405 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			405 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- OperationsTest.cpp - Tests for fuzzer operations -------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/FuzzMutate/Operations.h"
 | |
| #include "llvm/AsmParser/Parser.h"
 | |
| #include "llvm/FuzzMutate/OpDescriptor.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <iostream>
 | |
| 
 | |
| // Define some pretty printers to help with debugging failures.
 | |
| namespace llvm {
 | |
| void PrintTo(Type *T, ::std::ostream *OS) {
 | |
|   raw_os_ostream ROS(*OS);
 | |
|   T->print(ROS);
 | |
| }
 | |
| 
 | |
| void PrintTo(BasicBlock *BB, ::std::ostream *OS) {
 | |
|   raw_os_ostream ROS(*OS);
 | |
|   ROS << BB << " (" << BB->getName() << ")";
 | |
| }
 | |
| 
 | |
| void PrintTo(Value *V, ::std::ostream *OS) {
 | |
|   raw_os_ostream ROS(*OS);
 | |
|   ROS << V << " (";
 | |
|   V->print(ROS);
 | |
|   ROS << ")";
 | |
| }
 | |
| void PrintTo(Constant *C, ::std::ostream *OS) { PrintTo(cast<Value>(C), OS); }
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| using testing::AllOf;
 | |
| using testing::AnyOf;
 | |
| using testing::ElementsAre;
 | |
| using testing::Eq;
 | |
| using testing::Ge;
 | |
| using testing::Each;
 | |
| using testing::Truly;
 | |
| using testing::NotNull;
 | |
| using testing::PrintToString;
 | |
| using testing::SizeIs;
 | |
| 
 | |
| namespace {
 | |
| std::unique_ptr<Module> parseAssembly(
 | |
|     const char *Assembly, LLVMContext &Context) {
 | |
| 
 | |
|   SMDiagnostic Error;
 | |
|   std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
 | |
| 
 | |
|   std::string ErrMsg;
 | |
|   raw_string_ostream OS(ErrMsg);
 | |
|   Error.print("", OS);
 | |
| 
 | |
|   assert(M && !verifyModule(*M, &errs()));
 | |
|   return M;
 | |
| }
 | |
| 
 | |
| MATCHER_P(TypesMatch, V, "has type " + PrintToString(V->getType())) {
 | |
|   return arg->getType() == V->getType();
 | |
| }
 | |
| 
 | |
| MATCHER_P(HasType, T, "") { return arg->getType() == T; }
 | |
| 
 | |
| TEST(OperationsTest, SourcePreds) {
 | |
|   using namespace llvm::fuzzerop;
 | |
| 
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   Constant *i1 = ConstantInt::getFalse(Ctx);
 | |
|   Constant *i8 = ConstantInt::get(Type::getInt8Ty(Ctx), 3);
 | |
|   Constant *i16 = ConstantInt::get(Type::getInt16Ty(Ctx), 1 << 15);
 | |
|   Constant *i32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
 | |
|   Constant *i64 = ConstantInt::get(Type::getInt64Ty(Ctx),
 | |
|                                    std::numeric_limits<uint64_t>::max());
 | |
|   Constant *f16 = ConstantFP::getInfinity(Type::getHalfTy(Ctx));
 | |
|   Constant *f32 = ConstantFP::get(Type::getFloatTy(Ctx), 0.0);
 | |
|   Constant *f64 = ConstantFP::get(Type::getDoubleTy(Ctx), 123.45);
 | |
|   Constant *s =
 | |
|       ConstantStruct::get(StructType::create(Ctx, "OpaqueStruct"));
 | |
|   Constant *a =
 | |
|       ConstantArray::get(ArrayType::get(i32->getType(), 2), {i32, i32});
 | |
|   Constant *v8i8 = ConstantVector::getSplat({8, false}, i8);
 | |
|   Constant *v4f16 = ConstantVector::getSplat({4, false}, f16);
 | |
|   Constant *p0i32 =
 | |
|       ConstantPointerNull::get(PointerType::get(i32->getType(), 0));
 | |
| 
 | |
|   auto OnlyI32 = onlyType(i32->getType());
 | |
|   EXPECT_TRUE(OnlyI32.matches({}, i32));
 | |
|   EXPECT_FALSE(OnlyI32.matches({}, i64));
 | |
