746 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			746 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===----------------- LoopRotationUtils.cpp -----------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file provides utilities to convert a loop into a loop with bottom test.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/LoopRotationUtils.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/DomTreeUpdater.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/DebugInfoMetadata.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/Transforms/Utils/ValueMapper.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-rotate"
 | |
| 
 | |
| STATISTIC(NumRotated, "Number of loops rotated");
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
 | |
|                 cl::desc("Allow loop rotation multiple times in order to reach "
 | |
|                          "a better latch exit"));
 | |
| 
 | |
| namespace {
 | |
| /// A simple loop rotation transformation.
 | |
| class LoopRotate {
 | |
|   const unsigned MaxHeaderSize;
 | |
|   LoopInfo *LI;
 | |
|   const TargetTransformInfo *TTI;
 | |
|   AssumptionCache *AC;
 | |
|   DominatorTree *DT;
 | |
|   ScalarEvolution *SE;
 | |
|   MemorySSAUpdater *MSSAU;
 | |
|   const SimplifyQuery &SQ;
 | |
|   bool RotationOnly;
 | |
|   bool IsUtilMode;
 | |
| 
 | |
| public:
 | |
|   LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
 | |
|              const TargetTransformInfo *TTI, AssumptionCache *AC,
 | |
|              DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
 | |
|              const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
 | |
|       : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
 | |
|         MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
 | |
|         IsUtilMode(IsUtilMode) {}
 | |
|   bool processLoop(Loop *L);
 | |
| 
 | |
| private:
 | |
|   bool rotateLoop(Loop *L, bool SimplifiedLatch);
 | |
|   bool simplifyLoopLatch(Loop *L);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not
 | |
| /// previously exist in the map, and the value was inserted.
 | |
| static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) {
 | |
|   bool Inserted = VM.insert({K, V}).second;
 | |
|   assert(Inserted);
 | |
|   (void)Inserted;
 | |
| }
 | |
| /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
 | |
| /// old header into the preheader.  If there were uses of the values produced by
 | |
| /// these instruction that were outside of the loop, we have to insert PHI nodes
 | |
| /// to merge the two values.  Do this now.
 | |
| static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
 | |
|                                             BasicBlock *OrigPreheader,
 | |
|                                             ValueToValueMapTy &ValueMap,
 | |
|                                 SmallVectorImpl<PHINode*> *InsertedPHIs) {
 | |
|   // Remove PHI node entries that are no longer live.
 | |
|   BasicBlock::iterator I, E = OrigHeader->end();
 | |
|   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
 | |
| 
 | |
|   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
 | |
|   // as necessary.
 | |
|   SSAUpdater SSA(InsertedPHIs);
 | |
|   for (I = OrigHeader->begin(); I != E; ++I) {
 | |
|     Value *OrigHeaderVal = &*I;
 | |
| 
 | |
|     // If there are no uses of the value (e.g. because it returns void), there
 | |
|     // is nothing to rewrite.
 | |
|     if (OrigHeaderVal->use_empty())
 | |
|       continue;
 | |
| 
 | |
|     Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
 | |
| 
 | |
|     // The value now exits in two versions: the initial value in the preheader
 | |
|     // and the loop "next" value in the original header.
 | |
|     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
 | |
|     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
 | |
|     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
 | |
| 
 | |
|     // Visit each use of the OrigHeader instruction.
 | |
|     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
 | |
|                              UE = OrigHeaderVal->use_end();
 | |
|          UI != UE;) {
 | |
|       // Grab the use before incrementing the iterator.
 | |
|       Use &U = *UI;
 | |
| 
 | |
|       // Increment the iterator before removing the use from the list.
 | |
|       ++UI;
 | |
| 
 | |
|       // SSAUpdater can't handle a non-PHI use in the same block as an
 | |
|       // earlier def. We can easily handle those cases manually.
 | |
|       Instruction *UserInst = cast<Instruction>(U.getUser());
 | |
|       if (!isa<PHINode>(UserInst)) {
 | |
|         BasicBlock *UserBB = UserInst->getParent();
 | |
| 
 | |
|         // The original users in the OrigHeader are already using the
 | |
|         // original definitions.
