1532 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1532 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines common loop utility functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/DomTreeUpdater.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/MustExecute.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DIBuilder.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| static cl::opt<bool> ForceReductionIntrinsic(
 | |
|     "force-reduction-intrinsics", cl::Hidden,
 | |
|     cl::desc("Force creating reduction intrinsics for testing."),
 | |
|     cl::init(false));
 | |
| 
 | |
| #define DEBUG_TYPE "loop-utils"
 | |
| 
 | |
| static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
 | |
| static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
 | |
| 
 | |
| bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
 | |
|                                    MemorySSAUpdater *MSSAU,
 | |
|                                    bool PreserveLCSSA) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // We re-use a vector for the in-loop predecesosrs.
 | |
|   SmallVector<BasicBlock *, 4> InLoopPredecessors;
 | |
| 
 | |
|   auto RewriteExit = [&](BasicBlock *BB) {
 | |
|     assert(InLoopPredecessors.empty() &&
 | |
|            "Must start with an empty predecessors list!");
 | |
|     auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
 | |
| 
 | |
|     // See if there are any non-loop predecessors of this exit block and
 | |
|     // keep track of the in-loop predecessors.
 | |
|     bool IsDedicatedExit = true;
 | |
|     for (auto *PredBB : predecessors(BB))
 | |
|       if (L->contains(PredBB)) {
 | |
|         if (isa<IndirectBrInst>(PredBB->getTerminator()))
 | |
|           // We cannot rewrite exiting edges from an indirectbr.
 | |
|           return false;
 | |
|         if (isa<CallBrInst>(PredBB->getTerminator()))
 | |
|           // We cannot rewrite exiting edges from a callbr.
 | |
|           return false;
 | |
| 
 | |
|         InLoopPredecessors.push_back(PredBB);
 | |
|       } else {
 | |
|         IsDedicatedExit = false;
 | |
|       }
 | |
| 
 | |
|     assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
 | |
| 
 | |
|     // Nothing to do if this is already a dedicated exit.
 | |
|     if (IsDedicatedExit)
 | |
|       return false;
 | |
| 
 | |
|     auto *NewExitBB = SplitBlockPredecessors(
 | |
|         BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
 | |
| 
 | |
|     if (!NewExitBB)
 | |
|       LLVM_DEBUG(
 | |
|           dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
 | |
|                  << *L << "\n");
 | |
|     else
 | |
|       LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
 | |
|                         << NewExitBB->getName() << "\n");
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   // Walk the exit blocks directly rather than building up a data structure for
 | |
|   // them, but only visit each one once.
 | |
|   SmallPtrSet<BasicBlock *, 4> Visited;
 | |
|   for (auto *BB : L->blocks())
 | |
|     for (auto *SuccBB : successors(BB)) {
 | |
|       // We're looking for exit blocks so skip in-loop successors.
 | |
|       if (L->contains(SuccBB))
 | |
|         continue;
 | |
| 
 | |
|       // Visit each exit block exactly once.
 | |
|       if (!Visited.insert(SuccBB).second)
 | |
|         continue;
 | |
| 
 | |
|       Changed |= RewriteExit(SuccBB);
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Returns the instructions that use values defined in the loop.
 | |
| SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
 | |
|   SmallVector<Instruction *, 8> UsedOutside;
 | |
| 
 | |
|   for (auto *Block : L->getBlocks())
 | |
|     // FIXME: I believe that this could use copy_if if the Inst reference could
 | |
|     // be adapted into a pointer.
 | |
|     for (auto &Inst : *Block) {
 | |
|       auto Users = Inst.users();
 | |
|       if (any_of(Users, [&](User *U) {
 | |
|             auto *Use = cast<Instruction>(U);
 | |
|             return !L->contains(Use->getParent());
 | |
|           }))
 | |
|         UsedOutside.push_back(&Inst);
 | |
|     }
 | |
| 
 | |
|   return UsedOutside;
 | |
| }
 | |
| 
 | |
| void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
 | |
|   // By definition, all loop passes need the LoopInfo analysis and the
 | |
|   // Dominator tree it depends on. Because they all participate in the loop
 | |
|   // pass manager, they must also preserve these.
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addPreserved<LoopInfoWrapperPass>();
 | |
| 
 | |
|   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
 | |
|   // here because users shouldn't directly get them from this header.
 | |
|   extern char &LoopSimplifyID;
 | |
|   extern char &LCSSAID;
 | |
|   AU.addRequiredID(LoopSimplifyID);
 | |
|   AU.addPreservedID(LoopSimplifyID);
 | |
|   AU.addRequiredID(LCSSAID);
 | |
|   AU.addPreservedID(LCSSAID);
 | |
|   // This is used in the LPPassManager to perform LCSSA verification on passes
 | |
|   // which preserve lcssa form
 | |
|   AU.addRequired<LCSSAVerificationPass>();
 | |
|   AU.addPreserved<LCSSAVerificationPass>();
 | |
| 
 | |
|   // Loop passes are designed to run inside of a loop pass manager which means
 | |
|   // that any function analyses they require must be required by the first loop
 | |
|   // pass in the manager (so that it is computed before the loop pass manager
 | |
|   // runs) and preserved by all loop pasess in the manager. To make this
 | |
|   // reasonably robust, the set needed for most loop passes is maintained here.
 | |
|   // If your loop pass requires an analysis not listed here, you will need to
 | |
|   // carefully audit the loop pass manager nesting structure that results.
 | |
|   AU.addRequired<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<AAResultsWrapperPass>();
 | |
|   AU.addPreserved<BasicAAWrapperPass>();
 | |
|   AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|   AU.addPreserved<SCEVAAWrapperPass>();
 | |
|   AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|   AU.addPreserved<ScalarEvolutionWrapperPass>();
 | |
|   // FIXME: When all loop passes preserve MemorySSA, it can be required and
 | |
|   // preserved here instead of the individual handling in each pass.
 | |
| }
 | |
| 
 | |
| /// Manually defined generic "LoopPass" dependency initialization. This is used
 | |
| /// to initialize the exact set of passes from above in \c
 | |
| /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
 | |
| /// with:
 | |
| ///
 | |
| ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | |
| ///
 | |
| /// As-if "LoopPass" were a pass.
 | |
| void llvm::initializeLoopPassPass(PassRegistry &Registry) {
 | |
|   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
|   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
|   INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| }
 | |
| 
 | |
| /// Create MDNode for input string.
 | |
| static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
 | |
|   LLVMContext &Context = TheLoop->getHeader()->getContext();
 | |
|   Metadata *MDs[] = {
 | |
|       MDString::get(Context, Name),
 | |
|       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
 | |
|   return MDNode::get(Context, MDs);
 | |
| }
 | |
| 
 | |
| /// Set input string into loop metadata by keeping other values intact.
 | |
| /// If the string is already in loop metadata update value if it is
 | |
| /// different.
 | |
| void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
 | |
|                                    unsigned V) {
 | |
|   SmallVector<Metadata *, 4> MDs(1);
 | |
|   // If the loop already has metadata, retain it.
 | |
|   MDNode *LoopID = TheLoop->getLoopID();
 | |
|   if (LoopID) {
 | |
|     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
 | |
|       // If it is of form key = value, try to parse it.
 | |
|       if (Node->getNumOperands() == 2) {
 | |
|         MDString *S = dyn_cast<MDString>(Node->getOperand(0));
 | |
|         if (S && S->getString().equals(StringMD)) {
 | |
|           ConstantInt *IntMD =
 | |
|               mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
 | |
|           if (IntMD && IntMD->getSExtValue() == V)
 | |
|             // It is already in place. Do nothing.
 | |
|             return;
 | |
|           // We need to update the value, so just skip it here and it will
 | |
|           // be added after copying other existed nodes.
