475 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			475 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
 | |
| // inserting a dummy basic block.  This pass may be "required" by passes that
 | |
| // cannot deal with critical edges.  For this usage, the structure type is
 | |
| // forward declared.  This pass obviously invalidates the CFG, but can update
 | |
| // dominator trees.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/BranchProbabilityInfo.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Transforms/Utils.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "break-crit-edges"
 | |
| 
 | |
| STATISTIC(NumBroken, "Number of blocks inserted");
 | |
| 
 | |
| namespace {
 | |
|   struct BreakCriticalEdges : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     BreakCriticalEdges() : FunctionPass(ID) {
 | |
|       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override {
 | |
|       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | |
| 
 | |
|       auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
 | |
|       auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
 | |
| 
 | |
|       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | |
|       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | |
|       unsigned N =
 | |
|           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
 | |
|       NumBroken += N;
 | |
|       return N > 0;
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addPreserved<LoopInfoWrapperPass>();
 | |
| 
 | |
|       // No loop canonicalization guarantees are broken by this pass.
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char BreakCriticalEdges::ID = 0;
 | |
| INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
 | |
|                 "Break critical edges in CFG", false, false)
 | |
| 
 | |
| // Publicly exposed interface to pass...
 | |
| char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
 | |
| FunctionPass *llvm::createBreakCriticalEdgesPass() {
 | |
|   return new BreakCriticalEdges();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
 | |
|                                               FunctionAnalysisManager &AM) {
 | |
|   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
 | |
|   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
 | |
|   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
 | |
|   NumBroken += N;
 | |
|   if (N == 0)
 | |
|     return PreservedAnalyses::all();
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<DominatorTreeAnalysis>();
 | |
|   PA.preserve<LoopAnalysis>();
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //    Implementation of the external critical edge manipulation functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
 | |
| /// exit block. This function inserts the new PHIs, as needed. Preds is a list
 | |
| /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
 | |
| /// the old loop exit, now the successor of SplitBB.
 | |
| static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
 | |
|                                        BasicBlock *SplitBB,
 | |
|                                        BasicBlock *DestBB) {
 | |
|   // SplitBB shouldn't have anything non-trivial in it yet.
 | |
|   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
 | |
|           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
 | |
| 
 | |
|   // For each PHI in the destination block.
 | |
|   for (PHINode &PN : DestBB->phis()) {
 | |
|     unsigned Idx = PN.getBasicBlockIndex(SplitBB);
 | |
|     Value *V = PN.getIncomingValue(Idx);
 | |
| 
 | |
|     // If the input is a PHI which already satisfies LCSSA, don't create
 | |
|     // a new one.
 | |
|     if (const PHINode *VP = dyn_cast<PHINode>(V))
 | |
|       if (VP->getParent() == SplitBB)
 | |
|         continue;
 | |
| 
 | |
|     // Otherwise a new PHI is needed. Create one and populate it.
 | |
|     PHINode *NewPN = PHINode::Create(
 | |
|         PN.getType(), Preds.size(), "split",
 | |
|         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
 | |
|     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | |
|       NewPN->addIncoming(V, Preds[i]);
 | |
| 
 | |
|     // Update the original PHI.
 | |
|     PN.setIncomingValue(Idx, NewPN);
 | |
|   }
 | |
| }
 | |
| 
 | |
| BasicBlock *
 | |
| llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
 | |
|                         const CriticalEdgeSplittingOptions &Options) {
 | |
|   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(!isa<IndirectBrInst>(TI) &&
 | |
|          "Cannot split critical edge from IndirectBrInst");
 | |
| 
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
 | |
| 
 | |
|   // Splitting the critical edge to a pad block is non-trivial. Don't do
 | |
|   // it in this generic function.
 | |
|   if (DestBB->isEHPad()) return nullptr;
 | |
| 
 | |
|   // Don't split the non-fallthrough edge from a callbr.
 | |
|   if (isa<CallBrInst>(TI) && SuccNum > 0)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (Options.IgnoreUnreachableDests &&
 | |
|       isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create a new basic block, linking it into the CFG.
 | |
|   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
 | |
|                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
 | |
|   // Create our unconditional branch.
 | |
|   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
 | |
|   NewBI->setDebugLoc(TI->getDebugLoc());
 | |
| 
 | |
|   // Branch to the new block, breaking the edge.