 | |
|         if (UserBB == OrigHeader)
 | |
|           continue;
 | |
| 
 | |
|         // Users in the OrigPreHeader need to use the value to which the
 | |
|         // original definitions are mapped.
 | |
|         if (UserBB == OrigPreheader) {
 | |
|           U = OrigPreHeaderVal;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Anything else can be handled by SSAUpdater.
 | |
|       SSA.RewriteUse(U);
 | |
|     }
 | |
| 
 | |
|     // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
 | |
|     // intrinsics.
 | |
|     SmallVector<DbgValueInst *, 1> DbgValues;
 | |
|     llvm::findDbgValues(DbgValues, OrigHeaderVal);
 | |
|     for (auto &DbgValue : DbgValues) {
 | |
|       // The original users in the OrigHeader are already using the original
 | |
|       // definitions.
 | |
|       BasicBlock *UserBB = DbgValue->getParent();
 | |
|       if (UserBB == OrigHeader)
 | |
|         continue;
 | |
| 
 | |
|       // Users in the OrigPreHeader need to use the value to which the
 | |
|       // original definitions are mapped and anything else can be handled by
 | |
|       // the SSAUpdater. To avoid adding PHINodes, check if the value is
 | |
|       // available in UserBB, if not substitute undef.
 | |
|       Value *NewVal;
 | |
|       if (UserBB == OrigPreheader)
 | |
|         NewVal = OrigPreHeaderVal;
 | |
|       else if (SSA.HasValueForBlock(UserBB))
 | |
|         NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
 | |
|       else
 | |
|         NewVal = UndefValue::get(OrigHeaderVal->getType());
 | |
|       DbgValue->setOperand(0,
 | |
|                            MetadataAsValue::get(OrigHeaderVal->getContext(),
 | |
|                                                 ValueAsMetadata::get(NewVal)));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Assuming both header and latch are exiting, look for a phi which is only
 | |
| // used outside the loop (via a LCSSA phi) in the exit from the header.
 | |
| // This means that rotating the loop can remove the phi.
 | |
| static bool profitableToRotateLoopExitingLatch(Loop *L) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
 | |
|   assert(BI && BI->isConditional() && "need header with conditional exit");
 | |
|   BasicBlock *HeaderExit = BI->getSuccessor(0);
 | |
|   if (L->contains(HeaderExit))
 | |
|     HeaderExit = BI->getSuccessor(1);
 | |
| 
 | |
|   for (auto &Phi : Header->phis()) {
 | |
|     // Look for uses of this phi in the loop/via exits other than the header.
 | |
|     if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
 | |
|           return cast<Instruction>(U)->getParent() != HeaderExit;
 | |
|         }))
 | |
|       continue;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check that latch exit is deoptimizing (which means - very unlikely to happen)
 | |
| // and there is another exit from the loop which is non-deoptimizing.
 | |
| // If we rotate latch to that exit our loop has a better chance of being fully
 | |
| // canonical.
 | |
| //
 | |
| // It can give false positives in some rare cases.
 | |
| static bool canRotateDeoptimizingLatchExit(Loop *L) {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   assert(Latch && "need latch");
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   // Need normal exiting latch.
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *Exit = BI->getSuccessor(1);
 | |
|   if (L->contains(Exit))
 | |
|     Exit = BI->getSuccessor(0);
 | |
| 
 | |
|   // Latch exit is non-deoptimizing, no need to rotate.
 | |
|   if (!Exit->getPostdominatingDeoptimizeCall())
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<BasicBlock *, 4> Exits;
 | |
|   L->getUniqueExitBlocks(Exits);
 | |
|   if (!Exits.empty()) {
 | |
|     // There is at least one non-deoptimizing exit.
 | |
|     //
 | |
|     // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
 | |
|     // as it can conservatively return false for deoptimizing exits with
 | |
|     // complex enough control flow down to deoptimize call.
 | |
|     //
 | |
|     // That means here we can report success for a case where
 | |
|     // all exits are deoptimizing but one of them has complex enough
 | |
|     // control flow (e.g. with loops).
