419 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			419 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AggressiveInstCombine.cpp ------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the aggressive expression pattern combiner classes.
 | |
| // Currently, it handles expression patterns for:
 | |
| //  * Truncate instruction
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
 | |
| #include "AggressiveInstCombineInternal.h"
 | |
| #include "llvm-c/Initialization.h"
 | |
| #include "llvm-c/Transforms/AggressiveInstCombine.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "aggressive-instcombine"
 | |
| 
 | |
| namespace {
 | |
| /// Contains expression pattern combiner logic.
 | |
| /// This class provides both the logic to combine expression patterns and
 | |
| /// combine them. It differs from InstCombiner class in that each pattern
 | |
| /// combiner runs only once as opposed to InstCombine's multi-iteration,
 | |
| /// which allows pattern combiner to have higher complexity than the O(1)
 | |
| /// required by the instruction combiner.
 | |
| class AggressiveInstCombinerLegacyPass : public FunctionPass {
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
 | |
|     initializeAggressiveInstCombinerLegacyPassPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   /// Run all expression pattern optimizations on the given /p F function.
 | |
|   ///
 | |
|   /// \param F function to optimize.
 | |
|   /// \returns true if the IR is changed.
 | |
|   bool runOnFunction(Function &F) override;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| /// Match a pattern for a bitwise rotate operation that partially guards
 | |
| /// against undefined behavior by branching around the rotation when the shift
 | |
| /// amount is 0.
 | |
| static bool foldGuardedRotateToFunnelShift(Instruction &I) {
 | |
|   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // As with the one-use checks below, this is not strictly necessary, but we
 | |
|   // are being cautious to avoid potential perf regressions on targets that
 | |
|   // do not actually have a rotate instruction (where the funnel shift would be
 | |
|   // expanded back into math/shift/logic ops).
 | |
|   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
 | |
|     return false;
 | |
| 
 | |
|   // Match V to funnel shift left/right and capture the source operand and
 | |
|   // shift amount in X and Y.
 | |
|   auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
 | |
|     Value *L0, *L1, *R0, *R1;
 | |
|     unsigned Width = V->getType()->getScalarSizeInBits();
 | |
|     auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
 | |
| 
 | |
|     // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
 | |
|     auto RotL = m_OneUse(
 | |
|         m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
 | |
|     if (RotL.match(V) && L0 == R0 && L1 == R1) {
 | |
|       X = L0;
 | |
|       Y = L1;
 | |
|       return Intrinsic::fshl;
 | |
|     }
 | |
| 
 | |
|     // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
 | |
|     auto RotR = m_OneUse(
 | |
|         m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
 | |
|     if (RotR.match(V) && L0 == R0 && L1 == R1) {
 | |
|       X = L0;
 | |
|       Y = L1;
 | |
|       return Intrinsic::fshr;
 | |
|     }
 | |
| 
 | |
|     return Intrinsic::not_intrinsic;
 | |
|   };
 | |
| 
 | |
|   // One phi operand must be a rotate operation, and the other phi operand must
 | |
|   // be the source value of that rotate operation:
 | |
|   // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
 | |
|   PHINode &Phi = cast<PHINode>(I);
 | |
|   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
 | |
|   Value *RotSrc, *RotAmt;
 | |
|   Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
 | |
|   if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
 | |
|     IID = matchRotate(P1, RotSrc, RotAmt);
 | |
|     if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
 | |
|       return false;
 | |
|     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
 | |
|            "Pattern must match funnel shift left or right");
 | |
|   }
 | |
| 
 | |
|   // The incoming block with our source operand must be the "guard" block.
 | |
|   // That must contain a cmp+branch to avoid the rotate when the shift amount
 | |
|   // is equal to 0. The other incoming block is the block with the rotate.
 | |
|   BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
 | |
|   BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
 | |
|   Instruction *TermI = GuardBB->getTerminator();
 | |
|   ICmpInst::Predicate Pred;
 | |
|   BasicBlock *PhiBB = Phi.getParent();
 | |
|   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
 | |
|                          m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
 | |
|     return false;
 | |
| 
 | |
|   if (Pred != CmpInst::ICMP_EQ)
 | |
|     return false;
 | |
| 
 | |
|   // We matched a variation of this IR pattern:
 | |
|   // GuardBB:
 | |
|   //   %cmp = icmp eq i32 %RotAmt, 0
 | |
|   //   br i1 %cmp, label %PhiBB, label %RotBB
 | |
|   // RotBB:
 | |
|   //   %sub = sub i32 32, %RotAmt
 | |
|   //   %shr = lshr i32 %X, %sub
 | |
|   //   %shl = shl i32 %X, %RotAmt
 | |
|   //   %rot = or i32 %shr, %shl
 | |
|   //   br label %PhiBB
 | |
|   // PhiBB:
 | |
|   //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
 | |
|   // -->
 | |
|   // llvm.fshl.i32(i32 %X, i32 %RotAmt)
 | |
|   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
 | |
|   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
 | |
|   Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
 | |
| /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
 | |
| /// of 'and' ops, then we also need to capture the fact that we saw an
 | |
| /// "and X, 1", so that's an extra return value for that case.
