nle", X86::COND_G)  // Greater/Neither Less nor Equal
 | |
|       .Default(X86::COND_INVALID);
 | |
| }
 | |
| 
 | |
| // true on failure, false otherwise
 | |
| // If no {z} mark was found - Parser doesn't advance
 | |
| bool X86AsmParser::ParseZ(std::unique_ptr<X86Operand> &Z,
 | |
|                           const SMLoc &StartLoc) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   // Assuming we are just pass the '{' mark, quering the next token
 | |
|   // Searched for {z}, but none was found. Return false, as no parsing error was
 | |
|   // encountered
 | |
|   if (!(getLexer().is(AsmToken::Identifier) &&
 | |
|         (getLexer().getTok().getIdentifier() == "z")))
 | |
|     return false;
 | |
|   Parser.Lex(); // Eat z
 | |
|   // Query and eat the '}' mark
 | |
|   if (!getLexer().is(AsmToken::RCurly))
 | |
|     return Error(getLexer().getLoc(), "Expected } at this point");
 | |
|   Parser.Lex(); // Eat '}'
 | |
|   // Assign Z with the {z} mark opernad
 | |
|   Z = X86Operand::CreateToken("{z}", StartLoc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // true on failure, false otherwise
 | |
| bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
 | |
|                                        const MCParsedAsmOperand &Op) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   if (getLexer().is(AsmToken::LCurly)) {
 | |
|     // Eat "{" and mark the current place.
 | |
|     const SMLoc consumedToken = consumeToken();
 | |
|     // Distinguish {1to<NUM>} from {%k<NUM>}.
 | |
|     if(getLexer().is(AsmToken::Integer)) {
 | |
|       // Parse memory broadcasting ({1to<NUM>}).
 | |
|       if (getLexer().getTok().getIntVal() != 1)
 | |
|         return TokError("Expected 1to<NUM> at this point");
 | |
|       Parser.Lex();  // Eat "1" of 1to8
 | |
|       if (!getLexer().is(AsmToken::Identifier) ||
 | |
|           !getLexer().getTok().getIdentifier().startswith("to"))
 | |
|         return TokError("Expected 1to<NUM> at this point");
 | |
|       // Recognize only reasonable suffixes.
 | |
|       const char *BroadcastPrimitive =
 | |
|         StringSwitch<const char*>(getLexer().getTok().getIdentifier())
 | |
|           .Case("to2",  "{1to2}")
 | |
|           .Case("to4",  "{1to4}")
 | |
|           .Case("to8",  "{1to8}")
 | |
|           .Case("to16", "{1to16}")
 | |
|           .Default(nullptr);
 | |
|       if (!BroadcastPrimitive)
 | |
|         return TokError("Invalid memory broadcast primitive.");
 | |
|       Parser.Lex();  // Eat "toN" of 1toN
 | |
|       if (!getLexer().is(AsmToken::RCurly))
 | |
|         return TokError("Expected } at this point");
 | |
|       Parser.Lex();  // Eat "}"
 | |
|       Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
 | |
|                                                  consumedToken));
 | |
|       // No AVX512 specific primitives can pass
 | |
|       // after memory broadcasting, so return.
 | |
|       return false;
 | |
|     } else {
 | |
|       // Parse either {k}{z}, {z}{k}, {k} or {z}
 | |
|       // last one have no meaning, but GCC accepts it
 | |
|       // Currently, we're just pass a '{' mark
 | |
|       std::unique_ptr<X86Operand> Z;
 | |
|       if (ParseZ(Z, consumedToken))
 | |
|         return true;
 | |
|       // Reaching here means that parsing of the allegadly '{z}' mark yielded
 | |
|       // no errors.
 | |
|       // Query for the need of further parsing for a {%k<NUM>} mark
 | |
|       if (!Z || getLexer().is(AsmToken::LCurly)) {
 | |
|         SMLoc StartLoc = Z ? consumeToken() : consumedToken;
 | |
|         // Parse an op-mask register mark ({%k<NUM>}), which is now to be
 | |
|         // expected
 | |
|         unsigned RegNo;
 | |
|         SMLoc RegLoc;
 | |
|         if (!ParseRegister(RegNo, RegLoc, StartLoc) &&
 | |
|             X86MCRegisterClasses[X86::VK1RegClassID].contains(RegNo)) {
 | |
|           if (RegNo == X86::K0)
 | |
|             return Error(RegLoc, "Register k0 can't be used as write mask");
 | |
|           if (!getLexer().is(AsmToken::RCurly))
 | |
|             return Error(getLexer().getLoc(), "Expected } at this point");
 | |
|           Operands.push_back(X86Operand::CreateToken("{", StartLoc));
 | |
|           Operands.push_back(
 | |
|               X86Operand::CreateReg(RegNo, StartLoc, StartLoc));
 | |
|           Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
 | |
|         } else
 | |
|           return Error(getLexer().getLoc(),
 | |
|                         "Expected an op-mask register at this point");
 | |
|         // {%k<NUM>} mark is found, inquire for {z}
 | |
|         if (getLexer().is(AsmToken::LCurly) && !Z) {
 | |
|           // Have we've found a parsing error, or found no (expected) {z} mark
 | |
|           // - report an error
 | |
|           if (ParseZ(Z, consumeToken()) || !Z)
 | |
|             return Error(getLexer().getLoc(),
 | |
|                          "Expected a {z} mark at this point");
 | |
| 
 | |
|         }
 | |
|         // '{z}' on its own is meaningless, hence should be ignored.
 | |
|         // on the contrary - have it been accompanied by a K register,
 | |
|         // allow it.
 | |
|         if (Z)
 | |
|           Operands.push_back(std::move(Z));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ParseMemOperand: 'seg : disp(basereg, indexreg, scale)'.  The '%ds:' prefix
 | |
| /// has already been parsed if present. disp may be provided as well.
 | |
| std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
 | |
|                                                           const MCExpr *&Disp,
 | |
|                                                           const SMLoc &StartLoc,
 | |
|                                                           SMLoc &EndLoc) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   SMLoc Loc;
 | |
|   // Based on the initial passed values, we may be in any of these cases, we are
 | |
|   // in one of these cases (with current position (*)):
 | |
| 
 | |
|   //   1. seg : * disp  (base-index-scale-expr)
 | |
|   //   2. seg : *(disp) (base-index-scale-expr)
 | |
|   //   3. seg :       *(base-index-scale-expr)
 | |
|   //   4.        disp  *(base-index-scale-expr)
 | |
|   //   5.      *(disp)  (base-index-scale-expr)
 | |
|   //   6.             *(base-index-scale-expr)
 | |
|   //   7.  disp *
 | |
|   //   8. *(disp)
 | |
| 
 | |
|   // If we do not have an displacement yet, check if we're in cases 4 or 6 by
 | |
|   // checking if the first object after the parenthesis is a register (or an
 | |
|   // identifier referring to a register) and parse the displacement or default
 | |
|   // to 0 as appropriate.
 | |
|   auto isAtMemOperand = [this]() {
 | |
|     if (this->getLexer().isNot(AsmToken::LParen))
 | |
|       return false;
 | |
|     AsmToken Buf[2];
 | |
|     StringRef Id;
 | |
|     auto TokCount = this->getLexer().peekTokens(Buf, true);
 | |
|     if (TokCount == 0)
 | |
|       return false;
 | |
|     switch (Buf[0].getKind()) {
 | |
|     case AsmToken::Percent:
 | |
|     case AsmToken::Comma:
 | |
|       return true;
 | |
|     // These lower cases are doing a peekIdentifier.
 | |
|     case AsmToken::At:
 | |
|     case AsmToken::Dollar:
 | |
|       if ((TokCount > 1) &&
 | |
|           (Buf[1].is(AsmToken::Identifier) || Buf[1].is(AsmToken::String)) &&
 | |
|           (Buf[0].getLoc().getPointer() + 1 == Buf[1].getLoc().getPointer()))
 | |
|         Id = StringRef(Buf[0].getLoc().getPointer(),
 | |
|                        Buf[1].getIdentifier().size() + 1);
 | |
|       break;
 | |
|     case AsmToken::Identifier:
 | |
|     case AsmToken::String:
 | |
|       Id = Buf[0].getIdentifier();
 | |
|       break;
 | |
|     default:
 | |
|       return false;
 | |
|     }
 | |
|     // We have an ID. Check if it is bound to a register.
 | |
|     if (!Id.empty()) {
 | |
|       MCSymbol *Sym = this->getContext().getOrCreateSymbol(Id);
 | |
|       if (Sym->isVariable()) {
 | |
|         auto V = Sym->getVariableValue(/*SetUsed*/ false);
 | |
|         return isa<X86MCExpr>(V);
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   if (!Disp) {
 | |
|     // Parse immediate if we're not at a mem operand yet.
 | |
|     if (!isAtMemOperand()) {
 | |
|       if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(Disp, EndLoc))
 | |
|         return nullptr;
 | |
|       assert(!isa<X86MCExpr>(Disp) && "Expected non-register here.");
 | |
|     } else {
 | |
|       // Disp is implicitly zero if we haven't parsed it yet.
 | |
|       Disp = MCConstantExpr::create(0, Parser.getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We are now either at the end of the operand or at the '(' at the start of a
 | |
|   // base-index-scale-expr.
 | |
| 
 | |
|   if (!parseOptionalToken(AsmToken::LParen)) {
 | |
|     if (SegReg == 0)
 | |
|       return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc);
 | |
|     return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
 | |
|                                  StartLoc, EndLoc);
 | |
|   }
 | |
| 
 | |
|   // If we reached here, then eat the '(' and Process
 | |
|   // the rest of the memory operand.
 | |
|   unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
 | |
|   SMLoc BaseLoc = getLexer().getLoc();
 | |
|   const MCExpr *E;
 | |
|   StringRef ErrMsg;
 | |
| 
 | |
|   // Parse BaseReg if one is provided.
 | |
|   if (getLexer().isNot(AsmToken::Comma) && getLexer().isNot(AsmToken::RParen)) {
 | |
|     if (Parser.parseExpression(E, EndLoc) ||
 | |
|         check(!isa<X86MCExpr>(E), BaseLoc, "expected register here"))
 | |
|       return nullptr;
 | |
| 
 | |
|     // Sanity check register.
 | |
|     BaseReg = cast<X86MCExpr>(E)->getRegNo();
 | |
|     if (BaseReg == X86::EIZ || BaseReg == X86::RIZ)
 | |
|       return ErrorOperand(BaseLoc,
 | |
|                           "eiz and riz can only be used as index registers",
 | |
|                           SMRange(BaseLoc, EndLoc));
 | |
|   }
 | |
| 
 | |
|   if (parseOptionalToken(AsmToken::Comma)) {
 | |
|     // Following the comma we should have either an index register, or a scale
 | |
|     // value. We don't support the later form, but we want to parse it
 | |
|     // correctly.