 | |
|     //
 | |
|     // That should be a very rare case and false positives for this function
 | |
|     // have compile-time effect only.
 | |
|     return any_of(Exits, [](const BasicBlock *BB) {
 | |
|       return !BB->getPostdominatingDeoptimizeCall();
 | |
|     });
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Rotate loop LP. Return true if the loop is rotated.
 | |
| ///
 | |
| /// \param SimplifiedLatch is true if the latch was just folded into the final
 | |
| /// loop exit. In this case we may want to rotate even though the new latch is
 | |
| /// now an exiting branch. This rotation would have happened had the latch not
 | |
| /// been simplified. However, if SimplifiedLatch is false, then we avoid
 | |
| /// rotating loops in which the latch exits to avoid excessive or endless
 | |
| /// rotation. LoopRotate should be repeatable and converge to a canonical
 | |
| /// form. This property is satisfied because simplifying the loop latch can only
 | |
| /// happen once across multiple invocations of the LoopRotate pass.
 | |
| ///
 | |
| /// If -loop-rotate-multi is enabled we can do multiple rotations in one go
 | |
| /// so to reach a suitable (non-deoptimizing) exit.
 | |
| bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
 | |
|   // If the loop has only one block then there is not much to rotate.
 | |
|   if (L->getBlocks().size() == 1)
 | |
|     return false;
 | |
| 
 | |
|   bool Rotated = false;
 | |
|   do {
 | |
|     BasicBlock *OrigHeader = L->getHeader();
 | |
|     BasicBlock *OrigLatch = L->getLoopLatch();
 | |
| 
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
 | |
|     if (!BI || BI->isUnconditional())
 | |
|       return Rotated;
 | |
| 
 | |
|     // If the loop header is not one of the loop exiting blocks then
 | |
|     // either this loop is already rotated or it is not
 | |
|     // suitable for loop rotation transformations.
 | |
|     if (!L->isLoopExiting(OrigHeader))
 | |
|       return Rotated;
 | |
| 
 | |
|     // If the loop latch already contains a branch that leaves the loop then the
 | |
|     // loop is already rotated.
 | |
|     if (!OrigLatch)
 | |
|       return Rotated;
 | |
| 
 | |
|     // Rotate if either the loop latch does *not* exit the loop, or if the loop
 | |
|     // latch was just simplified. Or if we think it will be profitable.
 | |
|     if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
 | |
|         !profitableToRotateLoopExitingLatch(L) &&
 | |
|         !canRotateDeoptimizingLatchExit(L))
 | |
|       return Rotated;
 | |
| 
 | |
|     // Check size of original header and reject loop if it is very big or we can't
 | |
|     // duplicate blocks inside it.
 | |
|     {
 | |
|       SmallPtrSet<const Value *, 32> EphValues;
 | |
|       CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | |
| 
 | |
|       CodeMetrics Metrics;
 | |
|       Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
 | |
|       if (Metrics.notDuplicatable) {
 | |
|         LLVM_DEBUG(
 | |
|                    dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
 | |
|                    << " instructions: ";
 | |
|                    L->dump());
 | |
|         return Rotated;
 | |
|       }
 | |
|       if (Metrics.convergent) {
 | |
|         LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
 | |
|                    "instructions: ";
 | |
|                    L->dump());
 | |
|         return Rotated;
 | |
|       }
 | |
|       if (Metrics.NumInsts > MaxHeaderSize)
 | |
|         return Rotated;
 | |
|     }
 | |
| 
 | |
|     // Now, this loop is suitable for rotation.
 | |
|     BasicBlock *OrigPreheader = L->getLoopPreheader();
 | |
| 
 | |
|     // If the loop could not be converted to canonical form, it must have an
 | |
|     // indirectbr in it, just give up.
 | |
|     if (!OrigPreheader || !L->hasDedicatedExits())
 | |
|       return Rotated;
 | |
| 
 | |
|     // Anything ScalarEvolution may know about this loop or the PHI nodes
 | |
|     // in its header will soon be invalidated. We should also invalidate
 | |
|     // all outer loops because insertion and deletion of blocks that happens
 | |
|     // during the rotation may violate invariants related to backedge taken
 | |
|     // infos in them.
