1097 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1097 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "DAGISelMatcher.h"
 | |
| #include "CodeGenDAGPatterns.h"
 | |
| #include "CodeGenRegisters.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringMap.h"
 | |
| #include "llvm/TableGen/Error.h"
 | |
| #include "llvm/TableGen/Record.h"
 | |
| #include <utility>
 | |
| using namespace llvm;
 | |
| 
 | |
| 
 | |
| /// getRegisterValueType - Look up and return the ValueType of the specified
 | |
| /// register. If the register is a member of multiple register classes which
 | |
| /// have different associated types, return MVT::Other.
 | |
| static MVT::SimpleValueType getRegisterValueType(Record *R,
 | |
|                                                  const CodeGenTarget &T) {
 | |
|   bool FoundRC = false;
 | |
|   MVT::SimpleValueType VT = MVT::Other;
 | |
|   const CodeGenRegister *Reg = T.getRegBank().getReg(R);
 | |
| 
 | |
|   for (const auto &RC : T.getRegBank().getRegClasses()) {
 | |
|     if (!RC.contains(Reg))
 | |
|       continue;
 | |
| 
 | |
|     if (!FoundRC) {
 | |
|       FoundRC = true;
 | |
|       const ValueTypeByHwMode &VVT = RC.getValueTypeNum(0);
 | |
|       if (VVT.isSimple())
 | |
|         VT = VVT.getSimple().SimpleTy;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // If this occurs in multiple register classes, they all have to agree.
 | |
|     const ValueTypeByHwMode &T = RC.getValueTypeNum(0);
 | |
|     assert((!T.isSimple() || T.getSimple().SimpleTy == VT) &&
 | |
|            "ValueType mismatch between register classes for this register");
 | |
| #endif
 | |
|   }
 | |
|   return VT;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   class MatcherGen {
 | |
|     const PatternToMatch &Pattern;
 | |
|     const CodeGenDAGPatterns &CGP;
 | |
| 
 | |
|     /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
 | |
|     /// out with all of the types removed.  This allows us to insert type checks
 | |
|     /// as we scan the tree.
 | |
|     TreePatternNodePtr PatWithNoTypes;
 | |
| 
 | |
|     /// VariableMap - A map from variable names ('$dst') to the recorded operand
 | |
|     /// number that they were captured as.  These are biased by 1 to make
 | |
|     /// insertion easier.
 | |
|     StringMap<unsigned> VariableMap;
 | |
| 
 | |
|     /// This maintains the recorded operand number that OPC_CheckComplexPattern
 | |
|     /// drops each sub-operand into. We don't want to insert these into
 | |
|     /// VariableMap because that leads to identity checking if they are
 | |
|     /// encountered multiple times. Biased by 1 like VariableMap for
 | |
|     /// consistency.
 | |
|     StringMap<unsigned> NamedComplexPatternOperands;
 | |
| 
 | |
|     /// NextRecordedOperandNo - As we emit opcodes to record matched values in
 | |
|     /// the RecordedNodes array, this keeps track of which slot will be next to
 | |
|     /// record into.
 | |
|     unsigned NextRecordedOperandNo;
 | |
| 
 | |
|     /// MatchedChainNodes - This maintains the position in the recorded nodes
 | |
|     /// array of all of the recorded input nodes that have chains.
 | |
|     SmallVector<unsigned, 2> MatchedChainNodes;
 | |
| 
 | |
|     /// MatchedComplexPatterns - This maintains a list of all of the
 | |
|     /// ComplexPatterns that we need to check. The second element of each pair
 | |
|     /// is the recorded operand number of the input node.
 | |
|     SmallVector<std::pair<const TreePatternNode*,
 | |
|                           unsigned>, 2> MatchedComplexPatterns;
 | |
| 
 | |
|     /// PhysRegInputs - List list has an entry for each explicitly specified
 | |
|     /// physreg input to the pattern.  The first elt is the Register node, the
 | |
|     /// second is the recorded slot number the input pattern match saved it in.
 | |
|     SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
 | |
| 
 | |
|     /// Matcher - This is the top level of the generated matcher, the result.
 | |
|     Matcher *TheMatcher;
 | |
| 
 | |
|     /// CurPredicate - As we emit matcher nodes, this points to the latest check
 | |
|     /// which should have future checks stuck into its Next position.
 | |
|     Matcher *CurPredicate;
 | |
|   public:
 | |
|     MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
 | |
| 
 | |
|     bool EmitMatcherCode(unsigned Variant);
 | |
|     void EmitResultCode();
 | |
| 
 | |
|     Matcher *GetMatcher() const { return TheMatcher; }
 | |
|   private:
 | |
|     void AddMatcher(Matcher *NewNode);
 | |
|     void InferPossibleTypes(unsigned ForceMode);
 | |
| 
 | |
|     // Matcher Generation.
 | |
|     void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes,
 | |
|                        unsigned ForceMode);
 | |
|     void EmitLeafMatchCode(const TreePatternNode *N);
 | |
|     void EmitOperatorMatchCode(const TreePatternNode *N,
 | |
|                                TreePatternNode *NodeNoTypes,
 | |
|                                unsigned ForceMode);
 | |
| 
 | |
|     /// If this is the first time a node with unique identifier Name has been
 | |
|     /// seen, record it. Otherwise, emit a check to make sure this is the same
 | |
|     /// node. Returns true if this is the first encounter.
