1585 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1585 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar/LoopPassManager.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/AsmParser/Parser.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/Support/SourceMgr.h"
 | |
| 
 | |
| #include "gmock/gmock.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| using testing::DoDefault;
 | |
| using testing::Return;
 | |
| using testing::Expectation;
 | |
| using testing::Invoke;
 | |
| using testing::InvokeWithoutArgs;
 | |
| using testing::_;
 | |
| 
 | |
| template <typename DerivedT, typename IRUnitT,
 | |
|           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
 | |
|           typename... ExtraArgTs>
 | |
| class MockAnalysisHandleBase {
 | |
| public:
 | |
|   class Analysis : public AnalysisInfoMixin<Analysis> {
 | |
|     friend AnalysisInfoMixin<Analysis>;
 | |
|     friend MockAnalysisHandleBase;
 | |
|     static AnalysisKey Key;
 | |
| 
 | |
|     DerivedT *Handle;
 | |
| 
 | |
|     Analysis(DerivedT &Handle) : Handle(&Handle) {
 | |
|       static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
 | |
|                     "Must pass the derived type to this template!");
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     class Result {
 | |
|       friend MockAnalysisHandleBase;
 | |
| 
 | |
|       DerivedT *Handle;
 | |
| 
 | |
|       Result(DerivedT &Handle) : Handle(&Handle) {}
 | |
| 
 | |
|     public:
 | |
|       // Forward invalidation events to the mock handle.
 | |
|       bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
 | |
|                       typename AnalysisManagerT::Invalidator &Inv) {
 | |
|         return Handle->invalidate(IR, PA, Inv);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
 | |
|       return Handle->run(IR, AM, ExtraArgs...);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
 | |
|   typename Analysis::Result getResult() {
 | |
|     return typename Analysis::Result(static_cast<DerivedT &>(*this));
 | |
|   }
 | |
| 
 | |
| protected:
 | |
|   // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
 | |
|   // the template, so we use a boring static function.
 | |
|   static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
 | |
|                                  typename AnalysisManagerT::Invalidator &Inv) {
 | |
|     auto PAC = PA.template getChecker<Analysis>();
 | |
|     return !PAC.preserved() &&
 | |
|            !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
 | |
|   }
 | |
| 
 | |
|   /// Derived classes should call this in their constructor to set up default
 | |
|   /// mock actions. (We can't do this in our constructor because this has to
 | |
|   /// run after the DerivedT is constructed.)
 | |
|   void setDefaults() {
 | |
|     ON_CALL(static_cast<DerivedT &>(*this),
 | |
|             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
 | |
|         .WillByDefault(Return(this->getResult()));
 | |
|     ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
 | |
|         .WillByDefault(Invoke(&invalidateCallback));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
 | |
|           typename... ExtraArgTs>
 | |
| AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
 | |
|                                    ExtraArgTs...>::Analysis::Key;
 | |
| 
 | |
| /// Mock handle for loop analyses.
 | |
| ///
 | |
| /// This is provided as a template accepting an (optional) integer. Because
 | |
| /// analyses are identified and queried by type, this allows constructing
 | |
| /// multiple handles with distinctly typed nested 'Analysis' types that can be
 | |
| /// registered and queried. If you want to register multiple loop analysis
 | |
| /// passes, you'll need to instantiate this type with different values for I.
 | |
| /// For example:
 | |
| ///
 | |
| ///   MockLoopAnalysisHandleTemplate<0> h0;
 | |
| ///   MockLoopAnalysisHandleTemplate<1> h1;
 | |
| ///   typedef decltype(h0)::Analysis Analysis0;
 | |
| ///   typedef decltype(h1)::Analysis Analysis1;
 | |
| template <size_t I = static_cast<size_t>(-1)>
 | |
| struct MockLoopAnalysisHandleTemplate
 | |
|     : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
 | |
|                              LoopAnalysisManager,
 | |
|                              LoopStandardAnalysisResults &> {
 | |
|   typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
 | |
| 
 | |
|   MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
 | |
|                                                 LoopStandardAnalysisResults &));
 | |
| 
 | |
|   MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
 | |
|                                   LoopAnalysisManager::Invalidator &));
 | |
| 
 | |
|   MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
 | |
| };
 | |
| 
 | |
| typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
 | |
| 
 | |
| struct MockFunctionAnalysisHandle
 | |
|     : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
 | |
|   MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
 | |
| 
 | |
|   MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
 | |
|                                 FunctionAnalysisManager::Invalidator &));
 | |
| 
 | |
|   MockFunctionAnalysisHandle() { setDefaults(); }
 | |
| };
 | |
| 
 | |
| template <typename DerivedT, typename IRUnitT,
 | |
|           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
 | |
|           typename... ExtraArgTs>
 | |
| class MockPassHandleBase {
 | |
| public:
 | |
|   class Pass : public PassInfoMixin<Pass> {
 | |
|     friend MockPassHandleBase;
 | |
| 
 | |
|     DerivedT *Handle;
 | |
| 
 | |
|     Pass(DerivedT &Handle) : Handle(&Handle) {
 | |
|       static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
 | |
|                     "Must pass the derived type to this template!");
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
 | |
|                           ExtraArgTs... ExtraArgs) {
 | |
|       return Handle->run(IR, AM, ExtraArgs...);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
 | |
| 
 | |
| protected:
 | |
|   /// Derived classes should call this in their constructor to set up default
 | |
|   /// mock actions. (We can't do this in our constructor because this has to
 | |
|   /// run after the DerivedT is constructed.)