 | |
|     if (SE)
 | |
|       SE->forgetTopmostLoop(L);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
 | |
|     if (MSSAU && VerifyMemorySSA)
 | |
|       MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|     // Find new Loop header. NewHeader is a Header's one and only successor
 | |
|     // that is inside loop.  Header's other successor is outside the
 | |
|     // loop.  Otherwise loop is not suitable for rotation.
 | |
|     BasicBlock *Exit = BI->getSuccessor(0);
 | |
|     BasicBlock *NewHeader = BI->getSuccessor(1);
 | |
|     if (L->contains(Exit))
 | |
|       std::swap(Exit, NewHeader);
 | |
|     assert(NewHeader && "Unable to determine new loop header");
 | |
|     assert(L->contains(NewHeader) && !L->contains(Exit) &&
 | |
|            "Unable to determine loop header and exit blocks");
 | |
| 
 | |
|     // This code assumes that the new header has exactly one predecessor.
 | |
|     // Remove any single-entry PHI nodes in it.
 | |
|     assert(NewHeader->getSinglePredecessor() &&
 | |
|            "New header doesn't have one pred!");
 | |
|     FoldSingleEntryPHINodes(NewHeader);
 | |
| 
 | |
|     // Begin by walking OrigHeader and populating ValueMap with an entry for
 | |
|     // each Instruction.
 | |
|     BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
 | |
|     ValueToValueMapTy ValueMap, ValueMapMSSA;
 | |
| 
 | |
|     // For PHI nodes, the value available in OldPreHeader is just the
 | |
|     // incoming value from OldPreHeader.
 | |
|     for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|       InsertNewValueIntoMap(ValueMap, PN,
 | |
|                             PN->getIncomingValueForBlock(OrigPreheader));
 | |
| 
 | |
|     // For the rest of the instructions, either hoist to the OrigPreheader if
 | |
|     // possible or create a clone in the OldPreHeader if not.
 | |
|     Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
 | |
| 
 | |
|     // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
 | |
|     using DbgIntrinsicHash =
 | |
|       std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
 | |
|     auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
 | |
|       return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
 | |
|     };
 | |
|     SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
 | |
|     for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
 | |
|          I != E; ++I) {
 | |
|       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
 | |
|         DbgIntrinsics.insert(makeHash(DII));
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     while (I != E) {
 | |
|       Instruction *Inst = &*I++;
 | |
| 
 | |
|       // If the instruction's operands are invariant and it doesn't read or write
 | |
|       // memory, then it is safe to hoist.  Doing this doesn't change the order of
 | |
|       // execution in the preheader, but does prevent the instruction from
 | |
|       // executing in each iteration of the loop.  This means it is safe to hoist
 | |
|       // something that might trap, but isn't safe to hoist something that reads
 | |
|       // memory (without proving that the loop doesn't write).
 | |
|       if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
 | |
|           !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
 | |
|           !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
 | |
|         Inst->moveBefore(LoopEntryBranch);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, create a duplicate of the instruction.
 | |
|       Instruction *C = Inst->clone();
 | |
| 
 | |
|       // Eagerly remap the operands of the instruction.
 | |
|       RemapInstruction(C, ValueMap,
 | |
|                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
 | |
| 
 | |
|       // Avoid inserting the same intrinsic twice.
 | |
|       if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
 | |
|         if (DbgIntrinsics.count(makeHash(DII))) {
 | |
|           C->deleteValue();
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|       // With the operands remapped, see if the instruction constant folds or is
 | |
|       // otherwise simplifyable.  This commonly occurs because the entry from PHI
 | |
|       // nodes allows icmps and other instructions to fold.
 | |
|       Value *V = SimplifyInstruction(C, SQ);
 | |
|       if (V && LI->replacementPreservesLCSSAForm(C, V)) {
 | |
|         // If so, then delete the temporary instruction and stick the folded value
 | |
|         // in the map.