|   EXPECT_FALSE(OnlyI32.matches({}, p0i32));
 | |
|   EXPECT_FALSE(OnlyI32.matches({}, a));
 | |
| 
 | |
|   EXPECT_THAT(OnlyI32.generate({}, {}),
 | |
|               AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
 | |
| 
 | |
|   auto AnyType = anyType();
 | |
|   EXPECT_TRUE(AnyType.matches({}, i1));
 | |
|   EXPECT_TRUE(AnyType.matches({}, f64));
 | |
|   EXPECT_TRUE(AnyType.matches({}, s));
 | |
|   EXPECT_TRUE(AnyType.matches({}, v8i8));
 | |
|   EXPECT_TRUE(AnyType.matches({}, p0i32));
 | |
| 
 | |
|   EXPECT_THAT(
 | |
|       AnyType.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
 | |
|       Each(AnyOf(TypesMatch(i32), TypesMatch(f16), TypesMatch(v8i8))));
 | |
| 
 | |
|   auto AnyInt = anyIntType();
 | |
|   EXPECT_TRUE(AnyInt.matches({}, i1));
 | |
|   EXPECT_TRUE(AnyInt.matches({}, i64));
 | |
|   EXPECT_FALSE(AnyInt.matches({}, f32));
 | |
|   EXPECT_FALSE(AnyInt.matches({}, v4f16));
 | |
| 
 | |
|   EXPECT_THAT(
 | |
|       AnyInt.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
 | |
|       AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
 | |
| 
 | |
|   auto AnyFP = anyFloatType();
 | |
|   EXPECT_TRUE(AnyFP.matches({}, f16));
 | |
|   EXPECT_TRUE(AnyFP.matches({}, f32));
 | |
|   EXPECT_FALSE(AnyFP.matches({}, i16));
 | |
|   EXPECT_FALSE(AnyFP.matches({}, p0i32));
 | |
|   EXPECT_FALSE(AnyFP.matches({}, v4f16));
 | |
| 
 | |
|   EXPECT_THAT(
 | |
|       AnyFP.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
 | |
|       AllOf(SizeIs(Ge(1u)), Each(TypesMatch(f16))));
 | |
| 
 | |
|   auto AnyPtr = anyPtrType();
 | |
|   EXPECT_TRUE(AnyPtr.matches({}, p0i32));
 | |
|   EXPECT_FALSE(AnyPtr.matches({}, i8));
 | |
|   EXPECT_FALSE(AnyPtr.matches({}, a));
 | |
|   EXPECT_FALSE(AnyPtr.matches({}, v8i8));
 | |
| 
 | |
|   auto isPointer = [](Value *V) { return V->getType()->isPointerTy(); };
 | |
|   EXPECT_THAT(
 | |
|       AnyPtr.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
 | |
|       AllOf(SizeIs(Ge(3u)), Each(Truly(isPointer))));
 | |
| 
 | |
|   auto AnyVec = anyVectorType();
 | |
|   EXPECT_TRUE(AnyVec.matches({}, v8i8));
 | |
|   EXPECT_TRUE(AnyVec.matches({}, v4f16));
 | |
|   EXPECT_FALSE(AnyVec.matches({}, i8));
 | |
|   EXPECT_FALSE(AnyVec.matches({}, a));
 | |
|   EXPECT_FALSE(AnyVec.matches({}, s));
 | |
| 
 | |
|   EXPECT_THAT(AnyVec.generate({}, {v8i8->getType()}),
 | |
|               ElementsAre(TypesMatch(v8i8)));
 | |
| 
 | |
|   auto First = matchFirstType();
 | |
|   EXPECT_TRUE(First.matches({i8}, i8));
 | |
|   EXPECT_TRUE(First.matches({s, a}, s));
 | |
|   EXPECT_FALSE(First.matches({f16}, f32));
 | |
|   EXPECT_FALSE(First.matches({v4f16, f64}, f64));
 | |
| 
 | |
|   EXPECT_THAT(First.generate({i8}, {}), Each(TypesMatch(i8)));
 | |
|   EXPECT_THAT(First.generate({f16}, {i8->getType()}),
 | |
|               Each(TypesMatch(f16)));
 | |
|   EXPECT_THAT(First.generate({v8i8, i32}, {}), Each(TypesMatch(v8i8)));
 | |
| }
 | |
| 
 | |
| TEST(OperationsTest, SplitBlock) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   Module M("M", Ctx);
 | |
|   Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
 | |
|                                                    /*isVarArg=*/false),
 | |
|                                  GlobalValue::ExternalLinkage, "f", &M);
 | |
|   auto SBOp = fuzzerop::splitBlockDescriptor(1);
 | |
| 
 | |
|   // Create a block with only a return and split it on the return.