 | |
|   void setDefaults() {
 | |
|     ON_CALL(static_cast<DerivedT &>(*this),
 | |
|             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
 | |
|         .WillByDefault(Return(PreservedAnalyses::all()));
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MockLoopPassHandle
 | |
|     : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
 | |
|                          LoopStandardAnalysisResults &, LPMUpdater &> {
 | |
|   MOCK_METHOD4(run,
 | |
|                PreservedAnalyses(Loop &, LoopAnalysisManager &,
 | |
|                                  LoopStandardAnalysisResults &, LPMUpdater &));
 | |
|   MockLoopPassHandle() { setDefaults(); }
 | |
| };
 | |
| 
 | |
| struct MockFunctionPassHandle
 | |
|     : MockPassHandleBase<MockFunctionPassHandle, Function> {
 | |
|   MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
 | |
| 
 | |
|   MockFunctionPassHandle() { setDefaults(); }
 | |
| };
 | |
| 
 | |
| struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
 | |
|   MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
 | |
| 
 | |
|   MockModulePassHandle() { setDefaults(); }
 | |
| };
 | |
| 
 | |
| /// Define a custom matcher for objects which support a 'getName' method
 | |
| /// returning a StringRef.
 | |
| ///
 | |
| /// LLVM often has IR objects or analysis objects which expose a StringRef name
 | |
| /// and in tests it is convenient to match these by name for readability. This
 | |
| /// matcher supports any type exposing a getName() method of this form.
 | |
| ///
 | |
| /// It should be used as:
 | |
| ///
 | |
| ///   HasName("my_function")
 | |
| ///
 | |
| /// No namespace or other qualification is required.
 | |
| MATCHER_P(HasName, Name, "") {
 | |
|   // The matcher's name and argument are printed in the case of failure, but we
 | |
|   // also want to print out the name of the argument. This uses an implicitly
 | |
|   // avaiable std::ostream, so we have to construct a std::string.
 | |
|   *result_listener << "has name '" << arg.getName().str() << "'";
 | |
|   return Name == arg.getName();
 | |
| }
 | |
| 
 | |
| std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
 | |
|   SMDiagnostic Err;
 | |
|   return parseAssemblyString(IR, Err, C);
 | |
| }
 | |
| 
 | |
| class LoopPassManagerTest : public ::testing::Test {
 | |
| protected:
 | |
|   LLVMContext Context;
 | |
|   std::unique_ptr<Module> M;
 | |
| 
 | |
|   LoopAnalysisManager LAM;
 | |
|   FunctionAnalysisManager FAM;
 | |
|   ModuleAnalysisManager MAM;
 | |
| 
 | |
|   MockLoopAnalysisHandle MLAHandle;
 | |
|   MockLoopPassHandle MLPHandle;
 | |
|   MockFunctionPassHandle MFPHandle;
 | |
|   MockModulePassHandle MMPHandle;
 | |
| 
 | |
|   static PreservedAnalyses
 | |
|   getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
 | |
|                         LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | |
|     (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
 | |
|     return PreservedAnalyses::all();
 | |
|   };
 | |
| 
 | |
| public:
 | |
|   LoopPassManagerTest()
 | |
|       : M(parseIR(Context,
 | |
|                   "define void @f(i1* %ptr) {\n"
 | |
|                   "entry:\n"
 | |
|                   "  br label %loop.0\n"
 | |
|                   "loop.0:\n"
 | |
|                   "  %cond.0 = load volatile i1, i1* %ptr\n"
 | |
|                   "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
 | |
|                   "loop.0.0.ph:\n"
 | |
|                   "  br label %loop.0.0\n"
 | |
|                   "loop.0.0:\n"
 | |
|                   "  %cond.0.0 = load volatile i1, i1* %ptr\n"
 | |
|                   "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
 | |
|                   "loop.0.1.ph:\n"
 | |
|                   "  br label %loop.0.1\n"
 | |
|                   "loop.0.1:\n"
 | |
|                   "  %cond.0.1 = load volatile i1, i1* %ptr\n"
 | |
|                   "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
 | |
|                   "loop.0.latch:\n"
 | |
|                   "  br label %loop.0\n"
 | |
|                   "end:\n"
 | |
|                   "  ret void\n"
 | |
|                   "}\n"
 | |
|                   "\n"
 | |
|                   "define void @g(i1* %ptr) {\n"
 | |
|                   "entry:\n"
 | |
|                   "  br label %loop.g.0\n"
 | |
|                   "loop.g.0:\n"
 | |
|                   "  %cond.0 = load volatile i1, i1* %ptr\n"
 | |
|                   "  br i1 %cond.0, label %loop.g.0, label %end\n"
 | |
|                   "end:\n"
 | |
|                   "  ret void\n"
 | |
|                   "}\n")),
 | |
|         LAM(true), FAM(true), MAM(true) {
 | |
|     // Register our mock analysis.
 | |
|     LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
 | |
| 
 | |
|     // We need DominatorTreeAnalysis for LoopAnalysis.
 | |
|     FAM.registerPass([&] { return DominatorTreeAnalysis(); });
 | |
|     FAM.registerPass([&] { return LoopAnalysis(); });
 | |
|     // We also allow loop passes to assume a set of other analyses and so need
 | |
|     // those.
 | |
|     FAM.registerPass([&] { return AAManager(); });
 | |
|     FAM.registerPass([&] { return AssumptionAnalysis(); });
 | |
|     FAM.registerPass([&] { return MemorySSAAnalysis(); });
 | |
|     FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
 | |
|     FAM.registerPass([&] { return TargetLibraryAnalysis(); });
 | |
|     FAM.registerPass([&] { return TargetIRAnalysis(); });
 | |
| 
 | |
|     // Register required pass instrumentation analysis.
 | |
|     LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
 | |
|     FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
 | |
|     MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
 | |
| 
 | |
|     // Cross-register proxies.
 | |
|     LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
 | |
|     FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
 | |
|     FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
 | |
|     MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
 | |
|   }
 | |
| };
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, Basic) {
 | |
|   ModulePassManager MPM(true);
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // First we just visit all the loops in all the functions and get their
 | |
|   // analysis results. This will run the analysis a total of four times,
 | |
|   // once for each loop.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
|   // Wire the loop pass through pass managers into the module pipeline.