 | |
|     //
 | |
|     // Even though it would be completely consistent to support syntax like
 | |
|     // "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
 | |
|     if (getLexer().isNot(AsmToken::RParen)) {
 | |
|       if (Parser.parseTokenLoc(Loc) || Parser.parseExpression(E, EndLoc))
 | |
|         return nullptr;
 | |
| 
 | |
|       if (!isa<X86MCExpr>(E)) {
 | |
|         // We've parsed an unexpected Scale Value instead of an index
 | |
|         // register. Interpret it as an absolute.
 | |
|         int64_t ScaleVal;
 | |
|         if (!E->evaluateAsAbsolute(ScaleVal, getStreamer().getAssemblerPtr()))
 | |
|           return ErrorOperand(Loc, "expected absolute expression");
 | |
|         if (ScaleVal != 1)
 | |
|           Warning(Loc, "scale factor without index register is ignored");
 | |
|         Scale = 1;
 | |
|       } else { // IndexReg Found.
 | |
|         IndexReg = cast<X86MCExpr>(E)->getRegNo();
 | |
| 
 | |
|         if (BaseReg == X86::RIP)
 | |
|           return ErrorOperand(
 | |
|               Loc, "%rip as base register can not have an index register");
 | |
|         if (IndexReg == X86::RIP)
 | |
|           return ErrorOperand(Loc, "%rip is not allowed as an index register");
 | |
| 
 | |
|         if (parseOptionalToken(AsmToken::Comma)) {
 | |
|           // Parse the scale amount:
 | |
|           //  ::= ',' [scale-expression]
 | |
| 
 | |
|           // A scale amount without an index is ignored.
 | |
|           if (getLexer().isNot(AsmToken::RParen)) {
 | |
|             int64_t ScaleVal;
 | |
|             if (Parser.parseTokenLoc(Loc) ||
 | |
|                 Parser.parseAbsoluteExpression(ScaleVal))
 | |
|               return ErrorOperand(Loc, "expected scale expression");
 | |
|             Scale = (unsigned)ScaleVal;
 | |
|             // Validate the scale amount.
 | |
|             if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
 | |
|                 Scale != 1)
 | |
|               return ErrorOperand(Loc,
 | |
|                                   "scale factor in 16-bit address must be 1");
 | |
|             if (checkScale(Scale, ErrMsg))
 | |
|               return ErrorOperand(Loc, ErrMsg);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
 | |
|   if (parseToken(AsmToken::RParen, "unexpected token in memory operand"))
 | |
|     return nullptr;
 | |
| 
 | |
|   // This is to support otherwise illegal operand (%dx) found in various
 | |
|   // unofficial manuals examples (e.g. "out[s]?[bwl]? %al, (%dx)") and must now
 | |
|   // be supported. Mark such DX variants separately fix only in special cases.
 | |
|   if (BaseReg == X86::DX && IndexReg == 0 && Scale == 1 && SegReg == 0 &&
 | |
|       isa<MCConstantExpr>(Disp) && cast<MCConstantExpr>(Disp)->getValue() == 0)
 | |
|     return X86Operand::CreateDXReg(BaseLoc, BaseLoc);
 | |
| 
 | |
|   if (CheckBaseRegAndIndexRegAndScale(BaseReg, IndexReg, Scale, is64BitMode(),
 | |
|                                       ErrMsg))
 | |
|     return ErrorOperand(BaseLoc, ErrMsg);
 | |
| 
 | |
|   if (SegReg || BaseReg || IndexReg)
 | |
|     return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
 | |
|                                  IndexReg, Scale, StartLoc, EndLoc);
 | |
|   return X86Operand::CreateMem(getPointerWidth(), Disp, StartLoc, EndLoc);
 | |
| }
 | |
| 
 | |
| // Parse either a standard primary expression or a register.
 | |
| bool X86AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   // See if this is a register first.
 | |
|   if (getTok().is(AsmToken::Percent) ||
 | |
|       (isParsingIntelSyntax() && getTok().is(AsmToken::Identifier) &&
 | |
|        MatchRegisterName(Parser.getTok().getString()))) {
 | |
|     SMLoc StartLoc = Parser.getTok().getLoc();
 | |
|     unsigned RegNo;
 | |
|     if (ParseRegister(RegNo, StartLoc, EndLoc))
 | |
|       return true;
 | |
|     Res = X86MCExpr::create(RegNo, Parser.getContext());
 | |
|     return false;
 | |
|   }
 | |
|   return Parser.parsePrimaryExpr(Res, EndLoc);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
 | |
|                                     SMLoc NameLoc, OperandVector &Operands) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   InstInfo = &Info;
 | |
| 
 | |
|   // Reset the forced VEX encoding.
 | |
|   ForcedVEXEncoding = VEXEncoding_Default;
 | |
| 
 | |
|   // Parse pseudo prefixes.
 | |
|   while (1) {
 | |
|     if (Name == "{") {
 | |
|       if (getLexer().isNot(AsmToken::Identifier))
 | |
|         return Error(Parser.getTok().getLoc(), "Unexpected token after '{'");
 | |
|       std::string Prefix = Parser.getTok().getString().lower();
 | |
|       Parser.Lex(); // Eat identifier.
 | |
|       if (getLexer().isNot(AsmToken::RCurly))
 | |
|         return Error(Parser.getTok().getLoc(), "Expected '}'");
 | |
|       Parser.Lex(); // Eat curly.
 | |
| 
 | |
|       if (Prefix == "vex2")
 | |
|         ForcedVEXEncoding = VEXEncoding_VEX2;
 | |
|       else if (Prefix == "vex3")
 | |
|         ForcedVEXEncoding = VEXEncoding_VEX3;
 | |
|       else if (Prefix == "evex")
 | |
|         ForcedVEXEncoding = VEXEncoding_EVEX;
 | |
|       else
 | |
|         return Error(NameLoc, "unknown prefix");
 | |
| 
 | |
|       NameLoc = Parser.getTok().getLoc();
 | |
|       if (getLexer().is(AsmToken::LCurly)) {
 | |
|         Parser.Lex();
 | |
|         Name = "{";
 | |
|       } else {
 | |
|         if (getLexer().isNot(AsmToken::Identifier))
 | |
|           return Error(Parser.getTok().getLoc(), "Expected identifier");
 | |
|         // FIXME: The mnemonic won't match correctly if its not in lower case.
 | |
|         Name = Parser.getTok().getString();
 | |
|         Parser.Lex();
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   StringRef PatchedName = Name;
 | |
| 
 | |
|   // Hack to skip "short" following Jcc.
 | |
|   if (isParsingIntelSyntax() &&
 | |
|       (PatchedName == "jmp" || PatchedName == "jc" || PatchedName == "jnc" ||
 | |
|        PatchedName == "jcxz" || PatchedName == "jexcz" ||
 | |
|        (PatchedName.startswith("j") &&
 | |
|         ParseConditionCode(PatchedName.substr(1)) != X86::COND_INVALID))) {
 | |
|     StringRef NextTok = Parser.getTok().getString();
 | |
|     if (NextTok == "short") {
 | |
|       SMLoc NameEndLoc =
 | |
|           NameLoc.getFromPointer(NameLoc.getPointer() + Name.size());
 | |
|       // Eat the short keyword.
 | |
|       Parser.Lex();
 | |
|       // MS and GAS ignore the short keyword; they both determine the jmp type
 | |
|       // based on the distance of the label. (NASM does emit different code with
 | |
|       // and without "short," though.)
 | |
|       InstInfo->AsmRewrites->emplace_back(AOK_Skip, NameEndLoc,
 | |
|                                           NextTok.size() + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to recognize setneb as setne.
 | |
|   if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
 | |
|       PatchedName != "setb" && PatchedName != "setnb")
 | |
|     PatchedName = PatchedName.substr(0, Name.size()-1);
 | |
| 
 | |
|   unsigned ComparisonPredicate = ~0U;
 | |
| 
 | |
|   // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
 | |
|   if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
 | |
|       (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
 | |
|        PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
 | |
|     bool IsVCMP = PatchedName[0] == 'v';
 | |
|     unsigned CCIdx = IsVCMP ? 4 : 3;
 | |
|     unsigned CC = StringSwitch<unsigned>(
 | |
|       PatchedName.slice(CCIdx, PatchedName.size() - 2))
 | |
|       .Case("eq",       0x00)
 | |
|       .Case("eq_oq",    0x00)
 | |
|       .Case("lt",       0x01)
 | |
|       .Case("lt_os",    0x01)
 | |
|       .Case("le",       0x02)
 | |
|       .Case("le_os",    0x02)
 | |
|       .Case("unord",    0x03)
 | |
|       .Case("unord_q",  0x03)
 | |
|       .Case("neq",      0x04)
 | |
|       .Case("neq_uq",   0x04)
 | |
|       .Case("nlt",      0x05)
 | |
|       .Case("nlt_us",   0x05)
 | |
|       .Case("nle",      0x06)
 | |
|       .Case("nle_us",   0x06)
 | |
|       .Case("ord",      0x07)
 | |
|       .Case("ord_q",    0x07)
 | |
|       /* AVX only from here */
 | |
|       .Case("eq_uq",    0x08)
 | |
|       .Case("nge",      0x09)
 | |
|       .Case("nge_us",   0x09)
 | |
|       .Case("ngt",      0x0A)
 | |
|       .Case("ngt_us",   0x0A)
 | |
|       .Case("false",    0x0B)
 | |
|       .Case("false_oq", 0x0B)
 | |
|       .Case("neq_oq",   0x0C)
 | |
|       .Case("ge",       0x0D)
 | |
|       .Case("ge_os",    0x0D)
 | |
|       .Case("gt",       0x0E)
 | |
|       .Case("gt_os",    0x0E)
 | |
|       .Case("true",     0x0F)
 | |
|       .Case("true_uq",  0x0F)
 | |
|       .Case("eq_os",    0x10)
 | |
|       .Case("lt_oq",    0x11)
 | |
|       .Case("le_oq",    0x12)
 | |
|       .Case("unord_s",  0x13)
 | |
|       .Case("neq_us",   0x14)
 | |
|       .Case("nlt_uq",   0x15)
 | |
|       .Case("nle_uq",   0x16)
 | |
|       .Case("ord_s",    0x17)
 | |
|       .Case("eq_us",    0x18)
 | |
|       .Case("nge_uq",   0x19)
 | |
|       .Case("ngt_uq",   0x1A)
 | |
|       .Case("false_os", 0x1B)
 | |
|       .Case("neq_os",   0x1C)
 | |
|       .Case("ge_oq",    0x1D)
 | |
|       .Case("gt_oq",    0x1E)
 | |
|       .Case("true_us",  0x1F)
 | |
|       .Default(~0U);
 | |
|     if (CC != ~0U && (IsVCMP || CC < 8)) {
 | |
|       if (PatchedName.endswith("ss"))
 | |
|         PatchedName = IsVCMP ? "vcmpss" : "cmpss";
 | |
|       else if (PatchedName.endswith("sd"))
 | |
|         PatchedName = IsVCMP ? "vcmpsd" : "cmpsd";
 | |
|       else if (PatchedName.endswith("ps"))
 | |
|         PatchedName = IsVCMP ? "vcmpps" : "cmpps";
 | |
|       else if (PatchedName.endswith("pd"))
 | |
|         PatchedName = IsVCMP ? "vcmppd" : "cmppd";
 | |
|       else
 | |
|         llvm_unreachable("Unexpected suffix!");
 | |
| 
 | |
|       ComparisonPredicate = CC;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
 | |
|   if (PatchedName.startswith("vpcmp") &&
 | |
|       (PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
 | |
|        PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
 | |
|     unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
 | |
|     unsigned CC = StringSwitch<unsigned>(
 | |
|       PatchedName.slice(5, PatchedName.size() - SuffixSize))
 | |
|       .Case("eq",    0x0) // Only allowed on unsigned. Checked below.