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       MDs.push_back(Node);
 | |
|     }
 | |
|   }
 | |
|   // Add new metadata.
 | |
|   MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
 | |
|   // Replace current metadata node with new one.
 | |
|   LLVMContext &Context = TheLoop->getHeader()->getContext();
 | |
|   MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|   // Set operand 0 to refer to the loop id itself.
 | |
|   NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
|   TheLoop->setLoopID(NewLoopID);
 | |
| }
 | |
| 
 | |
| /// Find string metadata for loop
 | |
| ///
 | |
| /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
 | |
| /// operand or null otherwise.  If the string metadata is not found return
 | |
| /// Optional's not-a-value.
 | |
| Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
 | |
|                                                             StringRef Name) {
 | |
|   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
 | |
|   if (!MD)
 | |
|     return None;
 | |
|   switch (MD->getNumOperands()) {
 | |
|   case 1:
 | |
|     return nullptr;
 | |
|   case 2:
 | |
|     return &MD->getOperand(1);
 | |
|   default:
 | |
|     llvm_unreachable("loop metadata has 0 or 1 operand");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
 | |
|                                                    StringRef Name) {
 | |
|   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
 | |
|   if (!MD)
 | |
|     return None;
 | |
|   switch (MD->getNumOperands()) {
 | |
|   case 1:
 | |
|     // When the value is absent it is interpreted as 'attribute set'.
 | |
|     return true;
 | |
|   case 2:
 | |
|     if (ConstantInt *IntMD =
 | |
|             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
 | |
|       return IntMD->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   llvm_unreachable("unexpected number of options");
 | |
| }
 | |
| 
 | |
| static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
 | |
|   return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
 | |
| }
 | |
| 
 | |
| llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
 | |
|                                                       StringRef Name) {
 | |
|   const MDOperand *AttrMD =
 | |
|       findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
 | |
|   if (!AttrMD)
 | |
|     return None;
 | |
| 
 | |
|   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
 | |
|   if (!IntMD)
 | |
|     return None;
 | |
| 
 | |
|   return IntMD->getSExtValue();
 | |
| }
 | |
| 
 | |
| Optional<MDNode *> llvm::makeFollowupLoopID(
 | |
|     MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
 | |
|     const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
 | |
|   if (!OrigLoopID) {
 | |
|     if (AlwaysNew)
 | |
|       return nullptr;
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   assert(OrigLoopID->getOperand(0) == OrigLoopID);
 | |
| 
 | |
|   bool InheritAllAttrs = !InheritOptionsExceptPrefix;
 | |
|   bool InheritSomeAttrs =
 | |
|       InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
 | |
|   SmallVector<Metadata *, 8> MDs;
 | |
|   MDs.push_back(nullptr);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   if (InheritAllAttrs || InheritSomeAttrs) {
 | |
|     for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
 | |
|       MDNode *Op = cast<MDNode>(Existing.get());
 | |
| 
 | |
|       auto InheritThisAttribute = [InheritSomeAttrs,
 | |
|                                    InheritOptionsExceptPrefix](MDNode *Op) {
 | |
|         if (!InheritSomeAttrs)
 | |
|           return false;
 | |
| 
 | |
|         // Skip malformatted attribute metadata nodes.
 | |
|         if (Op->getNumOperands() == 0)
 | |
|           return true;
 | |
|         Metadata *NameMD = Op->getOperand(0).get();
 | |
|         if (!isa<MDString>(NameMD))
 | |
|           return true;
 | |
|         StringRef AttrName = cast<MDString>(NameMD)->getString();
 | |
| 
 | |
|         // Do not inherit excluded attributes.
 | |
|         return !AttrName.startswith(InheritOptionsExceptPrefix);
 | |
|       };
 | |
| 
 | |
|       if (InheritThisAttribute(Op))
 | |
|         MDs.push_back(Op);
 | |
|       else
 | |
|         Changed = true;
 | |
|     }
 | |
|   } else {
 | |
|     // Modified if we dropped at least one attribute.
 | |
|     Changed = OrigLoopID->getNumOperands() > 1;
 | |
|   }
 | |
| 
 | |
|   bool HasAnyFollowup = false;
 | |
|   for (StringRef OptionName : FollowupOptions) {
 | |
|     MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
 | |
|     if (!FollowupNode)
 | |
|       continue;
 | |
| 
 | |
|     HasAnyFollowup = true;
 | |
|     for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
 | |
|       MDs.push_back(Option.get());
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attributes of the followup loop not specified explicity, so signal to the
 | |
|   // transformation pass to add suitable attributes.
 | |
|   if (!AlwaysNew && !HasAnyFollowup)
 | |
|     return None;
 | |
| 
 | |
|   // If no attributes were added or remove, the previous loop Id can be reused.
 | |
|   if (!AlwaysNew && !Changed)
 | |
|     return OrigLoopID;
 | |
| 
 | |
|   // No attributes is equivalent to having no !llvm.loop metadata at all.
 | |
|   if (MDs.size() == 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Build the new loop ID.
 | |
|   MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
 | |
|   FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
 | |
|   return FollowupLoopID;
 | |
| }
 | |
| 
 | |
| bool llvm::hasDisableAllTransformsHint(const Loop *L) {
 | |
|   return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
 | |
| }
 | |
| 
 | |
| bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
 | |
|   return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
 | |
| }
 | |
| 
 | |
| TransformationMode llvm::hasUnrollTransformation(Loop *L) {
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
 | |
|     return TM_SuppressedByUser;
 | |
| 
 | |
|   Optional<int> Count =
 | |
|       getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
 | |
|   if (Count.hasValue())
 | |
|     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
 | |
| 
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
 | |
|     return TM_ForcedByUser;
 | |
| 
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
 | |
|     return TM_ForcedByUser;
 | |
| 
 | |
|   if (hasDisableAllTransformsHint(L))
 | |
|     return TM_Disable;
 | |
| 
 | |
|   return TM_Unspecified;
 | |
| }
 | |
| 
 | |
| TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
 | |
|     return TM_SuppressedByUser;
 | |
| 
 | |
|   Optional<int> Count =
 | |
|       getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
 | |
|   if (Count.hasValue())
 | |
|     return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
 | |
| 
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
 | |
|     return TM_ForcedByUser;
 | |
| 
 | |
|   if (hasDisableAllTransformsHint(L))
 | |
|     return TM_Disable;
 | |
| 
 | |
|   return TM_Unspecified;
 | |
| }
 | |
| 
 | |
| TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
 | |
|   Optional<bool> Enable =
 | |
|       getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
 | |
| 
 | |
|   if (Enable == false)
 | |
|     return TM_SuppressedByUser;
 | |
| 
 | |
|   Optional<int> VectorizeWidth =
 | |
|       getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
 | |
|   Optional<int> InterleaveCount =
 | |
|       getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
 | |
| 
 | |
|   // 'Forcing' vector width and interleave count to one effectively disables
 | |
|   // this tranformation.