 | |
|   auto *BB = BasicBlock::Create(Ctx, "BB", F);
 | |
|   auto *RI = ReturnInst::Create(Ctx, BB);
 | |
|   SBOp.BuilderFunc({UndefValue::get(Type::getInt1Ty(Ctx))}, RI);
 | |
| 
 | |
|   // We should end up with an unconditional branch from BB to BB1, and the
 | |
|   // return ends up in BB1.
 | |
|   auto *UncondBr = cast<BranchInst>(BB->getTerminator());
 | |
|   ASSERT_TRUE(UncondBr->isUnconditional());
 | |
|   auto *BB1 = UncondBr->getSuccessor(0);
 | |
|   ASSERT_THAT(RI->getParent(), Eq(BB1));
 | |
| 
 | |
|   // Now add an instruction to BB1 and split on that.
 | |
|   auto *AI = new AllocaInst(Type::getInt8Ty(Ctx), 0, "a", RI);
 | |
|   Value *Cond = ConstantInt::getFalse(Ctx);
 | |
|   SBOp.BuilderFunc({Cond}, AI);
 | |
| 
 | |
|   // We should end up with a loop back on BB1 and the instruction we split on
 | |
|   // moves to BB2.
 | |
|   auto *CondBr = cast<BranchInst>(BB1->getTerminator());
 | |
|   EXPECT_THAT(CondBr->getCondition(), Eq(Cond));
 | |
|   ASSERT_THAT(CondBr->getNumSuccessors(), Eq(2u));
 | |
|   ASSERT_THAT(CondBr->getSuccessor(0), Eq(BB1));
 | |
|   auto *BB2 = CondBr->getSuccessor(1);
 | |
|   EXPECT_THAT(AI->getParent(), Eq(BB2));
 | |
|   EXPECT_THAT(RI->getParent(), Eq(BB2));
 | |
| 
 | |
|   EXPECT_FALSE(verifyModule(M, &errs()));
 | |
| }
 | |
| 
 | |
| TEST(OperationsTest, SplitEHBlock) {
 | |
|   // Check that we will not try to branch back to the landingpad block using
 | |
|   // regular branch instruction
 | |
| 
 | |
|   LLVMContext Ctx;
 | |
|   const char *SourceCode =
 | |
|       "declare i32* @f()"
 | |
|       "declare i32 @personality_function()"
 | |
|       "define i32* @test() personality i32 ()* @personality_function {\n"
 | |
|       "entry:\n"
 | |
|       "  %val = invoke i32* @f()\n"
 | |
|       "          to label %normal unwind label %exceptional\n"
 | |
|       "normal:\n"
 | |
|       "  ret i32* %val\n"
 | |
|       "exceptional:\n"
 | |
|       "  %landing_pad4 = landingpad token cleanup\n"
 | |
|       "  ret i32* undef\n"
 | |
|       "}";
 | |
|   auto M = parseAssembly(SourceCode, Ctx);
 | |
| 
 | |
|   // Get the landingpad block
 | |
|   BasicBlock &BB = *std::next(M->getFunction("test")->begin(), 2);
 | |
| 
 | |
|   fuzzerop::OpDescriptor Descr = fuzzerop::splitBlockDescriptor(1);
 | |
| 
 | |
|   Descr.BuilderFunc({ConstantInt::getTrue(Ctx)},&*BB.getFirstInsertionPt());
 | |
|   ASSERT_TRUE(!verifyModule(*M, &errs()));
 | |
| }
 | |
| 
 | |
| TEST(OperationsTest, SplitBlockWithPhis) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   Type *Int8Ty = Type::getInt8Ty(Ctx);
 | |
| 
 | |
|   Module M("M", Ctx);
 | |
|   Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
 | |
|                                                    /*isVarArg=*/false),
 | |
|                                  GlobalValue::ExternalLinkage, "f", &M);
 | |
|   auto SBOp = fuzzerop::splitBlockDescriptor(1);
 | |
| 
 | |
|   // Create 3 blocks with an if-then branch.