 | |
|       .Case("lt",    0x1)
 | |
|       .Case("le",    0x2)
 | |
|       //.Case("false", 0x3) // Not a documented alias.
 | |
|       .Case("neq",   0x4)
 | |
|       .Case("nlt",   0x5)
 | |
|       .Case("nle",   0x6)
 | |
|       //.Case("true",  0x7) // Not a documented alias.
 | |
|       .Default(~0U);
 | |
|     if (CC != ~0U && (CC != 0 || SuffixSize == 2)) {
 | |
|       switch (PatchedName.back()) {
 | |
|       default: llvm_unreachable("Unexpected character!");
 | |
|       case 'b': PatchedName = SuffixSize == 2 ? "vpcmpub" : "vpcmpb"; break;
 | |
|       case 'w': PatchedName = SuffixSize == 2 ? "vpcmpuw" : "vpcmpw"; break;
 | |
|       case 'd': PatchedName = SuffixSize == 2 ? "vpcmpud" : "vpcmpd"; break;
 | |
|       case 'q': PatchedName = SuffixSize == 2 ? "vpcmpuq" : "vpcmpq"; break;
 | |
|       }
 | |
|       // Set up the immediate to push into the operands later.
 | |
|       ComparisonPredicate = CC;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
 | |
|   if (PatchedName.startswith("vpcom") &&
 | |
|       (PatchedName.back() == 'b' || PatchedName.back() == 'w' ||
 | |
|        PatchedName.back() == 'd' || PatchedName.back() == 'q')) {
 | |
|     unsigned SuffixSize = PatchedName.drop_back().back() == 'u' ? 2 : 1;
 | |
|     unsigned CC = StringSwitch<unsigned>(
 | |
|       PatchedName.slice(5, PatchedName.size() - SuffixSize))
 | |
|       .Case("lt",    0x0)
 | |
|       .Case("le",    0x1)
 | |
|       .Case("gt",    0x2)
 | |
|       .Case("ge",    0x3)
 | |
|       .Case("eq",    0x4)
 | |
|       .Case("neq",   0x5)
 | |
|       .Case("false", 0x6)
 | |
|       .Case("true",  0x7)
 | |
|       .Default(~0U);
 | |
|     if (CC != ~0U) {
 | |
|       switch (PatchedName.back()) {
 | |
|       default: llvm_unreachable("Unexpected character!");
 | |
|       case 'b': PatchedName = SuffixSize == 2 ? "vpcomub" : "vpcomb"; break;
 | |
|       case 'w': PatchedName = SuffixSize == 2 ? "vpcomuw" : "vpcomw"; break;
 | |
|       case 'd': PatchedName = SuffixSize == 2 ? "vpcomud" : "vpcomd"; break;
 | |
|       case 'q': PatchedName = SuffixSize == 2 ? "vpcomuq" : "vpcomq"; break;
 | |
|       }
 | |
|       // Set up the immediate to push into the operands later.
 | |
|       ComparisonPredicate = CC;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Determine whether this is an instruction prefix.
 | |
|   // FIXME:
 | |
|   // Enhance prefixes integrity robustness. for example, following forms
 | |
|   // are currently tolerated:
 | |
|   // repz repnz <insn>    ; GAS errors for the use of two similar prefixes
 | |
|   // lock addq %rax, %rbx ; Destination operand must be of memory type
 | |
|   // xacquire <insn>      ; xacquire must be accompanied by 'lock'
 | |
|   bool isPrefix = StringSwitch<bool>(Name)
 | |
|                       .Cases("rex64", "data32", "data16", true)
 | |
|                       .Cases("xacquire", "xrelease", true)
 | |
|                       .Cases("acquire", "release", isParsingIntelSyntax())
 | |
|                       .Default(false);
 | |
| 
 | |
|   auto isLockRepeatNtPrefix = [](StringRef N) {
 | |
|     return StringSwitch<bool>(N)
 | |
|         .Cases("lock", "rep", "repe", "repz", "repne", "repnz", "notrack", true)
 | |
|         .Default(false);
 | |
|   };
 | |
| 
 | |
|   bool CurlyAsEndOfStatement = false;
 | |
| 
 | |
|   unsigned Flags = X86::IP_NO_PREFIX;
 | |
|   while (isLockRepeatNtPrefix(Name.lower())) {
 | |
|     unsigned Prefix =
 | |
|         StringSwitch<unsigned>(Name)
 | |
|             .Cases("lock", "lock", X86::IP_HAS_LOCK)
 | |
|             .Cases("rep", "repe", "repz", X86::IP_HAS_REPEAT)
 | |
|             .Cases("repne", "repnz", X86::IP_HAS_REPEAT_NE)
 | |
|             .Cases("notrack", "notrack", X86::IP_HAS_NOTRACK)
 | |
|             .Default(X86::IP_NO_PREFIX); // Invalid prefix (impossible)
 | |
|     Flags |= Prefix;
 | |
|     if (getLexer().is(AsmToken::EndOfStatement)) {
 | |
|       // We don't have real instr with the given prefix
 | |
|       //  let's use the prefix as the instr.
 | |
|       // TODO: there could be several prefixes one after another
 | |
|       Flags = X86::IP_NO_PREFIX;
 | |
|       break;
 | |
|     }
 | |
|     // FIXME: The mnemonic won't match correctly if its not in lower case.
 | |
|     Name = Parser.getTok().getString();
 | |
|     Parser.Lex(); // eat the prefix
 | |
|     // Hack: we could have something like "rep # some comment" or
 | |
|     //    "lock; cmpxchg16b $1" or "lock\0A\09incl" or "lock/incl"
 | |
|     while (Name.startswith(";") || Name.startswith("\n") ||
 | |
|            Name.startswith("#") || Name.startswith("\t") ||
 | |
|            Name.startswith("/")) {
 | |
|       // FIXME: The mnemonic won't match correctly if its not in lower case.
 | |
|       Name = Parser.getTok().getString();
 | |
|       Parser.Lex(); // go to next prefix or instr
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Flags)
 | |
|     PatchedName = Name;
 | |
| 
 | |
|   // Hacks to handle 'data16' and 'data32'
 | |
|   if (PatchedName == "data16" && is16BitMode()) {
 | |
|     return Error(NameLoc, "redundant data16 prefix");
 | |
|   }
 | |
|   if (PatchedName == "data32") {
 | |
|     if (is32BitMode())
 | |
|       return Error(NameLoc, "redundant data32 prefix");
 | |
|     if (is64BitMode())
 | |
|       return Error(NameLoc, "'data32' is not supported in 64-bit mode");
 | |
|     // Hack to 'data16' for the table lookup.
 | |
|     PatchedName = "data16";
 | |
|   }
 | |
| 
 | |
|   Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
 | |
| 
 | |
|   // Push the immediate if we extracted one from the mnemonic.
 | |
|   if (ComparisonPredicate != ~0U && !isParsingIntelSyntax()) {
 | |
|     const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
 | |
|                                                  getParser().getContext());
 | |
|     Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | |
|   }
 | |
| 
 | |
|   // This does the actual operand parsing.  Don't parse any more if we have a
 | |
|   // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
 | |
|   // just want to parse the "lock" as the first instruction and the "incl" as
 | |
|   // the next one.
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
 | |
|     // Parse '*' modifier.
 | |
|     if (getLexer().is(AsmToken::Star))
 | |
|       Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
 | |
| 
 | |
|     // Read the operands.
 | |
|     while(1) {
 | |
|       if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
 | |
|         Operands.push_back(std::move(Op));
 | |
|         if (HandleAVX512Operand(Operands, *Operands.back()))
 | |
|           return true;
 | |
|       } else {
 | |
|          return true;
 | |
|       }
 | |
|       // check for comma and eat it
 | |
|       if (getLexer().is(AsmToken::Comma))
 | |
|         Parser.Lex();
 | |
|       else
 | |
|         break;
 | |
|      }
 | |
| 
 | |
|     // In MS inline asm curly braces mark the beginning/end of a block,
 | |
|     // therefore they should be interepreted as end of statement
 | |
|     CurlyAsEndOfStatement =
 | |
|         isParsingIntelSyntax() && isParsingMSInlineAsm() &&
 | |
|         (getLexer().is(AsmToken::LCurly) || getLexer().is(AsmToken::RCurly));
 | |
|     if (getLexer().isNot(AsmToken::EndOfStatement) && !CurlyAsEndOfStatement)
 | |
|       return TokError("unexpected token in argument list");
 | |
|   }
 | |
| 
 | |
|   // Push the immediate if we extracted one from the mnemonic.
 | |
|   if (ComparisonPredicate != ~0U && isParsingIntelSyntax()) {
 | |
|     const MCExpr *ImmOp = MCConstantExpr::create(ComparisonPredicate,
 | |
|                                                  getParser().getContext());
 | |
|     Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
 | |
|   }
 | |
| 
 | |
|   // Consume the EndOfStatement or the prefix separator Slash
 | |
|   if (getLexer().is(AsmToken::EndOfStatement) ||
 | |
|       (isPrefix && getLexer().is(AsmToken::Slash)))
 | |
|     Parser.Lex();
 | |
|   else if (CurlyAsEndOfStatement)
 | |
|     // Add an actual EndOfStatement before the curly brace
 | |
|     Info.AsmRewrites->emplace_back(AOK_EndOfStatement,
 | |
|                                    getLexer().getTok().getLoc(), 0);
 | |
| 
 | |
|   // This is for gas compatibility and cannot be done in td.