 | |
| struct MaskOps {
 | |
|   Value *Root;
 | |
|   APInt Mask;
 | |
|   bool MatchAndChain;
 | |
|   bool FoundAnd1;
 | |
| 
 | |
|   MaskOps(unsigned BitWidth, bool MatchAnds)
 | |
|       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
 | |
|         MatchAndChain(MatchAnds), FoundAnd1(false) {}
 | |
| };
 | |
| 
 | |
| /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
 | |
| /// chain of 'and' or 'or' instructions looking for shift ops of a common source
 | |
| /// value. Examples:
 | |
| ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
 | |
| /// returns { X, 0x129 }
 | |
| ///   and (and (X >> 1), 1), (X >> 4)
 | |
| /// returns { X, 0x12 }
 | |
| static bool matchAndOrChain(Value *V, MaskOps &MOps) {
 | |
|   Value *Op0, *Op1;
 | |
|   if (MOps.MatchAndChain) {
 | |
|     // Recurse through a chain of 'and' operands. This requires an extra check
 | |
|     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
 | |
|     // in the chain to know that all of the high bits are cleared.
 | |
|     if (match(V, m_And(m_Value(Op0), m_One()))) {
 | |
|       MOps.FoundAnd1 = true;
 | |
|       return matchAndOrChain(Op0, MOps);
 | |
|     }
 | |
|     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
 | |
|       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
 | |
|   } else {
 | |
|     // Recurse through a chain of 'or' operands.
 | |
|     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
 | |
|       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
 | |
|   }
 | |
| 
 | |
|   // We need a shift-right or a bare value representing a compare of bit 0 of
 | |
|   // the original source operand.
 | |
|   Value *Candidate;
 | |
|   uint64_t BitIndex = 0;
 | |
|   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
 | |
|     Candidate = V;
 | |
| 
 | |
|   // Initialize result source operand.
 | |
|   if (!MOps.Root)
 | |
|     MOps.Root = Candidate;
 | |
| 
 | |
|   // The shift constant is out-of-range? This code hasn't been simplified.
 | |
|   if (BitIndex >= MOps.Mask.getBitWidth())
 | |
|     return false;
 | |
| 
 | |
|   // Fill in the mask bit derived from the shift constant.
 | |
|   MOps.Mask.setBit(BitIndex);
 | |
|   return MOps.Root == Candidate;
 | |
| }
 | |
| 
 | |
| /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
 | |
| /// These will include a chain of 'or' or 'and'-shifted bits from a
 | |
| /// common source value:
 | |
| /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
 | |
| /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
 | |
| /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
 | |
| /// that differ only with a final 'not' of the result. We expect that final
 | |
| /// 'not' to be folded with the compare that we create here (invert predicate).
 | |
| static bool foldAnyOrAllBitsSet(Instruction &I) {
 | |
|   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
 | |
|   // final "and X, 1" instruction must be the final op in the sequence.
 | |
|   bool MatchAllBitsSet;
 | |
|   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
 | |
|     MatchAllBitsSet = true;
 | |
|   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
 | |
|     MatchAllBitsSet = false;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
 | |
|   if (MatchAllBitsSet) {
 | |
|     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
 | |
|       return false;
 | |
|   } else {
 | |
|     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // The pattern was found. Create a masked compare that replaces all of the
 | |
|   // shift and logic ops.
 | |
|   IRBuilder<> Builder(&I);
 | |
|   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
 | |
|   Value *And = Builder.CreateAnd(MOps.Root, Mask);
 | |
|   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
 | |
|                                : Builder.CreateIsNotNull(And);
 | |
|   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
 | |
|   I.replaceAllUsesWith(Zext);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Try to recognize below function as popcount intrinsic.
 | |
| // This is the "best" algorithm from
 | |
| // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
 | |
| // Also used in TargetLowering::expandCTPOP().
 | |
| //
 | |
| // int popcount(unsigned int i) {
 | |
| //   i = i - ((i >> 1) & 0x55555555);
 | |
| //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
 | |
| //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
 | |
| //   return (i * 0x01010101) >> 24;
 | |
| // }
 | |
| static bool tryToRecognizePopCount(Instruction &I) {
 | |
|   if (I.getOpcode() != Instruction::LShr)
 | |
|     return false;
 | |
| 
 | |
|   Type *Ty = I.getType();
 | |
|   if (!Ty->isIntOrIntVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Len = Ty->getScalarSizeInBits();
 | |
|   // FIXME: fix Len == 8 and other irregular type lengths.