 | |
|   auto *BB1 = BasicBlock::Create(Ctx, "BB1", F);
 | |
|   auto *BB2 = BasicBlock::Create(Ctx, "BB2", F);
 | |
|   auto *BB3 = BasicBlock::Create(Ctx, "BB3", F);
 | |
|   BranchInst::Create(BB2, BB3, ConstantInt::getFalse(Ctx), BB1);
 | |
|   BranchInst::Create(BB3, BB2);
 | |
| 
 | |
|   // Set up phi nodes selecting values for the incoming edges.
 | |
|   auto *PHI1 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p1", BB3);
 | |
|   PHI1->addIncoming(ConstantInt::get(Int8Ty, 0), BB1);
 | |
|   PHI1->addIncoming(ConstantInt::get(Int8Ty, 1), BB2);
 | |
|   auto *PHI2 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p2", BB3);
 | |
|   PHI2->addIncoming(ConstantInt::get(Int8Ty, 1), BB1);
 | |
|   PHI2->addIncoming(ConstantInt::get(Int8Ty, 0), BB2);
 | |
|   auto *RI = ReturnInst::Create(Ctx, BB3);
 | |
| 
 | |
|   // Now we split the block with PHI nodes, making sure they're all updated.
 | |
|   Value *Cond = ConstantInt::getFalse(Ctx);
 | |
|   SBOp.BuilderFunc({Cond}, RI);
 | |
| 
 | |
|   // Make sure the PHIs are updated with a value for the third incoming edge.
 | |
|   EXPECT_THAT(PHI1->getNumIncomingValues(), Eq(3u));
 | |
|   EXPECT_THAT(PHI2->getNumIncomingValues(), Eq(3u));
 | |
|   EXPECT_FALSE(verifyModule(M, &errs()));
 | |
| }
 | |
| 
 | |
| TEST(OperationsTest, GEP) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
 | |
|   Type *Int32Ty = Type::getInt32Ty(Ctx);
 | |
| 
 | |
|   Module M("M", Ctx);
 | |
|   Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
 | |
|                                                    /*isVarArg=*/false),
 | |
|                                  GlobalValue::ExternalLinkage, "f", &M);
 | |
|   auto *BB = BasicBlock::Create(Ctx, "BB", F);
 | |
|   auto *RI = ReturnInst::Create(Ctx, BB);
 | |
| 
 | |
|   auto GEPOp = fuzzerop::gepDescriptor(1);
 | |
|   EXPECT_TRUE(GEPOp.SourcePreds[0].matches({}, UndefValue::get(Int8PtrTy)));
 | |
|   EXPECT_TRUE(GEPOp.SourcePreds[1].matches({UndefValue::get(Int8PtrTy)},
 | |
|                                            ConstantInt::get(Int32Ty, 0)));
 | |
| 
 | |
|   GEPOp.BuilderFunc({UndefValue::get(Int8PtrTy), ConstantInt::get(Int32Ty, 0)},
 | |
|                     RI);
 | |
|   EXPECT_FALSE(verifyModule(M, &errs()));
 | |
| }
 | |
| 
 | |
| 
 | |
| TEST(OperationsTest, GEPPointerOperand) {
 | |
|   // Check that we only pick sized pointers for the GEP instructions
 | |
| 
 | |
|   LLVMContext Ctx;
 | |
|   const char *SourceCode =
 | |
|       "declare void @f()\n"
 | |
|       "define void @test() {\n"
 | |
|       "  %v = bitcast void ()* @f to i64 (i8 addrspace(4)*)*\n"
 | |
|       "  %a = alloca i64, i32 10\n"
 | |
|       "  ret void\n"
 | |
|       "}";
 | |
|   auto M = parseAssembly(SourceCode, Ctx);
 | |
| 
 | |
|   fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);
 | |
| 
 | |
|   // Get first basic block of the test function
 | |
|   Function &F = *M->getFunction("test");
 | |
|   BasicBlock &BB = *F.begin();
 | |
| 
 | |
|   // Don't match %v
 | |
|   ASSERT_FALSE(Descr.SourcePreds[0].matches({}, &*BB.begin()));
 | |
| 
 | |
|   // Match %a
 | |
|   ASSERT_TRUE(Descr.SourcePreds[0].matches({}, &*std::next(BB.begin())));
 | |
| }
 | |
| 
 | |
| TEST(OperationsTest, ExtractAndInsertValue) {
 | |
|   LLVMContext Ctx;
 | |
| 
 | |
|   Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
 | |
|   Type *Int32Ty = Type::getInt32Ty(Ctx);
 | |
|   Type *Int64Ty = Type::getInt64Ty(Ctx);
 | |
| 
 | |
|   Type *StructTy = StructType::create(Ctx, {Int8PtrTy, Int32Ty});