 | |
|   {
 | |
|     LoopPassManager LPM(true);
 | |
|     LPM.addPass(MLPHandle.getPass());
 | |
|     FunctionPassManager FPM(true);
 | |
|     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   }
 | |
| 
 | |
|   // Next we run two passes over the loops. The first one invalidates the
 | |
|   // analyses for one loop, the second ones try to get the analysis results.
 | |
|   // This should force only one analysis to re-run within the loop PM, but will
 | |
|   // also invalidate everything after the loop pass manager finishes.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(DoDefault())
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(DoDefault())
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
 | |
|       .WillOnce(DoDefault())
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   // Wire two loop pass runs into the module pipeline.
 | |
|   {
 | |
|     LoopPassManager LPM(true);
 | |
|     LPM.addPass(MLPHandle.getPass());
 | |
|     LPM.addPass(MLPHandle.getPass());
 | |
|     FunctionPassManager FPM(true);
 | |
|     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
 | |
|     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   }
 | |
| 
 | |
|   // And now run the pipeline across the module.
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   // We process each function completely in sequence.
 | |
|   ::testing::Sequence FSequence, GSequence;
 | |
| 
 | |
|   // First, force the analysis result to be computed for each loop.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
 | |
|       .InSequence(GSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   // No need to re-run if we require again from a fresh loop pass manager.
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
|   // For 'f', preserve most things but not the specific loop analyses.
 | |
|   auto PA = getLoopPassPreservedAnalyses();
 | |
|   if (EnableMSSALoopDependency)
 | |
|     PA.preserve<MemorySSAAnalysis>();
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(Return(PA));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   // On one loop, skip the invalidation (as though we did an internal update).
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(Return(false));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   // Now two loops still have to be recomputed.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   // Preserve things in the second function to ensure invalidation remains
 | |
|   // isolated to one function.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
 | |
|       .InSequence(GSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
 | |
|       .InSequence(FSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   // For 'g', fail to preserve anything, causing the loops themselves to be
 | |
|   // cleared. We don't get an invalidation event here as the loop is gone, but
 | |
|   // we should still have to recompute the analysis.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
 | |
|       .InSequence(GSequence)
 | |
|       .WillOnce(Return(PreservedAnalyses::none()));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
 | |
|       .InSequence(GSequence)
 | |
|       .WillOnce(DoDefault());
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
| 
 | |
|   // Verify with a separate function pass run that we didn't mess up 'f's
 | |
|   // cache. No analysis runs should be necessary here.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
 | |
|   ModulePassManager MPM(true);
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // First, force the analysis result to be computed for each loop.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   // Walking all the way out and all the way back in doesn't re-run the
 | |
|   // analysis.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   // But a module pass that doesn't preserve the actual mock loop analysis
 | |
|   // invalidates all the way down and forces recomputing.
 | |
|   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = getLoopPassPreservedAnalyses();
 | |
|     PA.preserve<FunctionAnalysisManagerModuleProxy>();
 | |
|     if (EnableMSSALoopDependency)
 | |
|       PA.preserve<MemorySSAAnalysis>();
 | |
|     return PA;
 | |
|   }));
 | |
|   // All the loop analyses from both functions get invalidated before we
 | |
|   // recompute anything.
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
 | |
|   // On one loop, again skip the invalidation (as though we did an internal
 | |
|   // update).
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
 | |
|       .WillOnce(Return(false));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
 | |
|   // Now all but one of the loops gets re-analyzed.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
|   MPM.addPass(MMPHandle.getPass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   // Verify that the cached values persist.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   // Now we fail to preserve the loop analysis and observe that the loop
 | |
|   // analyses are cleared (so no invalidation event) as the loops themselves
 | |
|   // are no longer valid.
 | |
|   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     PA.preserve<FunctionAnalysisManagerModuleProxy>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
|   MPM.addPass(MMPHandle.getPass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   // Verify that the cached values persist.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   // Next, check that even if we preserve everything within the function itelf,
 | |
|   // if the function's module pass proxy isn't preserved and the potential set
 | |
|   // of functions changes, the clear reaches the loop analyses as well. This
 | |
|   // will again trigger re-runs but not invalidation events.
 | |
|   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     PA.preserveSet<AllAnalysesOn<Function>>();
 | |
|     PA.preserveSet<AllAnalysesOn<Loop>>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
|   MPM.addPass(MMPHandle.getPass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
 | |
| 
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| // Test that if any of the bundled analyses provided in the LPM's signature
 | |
| // become invalid, the analysis proxy itself becomes invalid and we clear all
 | |
| // loop analysis results.
 | |
| TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // First, force the analysis result to be computed for each loop.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   // No need to re-run if we require again from a fresh loop pass manager.
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   // Preserving everything but the loop analyses themselves results in
 | |
|   // invalidation and running.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
 | |
|       .WillOnce(Return(getLoopPassPreservedAnalyses()));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   // The rest don't invalidate analyses, they only trigger re-runs because we
 | |
|   // clear the cache completely.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     // Not preserving `AAManager`.
 | |
|     PA.preserve<DominatorTreeAnalysis>();
 | |
|     PA.preserve<LoopAnalysis>();
 | |
|     PA.preserve<LoopAnalysisManagerFunctionProxy>();
 | |
|     PA.preserve<ScalarEvolutionAnalysis>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     PA.preserve<AAManager>();
 | |
|     // Not preserving `DominatorTreeAnalysis`.
 | |
|     PA.preserve<LoopAnalysis>();
 | |
|     PA.preserve<LoopAnalysisManagerFunctionProxy>();
 | |
|     PA.preserve<ScalarEvolutionAnalysis>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     PA.preserve<AAManager>();
 | |
|     PA.preserve<DominatorTreeAnalysis>();
 | |
|     // Not preserving the `LoopAnalysis`.
 | |
|     PA.preserve<LoopAnalysisManagerFunctionProxy>();
 | |
|     PA.preserve<ScalarEvolutionAnalysis>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     PA.preserve<AAManager>();
 | |
|     PA.preserve<DominatorTreeAnalysis>();
 | |
|     PA.preserve<LoopAnalysis>();
 | |
|     // Not preserving the `LoopAnalysisManagerFunctionProxy`.
 | |
|     PA.preserve<ScalarEvolutionAnalysis>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = PreservedAnalyses::none();
 | |
|     PA.preserve<AAManager>();
 | |
|     PA.preserve<DominatorTreeAnalysis>();
 | |
|     PA.preserve<LoopAnalysis>();
 | |
|     PA.preserve<LoopAnalysisManagerFunctionProxy>();
 | |
|     // Not preserving `ScalarEvolutionAnalysis`.