 | |
|   // Adding "p" for some floating point with no argument.
 | |
|   // For example: fsub --> fsubp
 | |
|   bool IsFp =
 | |
|     Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
 | |
|   if (IsFp && Operands.size() == 1) {
 | |
|     const char *Repl = StringSwitch<const char *>(Name)
 | |
|       .Case("fsub", "fsubp")
 | |
|       .Case("fdiv", "fdivp")
 | |
|       .Case("fsubr", "fsubrp")
 | |
|       .Case("fdivr", "fdivrp");
 | |
|     static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
 | |
|   }
 | |
| 
 | |
|   if ((Name == "mov" || Name == "movw" || Name == "movl") &&
 | |
|       (Operands.size() == 3)) {
 | |
|     X86Operand &Op1 = (X86Operand &)*Operands[1];
 | |
|     X86Operand &Op2 = (X86Operand &)*Operands[2];
 | |
|     SMLoc Loc = Op1.getEndLoc();
 | |
|     // Moving a 32 or 16 bit value into a segment register has the same
 | |
|     // behavior. Modify such instructions to always take shorter form.
 | |
|     if (Op1.isReg() && Op2.isReg() &&
 | |
|         X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(
 | |
|             Op2.getReg()) &&
 | |
|         (X86MCRegisterClasses[X86::GR16RegClassID].contains(Op1.getReg()) ||
 | |
|          X86MCRegisterClasses[X86::GR32RegClassID].contains(Op1.getReg()))) {
 | |
|       // Change instruction name to match new instruction.
 | |
|       if (Name != "mov" && Name[3] == (is16BitMode() ? 'l' : 'w')) {
 | |
|         Name = is16BitMode() ? "movw" : "movl";
 | |
|         Operands[0] = X86Operand::CreateToken(Name, NameLoc);
 | |
|       }
 | |
|       // Select the correct equivalent 16-/32-bit source register.
 | |
|       unsigned Reg =
 | |
|           getX86SubSuperRegisterOrZero(Op1.getReg(), is16BitMode() ? 16 : 32);
 | |
|       Operands[1] = X86Operand::CreateReg(Reg, Loc, Loc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This is a terrible hack to handle "out[s]?[bwl]? %al, (%dx)" ->
 | |
|   // "outb %al, %dx".  Out doesn't take a memory form, but this is a widely
 | |
|   // documented form in various unofficial manuals, so a lot of code uses it.
 | |
|   if ((Name == "outb" || Name == "outsb" || Name == "outw" || Name == "outsw" ||
 | |
|        Name == "outl" || Name == "outsl" || Name == "out" || Name == "outs") &&
 | |
|       Operands.size() == 3) {
 | |
|     X86Operand &Op = (X86Operand &)*Operands.back();
 | |
|     if (Op.isDXReg())
 | |
|       Operands.back() = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
 | |
|                                               Op.getEndLoc());
 | |
|   }
 | |
|   // Same hack for "in[s]?[bwl]? (%dx), %al" -> "inb %dx, %al".
 | |
|   if ((Name == "inb" || Name == "insb" || Name == "inw" || Name == "insw" ||
 | |
|        Name == "inl" || Name == "insl" || Name == "in" || Name == "ins") &&
 | |
|       Operands.size() == 3) {
 | |
|     X86Operand &Op = (X86Operand &)*Operands[1];
 | |
|     if (Op.isDXReg())
 | |
|       Operands[1] = X86Operand::CreateReg(X86::DX, Op.getStartLoc(),
 | |
|                                           Op.getEndLoc());
 | |
|   }
 | |
| 
 | |
|   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 2> TmpOperands;
 | |
|   bool HadVerifyError = false;
 | |
| 
 | |
|   // Append default arguments to "ins[bwld]"
 | |
|   if (Name.startswith("ins") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 3) &&
 | |
|       (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd" ||
 | |
|        Name == "ins")) {
 | |
| 
 | |
|     AddDefaultSrcDestOperands(TmpOperands,
 | |
|                               X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
 | |
|                               DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Append default arguments to "outs[bwld]"
 | |
|   if (Name.startswith("outs") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 3) &&
 | |
|       (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
 | |
|        Name == "outsd" || Name == "outs")) {
 | |
|     AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
 | |
|                               X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
 | |
|   // values of $SIREG according to the mode. It would be nice if this
 | |
|   // could be achieved with InstAlias in the tables.
 | |
|   if (Name.startswith("lods") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 2) &&
 | |
|       (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
 | |
|        Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) {
 | |
|     TmpOperands.push_back(DefaultMemSIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
 | |
|   // values of $DIREG according to the mode. It would be nice if this
 | |
|   // could be achieved with InstAlias in the tables.
 | |
|   if (Name.startswith("stos") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 2) &&
 | |
|       (Name == "stos" || Name == "stosb" || Name == "stosw" ||
 | |
|        Name == "stosl" || Name == "stosd" || Name == "stosq")) {
 | |
|     TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
 | |
|   // values of $DIREG according to the mode. It would be nice if this
 | |
|   // could be achieved with InstAlias in the tables.
 | |
|   if (Name.startswith("scas") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 2) &&
 | |
|       (Name == "scas" || Name == "scasb" || Name == "scasw" ||
 | |
|        Name == "scasl" || Name == "scasd" || Name == "scasq")) {
 | |
|     TmpOperands.push_back(DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Add default SI and DI operands to "cmps[bwlq]".
 | |
|   if (Name.startswith("cmps") &&
 | |
|       (Operands.size() == 1 || Operands.size() == 3) &&
 | |
|       (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
 | |
|        Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
 | |
|     AddDefaultSrcDestOperands(TmpOperands, DefaultMemDIOperand(NameLoc),
 | |
|                               DefaultMemSIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Add default SI and DI operands to "movs[bwlq]".
 | |
|   if (((Name.startswith("movs") &&
 | |
|         (Name == "movs" || Name == "movsb" || Name == "movsw" ||
 | |
|          Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
 | |
|        (Name.startswith("smov") &&
 | |
|         (Name == "smov" || Name == "smovb" || Name == "smovw" ||
 | |
|          Name == "smovl" || Name == "smovd" || Name == "smovq"))) &&
 | |
|       (Operands.size() == 1 || Operands.size() == 3)) {
 | |
|     if (Name == "movsd" && Operands.size() == 1 && !isParsingIntelSyntax())
 | |
|       Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
 | |
|     AddDefaultSrcDestOperands(TmpOperands, DefaultMemSIOperand(NameLoc),
 | |
|                               DefaultMemDIOperand(NameLoc));
 | |
|     HadVerifyError = VerifyAndAdjustOperands(Operands, TmpOperands);
 | |
|   }
 | |
| 
 | |
|   // Check if we encountered an error for one the string insturctions
 | |
|   if (HadVerifyError) {
 | |
|     return HadVerifyError;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>.  Canonicalize to
 | |
|   // "shift <op>".
 | |
|   if ((Name.startswith("shr") || Name.startswith("sar") ||
 | |
|        Name.startswith("shl") || Name.startswith("sal") ||
 | |
|        Name.startswith("rcl") || Name.startswith("rcr") ||
 | |
|        Name.startswith("rol") || Name.startswith("ror")) &&
 | |
|       Operands.size() == 3) {
 | |
|     if (isParsingIntelSyntax()) {
 | |
|       // Intel syntax
 | |
|       X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
 | |
|       if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | |
|           cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | |
|         Operands.pop_back();
 | |
|     } else {
 | |
|       X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | |
|       if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
 | |
|           cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
 | |
|         Operands.erase(Operands.begin() + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transforms "int $3" into "int3" as a size optimization.  We can't write an
 | |
|   // instalias with an immediate operand yet.
 | |
|   if (Name == "int" && Operands.size() == 2) {
 | |
|     X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | |
|     if (Op1.isImm())
 | |
|       if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
 | |
|         if (CE->getValue() == 3) {
 | |
|           Operands.erase(Operands.begin() + 1);
 | |
|           static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
 | |
|         }
 | |
|   }
 | |
| 
 | |
|   // Transforms "xlat mem8" into "xlatb"
 | |
|   if ((Name == "xlat" || Name == "xlatb") && Operands.size() == 2) {
 | |
|     X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
 | |
|     if (Op1.isMem8()) {
 | |
|       Warning(Op1.getStartLoc(), "memory operand is only for determining the "
 | |
|                                  "size, (R|E)BX will be used for the location");
 | |
|       Operands.pop_back();
 | |
|       static_cast<X86Operand &>(*Operands[0]).setTokenValue("xlatb");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Flags)
 | |
|     Operands.push_back(X86Operand::CreatePrefix(Flags, NameLoc, NameLoc));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
 | |
|   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
 | |
| 
 | |
|   switch (Inst.getOpcode()) {
 | |
|   default: return false;
 | |
|   case X86::VMOVZPQILo2PQIrr:
 | |
|   case X86::VMOVAPDrr:
 | |
|   case X86::VMOVAPDYrr:
 | |
|   case X86::VMOVAPSrr:
 | |
|   case X86::VMOVAPSYrr:
 | |
|   case X86::VMOVDQArr:
 | |
|   case X86::VMOVDQAYrr:
 | |
|   case X86::VMOVDQUrr:
 | |
|   case X86::VMOVDQUYrr:
 | |
|   case X86::VMOVUPDrr:
 | |
|   case X86::VMOVUPDYrr:
 | |
|   case X86::VMOVUPSrr:
 | |
|   case X86::VMOVUPSYrr: {
 | |
|     // We can get a smaller encoding by using VEX.R instead of VEX.B if one of
 | |
|     // the registers is extended, but other isn't.