 | |
|   if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
 | |
|     return TM_SuppressedByUser;
 | |
| 
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
 | |
|     return TM_Disable;
 | |
| 
 | |
|   if (Enable == true)
 | |
|     return TM_ForcedByUser;
 | |
| 
 | |
|   if (VectorizeWidth == 1 && InterleaveCount == 1)
 | |
|     return TM_Disable;
 | |
| 
 | |
|   if (VectorizeWidth > 1 || InterleaveCount > 1)
 | |
|     return TM_Enable;
 | |
| 
 | |
|   if (hasDisableAllTransformsHint(L))
 | |
|     return TM_Disable;
 | |
| 
 | |
|   return TM_Unspecified;
 | |
| }
 | |
| 
 | |
| TransformationMode llvm::hasDistributeTransformation(Loop *L) {
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
 | |
|     return TM_ForcedByUser;
 | |
| 
 | |
|   if (hasDisableAllTransformsHint(L))
 | |
|     return TM_Disable;
 | |
| 
 | |
|   return TM_Unspecified;
 | |
| }
 | |
| 
 | |
| TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
 | |
|   if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
 | |
|     return TM_SuppressedByUser;
 | |
| 
 | |
|   if (hasDisableAllTransformsHint(L))
 | |
|     return TM_Disable;
 | |
| 
 | |
|   return TM_Unspecified;
 | |
| }
 | |
| 
 | |
| /// Does a BFS from a given node to all of its children inside a given loop.
 | |
| /// The returned vector of nodes includes the starting point.
 | |
| SmallVector<DomTreeNode *, 16>
 | |
| llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
 | |
|   SmallVector<DomTreeNode *, 16> Worklist;
 | |
|   auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
 | |
|     // Only include subregions in the top level loop.
 | |
|     BasicBlock *BB = DTN->getBlock();
 | |
|     if (CurLoop->contains(BB))
 | |
|       Worklist.push_back(DTN);
 | |
|   };
 | |
| 
 | |
|   AddRegionToWorklist(N);
 | |
| 
 | |
|   for (size_t I = 0; I < Worklist.size(); I++)
 | |
|     for (DomTreeNode *Child : Worklist[I]->getChildren())
 | |
|       AddRegionToWorklist(Child);
 | |
| 
 | |
|   return Worklist;
 | |
| }
 | |
| 
 | |
| void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
 | |
|                           LoopInfo *LI, MemorySSA *MSSA) {
 | |
|   assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
 | |
|   auto *Preheader = L->getLoopPreheader();
 | |
|   assert(Preheader && "Preheader should exist!");
 | |
| 
 | |
|   std::unique_ptr<MemorySSAUpdater> MSSAU;
 | |
|   if (MSSA)
 | |
|     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
 | |
| 
 | |
|   // Now that we know the removal is safe, remove the loop by changing the
 | |
|   // branch from the preheader to go to the single exit block.
 | |
|   //
 | |
|   // Because we're deleting a large chunk of code at once, the sequence in which
 | |
|   // we remove things is very important to avoid invalidation issues.
 | |
| 
 | |
|   // Tell ScalarEvolution that the loop is deleted. Do this before
 | |
|   // deleting the loop so that ScalarEvolution can look at the loop
 | |
|   // to determine what it needs to clean up.
 | |
|   if (SE)
 | |
|     SE->forgetLoop(L);
 | |
| 
 | |
|   auto *ExitBlock = L->getUniqueExitBlock();
 | |
|   assert(ExitBlock && "Should have a unique exit block!");
 | |
|   assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
 | |
| 
 | |
|   auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
 | |
|   assert(OldBr && "Preheader must end with a branch");
 | |
|   assert(OldBr->isUnconditional() && "Preheader must have a single successor");
 | |
|   // Connect the preheader to the exit block. Keep the old edge to the header
 | |
|   // around to perform the dominator tree update in two separate steps
 | |
|   // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
 | |
|   // preheader -> header.
 | |
|   //
 | |
|   //
 | |
|   // 0.  Preheader          1.  Preheader           2.  Preheader
 | |
|   //        |                    |   |                   |
 | |
|   //        V                    |   V                   |
 | |
|   //      Header <--\            | Header <--\           | Header <--\
 | |
|   //       |  |     |            |  |  |     |           |  |  |     |
 | |
|   //       |  V     |            |  |  V     |           |  |  V     |
 | |
|   //       | Body --/            |  | Body --/           |  | Body --/
 | |
|   //       V                     V  V                    V  V
 | |
|   //      Exit                   Exit                    Exit
 | |
|   //
 | |
|   // By doing this is two separate steps we can perform the dominator tree
 | |
|   // update without using the batch update API.
 | |
|   //
 | |
|   // Even when the loop is never executed, we cannot remove the edge from the
 | |
|   // source block to the exit block. Consider the case where the unexecuted loop
 | |
|   // branches back to an outer loop. If we deleted the loop and removed the edge
 | |
|   // coming to this inner loop, this will break the outer loop structure (by
 | |
|   // deleting the backedge of the outer loop). If the outer loop is indeed a
 | |
|   // non-loop, it will be deleted in a future iteration of loop deletion pass.
 | |
|   IRBuilder<> Builder(OldBr);
 | |
|   Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
 | |
|   // Remove the old branch. The conditional branch becomes a new terminator.
 | |
|   OldBr->eraseFromParent();
 | |
| 
 | |
|   // Rewrite phis in the exit block to get their inputs from the Preheader
 | |
|   // instead of the exiting block.
 | |
|   for (PHINode &P : ExitBlock->phis()) {
 | |
|     // Set the zero'th element of Phi to be from the preheader and remove all
 | |
|     // other incoming values. Given the loop has dedicated exits, all other
 | |
|     // incoming values must be from the exiting blocks.
 | |
|     int PredIndex = 0;
 | |
|     P.setIncomingBlock(PredIndex, Preheader);
 | |
|     // Removes all incoming values from all other exiting blocks (including
 | |
|     // duplicate values from an exiting block).
 | |
|     // Nuke all entries except the zero'th entry which is the preheader entry.
 | |
|     // NOTE! We need to remove Incoming Values in the reverse order as done
 | |
|     // below, to keep the indices valid for deletion (removeIncomingValues
 | |
|     // updates getNumIncomingValues and shifts all values down into the operand
 | |
|     // being deleted).
 | |
|     for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
 | |
|       P.removeIncomingValue(e - i, false);
 | |
| 
 | |
|     assert((P.getNumIncomingValues() == 1 &&
 | |
|             P.getIncomingBlock(PredIndex) == Preheader) &&
 | |
|            "Should have exactly one value and that's from the preheader!");
 | |
|   }
 | |
| 
 | |
|   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
 | |
|   if (DT) {
 | |
|     DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
 | |
|     if (MSSA) {
 | |
|       MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}}, *DT);
 | |
|       if (VerifyMemorySSA)
 | |
|         MSSA->verifyMemorySSA();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Disconnect the loop body by branching directly to its exit.