 | |
|   TI->setSuccessor(SuccNum, NewBB);
 | |
| 
 | |
|   // Insert the block into the function... right after the block TI lives in.
 | |
|   Function &F = *TIBB->getParent();
 | |
|   Function::iterator FBBI = TIBB->getIterator();
 | |
|   F.getBasicBlockList().insert(++FBBI, NewBB);
 | |
| 
 | |
|   // If there are any PHI nodes in DestBB, we need to update them so that they
 | |
|   // merge incoming values from NewBB instead of from TIBB.
 | |
|   {
 | |
|     unsigned BBIdx = 0;
 | |
|     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
 | |
|       // We no longer enter through TIBB, now we come in through NewBB.
 | |
|       // Revector exactly one entry in the PHI node that used to come from
 | |
|       // TIBB to come from NewBB.
 | |
|       PHINode *PN = cast<PHINode>(I);
 | |
| 
 | |
|       // Reuse the previous value of BBIdx if it lines up.  In cases where we
 | |
|       // have multiple phi nodes with *lots* of predecessors, this is a speed
 | |
|       // win because we don't have to scan the PHI looking for TIBB.  This
 | |
|       // happens because the BB list of PHI nodes are usually in the same
 | |
|       // order.
 | |
|       if (PN->getIncomingBlock(BBIdx) != TIBB)
 | |
|         BBIdx = PN->getBasicBlockIndex(TIBB);
 | |
|       PN->setIncomingBlock(BBIdx, NewBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any other edges from TIBB to DestBB, update those to go
 | |
|   // through the split block, making those edges non-critical as well (and
 | |
|   // reducing the number of phi entries in the DestBB if relevant).
 | |
|   if (Options.MergeIdenticalEdges) {
 | |
|     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
 | |
|       if (TI->getSuccessor(i) != DestBB) continue;
 | |
| 
 | |
|       // Remove an entry for TIBB from DestBB phi nodes.
 | |
|       DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
 | |
| 
 | |
|       // We found another edge to DestBB, go to NewBB instead.
 | |
|       TI->setSuccessor(i, NewBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have nothing to update, just return.
 | |
|   auto *DT = Options.DT;
 | |
|   auto *PDT = Options.PDT;
 | |
|   auto *LI = Options.LI;
 | |
|   auto *MSSAU = Options.MSSAU;
 | |
|   if (MSSAU)
 | |
|     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
 | |
|         DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
 | |
| 
 | |
|   if (!DT && !PDT && !LI)
 | |
|     return NewBB;
 | |
| 
 | |
|   if (DT || PDT) {
 | |
|     // Update the DominatorTree.
 | |
|     //       ---> NewBB -----\
 | |
|     //      /                 V
 | |
|     //  TIBB -------\\------> DestBB
 | |
|     //
 | |
|     // First, inform the DT about the new path from TIBB to DestBB via NewBB,
 | |
|     // then delete the old edge from TIBB to DestBB. By doing this in that order
 | |
|     // DestBB stays reachable in the DT the whole time and its subtree doesn't
 | |
|     // get disconnected.
 | |
|     SmallVector<DominatorTree::UpdateType, 3> Updates;
 | |
|     Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
 | |
|     Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
 | |
|     if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
 | |
|       Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
 | |
| 
 | |
|     if (DT)
 | |
|       DT->applyUpdates(Updates);
 | |
|     if (PDT)
 | |
|       PDT->applyUpdates(Updates);
 | |
|   }
 | |
| 
 | |
|   // Update LoopInfo if it is around.
 | |
|   if (LI) {
 | |
|     if (Loop *TIL = LI->getLoopFor(TIBB)) {
 | |
|       // If one or the other blocks were not in a loop, the new block is not
 | |
|       // either, and thus LI doesn't need to be updated.
 | |
|       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
 | |
|         if (TIL == DestLoop) {
 | |
|           // Both in the same loop, the NewBB joins loop.
 | |
|           DestLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
|         } else if (TIL->contains(DestLoop)) {
 | |
|           // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | |
|           TIL->addBasicBlockToLoop(NewBB, *LI);
 | |
|         } else if (DestLoop->contains(TIL)) {
 | |
|           // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | |
|           DestLoop->addBasicBlockToLoop(NewBB, *LI);
 | |
|         } else {
 | |
|           // Edge from two loops with no containment relation.  Because these
 | |
|           // are natural loops, we know that the destination block must be the
 | |
|           // header of its loop (adding a branch into a loop elsewhere would
 | |
|           // create an irreducible loop).