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(
 | |
|       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
 | |
| 
 | |
|   // After all the churn on 'f', we'll compute the loop analysis results for
 | |
|   // 'g' once with a requires pass and then run our mock pass over g a bunch
 | |
|   // but just get cached results each time.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
 | |
| 
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, IndirectInvalidation) {
 | |
|   // We need two distinct analysis types and handles.
 | |
|   enum { A, B };
 | |
|   MockLoopAnalysisHandleTemplate<A> MLAHandleA;
 | |
|   MockLoopAnalysisHandleTemplate<B> MLAHandleB;
 | |
|   LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
 | |
|   LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
 | |
|   typedef decltype(MLAHandleA)::Analysis AnalysisA;
 | |
|   typedef decltype(MLAHandleB)::Analysis AnalysisB;
 | |
| 
 | |
|   // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
 | |
|   // need to get the AnalysisB results in AnalysisA's run method and check if
 | |
|   // AnalysisB gets invalidated in AnalysisA's invalidate method.
 | |
|   ON_CALL(MLAHandleA, run(_, _, _))
 | |
|       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                                 LoopStandardAnalysisResults &AR) {
 | |
|         (void)AM.getResult<AnalysisB>(L, AR);
 | |
|         return MLAHandleA.getResult();
 | |
|       }));
 | |
|   ON_CALL(MLAHandleA, invalidate(_, _, _))
 | |
|       .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
 | |
|                                LoopAnalysisManager::Invalidator &Inv) {
 | |
|         auto PAC = PA.getChecker<AnalysisA>();
 | |
|         return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
 | |
|                Inv.invalidate<AnalysisB>(L, PA);
 | |
|       }));
 | |
| 
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // Compute the analyses across all of 'f' first.
 | |
|   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
 | |
| 
 | |
|   // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
 | |
|   // preserve everything for the rest. This in turn triggers that one loop to
 | |
|   // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
 | |
|   // working.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(InvokeWithoutArgs([] {
 | |
|         auto PA = getLoopPassPreservedAnalyses();
 | |
|         // Specifically preserve AnalysisA so that it would survive if it
 | |
|         // didn't depend on AnalysisB.
 | |
|         PA.preserve<AnalysisA>();
 | |
|         return PA;
 | |
|       }));
 | |
|   // It happens that AnalysisB is invalidated first. That shouldn't matter
 | |
|   // though, and we should still call AnalysisA's invalidation.
 | |
|   EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
 | |
|                           LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | |
|         (void)AM.getResult<AnalysisA>(L, AR);
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
|   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
 | |
|   // The rest of the loops should run and get cached results.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
 | |
|                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | |
|         (void)AM.getResult<AnalysisA>(L, AR);
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
 | |
|                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | |
|         (void)AM.getResult<AnalysisA>(L, AR);
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
| 
 | |
|   // The run over 'g' should be boring, with us just computing the analyses once
 | |
|   // up front and then running loop passes and getting cached results.
 | |
|   EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
 | |
|                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | |
|         (void)AM.getResult<AnalysisA>(L, AR);
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
| 
 | |
|   // Build the pipeline and run it.
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   FPM.addPass(
 | |
|       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
 | |
|   LoopPassManager LPM(true);
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
 | |
|   typedef decltype(MLAHandle)::Analysis LoopAnalysis;
 | |
| 
 | |
|   MockFunctionAnalysisHandle MFAHandle;
 | |
|   FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
 | |
|   typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
 | |
| 
 | |
|   // Set up the loop analysis to depend on both the function and module
 | |
|   // analysis.
 | |
|   ON_CALL(MLAHandle, run(_, _, _))
 | |
|       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                                 LoopStandardAnalysisResults &AR) {
 | |
|         auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
 | |
|         auto &FAM = FAMP.getManager();
 | |
|         Function &F = *L.getHeader()->getParent();
 | |
|         if (FAM.getCachedResult<FunctionAnalysis>(F))
 | |
|           FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
 | |
|                                                  LoopAnalysis>();
 | |
|         return MLAHandle.getResult();
 | |
|       }));
 | |
| 
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // Compute the analyses across all of 'f' first.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
 | |
|       .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
 | |
|         // Force the computing of the function analysis so it is available in
 | |
|         // this function.
 | |
|         (void)AM.getResult<FunctionAnalysis>(F);
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
| 
 | |
|   // Now invalidate the function analysis but preserve the loop analyses.
 | |
|   // This should trigger immediate invalidation of the loop analyses, despite
 | |
|   // the fact that they were preserved.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = getLoopPassPreservedAnalyses();
 | |
|     if (EnableMSSALoopDependency)
 | |
|       PA.preserve<MemorySSAAnalysis>();
 | |
|     PA.preserveSet<AllAnalysesOn<Loop>>();
 | |
|     return PA;
 | |
|   }));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
 | |
| 
 | |
|   // And re-running a requires pass recomputes them.