 | |
|   Builder.SetInsertPoint(Preheader->getTerminator());
 | |
|   Builder.CreateBr(ExitBlock);
 | |
|   // Remove the old branch.
 | |
|   Preheader->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   if (DT) {
 | |
|     DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
 | |
|     if (MSSA) {
 | |
|       MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
 | |
|                           *DT);
 | |
|       if (VerifyMemorySSA)
 | |
|         MSSA->verifyMemorySSA();
 | |
|       SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
 | |
|                                                    L->block_end());
 | |
|       MSSAU->removeBlocks(DeadBlockSet);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use a map to unique and a vector to guarantee deterministic ordering.
 | |
|   llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
 | |
|   llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
 | |
| 
 | |
|   // Given LCSSA form is satisfied, we should not have users of instructions
 | |
|   // within the dead loop outside of the loop. However, LCSSA doesn't take
 | |
|   // unreachable uses into account. We handle them here.
 | |
|   // We could do it after drop all references (in this case all users in the
 | |
|   // loop will be already eliminated and we have less work to do but according
 | |
|   // to API doc of User::dropAllReferences only valid operation after dropping
 | |
|   // references, is deletion. So let's substitute all usages of
 | |
|   // instruction from the loop with undef value of corresponding type first.
 | |
|   for (auto *Block : L->blocks())
 | |
|     for (Instruction &I : *Block) {
 | |
|       auto *Undef = UndefValue::get(I.getType());
 | |
|       for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
 | |
|         Use &U = *UI;
 | |
|         ++UI;
 | |
|         if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
 | |
|           if (L->contains(Usr->getParent()))
 | |
|             continue;
 | |
|         // If we have a DT then we can check that uses outside a loop only in
 | |
|         // unreachable block.
 | |
|         if (DT)
 | |
|           assert(!DT->isReachableFromEntry(U) &&
 | |
|                  "Unexpected user in reachable block");
 | |
|         U.set(Undef);
 | |
|       }
 | |
|       auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
 | |
|       if (!DVI)
 | |
|         continue;
 | |
|       auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
 | |
|       if (Key != DeadDebugSet.end())
 | |
|         continue;
 | |
|       DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
 | |
|       DeadDebugInst.push_back(DVI);
 | |
|     }
 | |
| 
 | |
|   // After the loop has been deleted all the values defined and modified
 | |
|   // inside the loop are going to be unavailable.
 | |
|   // Since debug values in the loop have been deleted, inserting an undef
 | |
|   // dbg.value truncates the range of any dbg.value before the loop where the
 | |
|   // loop used to be. This is particularly important for constant values.
 | |
|   DIBuilder DIB(*ExitBlock->getModule());
 | |
|   Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
 | |
|   assert(InsertDbgValueBefore &&
 | |
|          "There should be a non-PHI instruction in exit block, else these "
 | |
|          "instructions will have no parent.");
 | |
|   for (auto *DVI : DeadDebugInst)
 | |
|     DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
 | |
|                                 DVI->getVariable(), DVI->getExpression(),
 | |
|                                 DVI->getDebugLoc(), InsertDbgValueBefore);
 | |
| 
 | |
|   // Remove the block from the reference counting scheme, so that we can
 | |
|   // delete it freely later.
 | |
|   for (auto *Block : L->blocks())
 | |
|     Block->dropAllReferences();
 | |
| 
 | |
|   if (MSSA && VerifyMemorySSA)
 | |
|     MSSA->verifyMemorySSA();
 | |
| 
 | |
|   if (LI) {
 | |
|     // Erase the instructions and the blocks without having to worry
 | |
|     // about ordering because we already dropped the references.
 | |
|     // NOTE: This iteration is safe because erasing the block does not remove
 | |
|     // its entry from the loop's block list.  We do that in the next section.
 | |
|     for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
 | |
|          LpI != LpE; ++LpI)
 | |
|       (*LpI)->eraseFromParent();
 | |
| 
 | |
|     // Finally, the blocks from loopinfo.  This has to happen late because
 | |
|     // otherwise our loop iterators won't work.
 | |
| 
 | |
|     SmallPtrSet<BasicBlock *, 8> blocks;
 | |
|     blocks.insert(L->block_begin(), L->block_end());
 | |
|     for (BasicBlock *BB : blocks)
 | |
|       LI->removeBlock(BB);
 | |
| 
 | |
|     // The last step is to update LoopInfo now that we've eliminated this loop.
 | |
|     // Note: LoopInfo::erase remove the given loop and relink its subloops with
 | |
|     // its parent. While removeLoop/removeChildLoop remove the given loop but
 | |
|     // not relink its subloops, which is what we want.
 | |
|     if (Loop *ParentLoop = L->getParentLoop()) {
 | |
|       Loop::iterator I = find(ParentLoop->begin(), ParentLoop->end(), L);
 | |
|       assert(I != ParentLoop->end() && "Couldn't find loop");
 | |
|       ParentLoop->removeChildLoop(I);
 | |
|     } else {
 | |
|       Loop::iterator I = find(LI->begin(), LI->end(), L);
 | |
|       assert(I != LI->end() && "Couldn't find loop");
 | |
|       LI->removeLoop(I);
 | |
|     }
 | |
|     LI->destroy(L);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Checks if \p L has single exit through latch block except possibly
 | |
| /// "deoptimizing" exits. Returns branch instruction terminating the loop
 | |
| /// latch if above check is successful, nullptr otherwise.
 | |
| static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return nullptr;
 | |
| 
 | |
|   BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
 | |
|     return nullptr;
 | |
| 
 | |
|   assert((LatchBR->getSuccessor(0) == L->getHeader() ||
 | |
|           LatchBR->getSuccessor(1) == L->getHeader()) &&
 | |
|          "At least one edge out of the latch must go to the header");
 | |
| 
 | |
|   SmallVector<BasicBlock *, 4> ExitBlocks;
 | |
|   L->getUniqueNonLatchExitBlocks(ExitBlocks);
 | |
|   if (any_of(ExitBlocks, [](const BasicBlock *EB) {
 | |
|         return !EB->getTerminatingDeoptimizeCall();
 | |
|       }))
 | |
|     return nullptr;
 | |
| 
 | |
|   return LatchBR;
 | |
| }
 | |
| 
 | |
| Optional<unsigned>
 | |
| llvm::getLoopEstimatedTripCount(Loop *L,
 | |
|                                 unsigned *EstimatedLoopInvocationWeight) {
 | |
|   // Support loops with an exiting latch and other existing exists only
 | |
|   // deoptimize.
 | |
|   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
 | |
|   if (!LatchBranch)
 | |
|     return None;
 | |
| 
 | |
|   // To estimate the number of times the loop body was executed, we want to
 | |
|   // know the number of times the backedge was taken, vs. the number of times
 | |
|   // we exited the loop.