 | |
|   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
 | |
|     return false;
 | |
| 
 | |
|   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
 | |
|   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
 | |
|   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
 | |
|   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
 | |
|   APInt MaskShift = APInt(Len, Len - 8);
 | |
| 
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   Value *Op1 = I.getOperand(1);
 | |
|   Value *MulOp0;
 | |
|   // Matching "(i * 0x01010101...) >> 24".
 | |
|   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
 | |
|        match(Op1, m_SpecificInt(MaskShift))) {
 | |
|     Value *ShiftOp0;
 | |
|     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
 | |
|     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
 | |
|                                     m_Deferred(ShiftOp0)),
 | |
|                             m_SpecificInt(Mask0F)))) {
 | |
|       Value *AndOp0;
 | |
|       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
 | |
|       if (match(ShiftOp0,
 | |
|                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
 | |
|                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
 | |
|                               m_SpecificInt(Mask33))))) {
 | |
|         Value *Root, *SubOp1;
 | |
|         // Matching "i - ((i >> 1) & 0x55555555...)".
 | |
|         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
 | |
|             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
 | |
|                                 m_SpecificInt(Mask55)))) {
 | |
|           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
 | |
|           IRBuilder<> Builder(&I);
 | |
|           Function *Func = Intrinsic::getDeclaration(
 | |
|               I.getModule(), Intrinsic::ctpop, I.getType());
 | |
|           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// This is the entry point for folds that could be implemented in regular
 | |
| /// InstCombine, but they are separated because they are not expected to
 | |
| /// occur frequently and/or have more than a constant-length pattern match.
 | |
| static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
 | |
|   bool MadeChange = false;
 | |
|   for (BasicBlock &BB : F) {
 | |
|     // Ignore unreachable basic blocks.
 | |
|     if (!DT.isReachableFromEntry(&BB))
 | |
|       continue;
 | |
|     // Do not delete instructions under here and invalidate the iterator.
 | |
|     // Walk the block backwards for efficiency. We're matching a chain of
 | |
|     // use->defs, so we're more likely to succeed by starting from the bottom.
 | |
|     // Also, we want to avoid matching partial patterns.
 | |
|     // TODO: It would be more efficient if we removed dead instructions
 | |
|     // iteratively in this loop rather than waiting until the end.
 | |
|     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
 | |
|       MadeChange |= foldAnyOrAllBitsSet(I);
 | |
|       MadeChange |= foldGuardedRotateToFunnelShift(I);
 | |
|       MadeChange |= tryToRecognizePopCount(I); 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We're done with transforms, so remove dead instructions.
 | |
|   if (MadeChange)
 | |
|     for (BasicBlock &BB : F)
 | |
|       SimplifyInstructionsInBlock(&BB);
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// This is the entry point for all transforms. Pass manager differences are
 | |
| /// handled in the callers of this function.
 | |
| static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
 | |
|   bool MadeChange = false;
 | |
|   const DataLayout &DL = F.getParent()->getDataLayout();
 | |
|   TruncInstCombine TIC(TLI, DL, DT);
 | |
|   MadeChange |= TIC.run(F);
 | |
|   MadeChange |= foldUnusualPatterns(F, DT);
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
 | |
|     AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
|   AU.addPreserved<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<BasicAAWrapperPass>();
 | |
|   AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   AU.addPreserved<GlobalsAAWrapperPass>();
 | |
| }
 | |
| 
 | |
| bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
 | |
|   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   return runImpl(F, TLI, DT);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
 | |
|                                                  FunctionAnalysisManager &AM) {
 | |
|   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
|   if (!runImpl(F, TLI, DT)) {
 | |
|     // No changes, all analyses are preserved.
 | |
|     return PreservedAnalyses::all();
 | |
|   }
 | |
|   // Mark all the analyses that instcombine updates as preserved.
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserveSet<CFGAnalyses>();
 | |
|   PA.preserve<AAManager>();
 | |
|   PA.preserve<GlobalsAA>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| char AggressiveInstCombinerLegacyPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
 | |
|                       "aggressive-instcombine",
 | |
|                       "Combine pattern based expressions", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
 | |
|                     "Combine pattern based expressions", false, false)
 | |
| 
 | |
| // Initialization Routines
 | |
| void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
 | |
|   initializeAggressiveInstCombinerLegacyPassPass(Registry);
 | |
| }
 | |
| 
 | |
| void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
 | |
|   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createAggressiveInstCombinerPass() {
 | |
|   return new AggressiveInstCombinerLegacyPass();
 | |
| }
 | |
| 
 | |
| void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
 | |
|   unwrap(PM)->add(createAggressiveInstCombinerPass());
 | |
| }
 |