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
| 
 | |
|   // When we run over 'g' we don't populate the cache with the function
 | |
|   // analysis.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
 | |
|       .WillOnce(Return(PreservedAnalyses::all()));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
 | |
| 
 | |
|   // Which means that no extra invalidation occurs and cached values are used.
 | |
|   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
 | |
|     auto PA = getLoopPassPreservedAnalyses();
 | |
|     if (EnableMSSALoopDependency)
 | |
|       PA.preserve<MemorySSAAnalysis>();
 | |
|     PA.preserveSet<AllAnalysesOn<Loop>>();
 | |
|     return PA;
 | |
|   }));
 | |
| 
 | |
|   // Build the pipeline and run it.
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(
 | |
|       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
 | |
|   FPM.addPass(MFPHandle.getPass());
 | |
|   FPM.addPass(
 | |
|       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, LoopChildInsertion) {
 | |
|   // Super boring module with three loops in a single loop nest.
 | |
|   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
 | |
|                        "entry:\n"
 | |
|                        "  br label %loop.0\n"
 | |
|                        "loop.0:\n"
 | |
|                        "  %cond.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
 | |
|                        "loop.0.0.ph:\n"
 | |
|                        "  br label %loop.0.0\n"
 | |
|                        "loop.0.0:\n"
 | |
|                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
 | |
|                        "loop.0.1.ph:\n"
 | |
|                        "  br label %loop.0.1\n"
 | |
|                        "loop.0.1:\n"
 | |
|                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
 | |
|                        "loop.0.2.ph:\n"
 | |
|                        "  br label %loop.0.2\n"
 | |
|                        "loop.0.2:\n"
 | |
|                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
 | |
|                        "loop.0.latch:\n"
 | |
|                        "  br label %loop.0\n"
 | |
|                        "end:\n"
 | |
|                        "  ret void\n"
 | |
|                        "}\n");
 | |
| 
 | |
|   // Build up variables referring into the IR so we can rewrite it below
 | |
|   // easily.
 | |
|   Function &F = *M->begin();
 | |
|   ASSERT_THAT(F, HasName("f"));
 | |
|   Argument &Ptr = *F.arg_begin();
 | |
|   auto BBI = F.begin();
 | |
|   BasicBlock &EntryBB = *BBI++;
 | |
|   ASSERT_THAT(EntryBB, HasName("entry"));
 | |
|   BasicBlock &Loop0BB = *BBI++;
 | |
|   ASSERT_THAT(Loop0BB, HasName("loop.0"));
 | |
|   BasicBlock &Loop00PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
 | |
|   BasicBlock &Loop00BB = *BBI++;
 | |
|   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
 | |
|   BasicBlock &Loop01PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
 | |
|   BasicBlock &Loop01BB = *BBI++;
 | |
|   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
 | |
|   BasicBlock &Loop02PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
 | |
|   BasicBlock &Loop02BB = *BBI++;
 | |
|   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
 | |
|   BasicBlock &Loop0LatchBB = *BBI++;
 | |
|   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
 | |
|   BasicBlock &EndBB = *BBI++;
 | |
|   ASSERT_THAT(EndBB, HasName("end"));
 | |
|   ASSERT_THAT(BBI, F.end());
 | |
|   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
 | |
|                           const char *Name, BasicBlock *BB) {
 | |
|     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
 | |
|                               /*isVolatile*/ true, BB);
 | |
|     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
 | |
|   };
 | |
| 
 | |
|   // Build the pass managers and register our pipeline. We build a single loop
 | |
|   // pass pipeline consisting of three mock pass runs over each loop. After
 | |
|   // this we run both domtree and loop verification passes to make sure that
 | |
|   // the IR remained valid during our mutations.
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   LoopPassManager LPM(true);
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
 | |
|   FPM.addPass(DominatorTreeVerifierPass());
 | |
|   FPM.addPass(LoopVerifierPass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
| 
 | |
|   // All the visit orders are deterministic, so we use simple fully order
 | |
|   // expectations.
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // We run loop passes three times over each of the loops.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
| 
 | |
|   // When running over the middle loop, the second run inserts two new child
 | |
|   // loops, inserting them and itself into the worklist.
 | |
|   BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                            LoopStandardAnalysisResults &AR,
 | |
|                            LPMUpdater &Updater) {
 | |
|         auto *NewLoop = AR.LI.AllocateLoop();
 | |
|         L.addChildLoop(NewLoop);
 | |
|         auto *NewLoop010PHBB =
 | |
|             BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
 | |
|         NewLoop010BB =
 | |
|             BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
 | |
|         NewLoop01LatchBB =
 | |
|             BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
 | |
|         Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
 | |
|         BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
 | |
|         CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
 | |
|                      NewLoop010BB);
 | |
|         BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
 | |
|         AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
 | |
|         AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
 | |
|         AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
 | |
|         EXPECT_TRUE(AR.DT.verify());
 | |
|         L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
 | |
|         NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
 | |
|         L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
 | |
|         NewLoop->verifyLoop();
 | |
|         L.verifyLoop();
 | |
|         Updater.addChildLoops({NewLoop});
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
| 
 | |
|   // We should immediately drop down to fully visit the new inner loop.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // After visiting the inner loop, we should re-visit the second loop
 | |
|   // reflecting its new loop nest structure.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // In the second run over the middle loop after we've visited the new child,
 | |
|   // we add another child to check that we can repeatedly add children, and add
 | |
|   // children to a loop that already has children.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                            LoopStandardAnalysisResults &AR,
 | |
|                            LPMUpdater &Updater) {
 | |
|         auto *NewLoop = AR.LI.AllocateLoop();
 | |
|         L.addChildLoop(NewLoop);
 | |
|         auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
 | |
|         auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
 | |
|         NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
 | |
|                                                          NewLoop011PHBB);
 | |
|         BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
 | |
|         CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
 | |
|                      NewLoop011BB);
 | |
|         AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
 | |
|         auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
 | |
|         AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
 | |
|         EXPECT_TRUE(AR.DT.verify());
 | |
|         L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
 | |
|         NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
 | |
|         NewLoop->verifyLoop();
 | |
|         L.verifyLoop();
 | |
|         Updater.addChildLoops({NewLoop});
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
| 
 | |
|   // Again, we should immediately drop down to visit the new, unvisited child
 | |
|   // loop. We don't need to revisit the other child though.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // And now we should pop back up to the second loop and do a full pipeline of
 | |
|   // three passes on its current form.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .Times(3)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // Now that all the expected actions are registered, run the pipeline over
 | |
|   // our module. All of our expectations are verified when the test finishes.