 | |
|   Type *OpaqueTy = StructType::create(Ctx, "OpaqueStruct");
 | |
|   Type *ZeroSizedArrayTy = ArrayType::get(Int64Ty, 0);
 | |
|   Type *ArrayTy = ArrayType::get(Int64Ty, 4);
 | |
|   Type *VectorTy = VectorType::get(Int32Ty, 2);
 | |
| 
 | |
|   auto EVOp = fuzzerop::extractValueDescriptor(1);
 | |
|   auto IVOp = fuzzerop::insertValueDescriptor(1);
 | |
| 
 | |
|   // Sanity check the source preds.
 | |
|   Constant *SVal = UndefValue::get(StructTy);
 | |
|   Constant *OVal = UndefValue::get(OpaqueTy);
 | |
|   Constant *AVal = UndefValue::get(ArrayTy);
 | |
|   Constant *ZAVal = UndefValue::get(ZeroSizedArrayTy);
 | |
|   Constant *VVal = UndefValue::get(VectorTy);
 | |
| 
 | |
|   EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, SVal));
 | |
|   EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, OVal));
 | |
|   EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, AVal));
 | |
|   EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, VVal));
 | |
|   EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, SVal));
 | |
|   EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, OVal));
 | |
|   EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, AVal));
 | |
|   EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, VVal));
 | |
| 
 | |
|   // Don't consider zero sized arrays as viable sources
 | |
|   EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, ZAVal));
 | |
|   EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, ZAVal));
 | |
| 
 | |
|   // Make sure we're range checking appropriately.
 | |
|   EXPECT_TRUE(
 | |
|       EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 0)));
 | |
|   EXPECT_TRUE(
 | |
|       EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 1)));
 | |
|   EXPECT_FALSE(
 | |
|       EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 2)));
 | |
|   EXPECT_FALSE(
 | |
|       EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 0)));
 | |
|   EXPECT_FALSE(
 | |
|       EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 65536)));
 | |
|   EXPECT_TRUE(
 | |
|       EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 0)));
 | |
|   EXPECT_TRUE(
 | |
|       EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 3)));
 | |
|   EXPECT_FALSE(
 | |
|       EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 4)));
 | |
| 
 | |
|   EXPECT_THAT(
 | |
|       EVOp.SourcePreds[1].generate({SVal}, {}),
 | |
|       ElementsAre(ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1)));
 | |
| 
 | |
|   // InsertValue should accept any type in the struct, but only in positions
 | |
|   // where it makes sense.
 | |
|   EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int8PtrTy)));
 | |
|   EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int32Ty)));
 | |
|   EXPECT_FALSE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int64Ty)));
 | |
|   EXPECT_FALSE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
 | |
|                                            ConstantInt::get(Int32Ty, 0)));
 | |
|   EXPECT_TRUE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
 | |
|                                           ConstantInt::get(Int32Ty, 1)));
 | |
| 
 | |
|   EXPECT_THAT(IVOp.SourcePreds[1].generate({SVal}, {}),
 | |
|               Each(AnyOf(HasType(Int32Ty), HasType(Int8PtrTy))));
 | |
|   EXPECT_THAT(
 | |
|       IVOp.SourcePreds[2].generate({SVal, ConstantInt::get(Int32Ty, 0)}, {}),
 | |
|       ElementsAre(ConstantInt::get(Int32Ty, 1)));
 | |
| }
 | |
| 
 | |
| }
 |