 | |
|     if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
 | |
|         MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
 | |
|         MRI->getEncodingValue(Inst.getOperand(1).getReg()) < 8)
 | |
|       return false;
 | |
| 
 | |
|     unsigned NewOpc;
 | |
|     switch (Inst.getOpcode()) {
 | |
|     default: llvm_unreachable("Invalid opcode");
 | |
|     case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr;   break;
 | |
|     case X86::VMOVAPDrr:        NewOpc = X86::VMOVAPDrr_REV;  break;
 | |
|     case X86::VMOVAPDYrr:       NewOpc = X86::VMOVAPDYrr_REV; break;
 | |
|     case X86::VMOVAPSrr:        NewOpc = X86::VMOVAPSrr_REV;  break;
 | |
|     case X86::VMOVAPSYrr:       NewOpc = X86::VMOVAPSYrr_REV; break;
 | |
|     case X86::VMOVDQArr:        NewOpc = X86::VMOVDQArr_REV;  break;
 | |
|     case X86::VMOVDQAYrr:       NewOpc = X86::VMOVDQAYrr_REV; break;
 | |
|     case X86::VMOVDQUrr:        NewOpc = X86::VMOVDQUrr_REV;  break;
 | |
|     case X86::VMOVDQUYrr:       NewOpc = X86::VMOVDQUYrr_REV; break;
 | |
|     case X86::VMOVUPDrr:        NewOpc = X86::VMOVUPDrr_REV;  break;
 | |
|     case X86::VMOVUPDYrr:       NewOpc = X86::VMOVUPDYrr_REV; break;
 | |
|     case X86::VMOVUPSrr:        NewOpc = X86::VMOVUPSrr_REV;  break;
 | |
|     case X86::VMOVUPSYrr:       NewOpc = X86::VMOVUPSYrr_REV; break;
 | |
|     }
 | |
|     Inst.setOpcode(NewOpc);
 | |
|     return true;
 | |
|   }
 | |
|   case X86::VMOVSDrr:
 | |
|   case X86::VMOVSSrr: {
 | |
|     // We can get a smaller encoding by using VEX.R instead of VEX.B if one of
 | |
|     // the registers is extended, but other isn't.
 | |
|     if (ForcedVEXEncoding == VEXEncoding_VEX3 ||
 | |
|         MRI->getEncodingValue(Inst.getOperand(0).getReg()) >= 8 ||
 | |
|         MRI->getEncodingValue(Inst.getOperand(2).getReg()) < 8)
 | |
|       return false;
 | |
| 
 | |
|     unsigned NewOpc;
 | |
|     switch (Inst.getOpcode()) {
 | |
|     default: llvm_unreachable("Invalid opcode");
 | |
|     case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
 | |
|     case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
 | |
|     }
 | |
|     Inst.setOpcode(NewOpc);
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
 | |
|   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
 | |
| 
 | |
|   switch (Inst.getOpcode()) {
 | |
|   case X86::VGATHERDPDYrm:
 | |
|   case X86::VGATHERDPDrm:
 | |
|   case X86::VGATHERDPSYrm:
 | |
|   case X86::VGATHERDPSrm:
 | |
|   case X86::VGATHERQPDYrm:
 | |
|   case X86::VGATHERQPDrm:
 | |
|   case X86::VGATHERQPSYrm:
 | |
|   case X86::VGATHERQPSrm:
 | |
|   case X86::VPGATHERDDYrm:
 | |
|   case X86::VPGATHERDDrm:
 | |
|   case X86::VPGATHERDQYrm:
 | |
|   case X86::VPGATHERDQrm:
 | |
|   case X86::VPGATHERQDYrm:
 | |
|   case X86::VPGATHERQDrm:
 | |
|   case X86::VPGATHERQQYrm:
 | |
|   case X86::VPGATHERQQrm: {
 | |
|     unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
 | |
|     unsigned Mask = MRI->getEncodingValue(Inst.getOperand(1).getReg());
 | |
|     unsigned Index =
 | |
|       MRI->getEncodingValue(Inst.getOperand(3 + X86::AddrIndexReg).getReg());
 | |
|     if (Dest == Mask || Dest == Index || Mask == Index)
 | |
|       return Warning(Ops[0]->getStartLoc(), "mask, index, and destination "
 | |
|                                             "registers should be distinct");
 | |
|     break;
 | |
|   }
 | |
|   case X86::VGATHERDPDZ128rm:
 | |
|   case X86::VGATHERDPDZ256rm:
 | |
|   case X86::VGATHERDPDZrm:
 | |
|   case X86::VGATHERDPSZ128rm:
 | |
|   case X86::VGATHERDPSZ256rm:
 | |
|   case X86::VGATHERDPSZrm:
 | |
|   case X86::VGATHERQPDZ128rm:
 | |
|   case X86::VGATHERQPDZ256rm:
 | |
|   case X86::VGATHERQPDZrm:
 | |
|   case X86::VGATHERQPSZ128rm:
 | |
|   case X86::VGATHERQPSZ256rm:
 | |
|   case X86::VGATHERQPSZrm:
 | |
|   case X86::VPGATHERDDZ128rm:
 | |
|   case X86::VPGATHERDDZ256rm:
 | |
|   case X86::VPGATHERDDZrm:
 | |
|   case X86::VPGATHERDQZ128rm:
 | |
|   case X86::VPGATHERDQZ256rm:
 | |
|   case X86::VPGATHERDQZrm:
 | |
|   case X86::VPGATHERQDZ128rm:
 | |
|   case X86::VPGATHERQDZ256rm:
 | |
|   case X86::VPGATHERQDZrm:
 | |
|   case X86::VPGATHERQQZ128rm:
 | |
|   case X86::VPGATHERQQZ256rm:
 | |
|   case X86::VPGATHERQQZrm: {
 | |
|     unsigned Dest = MRI->getEncodingValue(Inst.getOperand(0).getReg());
 | |
|     unsigned Index =
 | |
|       MRI->getEncodingValue(Inst.getOperand(4 + X86::AddrIndexReg).getReg());
 | |
|     if (Dest == Index)
 | |
|       return Warning(Ops[0]->getStartLoc(), "index and destination registers "
 | |
|                                             "should be distinct");
 | |
|     break;
 | |
|   }
 | |
|   case X86::V4FMADDPSrm:
 | |
|   case X86::V4FMADDPSrmk:
 | |
|   case X86::V4FMADDPSrmkz:
 | |
|   case X86::V4FMADDSSrm:
 | |
|   case X86::V4FMADDSSrmk:
 | |
|   case X86::V4FMADDSSrmkz:
 | |
|   case X86::V4FNMADDPSrm:
 | |
|   case X86::V4FNMADDPSrmk:
 | |
|   case X86::V4FNMADDPSrmkz:
 | |
|   case X86::V4FNMADDSSrm:
 | |
|   case X86::V4FNMADDSSrmk:
 | |
|   case X86::V4FNMADDSSrmkz:
 | |
|   case X86::VP4DPWSSDSrm:
 | |
|   case X86::VP4DPWSSDSrmk:
 | |
|   case X86::VP4DPWSSDSrmkz:
 | |
|   case X86::VP4DPWSSDrm:
 | |
|   case X86::VP4DPWSSDrmk:
 | |
|   case X86::VP4DPWSSDrmkz: {
 | |
|     unsigned Src2 = Inst.getOperand(Inst.getNumOperands() -
 | |
|                                     X86::AddrNumOperands - 1).getReg();
 | |
|     unsigned Src2Enc = MRI->getEncodingValue(Src2);
 | |
|     if (Src2Enc % 4 != 0) {
 | |
|       StringRef RegName = X86IntelInstPrinter::getRegisterName(Src2);
 | |
|       unsigned GroupStart = (Src2Enc / 4) * 4;
 | |
|       unsigned GroupEnd = GroupStart + 3;
 | |
|       return Warning(Ops[0]->getStartLoc(),
 | |
|                      "source register '" + RegName + "' implicitly denotes '" +
 | |
|                      RegName.take_front(3) + Twine(GroupStart) + "' to '" +
 | |
|                      RegName.take_front(3) + Twine(GroupEnd) +
 | |
|                      "' source group");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static const char *getSubtargetFeatureName(uint64_t Val);
 | |
| 
 | |
| void X86AsmParser::emitInstruction(MCInst &Inst, OperandVector &Operands,
 | |
|                                    MCStreamer &Out) {
 | |
|   Out.emitInstruction(Inst, getSTI());
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                            OperandVector &Operands,
 | |
|                                            MCStreamer &Out, uint64_t &ErrorInfo,
 | |
|                                            bool MatchingInlineAsm) {
 | |
|   if (isParsingIntelSyntax())
 | |
|     return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | |
|                                         MatchingInlineAsm);
 | |
|   return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
 | |
|                                     MatchingInlineAsm);
 | |
| }
 | |
| 
 | |
| void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
 | |
|                                      OperandVector &Operands, MCStreamer &Out,
 | |
|                                      bool MatchingInlineAsm) {
 | |
|   // FIXME: This should be replaced with a real .td file alias mechanism.
 | |
|   // Also, MatchInstructionImpl should actually *do* the EmitInstruction
 | |
|   // call.
 | |
|   const char *Repl = StringSwitch<const char *>(Op.getToken())
 | |
|                          .Case("finit", "fninit")
 | |
|                          .Case("fsave", "fnsave")
 | |
|                          .Case("fstcw", "fnstcw")
 | |
|                          .Case("fstcww", "fnstcw")
 | |
|                          .Case("fstenv", "fnstenv")
 | |
|                          .Case("fstsw", "fnstsw")
 | |
|                          .Case("fstsww", "fnstsw")
 | |
|                          .Case("fclex", "fnclex")
 | |
|                          .Default(nullptr);
 | |
|   if (Repl) {
 | |
|     MCInst Inst;
 | |
|     Inst.setOpcode(X86::WAIT);
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       emitInstruction(Inst, Operands, Out);
 | |
|     Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc,
 | |
|                                        const FeatureBitset &MissingFeatures,
 | |
|                                        bool MatchingInlineAsm) {
 | |
|   assert(MissingFeatures.any() && "Unknown missing feature!");
 | |
|   SmallString<126> Msg;
 | |
|   raw_svector_ostream OS(Msg);
 | |
|   OS << "instruction requires:";
 | |
|   for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
 | |
|     if (MissingFeatures[i])
 | |
|       OS << ' ' << getSubtargetFeatureName(i);
 | |
|   }
 | |
|   return Error(IDLoc, OS.str(), SMRange(), MatchingInlineAsm);
 | |
| }
 | |
| 
 | |
| static unsigned getPrefixes(OperandVector &Operands) {
 | |
|   unsigned Result = 0;
 | |
|   X86Operand &Prefix = static_cast<X86Operand &>(*Operands.back());
 | |
|   if (Prefix.isPrefix()) {
 | |
|     Result = Prefix.getPrefix();
 | |
|     Operands.pop_back();
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| unsigned X86AsmParser::checkTargetMatchPredicate(MCInst &Inst) {
 | |
|   unsigned Opc = Inst.getOpcode();
 | |
|   const MCInstrDesc &MCID = MII.get(Opc);
 | |
| 
 | |
|   if (ForcedVEXEncoding == VEXEncoding_EVEX &&
 | |
|       (MCID.TSFlags & X86II::EncodingMask) != X86II::EVEX)
 | |
|     return Match_Unsupported;
 | |
| 
 | |
|   if ((ForcedVEXEncoding == VEXEncoding_VEX2 ||
 | |
|        ForcedVEXEncoding == VEXEncoding_VEX3) &&
 | |
|       (MCID.TSFlags & X86II::EncodingMask) != X86II::VEX)
 | |
|     return Match_Unsupported;
 | |
| 
 | |
|   // These instructions match ambiguously with their VEX encoded counterparts
 | |
|   // and appear first in the matching table. Reject them unless we're forcing
 | |
|   // EVEX encoding.