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
 | |
|   // Super boring module with two loop nests and loop nest with two child
 | |
|   // loops.
 | |
|   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
 | |
|                        "entry:\n"
 | |
|                        "  br label %loop.0\n"
 | |
|                        "loop.0:\n"
 | |
|                        "  %cond.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
 | |
|                        "loop.0.0.ph:\n"
 | |
|                        "  br label %loop.0.0\n"
 | |
|                        "loop.0.0:\n"
 | |
|                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
 | |
|                        "loop.0.2.ph:\n"
 | |
|                        "  br label %loop.0.2\n"
 | |
|                        "loop.0.2:\n"
 | |
|                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
 | |
|                        "loop.0.latch:\n"
 | |
|                        "  br label %loop.0\n"
 | |
|                        "loop.2.ph:\n"
 | |
|                        "  br label %loop.2\n"
 | |
|                        "loop.2:\n"
 | |
|                        "  %cond.2 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.2, label %loop.2, label %end\n"
 | |
|                        "end:\n"
 | |
|                        "  ret void\n"
 | |
|                        "}\n");
 | |
| 
 | |
|   // Build up variables referring into the IR so we can rewrite it below
 | |
|   // easily.
 | |
|   Function &F = *M->begin();
 | |
|   ASSERT_THAT(F, HasName("f"));
 | |
|   Argument &Ptr = *F.arg_begin();
 | |
|   auto BBI = F.begin();
 | |
|   BasicBlock &EntryBB = *BBI++;
 | |
|   ASSERT_THAT(EntryBB, HasName("entry"));
 | |
|   BasicBlock &Loop0BB = *BBI++;
 | |
|   ASSERT_THAT(Loop0BB, HasName("loop.0"));
 | |
|   BasicBlock &Loop00PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
 | |
|   BasicBlock &Loop00BB = *BBI++;
 | |
|   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
 | |
|   BasicBlock &Loop02PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
 | |
|   BasicBlock &Loop02BB = *BBI++;
 | |
|   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
 | |
|   BasicBlock &Loop0LatchBB = *BBI++;
 | |
|   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
 | |
|   BasicBlock &Loop2PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
 | |
|   BasicBlock &Loop2BB = *BBI++;
 | |
|   ASSERT_THAT(Loop2BB, HasName("loop.2"));
 | |
|   BasicBlock &EndBB = *BBI++;
 | |
|   ASSERT_THAT(EndBB, HasName("end"));
 | |
|   ASSERT_THAT(BBI, F.end());
 | |
|   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
 | |
|                           const char *Name, BasicBlock *BB) {
 | |
|     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
 | |
|                               /*isVolatile*/ true, BB);
 | |
|     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
 | |
|   };
 | |
| 
 | |
|   // Build the pass managers and register our pipeline. We build a single loop
 | |
|   // pass pipeline consisting of three mock pass runs over each loop. After
 | |
|   // this we run both domtree and loop verification passes to make sure that
 | |
|   // the IR remained valid during our mutations.
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   LoopPassManager LPM(true);
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   LPM.addPass(MLPHandle.getPass());
 | |
|   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
 | |
|   FPM.addPass(DominatorTreeVerifierPass());
 | |
|   FPM.addPass(LoopVerifierPass());
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
| 
 | |
|   // All the visit orders are deterministic, so we use simple fully order
 | |
|   // expectations.
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // We run loop passes three times over each of the loops.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
| 
 | |
|   // On the second run, we insert a sibling loop.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                            LoopStandardAnalysisResults &AR,
 | |
|                            LPMUpdater &Updater) {
 | |
|         auto *NewLoop = AR.LI.AllocateLoop();
 | |
|         L.getParentLoop()->addChildLoop(NewLoop);
 | |
|         auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
 | |
|         auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
 | |
|         BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
 | |
|         CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
 | |
|         Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
 | |
|         AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
 | |
|         auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
 | |
|         AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
 | |
|         EXPECT_TRUE(AR.DT.verify());
 | |
|         L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
 | |
|         NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
 | |
|         L.getParentLoop()->verifyLoop();
 | |
|         Updater.addSiblingLoops({NewLoop});
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
|   // We finish processing this loop as sibling loops don't perturb the
 | |
|   // postorder walk.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // We visit the inserted sibling next.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   // Next, on the third pass run on the last inner loop we add more new
 | |
|   // siblings, more than one, and one with nested child loops. By doing this at
 | |
|   // the end we make sure that edge case works well.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                            LoopStandardAnalysisResults &AR,
 | |
|                            LPMUpdater &Updater) {
 | |
|         Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
 | |
|                             AR.LI.AllocateLoop()};
 | |
|         L.getParentLoop()->addChildLoop(NewLoops[0]);
 | |
|         L.getParentLoop()->addChildLoop(NewLoops[1]);
 | |
|         NewLoops[1]->addChildLoop(NewLoops[2]);
 | |
|         auto *NewLoop03PHBB =
 | |
|             BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
 | |
|         auto *NewLoop03BB =
 | |
|             BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
 | |
|         auto *NewLoop04PHBB =
 | |
|             BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
 | |
|         auto *NewLoop04BB =
 | |
|             BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
 | |
|         auto *NewLoop040PHBB =
 | |
|             BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
 | |
|         auto *NewLoop040BB =
 | |
|             BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
 | |
|         auto *NewLoop04LatchBB =
 | |
|             BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
 | |
|         Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
 | |
|         BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
 | |
|         CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
 | |
|         BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
 | |
|         CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
 | |
|         BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
 | |
|         CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
 | |
|         BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
 | |
|         AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
 | |
|         AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
 | |
|         AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
 | |
|         auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
 | |
|         AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
 | |
|         AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
 | |
|         AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
 | |
|         AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
 | |
|         EXPECT_TRUE(AR.DT.verify());
 | |
|         L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
 | |
|         NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
 | |
|         L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
 | |
|         NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
 | |
|         NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
 | |
|         NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
 | |
|         NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
 | |
|         L.getParentLoop()->verifyLoop();
 | |
|         Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // Note that we need to visit the inner loop of this added sibling before the
 | |
|   // sibling itself!