 | |
|   uint64_t BackedgeTakenWeight, LatchExitWeight;
 | |
|   if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
 | |
|     return None;
 | |
| 
 | |
|   if (LatchBranch->getSuccessor(0) != L->getHeader())
 | |
|     std::swap(BackedgeTakenWeight, LatchExitWeight);
 | |
| 
 | |
|   if (!LatchExitWeight)
 | |
|     return None;
 | |
| 
 | |
|   if (EstimatedLoopInvocationWeight)
 | |
|     *EstimatedLoopInvocationWeight = LatchExitWeight;
 | |
| 
 | |
|   // Estimated backedge taken count is a ratio of the backedge taken weight by
 | |
|   // the weight of the edge exiting the loop, rounded to nearest.
 | |
|   uint64_t BackedgeTakenCount =
 | |
|       llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
 | |
|   // Estimated trip count is one plus estimated backedge taken count.
 | |
|   return BackedgeTakenCount + 1;
 | |
| }
 | |
| 
 | |
| bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
 | |
|                                      unsigned EstimatedloopInvocationWeight) {
 | |
|   // Support loops with an exiting latch and other existing exists only
 | |
|   // deoptimize.
 | |
|   BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
 | |
|   if (!LatchBranch)
 | |
|     return false;
 | |
| 
 | |
|   // Calculate taken and exit weights.
 | |
|   unsigned LatchExitWeight = 0;
 | |
|   unsigned BackedgeTakenWeight = 0;
 | |
| 
 | |
|   if (EstimatedTripCount > 0) {
 | |
|     LatchExitWeight = EstimatedloopInvocationWeight;
 | |
|     BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
 | |
|   }
 | |
| 
 | |
|   // Make a swap if back edge is taken when condition is "false".
 | |
|   if (LatchBranch->getSuccessor(0) != L->getHeader())
 | |
|     std::swap(BackedgeTakenWeight, LatchExitWeight);
 | |
| 
 | |
|   MDBuilder MDB(LatchBranch->getContext());
 | |
| 
 | |
|   // Set/Update profile metadata.
 | |
|   LatchBranch->setMetadata(
 | |
|       LLVMContext::MD_prof,
 | |
|       MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
 | |
|                                               ScalarEvolution &SE) {
 | |
|   Loop *OuterL = InnerLoop->getParentLoop();
 | |
|   if (!OuterL)
 | |
|     return true;
 | |
| 
 | |
|   // Get the backedge taken count for the inner loop
 | |
|   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | |
|   const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
 | |
|   if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
 | |
|       !InnerLoopBECountSC->getType()->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   // Get whether count is invariant to the outer loop
 | |
|   ScalarEvolution::LoopDisposition LD =
 | |
|       SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
 | |
|   if (LD != ScalarEvolution::LoopInvariant)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *llvm::createMinMaxOp(IRBuilderBase &Builder,
 | |
|                             RecurrenceDescriptor::MinMaxRecurrenceKind RK,
 | |
|                             Value *Left, Value *Right) {
 | |
|   CmpInst::Predicate P = CmpInst::ICMP_NE;
 | |
|   switch (RK) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown min/max recurrence kind");
 | |
|   case RecurrenceDescriptor::MRK_UIntMin:
 | |
|     P = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_UIntMax:
 | |
|     P = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_SIntMin:
 | |
|     P = CmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_SIntMax:
 | |
|     P = CmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_FloatMin:
 | |
|     P = CmpInst::FCMP_OLT;
 | |
|     break;
 | |
|   case RecurrenceDescriptor::MRK_FloatMax:
 | |
|     P = CmpInst::FCMP_OGT;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We only match FP sequences that are 'fast', so we can unconditionally
 | |
|   // set it on any generated instructions.
 | |
|   IRBuilderBase::FastMathFlagGuard FMFG(Builder);
 | |
|   FastMathFlags FMF;
 | |
|   FMF.setFast();
 | |
|   Builder.setFastMathFlags(FMF);
 | |
| 
 | |
|   Value *Cmp;
 | |
|   if (RK == RecurrenceDescriptor::MRK_FloatMin ||
 | |
|       RK == RecurrenceDescriptor::MRK_FloatMax)
 | |
|     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
 | |
|   else
 | |
|     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | |
| 
 | |
|   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | |
|   return Select;
 | |
| }
 | |
| 
 | |
| // Helper to generate an ordered reduction.
 | |
| Value *
 | |
| llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
 | |
|                           unsigned Op,
 | |
|                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
 | |
|                           ArrayRef<Value *> RedOps) {
 | |
|   unsigned VF = Src->getType()->getVectorNumElements();
 | |
| 
 | |
|   // Extract and apply reduction ops in ascending order:
 | |
|   // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
 | |
|   Value *Result = Acc;
 | |
|   for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
 | |
|     Value *Ext =
 | |
|         Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
 | |
| 
 | |
|     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | |
|       Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
 | |
|                                    "bin.rdx");
 | |
|     } else {
 | |
|       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
 | |
|              "Invalid min/max");
 | |
|       Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
 | |
|     }
 | |
| 
 | |
|     if (!RedOps.empty())
 | |
|       propagateIRFlags(Result, RedOps);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Helper to generate a log2 shuffle reduction.
 | |
| Value *
 | |
| llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
 | |
|                           RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
 | |
|                           ArrayRef<Value *> RedOps) {
 | |
|   unsigned VF = Src->getType()->getVectorNumElements();
 | |
|   // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
 | |
|   // and vector ops, reducing the set of values being computed by half each
 | |
|   // round.
 | |
|   assert(isPowerOf2_32(VF) &&
 | |
|          "Reduction emission only supported for pow2 vectors!");
 | |
|   Value *TmpVec = Src;
 | |
|   SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
 | |
|   for (unsigned i = VF; i != 1; i >>= 1) {
 | |
|     // Move the upper half of the vector to the lower half.
 | |
|     for (unsigned j = 0; j != i / 2; ++j)
 | |
|       ShuffleMask[j] = Builder.getInt32(i / 2 + j);
 | |
| 
 | |
|     // Fill the rest of the mask with undef.
 | |
|     std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
 | |
|               UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|     Value *Shuf = Builder.CreateShuffleVector(
 | |
|         TmpVec, UndefValue::get(TmpVec->getType()),
 | |
|         ConstantVector::get(ShuffleMask), "rdx.shuf");
 | |
| 
 | |
|     if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
 | |
|       // The builder propagates its fast-math-flags setting.
 | |
|       TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
 | |
|                                    "bin.rdx");
 | |
|     } else {
 | |
|       assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
 | |
|              "Invalid min/max");
 | |
|       TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
 | |
|     }
 | |
|     if (!RedOps.empty())
 | |
|       propagateIRFlags(TmpVec, RedOps);
 | |
| 
 | |
|     // We may compute the reassociated scalar ops in a way that does not
 | |
|     // preserve nsw/nuw etc. Conservatively, drop those flags.
 | |
|     if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
 | |
|       ReductionInst->dropPoisonGeneratingFlags();
 | |
|   }
 | |
|   // The result is in the first element of the vector.
 | |
|   return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
 | |
| }
 | |
| 
 | |
| /// Create a simple vector reduction specified by an opcode and some
 | |
| /// flags (if generating min/max reductions).