 | |
|   // FIXME: We really need a way to break the ambiguity.
 | |
|   switch (Opc) {
 | |
|   case X86::VCVTSD2SIZrm_Int:
 | |
|   case X86::VCVTSD2SI64Zrm_Int:
 | |
|   case X86::VCVTSS2SIZrm_Int:
 | |
|   case X86::VCVTSS2SI64Zrm_Int:
 | |
|   case X86::VCVTTSD2SIZrm:   case X86::VCVTTSD2SIZrm_Int:
 | |
|   case X86::VCVTTSD2SI64Zrm: case X86::VCVTTSD2SI64Zrm_Int:
 | |
|   case X86::VCVTTSS2SIZrm:   case X86::VCVTTSS2SIZrm_Int:
 | |
|   case X86::VCVTTSS2SI64Zrm: case X86::VCVTTSS2SI64Zrm_Int:
 | |
|     if (ForcedVEXEncoding != VEXEncoding_EVEX)
 | |
|       return Match_Unsupported;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return Match_Success;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                               OperandVector &Operands,
 | |
|                                               MCStreamer &Out,
 | |
|                                               uint64_t &ErrorInfo,
 | |
|                                               bool MatchingInlineAsm) {
 | |
|   assert(!Operands.empty() && "Unexpect empty operand list!");
 | |
|   assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
 | |
|   SMRange EmptyRange = None;
 | |
| 
 | |
|   // First, handle aliases that expand to multiple instructions.
 | |
|   MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands,
 | |
|                     Out, MatchingInlineAsm);
 | |
|   X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | |
|   unsigned Prefixes = getPrefixes(Operands);
 | |
| 
 | |
|   MCInst Inst;
 | |
| 
 | |
|   // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
 | |
|   // encoder.
 | |
|   if (ForcedVEXEncoding == VEXEncoding_VEX3)
 | |
|     Prefixes |= X86::IP_USE_VEX3;
 | |
| 
 | |
|   if (Prefixes)
 | |
|     Inst.setFlags(Prefixes);
 | |
| 
 | |
|   // First, try a direct match.
 | |
|   FeatureBitset MissingFeatures;
 | |
|   unsigned OriginalError = MatchInstruction(Operands, Inst, ErrorInfo,
 | |
|                                             MissingFeatures, MatchingInlineAsm,
 | |
|                                             isParsingIntelSyntax());
 | |
|   switch (OriginalError) {
 | |
|   default: llvm_unreachable("Unexpected match result!");
 | |
|   case Match_Success:
 | |
|     if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
 | |
|       return true;
 | |
|     // Some instructions need post-processing to, for example, tweak which
 | |
|     // encoding is selected. Loop on it while changes happen so the
 | |
|     // individual transformations can chain off each other.
 | |
|     if (!MatchingInlineAsm)
 | |
|       while (processInstruction(Inst, Operands))
 | |
|         ;
 | |
| 
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       emitInstruction(Inst, Operands, Out);
 | |
|     Opcode = Inst.getOpcode();
 | |
|     return false;
 | |
|   case Match_InvalidImmUnsignedi4: {
 | |
|     SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
 | |
|     if (ErrorLoc == SMLoc())
 | |
|       ErrorLoc = IDLoc;
 | |
|     return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
 | |
|                  EmptyRange, MatchingInlineAsm);
 | |
|   }
 | |
|   case Match_MissingFeature:
 | |
|     return ErrorMissingFeature(IDLoc, MissingFeatures, MatchingInlineAsm);
 | |
|   case Match_InvalidOperand:
 | |
|   case Match_MnemonicFail:
 | |
|   case Match_Unsupported:
 | |
|     break;
 | |
|   }
 | |
|   if (Op.getToken().empty()) {
 | |
|     Error(IDLoc, "instruction must have size higher than 0", EmptyRange,
 | |
|           MatchingInlineAsm);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Ideally, we would only attempt suffix matches for things which are
 | |
|   // valid prefixes, and we could just infer the right unambiguous
 | |
|   // type. However, that requires substantially more matcher support than the
 | |
|   // following hack.
 | |
| 
 | |
|   // Change the operand to point to a temporary token.
 | |
|   StringRef Base = Op.getToken();
 | |
|   SmallString<16> Tmp;
 | |
|   Tmp += Base;
 | |
|   Tmp += ' ';
 | |
|   Op.setTokenValue(Tmp);
 | |
| 
 | |
|   // If this instruction starts with an 'f', then it is a floating point stack
 | |
|   // instruction.  These come in up to three forms for 32-bit, 64-bit, and
 | |
|   // 80-bit floating point, which use the suffixes s,l,t respectively.
 | |
|   //
 | |
|   // Otherwise, we assume that this may be an integer instruction, which comes
 | |
|   // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
 | |
|   const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
 | |
| 
 | |
|   // Check for the various suffix matches.
 | |
|   uint64_t ErrorInfoIgnore;
 | |
|   FeatureBitset ErrorInfoMissingFeatures; // Init suppresses compiler warnings.
 | |
|   unsigned Match[4];
 | |
| 
 | |
|   for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
 | |
|     Tmp.back() = Suffixes[I];
 | |
|     Match[I] = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
 | |
|                                 MissingFeatures, MatchingInlineAsm,
 | |
|                                 isParsingIntelSyntax());
 | |
|     // If this returned as a missing feature failure, remember that.
 | |
|     if (Match[I] == Match_MissingFeature)
 | |
|       ErrorInfoMissingFeatures = MissingFeatures;
 | |
|   }
 | |
| 
 | |
|   // Restore the old token.
 | |
|   Op.setTokenValue(Base);
 | |
| 
 | |
|   // If exactly one matched, then we treat that as a successful match (and the
 | |
|   // instruction will already have been filled in correctly, since the failing
 | |
|   // matches won't have modified it).
 | |
|   unsigned NumSuccessfulMatches =
 | |
|       std::count(std::begin(Match), std::end(Match), Match_Success);
 | |
|   if (NumSuccessfulMatches == 1) {
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       emitInstruction(Inst, Operands, Out);
 | |
|     Opcode = Inst.getOpcode();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, the match failed, try to produce a decent error message.
 | |
| 
 | |
|   // If we had multiple suffix matches, then identify this as an ambiguous
 | |
|   // match.
 | |
|   if (NumSuccessfulMatches > 1) {
 | |
|     char MatchChars[4];
 | |
|     unsigned NumMatches = 0;
 | |
|     for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
 | |
|       if (Match[I] == Match_Success)
 | |
|         MatchChars[NumMatches++] = Suffixes[I];
 | |
| 
 | |
|     SmallString<126> Msg;
 | |
|     raw_svector_ostream OS(Msg);
 | |
|     OS << "ambiguous instructions require an explicit suffix (could be ";
 | |
|     for (unsigned i = 0; i != NumMatches; ++i) {
 | |
|       if (i != 0)
 | |
|         OS << ", ";
 | |
|       if (i + 1 == NumMatches)
 | |
|         OS << "or ";
 | |
|       OS << "'" << Base << MatchChars[i] << "'";
 | |
|     }
 | |
|     OS << ")";
 | |
|     Error(IDLoc, OS.str(), EmptyRange, MatchingInlineAsm);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Okay, we know that none of the variants matched successfully.
 | |
| 
 | |
|   // If all of the instructions reported an invalid mnemonic, then the original
 | |
|   // mnemonic was invalid.
 | |
|   if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
 | |
|     if (OriginalError == Match_MnemonicFail)
 | |
|       return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
 | |
|                    Op.getLocRange(), MatchingInlineAsm);
 | |
| 
 | |
|     if (OriginalError == Match_Unsupported)
 | |
|       return Error(IDLoc, "unsupported instruction", EmptyRange,
 | |
|                    MatchingInlineAsm);
 | |
| 
 | |
|     assert(OriginalError == Match_InvalidOperand && "Unexpected error");
 | |
|     // Recover location info for the operand if we know which was the problem.
 | |
|     if (ErrorInfo != ~0ULL) {
 | |
|       if (ErrorInfo >= Operands.size())
 | |
|         return Error(IDLoc, "too few operands for instruction", EmptyRange,
 | |
|                      MatchingInlineAsm);
 | |
| 
 | |
|       X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
 | |
|       if (Operand.getStartLoc().isValid()) {
 | |
|         SMRange OperandRange = Operand.getLocRange();
 | |
|         return Error(Operand.getStartLoc(), "invalid operand for instruction",
 | |
|                      OperandRange, MatchingInlineAsm);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched as unsupported, report this as unsupported.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_Unsupported) == 1) {
 | |
|     return Error(IDLoc, "unsupported instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with a missing feature, report this as a
 | |
|   // missing feature.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_MissingFeature) == 1) {
 | |
|     ErrorInfo = Match_MissingFeature;
 | |
|     return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
 | |
|                                MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with an invalid operand, report this as an
 | |
|   // operand failure.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_InvalidOperand) == 1) {
 | |
|     return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If all of these were an outright failure, report it in a useless way.
 | |
|   Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
 | |
|         EmptyRange, MatchingInlineAsm);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
 | |
|                                                 OperandVector &Operands,
 | |
|                                                 MCStreamer &Out,
 | |
|                                                 uint64_t &ErrorInfo,
 | |
|                                                 bool MatchingInlineAsm) {
 | |
|   assert(!Operands.empty() && "Unexpect empty operand list!");
 | |
|   assert((*Operands[0]).isToken() && "Leading operand should always be a mnemonic!");
 | |
|   StringRef Mnemonic = (static_cast<X86Operand &>(*Operands[0])).getToken();
 | |
|   SMRange EmptyRange = None;
 | |
|   StringRef Base = (static_cast<X86Operand &>(*Operands[0])).getToken();
 | |
|   unsigned Prefixes = getPrefixes(Operands);
 | |
| 
 | |
|   // First, handle aliases that expand to multiple instructions.
 | |
|   MatchFPUWaitAlias(IDLoc, static_cast<X86Operand &>(*Operands[0]), Operands, Out, MatchingInlineAsm);
 | |
|   X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
 | |
| 
 | |
|   MCInst Inst;
 | |
| 
 | |
|   // If VEX3 encoding is forced, we need to pass the USE_VEX3 flag to the
 | |
|   // encoder.