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // And only now do we visit the outermost loop of the nest.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   // On the second pass, we add sibling loops which become new top-level loops.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                            LoopStandardAnalysisResults &AR,
 | |
|                            LPMUpdater &Updater) {
 | |
|         auto *NewLoop = AR.LI.AllocateLoop();
 | |
|         AR.LI.addTopLevelLoop(NewLoop);
 | |
|         auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
 | |
|         auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
 | |
|         BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
 | |
|         CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
 | |
|         Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
 | |
|         AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
 | |
|         auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
 | |
|         AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
 | |
|         EXPECT_TRUE(AR.DT.verify());
 | |
|         NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
 | |
|         NewLoop->verifyLoop();
 | |
|         Updater.addSiblingLoops({NewLoop});
 | |
|         return PreservedAnalyses::all();
 | |
|       }));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // Now that all the expected actions are registered, run the pipeline over
 | |
|   // our module. All of our expectations are verified when the test finishes.
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| 
 | |
| TEST_F(LoopPassManagerTest, LoopDeletion) {
 | |
|   // Build a module with a single loop nest that contains one outer loop with
 | |
|   // three subloops, and one of those with its own subloop. We will
 | |
|   // incrementally delete all of these to test different deletion scenarios.
 | |
|   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
 | |
|                        "entry:\n"
 | |
|                        "  br label %loop.0\n"
 | |
|                        "loop.0:\n"
 | |
|                        "  %cond.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
 | |
|                        "loop.0.0.ph:\n"
 | |
|                        "  br label %loop.0.0\n"
 | |
|                        "loop.0.0:\n"
 | |
|                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
 | |
|                        "loop.0.1.ph:\n"
 | |
|                        "  br label %loop.0.1\n"
 | |
|                        "loop.0.1:\n"
 | |
|                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
 | |
|                        "loop.0.2.ph:\n"
 | |
|                        "  br label %loop.0.2\n"
 | |
|                        "loop.0.2:\n"
 | |
|                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
 | |
|                        "loop.0.2.0.ph:\n"
 | |
|                        "  br label %loop.0.2.0\n"
 | |
|                        "loop.0.2.0:\n"
 | |
|                        "  %cond.0.2.0 = load volatile i1, i1* %ptr\n"
 | |
|                        "  br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
 | |
|                        "loop.0.2.latch:\n"
 | |
|                        "  br label %loop.0.2\n"
 | |
|                        "loop.0.latch:\n"
 | |
|                        "  br label %loop.0\n"
 | |
|                        "end:\n"
 | |
|                        "  ret void\n"
 | |
|                        "}\n");
 | |
| 
 | |
|   // Build up variables referring into the IR so we can rewrite it below
 | |
|   // easily.
 | |
|   Function &F = *M->begin();
 | |
|   ASSERT_THAT(F, HasName("f"));
 | |
|   Argument &Ptr = *F.arg_begin();
 | |
|   auto BBI = F.begin();
 | |
|   BasicBlock &EntryBB = *BBI++;
 | |
|   ASSERT_THAT(EntryBB, HasName("entry"));
 | |
|   BasicBlock &Loop0BB = *BBI++;
 | |
|   ASSERT_THAT(Loop0BB, HasName("loop.0"));
 | |
|   BasicBlock &Loop00PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
 | |
|   BasicBlock &Loop00BB = *BBI++;
 | |
|   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
 | |
|   BasicBlock &Loop01PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
 | |
|   BasicBlock &Loop01BB = *BBI++;
 | |
|   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
 | |
|   BasicBlock &Loop02PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
 | |
|   BasicBlock &Loop02BB = *BBI++;
 | |
|   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
 | |
|   BasicBlock &Loop020PHBB = *BBI++;
 | |
|   ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
 | |
|   BasicBlock &Loop020BB = *BBI++;
 | |
|   ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
 | |
|   BasicBlock &Loop02LatchBB = *BBI++;
 | |
|   ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
 | |
|   BasicBlock &Loop0LatchBB = *BBI++;
 | |
|   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
 | |
|   BasicBlock &EndBB = *BBI++;
 | |
|   ASSERT_THAT(EndBB, HasName("end"));
 | |
|   ASSERT_THAT(BBI, F.end());
 | |
| 
 | |
|   // Helper to do the actual deletion of a loop. We directly encode this here
 | |
|   // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
 | |
|   // egregiously cheat based on knowledge of the test case. For example, we
 | |
|   // have no PHI nodes and there is always a single i-dom.
 | |
|   auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
 | |
|                       LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
 | |
|     assert(L.empty() && "Can only delete leaf loops with this routine!");
 | |
|     SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
 | |
|     Updater.markLoopAsDeleted(L, L.getName());
 | |
|     IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
 | |
|                                               L.getUniqueExitBlock());
 | |
|     for (BasicBlock *LoopBB : LoopBBs) {
 | |
|       SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
 | |
|                                                AR.DT[LoopBB]->end());
 | |
|       for (DomTreeNode *ChildNode : ChildNodes)
 | |
|         AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
 | |
|       AR.DT.eraseNode(LoopBB);
 | |
|       AR.LI.removeBlock(LoopBB);
 | |
|       LoopBB->dropAllReferences();
 | |
|     }
 | |
|     for (BasicBlock *LoopBB : LoopBBs)
 | |
|       LoopBB->eraseFromParent();
 | |
| 
 | |
|     AR.LI.erase(&L);
 | |
|   };
 | |
| 
 | |
|   // Build up the pass managers.