 | |
|           assert(DestLoop->getHeader() == DestBB &&
 | |
|                  "Should not create irreducible loops!");
 | |
|           if (Loop *P = DestLoop->getParentLoop())
 | |
|             P->addBasicBlockToLoop(NewBB, *LI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If TIBB is in a loop and DestBB is outside of that loop, we may need
 | |
|       // to update LoopSimplify form and LCSSA form.
 | |
|       if (!TIL->contains(DestBB)) {
 | |
|         assert(!TIL->contains(NewBB) &&
 | |
|                "Split point for loop exit is contained in loop!");
 | |
| 
 | |
|         // Update LCSSA form in the newly created exit block.
 | |
|         if (Options.PreserveLCSSA) {
 | |
|           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
 | |
|         }
 | |
| 
 | |
|         // The only that we can break LoopSimplify form by splitting a critical
 | |
|         // edge is if after the split there exists some edge from TIL to DestBB
 | |
|         // *and* the only edge into DestBB from outside of TIL is that of
 | |
|         // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
 | |
|         // is the new exit block and it has no non-loop predecessors. If the
 | |
|         // second isn't true, then DestBB was not in LoopSimplify form prior to
 | |
|         // the split as it had a non-loop predecessor. In both of these cases,
 | |
|         // the predecessor must be directly in TIL, not in a subloop, or again
 | |
|         // LoopSimplify doesn't hold.
 | |
|         SmallVector<BasicBlock *, 4> LoopPreds;
 | |
|         for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
 | |
|              ++I) {
 | |
|           BasicBlock *P = *I;
 | |
|           if (P == NewBB)
 | |
|             continue; // The new block is known.
 | |
|           if (LI->getLoopFor(P) != TIL) {
 | |
|             // No need to re-simplify, it wasn't to start with.
 | |
|             LoopPreds.clear();
 | |
|             break;
 | |
|           }
 | |
|           LoopPreds.push_back(P);
 | |
|         }
 | |
|         if (!LoopPreds.empty()) {
 | |
|           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
 | |
|           BasicBlock *NewExitBB = SplitBlockPredecessors(
 | |
|               DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
 | |
|           if (Options.PreserveLCSSA)
 | |
|             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| // Return the unique indirectbr predecessor of a block. This may return null
 | |
| // even if such a predecessor exists, if it's not useful for splitting.
 | |
| // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
 | |
| // predecessors of BB.
 | |
| static BasicBlock *
 | |
| findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
 | |
|   // If the block doesn't have any PHIs, we don't care about it, since there's
 | |
|   // no point in splitting it.
 | |
|   PHINode *PN = dyn_cast<PHINode>(BB->begin());
 | |
|   if (!PN)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Verify we have exactly one IBR predecessor.
 | |
|   // Conservatively bail out if one of the other predecessors is not a "regular"
 | |
|   // terminator (that is, not a switch or a br).
 | |
|   BasicBlock *IBB = nullptr;
 | |
|   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
 | |
|     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
 | |
|     Instruction *PredTerm = PredBB->getTerminator();
 | |
|     switch (PredTerm->getOpcode()) {
 | |
|     case Instruction::IndirectBr:
 | |
|       if (IBB)
 | |
|         return nullptr;
 | |
|       IBB = PredBB;
 | |
|       break;
 | |
|     case Instruction::Br:
 | |
|     case Instruction::Switch:
 | |
|       OtherPreds.push_back(PredBB);
 | |
|       continue;
 | |
|     default:
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return IBB;
 | |
| }
 | |
| 
 | |
| bool llvm::SplitIndirectBrCriticalEdges(Function &F,
 | |
|                                         BranchProbabilityInfo *BPI,
 | |
|                                         BlockFrequencyInfo *BFI) {
 | |
|   // Check whether the function has any indirectbrs, and collect which blocks
 | |
|   // they may jump to. Since most functions don't have indirect branches,
 | |
|   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
 | |
|   SmallSetVector<BasicBlock *, 16> Targets;
 | |
|   for (auto &BB : F) {
 | |
|     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
 | |
|     if (!IBI)
 | |
|       continue;
 | |
| 
 | |
|     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
 | |
|       Targets.insert(IBI->getSuccessor(Succ));
 | |
|   }
 | |
| 
 | |
|   if (Targets.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool ShouldUpdateAnalysis = BPI && BFI;
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock *Target : Targets) {
 | |
|     SmallVector<BasicBlock *, 16> OtherPreds;
 | |
|     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
 | |
|     // If we did not found an indirectbr, or the indirectbr is the only
 | |
|     // incoming edge, this isn't the kind of edge we're looking for.