 | |
|   if (ForcedVEXEncoding == VEXEncoding_VEX3)
 | |
|     Prefixes |= X86::IP_USE_VEX3;
 | |
| 
 | |
|   if (Prefixes)
 | |
|     Inst.setFlags(Prefixes);
 | |
| 
 | |
|   // Find one unsized memory operand, if present.
 | |
|   X86Operand *UnsizedMemOp = nullptr;
 | |
|   for (const auto &Op : Operands) {
 | |
|     X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
 | |
|     if (X86Op->isMemUnsized()) {
 | |
|       UnsizedMemOp = X86Op;
 | |
|       // Have we found an unqualified memory operand,
 | |
|       // break. IA allows only one memory operand.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow some instructions to have implicitly pointer-sized operands.  This is
 | |
|   // compatible with gas.
 | |
|   if (UnsizedMemOp) {
 | |
|     static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
 | |
|     for (const char *Instr : PtrSizedInstrs) {
 | |
|       if (Mnemonic == Instr) {
 | |
|         UnsizedMemOp->Mem.Size = getPointerWidth();
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<unsigned, 8> Match;
 | |
|   FeatureBitset ErrorInfoMissingFeatures;
 | |
|   FeatureBitset MissingFeatures;
 | |
| 
 | |
|   // If unsized push has immediate operand we should default the default pointer
 | |
|   // size for the size.
 | |
|   if (Mnemonic == "push" && Operands.size() == 2) {
 | |
|     auto *X86Op = static_cast<X86Operand *>(Operands[1].get());
 | |
|     if (X86Op->isImm()) {
 | |
|       // If it's not a constant fall through and let remainder take care of it.
 | |
|       const auto *CE = dyn_cast<MCConstantExpr>(X86Op->getImm());
 | |
|       unsigned Size = getPointerWidth();
 | |
|       if (CE &&
 | |
|           (isIntN(Size, CE->getValue()) || isUIntN(Size, CE->getValue()))) {
 | |
|         SmallString<16> Tmp;
 | |
|         Tmp += Base;
 | |
|         Tmp += (is64BitMode())
 | |
|                    ? "q"
 | |
|                    : (is32BitMode()) ? "l" : (is16BitMode()) ? "w" : " ";
 | |
|         Op.setTokenValue(Tmp);
 | |
|         // Do match in ATT mode to allow explicit suffix usage.
 | |
|         Match.push_back(MatchInstruction(Operands, Inst, ErrorInfo,
 | |
|                                          MissingFeatures, MatchingInlineAsm,
 | |
|                                          false /*isParsingIntelSyntax()*/));
 | |
|         Op.setTokenValue(Base);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If an unsized memory operand is present, try to match with each memory
 | |
|   // operand size.  In Intel assembly, the size is not part of the instruction
 | |
|   // mnemonic.
 | |
|   if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
 | |
|     static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
 | |
|     for (unsigned Size : MopSizes) {
 | |
|       UnsizedMemOp->Mem.Size = Size;
 | |
|       uint64_t ErrorInfoIgnore;
 | |
|       unsigned LastOpcode = Inst.getOpcode();
 | |
|       unsigned M = MatchInstruction(Operands, Inst, ErrorInfoIgnore,
 | |
|                                     MissingFeatures, MatchingInlineAsm,
 | |
|                                     isParsingIntelSyntax());
 | |
|       if (Match.empty() || LastOpcode != Inst.getOpcode())
 | |
|         Match.push_back(M);
 | |
| 
 | |
|       // If this returned as a missing feature failure, remember that.
 | |
|       if (Match.back() == Match_MissingFeature)
 | |
|         ErrorInfoMissingFeatures = MissingFeatures;
 | |
|     }
 | |
| 
 | |
|     // Restore the size of the unsized memory operand if we modified it.
 | |
|     UnsizedMemOp->Mem.Size = 0;
 | |
|   }
 | |
| 
 | |
|   // If we haven't matched anything yet, this is not a basic integer or FPU
 | |
|   // operation.  There shouldn't be any ambiguity in our mnemonic table, so try
 | |
|   // matching with the unsized operand.
 | |
|   if (Match.empty()) {
 | |
|     Match.push_back(MatchInstruction(
 | |
|         Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
 | |
|         isParsingIntelSyntax()));
 | |
|     // If this returned as a missing feature failure, remember that.
 | |
|     if (Match.back() == Match_MissingFeature)
 | |
|       ErrorInfoMissingFeatures = MissingFeatures;
 | |
|   }
 | |
| 
 | |
|   // Restore the size of the unsized memory operand if we modified it.
 | |
|   if (UnsizedMemOp)
 | |
|     UnsizedMemOp->Mem.Size = 0;
 | |
| 
 | |
|   // If it's a bad mnemonic, all results will be the same.
 | |
|   if (Match.back() == Match_MnemonicFail) {
 | |
|     return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
 | |
|                  Op.getLocRange(), MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   unsigned NumSuccessfulMatches =
 | |
|       std::count(std::begin(Match), std::end(Match), Match_Success);
 | |
| 
 | |
|   // If matching was ambiguous and we had size information from the frontend,
 | |
|   // try again with that. This handles cases like "movxz eax, m8/m16".
 | |
|   if (UnsizedMemOp && NumSuccessfulMatches > 1 &&
 | |
|       UnsizedMemOp->getMemFrontendSize()) {
 | |
|     UnsizedMemOp->Mem.Size = UnsizedMemOp->getMemFrontendSize();
 | |
|     unsigned M = MatchInstruction(
 | |
|         Operands, Inst, ErrorInfo, MissingFeatures, MatchingInlineAsm,
 | |
|         isParsingIntelSyntax());
 | |
|     if (M == Match_Success)
 | |
|       NumSuccessfulMatches = 1;
 | |
| 
 | |
|     // Add a rewrite that encodes the size information we used from the
 | |
|     // frontend.
 | |
|     InstInfo->AsmRewrites->emplace_back(
 | |
|         AOK_SizeDirective, UnsizedMemOp->getStartLoc(),
 | |
|         /*Len=*/0, UnsizedMemOp->getMemFrontendSize());
 | |
|   }
 | |
| 
 | |
|   // If exactly one matched, then we treat that as a successful match (and the
 | |
|   // instruction will already have been filled in correctly, since the failing
 | |
|   // matches won't have modified it).
 | |
|   if (NumSuccessfulMatches == 1) {
 | |
|     if (!MatchingInlineAsm && validateInstruction(Inst, Operands))
 | |
|       return true;
 | |
|     // Some instructions need post-processing to, for example, tweak which
 | |
|     // encoding is selected. Loop on it while changes happen so the individual
 | |
|     // transformations can chain off each other.
 | |
|     if (!MatchingInlineAsm)
 | |
|       while (processInstruction(Inst, Operands))
 | |
|         ;
 | |
|     Inst.setLoc(IDLoc);
 | |
|     if (!MatchingInlineAsm)
 | |
|       emitInstruction(Inst, Operands, Out);
 | |
|     Opcode = Inst.getOpcode();
 | |
|     return false;
 | |
|   } else if (NumSuccessfulMatches > 1) {
 | |
|     assert(UnsizedMemOp &&
 | |
|            "multiple matches only possible with unsized memory operands");
 | |
|     return Error(UnsizedMemOp->getStartLoc(),
 | |
|                  "ambiguous operand size for instruction '" + Mnemonic + "\'",
 | |
|                  UnsizedMemOp->getLocRange());
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched as unsupported, report this as unsupported.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_Unsupported) == 1) {
 | |
|     return Error(IDLoc, "unsupported instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with a missing feature, report this as a
 | |
|   // missing feature.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_MissingFeature) == 1) {
 | |
|     ErrorInfo = Match_MissingFeature;
 | |
|     return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeatures,
 | |
|                                MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If one instruction matched with an invalid operand, report this as an
 | |
|   // operand failure.
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_InvalidOperand) == 1) {
 | |
|     return Error(IDLoc, "invalid operand for instruction", EmptyRange,
 | |
|                  MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   if (std::count(std::begin(Match), std::end(Match),
 | |
|                  Match_InvalidImmUnsignedi4) == 1) {
 | |
|     SMLoc ErrorLoc = ((X86Operand &)*Operands[ErrorInfo]).getStartLoc();
 | |
|     if (ErrorLoc == SMLoc())
 | |
|       ErrorLoc = IDLoc;
 | |
|     return Error(ErrorLoc, "immediate must be an integer in range [0, 15]",
 | |
|                  EmptyRange, MatchingInlineAsm);
 | |
|   }
 | |
| 
 | |
|   // If all of these were an outright failure, report it in a useless way.
 | |
|   return Error(IDLoc, "unknown instruction mnemonic", EmptyRange,
 | |
|                MatchingInlineAsm);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
 | |
|   return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   StringRef IDVal = DirectiveID.getIdentifier();
 | |
|   if (IDVal.startswith(".code"))
 | |
|     return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
 | |
|   else if (IDVal.startswith(".att_syntax")) {
 | |
|     if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | |
|       if (Parser.getTok().getString() == "prefix")
 | |
|         Parser.Lex();
 | |
|       else if (Parser.getTok().getString() == "noprefix")
 | |
|         return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
 | |
|                                            "supported: registers must have a "
 | |
|                                            "'%' prefix in .att_syntax");
 | |
|     }
 | |
|     getParser().setAssemblerDialect(0);
 | |
|     return false;
 | |
|   } else if (IDVal.startswith(".intel_syntax")) {
 | |
|     getParser().setAssemblerDialect(1);
 | |
|     if (getLexer().isNot(AsmToken::EndOfStatement)) {
 | |
|       if (Parser.getTok().getString() == "noprefix")
 | |
|         Parser.Lex();
 | |
|       else if (Parser.getTok().getString() == "prefix")
 | |
|         return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
 | |
|                                            "supported: registers must not have "
 | |
|                                            "a '%' prefix in .intel_syntax");
 | |
|     }
 | |
|     return false;
 | |
|   } else if (IDVal == ".even")
 | |
|     return parseDirectiveEven(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_proc")
 | |
|     return parseDirectiveFPOProc(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_setframe")
 | |
|     return parseDirectiveFPOSetFrame(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_pushreg")
 | |
|     return parseDirectiveFPOPushReg(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_stackalloc")
 | |
|     return parseDirectiveFPOStackAlloc(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_stackalign")
 | |
|     return parseDirectiveFPOStackAlign(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_endprologue")
 | |
|     return parseDirectiveFPOEndPrologue(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".cv_fpo_endproc")
 | |
|     return parseDirectiveFPOEndProc(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".seh_pushreg")
 | |
|     return parseDirectiveSEHPushReg(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".seh_setframe")
 | |
|     return parseDirectiveSEHSetFrame(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".seh_savereg")
 | |
|     return parseDirectiveSEHSaveReg(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".seh_savexmm")
 | |
|     return parseDirectiveSEHSaveXMM(DirectiveID.getLoc());
 | |
|   else if (IDVal == ".seh_pushframe")
 | |
|     return parseDirectiveSEHPushFrame(DirectiveID.getLoc());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// parseDirectiveEven
 | |
| ///  ::= .even
 | |
| bool X86AsmParser::parseDirectiveEven(SMLoc L) {
 | |
|   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
 | |
|     return false;
 | |
| 
 | |
|   const MCSection *Section = getStreamer().getCurrentSectionOnly();
 | |
|   if (!Section) {
 | |
|     getStreamer().InitSections(false);
 | |
|     Section = getStreamer().getCurrentSectionOnly();
 | |
|   }
 | |
|   if (Section->UseCodeAlign())
 | |
|     getStreamer().emitCodeAlignment(2, 0);
 | |
|   else
 | |
|     getStreamer().emitValueToAlignment(2, 0, 1, 0);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ParseDirectiveCode
 | |
| ///  ::= .code16 | .code32 | .code64
 | |
| bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   Code16GCC = false;
 | |
|   if (IDVal == ".code16") {
 | |
|     Parser.Lex();
 | |
|     if (!is16BitMode()) {
 | |
|       SwitchMode(X86::Mode16Bit);
 | |
|       getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
 | |
|     }
 | |
|   } else if (IDVal == ".code16gcc") {
 | |
|     // .code16gcc parses as if in 32-bit mode, but emits code in 16-bit mode.