 | |
| Value *llvm::createSimpleTargetReduction(
 | |
|     IRBuilderBase &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
 | |
|     Value *Src, TargetTransformInfo::ReductionFlags Flags,
 | |
|     ArrayRef<Value *> RedOps) {
 | |
|   assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
 | |
| 
 | |
|   std::function<Value *()> BuildFunc;
 | |
|   using RD = RecurrenceDescriptor;
 | |
|   RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
 | |
|     break;
 | |
|   case Instruction::FAdd:
 | |
|     BuildFunc = [&]() {
 | |
|       auto Rdx = Builder.CreateFAddReduce(
 | |
|           Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
 | |
|       return Rdx;
 | |
|     };
 | |
|     break;
 | |
|   case Instruction::FMul:
 | |
|     BuildFunc = [&]() {
 | |
|       Type *Ty = Src->getType()->getVectorElementType();
 | |
|       auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
 | |
|       return Rdx;
 | |
|     };
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     if (Flags.IsMaxOp) {
 | |
|       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
 | |
|       BuildFunc = [&]() {
 | |
|         return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
 | |
|       };
 | |
|     } else {
 | |
|       MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
 | |
|       BuildFunc = [&]() {
 | |
|         return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
 | |
|       };
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     if (Flags.IsMaxOp) {
 | |
|       MinMaxKind = RD::MRK_FloatMax;
 | |
|       BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
 | |
|     } else {
 | |
|       MinMaxKind = RD::MRK_FloatMin;
 | |
|       BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled opcode");
 | |
|     break;
 | |
|   }
 | |
|   if (ForceReductionIntrinsic ||
 | |
|       TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
 | |
|     return BuildFunc();
 | |
|   return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
 | |
| }
 | |
| 
 | |
| /// Create a vector reduction using a given recurrence descriptor.
 | |
| Value *llvm::createTargetReduction(IRBuilderBase &B,
 | |
|                                    const TargetTransformInfo *TTI,
 | |
|                                    RecurrenceDescriptor &Desc, Value *Src,
 | |
|                                    bool NoNaN) {
 | |
|   // TODO: Support in-order reductions based on the recurrence descriptor.
 | |
|   using RD = RecurrenceDescriptor;
 | |
|   RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
 | |
|   TargetTransformInfo::ReductionFlags Flags;
 | |
|   Flags.NoNaN = NoNaN;
 | |
| 
 | |
|   // All ops in the reduction inherit fast-math-flags from the recurrence
 | |
|   // descriptor.
 | |
|   IRBuilderBase::FastMathFlagGuard FMFGuard(B);
 | |
|   B.setFastMathFlags(Desc.getFastMathFlags());
 | |
| 
 | |
|   switch (RecKind) {
 | |
|   case RD::RK_FloatAdd:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
 | |
|   case RD::RK_FloatMult:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
 | |
|   case RD::RK_IntegerAdd:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
 | |
|   case RD::RK_IntegerMult:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
 | |
|   case RD::RK_IntegerAnd:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
 | |
|   case RD::RK_IntegerOr:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
 | |
|   case RD::RK_IntegerXor:
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
 | |
|   case RD::RK_IntegerMinMax: {
 | |
|     RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
 | |
|     Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
 | |
|     Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
 | |
|   }
 | |
|   case RD::RK_FloatMinMax: {
 | |
|     Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
 | |
|     return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled RecKind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
 | |
|   auto *VecOp = dyn_cast<Instruction>(I);
 | |
|   if (!VecOp)
 | |
|     return;
 | |
|   auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
 | |
|                                             : dyn_cast<Instruction>(OpValue);
 | |
|   if (!Intersection)
 | |
|     return;
 | |
|   const unsigned Opcode = Intersection->getOpcode();
 | |
|   VecOp->copyIRFlags(Intersection);
 | |
|   for (auto *V : VL) {
 | |
|     auto *Instr = dyn_cast<Instruction>(V);
 | |
|     if (!Instr)
 | |
|       continue;
 | |
|     if (OpValue == nullptr || Opcode == Instr->getOpcode())
 | |
|       VecOp->andIRFlags(V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
 | |
|                                  ScalarEvolution &SE) {
 | |
|   const SCEV *Zero = SE.getZero(S->getType());
 | |
|   return SE.isAvailableAtLoopEntry(S, L) &&
 | |
|          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
 | |
| }
 | |
| 
 | |
| bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
 | |
|                                     ScalarEvolution &SE) {
 | |
|   const SCEV *Zero = SE.getZero(S->getType());
 | |
|   return SE.isAvailableAtLoopEntry(S, L) &&
 | |
|          SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
 | |
| }
 | |
| 
 | |
| bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 | |
|                              bool Signed) {
 | |
|   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
 | |
|   APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
 | |
|     APInt::getMinValue(BitWidth);
 | |
|   auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
 | |
|   return SE.isAvailableAtLoopEntry(S, L) &&
 | |
|          SE.isLoopEntryGuardedByCond(L, Predicate, S,
 | |
|                                      SE.getConstant(Min));
 | |
| }
 | |
| 
 | |
| bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 | |
|                              bool Signed) {
 | |
|   unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
 | |
|   APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
 | |
|     APInt::getMaxValue(BitWidth);
 | |
|   auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
 | |
|   return SE.isAvailableAtLoopEntry(S, L) &&
 | |
|          SE.isLoopEntryGuardedByCond(L, Predicate, S,
 | |
|                                      SE.getConstant(Max));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // rewriteLoopExitValues - Optimize IV users outside the loop.
 | |
| // As a side effect, reduces the amount of IV processing within the loop.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Return true if the SCEV expansion generated by the rewriter can replace the
 | |
| // original value. SCEV guarantees that it produces the same value, but the way
 | |
| // it is produced may be illegal IR.  Ideally, this function will only be
 | |
| // called for verification.
 | |
| static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
 | |
|   // If an SCEV expression subsumed multiple pointers, its expansion could
 | |
|   // reassociate the GEP changing the base pointer. This is illegal because the
 | |
|   // final address produced by a GEP chain must be inbounds relative to its
 | |
|   // underlying object. Otherwise basic alias analysis, among other things,
 | |
|   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
 | |
|   // producing an expression involving multiple pointers. Until then, we must
 | |
|   // bail out here.
 | |
|   //
 | |
|   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
 | |
|   // because it understands lcssa phis while SCEV does not.
 | |
|   Value *FromPtr = FromVal;
 | |
|   Value *ToPtr = ToVal;
 | |
|   if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
 | |
|     FromPtr = GEP->getPointerOperand();
 | |
| 
 | |
|   if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
 | |
|     ToPtr = GEP->getPointerOperand();
 | |
| 
 | |
|   if (FromPtr != FromVal || ToPtr != ToVal) {
 | |
|     // Quickly check the common case
 | |
|     if (FromPtr == ToPtr)
 | |
|       return true;
 | |
| 
 | |
|     // SCEV may have rewritten an expression that produces the GEP's pointer
 | |
|     // operand. That's ok as long as the pointer operand has the same base
 | |
|     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
 | |
|     // base of a recurrence. This handles the case in which SCEV expansion
 | |
|     // converts a pointer type recurrence into a nonrecurrent pointer base
 | |
|     // indexed by an integer recurrence.