 | |
|     if (!IBRPred || OtherPreds.empty())
 | |
|       continue;
 | |
| 
 | |
|     // Don't even think about ehpads/landingpads.
 | |
|     Instruction *FirstNonPHI = Target->getFirstNonPHI();
 | |
|     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
 | |
|     if (ShouldUpdateAnalysis) {
 | |
|       // Copy the BFI/BPI from Target to BodyBlock.
 | |
|       for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
 | |
|            I < E; ++I)
 | |
|         BPI->setEdgeProbability(BodyBlock, I,
 | |
|                                 BPI->getEdgeProbability(Target, I));
 | |
|       BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
 | |
|     }
 | |
|     // It's possible Target was its own successor through an indirectbr.
 | |
|     // In this case, the indirectbr now comes from BodyBlock.
 | |
|     if (IBRPred == Target)
 | |
|       IBRPred = BodyBlock;
 | |
| 
 | |
|     // At this point Target only has PHIs, and BodyBlock has the rest of the
 | |
|     // block's body. Create a copy of Target that will be used by the "direct"
 | |
|     // preds.
 | |
|     ValueToValueMapTy VMap;
 | |
|     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
 | |
| 
 | |
|     BlockFrequency BlockFreqForDirectSucc;
 | |
|     for (BasicBlock *Pred : OtherPreds) {
 | |
|       // If the target is a loop to itself, then the terminator of the split
 | |
|       // block (BodyBlock) needs to be updated.
 | |
|       BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
 | |
|       Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
 | |
|       if (ShouldUpdateAnalysis)
 | |
|         BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
 | |
|             BPI->getEdgeProbability(Src, DirectSucc);
 | |
|     }
 | |
|     if (ShouldUpdateAnalysis) {
 | |
|       BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
 | |
|       BlockFrequency NewBlockFreqForTarget =
 | |
|           BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
 | |
|       BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
 | |
|       BPI->eraseBlock(Target);
 | |
|     }
 | |
| 
 | |
|     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
 | |
|     // they are clones, so the number of PHIs are the same.
 | |
|     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
 | |
|     // (b) Leave that as the only edge in the "Indirect" PHI.
 | |
|     // (c) Merge the two in the body block.
 | |
|     BasicBlock::iterator Indirect = Target->begin(),
 | |
|                          End = Target->getFirstNonPHI()->getIterator();
 | |
|     BasicBlock::iterator Direct = DirectSucc->begin();
 | |
|     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
 | |
| 
 | |
|     assert(&*End == Target->getTerminator() &&
 | |
|            "Block was expected to only contain PHIs");
 | |
| 
 | |
|     while (Indirect != End) {
 | |
|       PHINode *DirPHI = cast<PHINode>(Direct);
 | |
|       PHINode *IndPHI = cast<PHINode>(Indirect);
 | |
| 
 | |
|       // Now, clean up - the direct block shouldn't get the indirect value,
 | |
|       // and vice versa.
 | |
|       DirPHI->removeIncomingValue(IBRPred);
 | |
|       Direct++;
 | |
| 
 | |
|       // Advance the pointer here, to avoid invalidation issues when the old
 | |
|       // PHI is erased.
 | |
|       Indirect++;
 | |
| 
 | |
|       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
 | |
|       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
 | |
|                              IBRPred);
 | |
| 
 | |
|       // Create a PHI in the body block, to merge the direct and indirect
 | |
|       // predecessors.
 | |
|       PHINode *MergePHI =
 | |
|           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
 | |
|       MergePHI->addIncoming(NewIndPHI, Target);
 | |
|       MergePHI->addIncoming(DirPHI, DirectSucc);
 | |
| 
 | |
|       IndPHI->replaceAllUsesWith(MergePHI);
 | |
|       IndPHI->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 |