 | |
|     Parser.Lex();
 | |
|     Code16GCC = true;
 | |
|     if (!is16BitMode()) {
 | |
|       SwitchMode(X86::Mode16Bit);
 | |
|       getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
 | |
|     }
 | |
|   } else if (IDVal == ".code32") {
 | |
|     Parser.Lex();
 | |
|     if (!is32BitMode()) {
 | |
|       SwitchMode(X86::Mode32Bit);
 | |
|       getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
 | |
|     }
 | |
|   } else if (IDVal == ".code64") {
 | |
|     Parser.Lex();
 | |
|     if (!is64BitMode()) {
 | |
|       SwitchMode(X86::Mode64Bit);
 | |
|       getParser().getStreamer().emitAssemblerFlag(MCAF_Code64);
 | |
|     }
 | |
|   } else {
 | |
|     Error(L, "unknown directive " + IDVal);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // .cv_fpo_proc foo
 | |
| bool X86AsmParser::parseDirectiveFPOProc(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   StringRef ProcName;
 | |
|   int64_t ParamsSize;
 | |
|   if (Parser.parseIdentifier(ProcName))
 | |
|     return Parser.TokError("expected symbol name");
 | |
|   if (Parser.parseIntToken(ParamsSize, "expected parameter byte count"))
 | |
|     return true;
 | |
|   if (!isUIntN(32, ParamsSize))
 | |
|     return Parser.TokError("parameters size out of range");
 | |
|   if (Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_proc' directive");
 | |
|   MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName);
 | |
|   return getTargetStreamer().emitFPOProc(ProcSym, ParamsSize, L);
 | |
| }
 | |
| 
 | |
| // .cv_fpo_setframe ebp
 | |
| bool X86AsmParser::parseDirectiveFPOSetFrame(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   unsigned Reg;
 | |
|   SMLoc DummyLoc;
 | |
|   if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
 | |
|       Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_setframe' directive");
 | |
|   return getTargetStreamer().emitFPOSetFrame(Reg, L);
 | |
| }
 | |
| 
 | |
| // .cv_fpo_pushreg ebx
 | |
| bool X86AsmParser::parseDirectiveFPOPushReg(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   unsigned Reg;
 | |
|   SMLoc DummyLoc;
 | |
|   if (ParseRegister(Reg, DummyLoc, DummyLoc) ||
 | |
|       Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_pushreg' directive");
 | |
|   return getTargetStreamer().emitFPOPushReg(Reg, L);
 | |
| }
 | |
| 
 | |
| // .cv_fpo_stackalloc 20
 | |
| bool X86AsmParser::parseDirectiveFPOStackAlloc(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   int64_t Offset;
 | |
|   if (Parser.parseIntToken(Offset, "expected offset") ||
 | |
|       Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_stackalloc' directive");
 | |
|   return getTargetStreamer().emitFPOStackAlloc(Offset, L);
 | |
| }
 | |
| 
 | |
| // .cv_fpo_stackalign 8
 | |
| bool X86AsmParser::parseDirectiveFPOStackAlign(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   int64_t Offset;
 | |
|   if (Parser.parseIntToken(Offset, "expected offset") ||
 | |
|       Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_stackalign' directive");
 | |
|   return getTargetStreamer().emitFPOStackAlign(Offset, L);
 | |
| }
 | |
| 
 | |
| // .cv_fpo_endprologue
 | |
| bool X86AsmParser::parseDirectiveFPOEndPrologue(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   if (Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_endprologue' directive");
 | |
|   return getTargetStreamer().emitFPOEndPrologue(L);
 | |
| }
 | |
| 
 | |
| // .cv_fpo_endproc
 | |
| bool X86AsmParser::parseDirectiveFPOEndProc(SMLoc L) {
 | |
|   MCAsmParser &Parser = getParser();
 | |
|   if (Parser.parseEOL("unexpected tokens"))
 | |
|     return addErrorSuffix(" in '.cv_fpo_endproc' directive");
 | |
|   return getTargetStreamer().emitFPOEndProc(L);
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::parseSEHRegisterNumber(unsigned RegClassID,
 | |
|                                           unsigned &RegNo) {
 | |
|   SMLoc startLoc = getLexer().getLoc();
 | |
|   const MCRegisterInfo *MRI = getContext().getRegisterInfo();
 | |
| 
 | |
|   // Try parsing the argument as a register first.
 | |
|   if (getLexer().getTok().isNot(AsmToken::Integer)) {
 | |
|     SMLoc endLoc;
 | |
|     if (ParseRegister(RegNo, startLoc, endLoc))
 | |
|       return true;
 | |
| 
 | |
|     if (!X86MCRegisterClasses[RegClassID].contains(RegNo)) {
 | |
|       return Error(startLoc,
 | |
|                    "register is not supported for use with this directive");
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise, an integer number matching the encoding of the desired
 | |
|     // register may appear.
 | |
|     int64_t EncodedReg;
 | |
|     if (getParser().parseAbsoluteExpression(EncodedReg))
 | |
|       return true;
 | |
| 
 | |
|     // The SEH register number is the same as the encoding register number. Map
 | |
|     // from the encoding back to the LLVM register number.
 | |
|     RegNo = 0;
 | |
|     for (MCPhysReg Reg : X86MCRegisterClasses[RegClassID]) {
 | |
|       if (MRI->getEncodingValue(Reg) == EncodedReg) {
 | |
|         RegNo = Reg;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (RegNo == 0) {
 | |
|       return Error(startLoc,
 | |
|                    "incorrect register number for use with this directive");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::parseDirectiveSEHPushReg(SMLoc Loc) {
 | |
|   unsigned Reg = 0;
 | |
|   if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
 | |
|     return true;
 | |
| 
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement))
 | |
|     return TokError("unexpected token in directive");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   getStreamer().EmitWinCFIPushReg(Reg, Loc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::parseDirectiveSEHSetFrame(SMLoc Loc) {
 | |
|   unsigned Reg = 0;
 | |
|   int64_t Off;
 | |
|   if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
 | |
|     return true;
 | |
|   if (getLexer().isNot(AsmToken::Comma))
 | |
|     return TokError("you must specify a stack pointer offset");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   if (getParser().parseAbsoluteExpression(Off))
 | |
|     return true;
 | |
| 
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement))
 | |
|     return TokError("unexpected token in directive");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   getStreamer().EmitWinCFISetFrame(Reg, Off, Loc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::parseDirectiveSEHSaveReg(SMLoc Loc) {
 | |
|   unsigned Reg = 0;
 | |
|   int64_t Off;
 | |
|   if (parseSEHRegisterNumber(X86::GR64RegClassID, Reg))
 | |
|     return true;
 | |
|   if (getLexer().isNot(AsmToken::Comma))
 | |
|     return TokError("you must specify an offset on the stack");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   if (getParser().parseAbsoluteExpression(Off))
 | |
|     return true;
 | |
| 
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement))
 | |
|     return TokError("unexpected token in directive");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   getStreamer().EmitWinCFISaveReg(Reg, Off, Loc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::parseDirectiveSEHSaveXMM(SMLoc Loc) {
 | |
|   unsigned Reg = 0;
 | |
|   int64_t Off;
 | |
|   if (parseSEHRegisterNumber(X86::VR128XRegClassID, Reg))
 | |
|     return true;
 | |
|   if (getLexer().isNot(AsmToken::Comma))
 | |
|     return TokError("you must specify an offset on the stack");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   if (getParser().parseAbsoluteExpression(Off))
 | |
|     return true;
 | |
| 
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement))
 | |
|     return TokError("unexpected token in directive");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   getStreamer().EmitWinCFISaveXMM(Reg, Off, Loc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86AsmParser::parseDirectiveSEHPushFrame(SMLoc Loc) {
 | |
|   bool Code = false;
 | |
|   StringRef CodeID;
 | |
|   if (getLexer().is(AsmToken::At)) {
 | |
|     SMLoc startLoc = getLexer().getLoc();
 | |
|     getParser().Lex();
 | |
|     if (!getParser().parseIdentifier(CodeID)) {
 | |
|       if (CodeID != "code")
 | |
|         return Error(startLoc, "expected @code");
 | |
|       Code = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (getLexer().isNot(AsmToken::EndOfStatement))
 | |
|     return TokError("unexpected token in directive");
 | |
| 
 | |
|   getParser().Lex();
 | |
|   getStreamer().EmitWinCFIPushFrame(Code, Loc);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Force static initialization.
 | |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86AsmParser() {
 | |
|   RegisterMCAsmParser<X86AsmParser> X(getTheX86_32Target());
 | |
|   RegisterMCAsmParser<X86AsmParser> Y(getTheX86_64Target());
 | |
| }
 | |
| 
 | |
| #define GET_REGISTER_MATCHER
 | |
| #define GET_MATCHER_IMPLEMENTATION
 | |
| #define GET_SUBTARGET_FEATURE_NAME
 | |
| #include "X86GenAsmMatcher.inc"
 |