 | |
|         InsertNewValueIntoMap(ValueMap, Inst, V);
 | |
|         if (!C->mayHaveSideEffects()) {
 | |
|           C->deleteValue();
 | |
|           C = nullptr;
 | |
|         }
 | |
|       } else {
 | |
|         InsertNewValueIntoMap(ValueMap, Inst, C);
 | |
|       }
 | |
|       if (C) {
 | |
|         // Otherwise, stick the new instruction into the new block!
 | |
|         C->setName(Inst->getName());
 | |
|         C->insertBefore(LoopEntryBranch);
 | |
| 
 | |
|         if (auto *II = dyn_cast<IntrinsicInst>(C))
 | |
|           if (II->getIntrinsicID() == Intrinsic::assume)
 | |
|             AC->registerAssumption(II);
 | |
|         // MemorySSA cares whether the cloned instruction was inserted or not, and
 | |
|         // not whether it can be remapped to a simplified value.
 | |
|         if (MSSAU)
 | |
|           InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Along with all the other instructions, we just cloned OrigHeader's
 | |
|     // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
 | |
|     // successors by duplicating their incoming values for OrigHeader.
 | |
|     for (BasicBlock *SuccBB : successors(OrigHeader))
 | |
|       for (BasicBlock::iterator BI = SuccBB->begin();
 | |
|            PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|         PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
 | |
| 
 | |
|     // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
 | |
|     // OrigPreHeader's old terminator (the original branch into the loop), and
 | |
|     // remove the corresponding incoming values from the PHI nodes in OrigHeader.
 | |
|     LoopEntryBranch->eraseFromParent();
 | |
| 
 | |
|     // Update MemorySSA before the rewrite call below changes the 1:1
 | |
|     // instruction:cloned_instruction_or_value mapping.
 | |
|     if (MSSAU) {
 | |
|       InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
 | |
|       MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
 | |
|                                           ValueMapMSSA);
 | |
|     }
 | |
| 
 | |
|     SmallVector<PHINode*, 2> InsertedPHIs;
 | |
|     // If there were any uses of instructions in the duplicated block outside the
 | |
|     // loop, update them, inserting PHI nodes as required
 | |
|     RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
 | |
|                                     &InsertedPHIs);
 | |
| 
 | |
|     // Attach dbg.value intrinsics to the new phis if that phi uses a value that
 | |
|     // previously had debug metadata attached. This keeps the debug info
 | |
|     // up-to-date in the loop body.
 | |
|     if (!InsertedPHIs.empty())
 | |
|       insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
 | |
| 
 | |
|     // NewHeader is now the header of the loop.
 | |
|     L->moveToHeader(NewHeader);
 | |
|     assert(L->getHeader() == NewHeader && "Latch block is our new header");
 | |
| 
 | |
|     // Inform DT about changes to the CFG.
 | |
|     if (DT) {
 | |
|       // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
 | |
|       // the DT about the removed edge to the OrigHeader (that got removed).
 | |
|       SmallVector<DominatorTree::UpdateType, 3> Updates;
 | |
|       Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
 | |
|       Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
 | |
|       Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
 | |
|       DT->applyUpdates(Updates);
 | |
| 
 | |
|       if (MSSAU) {
 | |
|         MSSAU->applyUpdates(Updates, *DT);
 | |
|         if (VerifyMemorySSA)
 | |
|           MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // At this point, we've finished our major CFG changes.  As part of cloning
 | |
|     // the loop into the preheader we've simplified instructions and the
 | |
|     // duplicated conditional branch may now be branching on a constant.  If it is
 | |
|     // branching on a constant and if that constant means that we enter the loop,
 | |
|     // then we fold away the cond branch to an uncond branch.  This simplifies the
 | |
|     // loop in cases important for nested loops, and it also means we don't have
 | |
|     // to split as many edges.
 | |
|     BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
 | |
|     assert(PHBI->isConditional() && "Should be clone of BI condbr!");
 | |
|     if (!isa<ConstantInt>(PHBI->getCondition()) ||
 | |
|         PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
 | |
|         NewHeader) {
 | |
|       // The conditional branch can't be folded, handle the general case.
 | |
|       // Split edges as necessary to preserve LoopSimplify form.