 | |
| 
 | |
|     // If the GEP base pointer is a vector of pointers, abort.
 | |
|     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
 | |
|       return false;
 | |
| 
 | |
|     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
 | |
|     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
 | |
|     if (FromBase == ToBase)
 | |
|       return true;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
 | |
|                       << *FromBase << " != " << *ToBase << "\n");
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
 | |
|   SmallPtrSet<const Instruction *, 8> Visited;
 | |
|   SmallVector<const Instruction *, 8> WorkList;
 | |
|   Visited.insert(I);
 | |
|   WorkList.push_back(I);
 | |
|   while (!WorkList.empty()) {
 | |
|     const Instruction *Curr = WorkList.pop_back_val();
 | |
|     // This use is outside the loop, nothing to do.
 | |
|     if (!L->contains(Curr))
 | |
|       continue;
 | |
|     // Do we assume it is a "hard" use which will not be eliminated easily?
 | |
|     if (Curr->mayHaveSideEffects())
 | |
|       return true;
 | |
|     // Otherwise, add all its users to worklist.
 | |
|     for (auto U : Curr->users()) {
 | |
|       auto *UI = cast<Instruction>(U);
 | |
|       if (Visited.insert(UI).second)
 | |
|         WorkList.push_back(UI);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Collect information about PHI nodes which can be transformed in
 | |
| // rewriteLoopExitValues.
 | |
| struct RewritePhi {
 | |
|   PHINode *PN;
 | |
|   unsigned Ith;   // Ith incoming value.
 | |
|   Value *Val;     // Exit value after expansion.
 | |
|   bool HighCost;  // High Cost when expansion.
 | |
| 
 | |
|   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
 | |
|       : PN(P), Ith(I), Val(V), HighCost(H) {}
 | |
| };
 | |
| 
 | |
| // Check whether it is possible to delete the loop after rewriting exit
 | |
| // value. If it is possible, ignore ReplaceExitValue and do rewriting
 | |
| // aggressively.
 | |
| static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   // If there is no preheader, the loop will not be deleted.
 | |
|   if (!Preheader)
 | |
|     return false;
 | |
| 
 | |
|   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
 | |
|   // We obviate multiple ExitingBlocks case for simplicity.
 | |
|   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
 | |
|   // after exit value rewriting, we can enhance the logic here.
 | |
|   SmallVector<BasicBlock *, 4> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
|   SmallVector<BasicBlock *, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *ExitBlock = ExitBlocks[0];
 | |
|   BasicBlock::iterator BI = ExitBlock->begin();
 | |
|   while (PHINode *P = dyn_cast<PHINode>(BI)) {
 | |
|     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
 | |
| 
 | |
|     // If the Incoming value of P is found in RewritePhiSet, we know it
 | |
|     // could be rewritten to use a loop invariant value in transformation
 | |
|     // phase later. Skip it in the loop invariant check below.
 | |
|     bool found = false;
 | |
|     for (const RewritePhi &Phi : RewritePhiSet) {
 | |
|       unsigned i = Phi.Ith;
 | |
|       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
 | |
|         found = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Instruction *I;
 | |
|     if (!found && (I = dyn_cast<Instruction>(Incoming)))
 | |
|       if (!L->hasLoopInvariantOperands(I))
 | |
|         return false;
 | |
| 
 | |
|     ++BI;
 | |
|   }
 | |
| 
 | |
|   for (auto *BB : L->blocks())
 | |
|     if (llvm::any_of(*BB, [](Instruction &I) {
 | |
|           return I.mayHaveSideEffects();
 | |
|         }))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
 | |
|                                 ScalarEvolution *SE,
 | |
|                                 const TargetTransformInfo *TTI,
 | |
|                                 SCEVExpander &Rewriter, DominatorTree *DT,
 | |
|                                 ReplaceExitVal ReplaceExitValue,
 | |
|                                 SmallVector<WeakTrackingVH, 16> &DeadInsts) {
 | |
|   // Check a pre-condition.
 | |
|   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
 | |
|          "Indvars did not preserve LCSSA!");
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   SmallVector<RewritePhi, 8> RewritePhiSet;
 | |
|   // Find all values that are computed inside the loop, but used outside of it.
 | |
|   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | |
|   // the exit blocks of the loop to find them.
 | |
|   for (BasicBlock *ExitBB : ExitBlocks) {
 | |
|     // If there are no PHI nodes in this exit block, then no values defined
 | |
|     // inside the loop are used on this path, skip it.
 | |
|     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | |
|     if (!PN) continue;
 | |
| 
 | |
|     unsigned NumPreds = PN->getNumIncomingValues();
 | |
| 
 | |
|     // Iterate over all of the PHI nodes.
 | |
|     BasicBlock::iterator BBI = ExitBB->begin();
 | |
|     while ((PN = dyn_cast<PHINode>(BBI++))) {
 | |
|       if (PN->use_empty())
 | |
|         continue; // dead use, don't replace it
 | |
| 
 | |
|       if (!SE->isSCEVable(PN->getType()))
 | |
|         continue;
 | |
| 
 | |
|       // It's necessary to tell ScalarEvolution about this explicitly so that
 | |
|       // it can walk the def-use list and forget all SCEVs, as it may not be
 | |
|       // watching the PHI itself. Once the new exit value is in place, there
 | |
|       // may not be a def-use connection between the loop and every instruction
 | |
|       // which got a SCEVAddRecExpr for that loop.
 | |
|       SE->forgetValue(PN);
 | |
| 
 | |
|       // Iterate over all of the values in all the PHI nodes.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         // If the value being merged in is not integer or is not defined
 | |
|         // in the loop, skip it.
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         if (!isa<Instruction>(InVal))
 | |
|           continue;
 | |
| 
 | |
|         // If this pred is for a subloop, not L itself, skip it.
 | |
|         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | |
|           continue; // The Block is in a subloop, skip it.
 | |
| 
 | |
|         // Check that InVal is defined in the loop.
 | |
|         Instruction *Inst = cast<Instruction>(InVal);
 | |
|         if (!L->contains(Inst))
 | |
|           continue;
 | |
| 
 | |
|         // Okay, this instruction has a user outside of the current loop
 | |
|         // and varies predictably *inside* the loop.  Evaluate the value it
 | |
|         // contains when the loop exits, if possible.  We prefer to start with
 | |
|         // expressions which are true for all exits (so as to maximize
 | |
|         // expression reuse by the SCEVExpander), but resort to per-exit
 | |
|         // evaluation if that fails.
 | |
|         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | |
|         if (isa<SCEVCouldNotCompute>(ExitValue) ||
 | |
|             !SE->isLoopInvariant(ExitValue, L) ||
 | |
|             !isSafeToExpand(ExitValue, *SE)) {
 | |
|           // TODO: This should probably be sunk into SCEV in some way; maybe a
 | |
|           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
 | |
|           // most SCEV expressions and other recurrence types (e.g. shift
 | |
|           // recurrences).  Is there existing code we can reuse?
