69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/FuzzMutate/Random.h"
 | |
| #include "gtest/gtest.h"
 | |
| #include <random>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| TEST(ReservoirSamplerTest, OneItem) {
 | |
|   std::mt19937 Rand;
 | |
|   auto Sampler = makeSampler(Rand, 7, 1);
 | |
|   ASSERT_FALSE(Sampler.isEmpty());
 | |
|   ASSERT_EQ(7, Sampler.getSelection());
 | |
| }
 | |
| 
 | |
| TEST(ReservoirSamplerTest, NoWeight) {
 | |
|   std::mt19937 Rand;
 | |
|   auto Sampler = makeSampler(Rand, 7, 0);
 | |
|   ASSERT_TRUE(Sampler.isEmpty());
 | |
| }
 | |
| 
 | |
| TEST(ReservoirSamplerTest, Uniform) {
 | |
|   std::mt19937 Rand;
 | |
| 
 | |
|   // Run three chi-squared tests to check that the distribution is reasonably
 | |
|   // uniform.
 | |
|   std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
 | |
| 
 | |
|   int Failures = 0;
 | |
|   for (int Run = 0; Run < 3; ++Run) {
 | |
|     std::vector<int> Counts(Items.size(), 0);
 | |
| 
 | |
|     // We need $np_s > 5$ at minimum, but we're better off going a couple of
 | |
|     // orders of magnitude larger.
 | |
|     int N = Items.size() * 5 * 100;
 | |
|     for (int I = 0; I < N; ++I) {
 | |
|       auto Sampler = makeSampler(Rand, Items);
 | |
|       Counts[Sampler.getSelection()] += 1;
 | |
|     }
 | |
| 
 | |
|     // Knuth. TAOCP Vol. 2, 3.3.1 (8):
 | |
|     // $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$
 | |
|     double Ps = 1.0 / Items.size();
 | |
|     double Sum = 0.0;
 | |
|     for (int Ys : Counts)
 | |
|       Sum += Ys * Ys / Ps;
 | |
|     double V = (Sum / N) - N;
 | |
| 
 | |
|     assert(Items.size() == 10 && "Our chi-squared values assume 10 items");
 | |
|     // Since we have 10 items, there are 9 degrees of freedom and the table of
 | |
|     // chi-squared values is as follows:
 | |
|     //
 | |
|     //     | p=1%  |   5%  |  25%  |  50%  |  75%  |  95%  |  99%  |
 | |
|     // v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 |
 | |
|     //
 | |
|     // Check that we're in the likely range of results.
 | |
|     //if (V < 2.088 || V > 21.67)
 | |
|     if (V < 2.088 || V > 21.67)
 | |
|       ++Failures;
 | |
|   }
 | |
|   EXPECT_LT(Failures, 3) << "Non-uniform distribution?";
 | |
| }
 |