 | |
| 
 | |
|       // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
 | |
|       // thus is not a preheader anymore.
 | |
|       // Split the edge to form a real preheader.
 | |
|       BasicBlock *NewPH = SplitCriticalEdge(
 | |
|                                             OrigPreheader, NewHeader,
 | |
|                                             CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
 | |
|       NewPH->setName(NewHeader->getName() + ".lr.ph");
 | |
| 
 | |
|       // Preserve canonical loop form, which means that 'Exit' should have only
 | |
|       // one predecessor. Note that Exit could be an exit block for multiple
 | |
|       // nested loops, causing both of the edges to now be critical and need to
 | |
|       // be split.
 | |
|       SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
 | |
|       bool SplitLatchEdge = false;
 | |
|       for (BasicBlock *ExitPred : ExitPreds) {
 | |
|         // We only need to split loop exit edges.
 | |
|         Loop *PredLoop = LI->getLoopFor(ExitPred);
 | |
|         if (!PredLoop || PredLoop->contains(Exit) ||
 | |
|             ExitPred->getTerminator()->isIndirectTerminator())
 | |
|           continue;
 | |
|         SplitLatchEdge |= L->getLoopLatch() == ExitPred;
 | |
|         BasicBlock *ExitSplit = SplitCriticalEdge(
 | |
|                                                   ExitPred, Exit,
 | |
|                                                   CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
 | |
|         ExitSplit->moveBefore(Exit);
 | |
|       }
 | |
|       assert(SplitLatchEdge &&
 | |
|              "Despite splitting all preds, failed to split latch exit?");
 | |
|     } else {
 | |
|       // We can fold the conditional branch in the preheader, this makes things
 | |
|       // simpler. The first step is to remove the extra edge to the Exit block.
 | |
|       Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
 | |
|       BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
 | |
|       NewBI->setDebugLoc(PHBI->getDebugLoc());
 | |
|       PHBI->eraseFromParent();
 | |
| 
 | |
|       // With our CFG finalized, update DomTree if it is available.
 | |
|       if (DT) DT->deleteEdge(OrigPreheader, Exit);
 | |
| 
 | |
|       // Update MSSA too, if available.
 | |
|       if (MSSAU)
 | |
|         MSSAU->removeEdge(OrigPreheader, Exit);
 | |
|     }
 | |
| 
 | |
|     assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
 | |
|     assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
 | |
| 
 | |
|     if (MSSAU && VerifyMemorySSA)
 | |
|       MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|     // Now that the CFG and DomTree are in a consistent state again, try to merge
 | |
|     // the OrigHeader block into OrigLatch.  This will succeed if they are
 | |
|     // connected by an unconditional branch.  This is just a cleanup so the
 | |
|     // emitted code isn't too gross in this common case.
 | |
|     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
 | |
|     MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
 | |
| 
 | |
|     if (MSSAU && VerifyMemorySSA)
 | |
|       MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
 | |
| 
 | |
|     ++NumRotated;
 | |
| 
 | |
|     Rotated = true;
 | |
|     SimplifiedLatch = false;
 | |
| 
 | |
|     // Check that new latch is a deoptimizing exit and then repeat rotation if possible.
 | |
|     // Deoptimizing latch exit is not a generally typical case, so we just loop over.
 | |
|     // TODO: if it becomes a performance bottleneck extend rotation algorithm
 | |
|     // to handle multiple rotations in one go.
 | |
|   } while (MultiRotate && canRotateDeoptimizingLatchExit(L));
 | |
| 
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Determine whether the instructions in this range may be safely and cheaply
 | |
| /// speculated. This is not an important enough situation to develop complex
 | |
| /// heuristics. We handle a single arithmetic instruction along with any type
 | |
| /// conversions.
 | |
| static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
 | |
|                                   BasicBlock::iterator End, Loop *L) {
 | |
|   bool seenIncrement = false;
 | |
|   bool MultiExitLoop = false;
 | |
| 
 | |
|   if (!L->getExitingBlock())
 | |
|     MultiExitLoop = true;
 | |
| 
 | |
|   for (BasicBlock::iterator I = Begin; I != End; ++I) {
 | |
| 
 | |
|     if (!isSafeToSpeculativelyExecute(&*I))
 | |
|       return false;
 | |
| 
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       continue;
 | |
| 
 | |
|     switch (I->getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::GetElementPtr:
 | |
|       // GEPs are cheap if all indices are constant.