 | |
|   ModulePassManager MPM(true);
 | |
|   FunctionPassManager FPM(true);
 | |
|   // We run several loop pass pipelines across the loop nest, but they all take
 | |
|   // the same form of three mock pass runs in a loop pipeline followed by
 | |
|   // domtree and loop verification. We use a lambda to stamp this out each
 | |
|   // time.
 | |
|   auto AddLoopPipelineAndVerificationPasses = [&] {
 | |
|     LoopPassManager LPM(true);
 | |
|     LPM.addPass(MLPHandle.getPass());
 | |
|     LPM.addPass(MLPHandle.getPass());
 | |
|     LPM.addPass(MLPHandle.getPass());
 | |
|     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
 | |
|     FPM.addPass(DominatorTreeVerifierPass());
 | |
|     FPM.addPass(LoopVerifierPass());
 | |
|   };
 | |
| 
 | |
|   // All the visit orders are deterministic so we use simple fully order
 | |
|   // expectations.
 | |
|   ::testing::InSequence MakeExpectationsSequenced;
 | |
| 
 | |
|   // We run the loop pipeline with three passes over each of the loops. When
 | |
|   // running over the middle loop, the second pass in the pipeline deletes it.
 | |
|   // This should prevent the third pass from visiting it but otherwise leave
 | |
|   // the process unimpacted.
 | |
|   AddLoopPipelineAndVerificationPasses();
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
 | |
|       .WillOnce(
 | |
|           Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
 | |
|             Loop *ParentL = L.getParentLoop();
 | |
|             AR.SE.forgetLoop(&L);
 | |
|             EraseLoop(L, Loop01PHBB, AR, Updater);
 | |
|             ParentL->verifyLoop();
 | |
|             return PreservedAnalyses::all();
 | |
|           }));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // Run the loop pipeline again. This time we delete the last loop, which
 | |
|   // contains a nested loop within it and insert a new loop into the nest. This
 | |
|   // makes sure we can handle nested loop deletion.
 | |
|   AddLoopPipelineAndVerificationPasses();
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .Times(3)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
 | |
|       .Times(3)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   BasicBlock *NewLoop03PHBB;
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
 | |
|       .WillOnce(
 | |
|           Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
 | |
|             AR.SE.forgetLoop(*L.begin());
 | |
|             EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
 | |
| 
 | |
|             auto *ParentL = L.getParentLoop();
 | |
|             AR.SE.forgetLoop(&L);
 | |
|             EraseLoop(L, Loop02PHBB, AR, Updater);
 | |
| 
 | |
|             // Now insert a new sibling loop.
 | |
|             auto *NewSibling = AR.LI.AllocateLoop();
 | |
|             ParentL->addChildLoop(NewSibling);
 | |
|             NewLoop03PHBB =
 | |
|                 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
 | |
|             auto *NewLoop03BB =
 | |
|                 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
 | |
|             BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
 | |
|             auto *Cond =
 | |
|                 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
 | |
|                              /*isVolatile*/ true, NewLoop03BB);
 | |
|             BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
 | |
|             Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
 | |
|                                                           NewLoop03PHBB);
 | |
|             AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
 | |
|             AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
 | |
|             AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
 | |
|                                            AR.DT[NewLoop03BB]);
 | |
|             EXPECT_TRUE(AR.DT.verify());
 | |
|             ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
 | |
|             NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
 | |
|             NewSibling->verifyLoop();
 | |
|             ParentL->verifyLoop();
 | |
|             Updater.addSiblingLoops({NewSibling});
 | |
|             return PreservedAnalyses::all();
 | |
|           }));
 | |
| 
 | |
|   // To respect our inner-to-outer traversal order, we must visit the
 | |
|   // newly-inserted sibling of the loop we just deleted before we visit the
 | |
|   // outer loop. When we do so, this must compute a fresh analysis result, even
 | |
|   // though our new loop has the same pointer value as the loop we deleted.
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
 | |
|       .Times(2)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .Times(3)
 | |
|       .WillRepeatedly(Invoke(getLoopAnalysisResult));
 | |
| 
 | |
|   // In the final loop pipeline run we delete every loop, including the last
 | |
|   // loop of the nest. We do this again in the second pass in the pipeline, and
 | |
|   // as a consequence we never make it to three runs on any loop. We also cover
 | |
|   // deleting multiple loops in a single pipeline, deleting the first loop and
 | |
|   // deleting the (last) top level loop.
 | |
|   AddLoopPipelineAndVerificationPasses();
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
 | |
|       .WillOnce(
 | |
|           Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
 | |
|             AR.SE.forgetLoop(&L);
 | |
|             EraseLoop(L, Loop00PHBB, AR, Updater);
 | |
|             return PreservedAnalyses::all();
 | |
|           }));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
 | |
|       .WillOnce(
 | |
|           Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
 | |
|             AR.SE.forgetLoop(&L);
 | |
|             EraseLoop(L, *NewLoop03PHBB, AR, Updater);
 | |
|             return PreservedAnalyses::all();
 | |
|           }));
 | |
| 
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(Invoke(getLoopAnalysisResult));
 | |
|   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
 | |
|       .WillOnce(
 | |
|           Invoke([&](Loop &L, LoopAnalysisManager &AM,
 | |
|                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
 | |
|             AR.SE.forgetLoop(&L);
 | |
|             EraseLoop(L, EntryBB, AR, Updater);
 | |
|             return PreservedAnalyses::all();
 | |
|           }));
 | |
| 
 | |
|   // Add the function pass pipeline now that it is fully built up and run it
 | |
|   // over the module's one function.
 | |
|   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
 | |
|   MPM.run(*M, MAM);
 | |
| }
 | |
| }
 |