 | |
|           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
 | |
|           if (isa<SCEVCouldNotCompute>(ExitCount))
 | |
|             continue;
 | |
|           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
 | |
|             if (AddRec->getLoop() == L)
 | |
|               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
 | |
|           if (isa<SCEVCouldNotCompute>(ExitValue) ||
 | |
|               !SE->isLoopInvariant(ExitValue, L) ||
 | |
|               !isSafeToExpand(ExitValue, *SE))
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // Computing the value outside of the loop brings no benefit if it is
 | |
|         // definitely used inside the loop in a way which can not be optimized
 | |
|         // away. Avoid doing so unless either we know we have a value
 | |
|         // which computes the ExitValue already, or it is cheap to do so.
 | |
|         // TODO: This should be merged into SCEV expander to leverage
 | |
|         // its knowledge of existing expressions.
 | |
|         bool HighCost = Rewriter.isHighCostExpansion(
 | |
|             ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
 | |
|         if (ReplaceExitValue != AlwaysRepl && HighCost &&
 | |
|             hasHardUserWithinLoop(L, Inst))
 | |
|           continue;
 | |
| 
 | |
|         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
 | |
| 
 | |
|         LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
 | |
|                           << *ExitVal << '\n' << "  LoopVal = " << *Inst
 | |
|                           << "\n");
 | |
| 
 | |
|         if (!isValidRewrite(SE, Inst, ExitVal)) {
 | |
|           DeadInsts.push_back(ExitVal);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|         // If we reuse an instruction from a loop which is neither L nor one of
 | |
|         // its containing loops, we end up breaking LCSSA form for this loop by
 | |
|         // creating a new use of its instruction.
 | |
|         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
 | |
|           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
 | |
|             if (EVL != L)
 | |
|               assert(EVL->contains(L) && "LCSSA breach detected!");
 | |
| #endif
 | |
| 
 | |
|         // Collect all the candidate PHINodes to be rewritten.
 | |
|         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
 | |
|   int NumReplaced = 0;
 | |
| 
 | |
|   // Transformation.
 | |
|   for (const RewritePhi &Phi : RewritePhiSet) {
 | |
|     PHINode *PN = Phi.PN;
 | |
|     Value *ExitVal = Phi.Val;
 | |
| 
 | |
|     // Only do the rewrite when the ExitValue can be expanded cheaply.
 | |
|     // If LoopCanBeDel is true, rewrite exit value aggressively.
 | |
|     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
 | |
|       DeadInsts.push_back(ExitVal);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     NumReplaced++;
 | |
|     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
 | |
|     PN->setIncomingValue(Phi.Ith, ExitVal);
 | |
| 
 | |
|     // If this instruction is dead now, delete it. Don't do it now to avoid
 | |
|     // invalidating iterators.
 | |
|     if (isInstructionTriviallyDead(Inst, TLI))
 | |
|       DeadInsts.push_back(Inst);
 | |
| 
 | |
|     // Replace PN with ExitVal if that is legal and does not break LCSSA.
 | |
|     if (PN->getNumIncomingValues() == 1 &&
 | |
|         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
 | |
|       PN->replaceAllUsesWith(ExitVal);
 | |
|       PN->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The insertion point instruction may have been deleted; clear it out
 | |
|   // so that the rewriter doesn't trip over it later.
 | |
|   Rewriter.clearInsertPoint();
 | |
|   return NumReplaced;
 | |
| }
 | |
| 
 | |
| /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
 | |
| /// \p OrigLoop.
 | |
| void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
 | |
|                                         Loop *RemainderLoop, uint64_t UF) {
 | |
|   assert(UF > 0 && "Zero unrolled factor is not supported");
 | |
|   assert(UnrolledLoop != RemainderLoop &&
 | |
|          "Unrolled and Remainder loops are expected to distinct");
 | |
| 
 | |
|   // Get number of iterations in the original scalar loop.
 | |
|   unsigned OrigLoopInvocationWeight = 0;
 | |
|   Optional<unsigned> OrigAverageTripCount =
 | |
|       getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
 | |
|   if (!OrigAverageTripCount)
 | |
|     return;
 | |
| 
 | |
|   // Calculate number of iterations in unrolled loop.
 | |
|   unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
 | |
|   // Calculate number of iterations for remainder loop.
 | |
|   unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
 | |
| 
 | |
|   setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
 | |
|                             OrigLoopInvocationWeight);
 | |
|   setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
 | |
|                             OrigLoopInvocationWeight);
 | |
| }
 | |
| 
 | |
| /// Utility that implements appending of loops onto a worklist.
 | |
| /// Loops are added in preorder (analogous for reverse postorder for trees),
 | |
| /// and the worklist is processed LIFO.
 | |
| template <typename RangeT>
 | |
| void llvm::appendReversedLoopsToWorklist(
 | |
|     RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
 | |
|   // We use an internal worklist to build up the preorder traversal without
 | |
|   // recursion.
 | |
|   SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
 | |
| 
 | |
|   // We walk the initial sequence of loops in reverse because we generally want
 | |
|   // to visit defs before uses and the worklist is LIFO.
 | |
|   for (Loop *RootL : Loops) {
 | |
|     assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
 | |
|     assert(PreOrderWorklist.empty() &&
 | |
|            "Must start with an empty preorder walk worklist.");
 | |
|     PreOrderWorklist.push_back(RootL);
 | |
|     do {
 | |
|       Loop *L = PreOrderWorklist.pop_back_val();
 | |
|       PreOrderWorklist.append(L->begin(), L->end());
 | |
|       PreOrderLoops.push_back(L);
 | |
|     } while (!PreOrderWorklist.empty());
 | |
| 
 | |
|     Worklist.insert(std::move(PreOrderLoops));
 | |
|     PreOrderLoops.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename RangeT>
 | |
| void llvm::appendLoopsToWorklist(RangeT &&Loops,
 | |
|                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
 | |
|   appendReversedLoopsToWorklist(reverse(Loops), Worklist);
 | |
| }
 | |
| 
 | |
| template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
 | |
|     ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
 | |
| 
 | |
| template void
 | |
| llvm::appendLoopsToWorklist<Loop &>(Loop &L,
 | |
|                                     SmallPriorityWorklist<Loop *, 4> &Worklist);
 | |
| 
 | |
| void llvm::appendLoopsToWorklist(LoopInfo &LI,
 | |
|                                  SmallPriorityWorklist<Loop *, 4> &Worklist) {
 | |
|   appendReversedLoopsToWorklist(LI, Worklist);
 | |
| }
 | |
| 
 | |
| Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
 | |
|                       LoopInfo *LI, LPPassManager *LPM) {
 | |
|   Loop &New = *LI->AllocateLoop();
 | |
|   if (PL)
 | |
|     PL->addChildLoop(&New);
 | |
|   else
 | |
|     LI->addTopLevelLoop(&New);
 | |
| 
 | |
|   if (LPM)
 | |
|     LPM->addLoop(New);
 | |
| 
 | |
|   // Add all of the blocks in L to the new loop.
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     if (LI->getLoopFor(*I) == L)
 | |
|       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
 | |
| 
 | |
|   // Add all of the subloops to the new loop.
 | |
|   for (Loop *I : *L)
 | |
|     cloneLoop(I, &New, VM, LI, LPM);
 | |
| 
 | |
|   return &New;
 | |
| }
 |