 | |
|       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
 | |
|         return false;
 | |
|       // fall-thru to increment case
 | |
|       LLVM_FALLTHROUGH;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr: {
 | |
|       Value *IVOpnd =
 | |
|           !isa<Constant>(I->getOperand(0))
 | |
|               ? I->getOperand(0)
 | |
|               : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
 | |
|       if (!IVOpnd)
 | |
|         return false;
 | |
| 
 | |
|       // If increment operand is used outside of the loop, this speculation
 | |
|       // could cause extra live range interference.
 | |
|       if (MultiExitLoop) {
 | |
|         for (User *UseI : IVOpnd->users()) {
 | |
|           auto *UserInst = cast<Instruction>(UseI);
 | |
|           if (!L->contains(UserInst))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (seenIncrement)
 | |
|         return false;
 | |
|       seenIncrement = true;
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|       // ignore type conversions
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Fold the loop tail into the loop exit by speculating the loop tail
 | |
| /// instructions. Typically, this is a single post-increment. In the case of a
 | |
| /// simple 2-block loop, hoisting the increment can be much better than
 | |
| /// duplicating the entire loop header. In the case of loops with early exits,
 | |
| /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
 | |
| /// canonical form so downstream passes can handle it.
 | |
| ///
 | |
| /// I don't believe this invalidates SCEV.
 | |
| bool LoopRotate::simplifyLoopLatch(Loop *L) {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch || Latch->hasAddressTaken())
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (!Jmp || !Jmp->isUnconditional())
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *LastExit = Latch->getSinglePredecessor();
 | |
|   if (!LastExit || !L->isLoopExiting(LastExit))
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
 | |
|   if (!BI)
 | |
|     return false;
 | |
| 
 | |
|   if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
 | |
|                     << LastExit->getName() << "\n");
 | |
| 
 | |
|   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
 | |
|   MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
 | |
|                             /*PredecessorWithTwoSuccessors=*/true);
 | |
| 
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Rotate \c L, and return true if any modification was made.
 | |
| bool LoopRotate::processLoop(Loop *L) {
 | |
|   // Save the loop metadata.
 | |
|   MDNode *LoopMD = L->getLoopID();
 | |
| 
 | |
|   bool SimplifiedLatch = false;
 | |
| 
 | |
|   // Simplify the loop latch before attempting to rotate the header
 | |
|   // upward. Rotation may not be needed if the loop tail can be folded into the
 | |
|   // loop exit.
 | |
|   if (!RotationOnly)
 | |
|     SimplifiedLatch = simplifyLoopLatch(L);
 | |
| 
 | |
|   bool MadeChange = rotateLoop(L, SimplifiedLatch);
 | |
|   assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
 | |
|          "Loop latch should be exiting after loop-rotate.");
 | |
| 
 | |
|   // Restore the loop metadata.
 | |
|   // NB! We presume LoopRotation DOESN'T ADD its own metadata.
 | |
|   if ((MadeChange || SimplifiedLatch) && LoopMD)
 | |
|     L->setLoopID(LoopMD);
 | |
| 
 | |
|   return MadeChange || SimplifiedLatch;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// The utility to convert a loop into a loop with bottom test.
 | |
| bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
 | |
|                         AssumptionCache *AC, DominatorTree *DT,
 | |
|                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
 | |
|                         const SimplifyQuery &SQ, bool RotationOnly = true,
 | |
|                         unsigned Threshold = unsigned(-1),
 | |
|                         bool IsUtilMode = true) {
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
|   LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
 | |
|                 IsUtilMode);
 | |
|   if (MSSAU && VerifyMemorySSA)
 | |
|     MSSAU->getMemorySSA()->verifyMemorySSA();
 | |
| 
 | |
|   return LR.processLoop(L);
 | |
| }
 |