 | |
|     bool recordUniqueNode(ArrayRef<std::string> Names);
 | |
| 
 | |
|     // Result Code Generation.
 | |
|     unsigned getNamedArgumentSlot(StringRef Name) {
 | |
|       unsigned VarMapEntry = VariableMap[Name];
 | |
|       assert(VarMapEntry != 0 &&
 | |
|              "Variable referenced but not defined and not caught earlier!");
 | |
|       return VarMapEntry-1;
 | |
|     }
 | |
| 
 | |
|     void EmitResultOperand(const TreePatternNode *N,
 | |
|                            SmallVectorImpl<unsigned> &ResultOps);
 | |
|     void EmitResultOfNamedOperand(const TreePatternNode *N,
 | |
|                                   SmallVectorImpl<unsigned> &ResultOps);
 | |
|     void EmitResultLeafAsOperand(const TreePatternNode *N,
 | |
|                                  SmallVectorImpl<unsigned> &ResultOps);
 | |
|     void EmitResultInstructionAsOperand(const TreePatternNode *N,
 | |
|                                         SmallVectorImpl<unsigned> &ResultOps);
 | |
|     void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
 | |
|                                         SmallVectorImpl<unsigned> &ResultOps);
 | |
|     };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| MatcherGen::MatcherGen(const PatternToMatch &pattern,
 | |
|                        const CodeGenDAGPatterns &cgp)
 | |
| : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
 | |
|   TheMatcher(nullptr), CurPredicate(nullptr) {
 | |
|   // We need to produce the matcher tree for the patterns source pattern.  To do
 | |
|   // this we need to match the structure as well as the types.  To do the type
 | |
|   // matching, we want to figure out the fewest number of type checks we need to
 | |
|   // emit.  For example, if there is only one integer type supported by a
 | |
|   // target, there should be no type comparisons at all for integer patterns!
 | |
|   //
 | |
|   // To figure out the fewest number of type checks needed, clone the pattern,
 | |
|   // remove the types, then perform type inference on the pattern as a whole.
 | |
|   // If there are unresolved types, emit an explicit check for those types,
 | |
|   // apply the type to the tree, then rerun type inference.  Iterate until all
 | |
|   // types are resolved.
 | |
|   //
 | |
|   PatWithNoTypes = Pattern.getSrcPattern()->clone();
 | |
|   PatWithNoTypes->RemoveAllTypes();
 | |
| 
 | |
|   // If there are types that are manifestly known, infer them.
 | |
|   InferPossibleTypes(Pattern.ForceMode);
 | |
| }
 | |
| 
 | |
| /// InferPossibleTypes - As we emit the pattern, we end up generating type
 | |
| /// checks and applying them to the 'PatWithNoTypes' tree.  As we do this, we
 | |
| /// want to propagate implied types as far throughout the tree as possible so
 | |
| /// that we avoid doing redundant type checks.  This does the type propagation.
 | |
| void MatcherGen::InferPossibleTypes(unsigned ForceMode) {
 | |
|   // TP - Get *SOME* tree pattern, we don't care which.  It is only used for
 | |
|   // diagnostics, which we know are impossible at this point.
 | |
|   TreePattern &TP = *CGP.pf_begin()->second;
 | |
|   TP.getInfer().CodeGen = true;
 | |
|   TP.getInfer().ForceMode = ForceMode;
 | |
| 
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange)
 | |
|     MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
 | |
|                                               true/*Ignore reg constraints*/);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddMatcher - Add a matcher node to the current graph we're building.
 | |
| void MatcherGen::AddMatcher(Matcher *NewNode) {
 | |
|   if (CurPredicate)
 | |
|     CurPredicate->setNext(NewNode);
 | |
|   else
 | |
|     TheMatcher = NewNode;
 | |
|   CurPredicate = NewNode;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pattern Match Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// EmitLeafMatchCode - Generate matching code for leaf nodes.
 | |
| void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
 | |
|   assert(N->isLeaf() && "Not a leaf?");
 | |
| 
 | |
|   // Direct match against an integer constant.
 | |
|   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
 | |
|     // If this is the root of the dag we're matching, we emit a redundant opcode
 | |
|     // check to ensure that this gets folded into the normal top-level
 | |
|     // OpcodeSwitch.
 | |
|     if (N == Pattern.getSrcPattern()) {
 | |
|       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
 | |
|       AddMatcher(new CheckOpcodeMatcher(NI));
 | |
|     }
 | |
| 
 | |
|     return AddMatcher(new CheckIntegerMatcher(II->getValue()));
 | |
|   }
 | |
| 
 | |
|   // An UnsetInit represents a named node without any constraints.
 | |
|   if (isa<UnsetInit>(N->getLeafValue())) {
 | |
|     assert(N->hasName() && "Unnamed ? leaf");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
 | |
|   if (!DI) {
 | |
|     errs() << "Unknown leaf kind: " << *N << "\n";
 | |
|     abort();
 | |
|   }
 | |
| 
 | |
|   Record *LeafRec = DI->getDef();
 | |
| 
 | |
|   // A ValueType leaf node can represent a register when named, or itself when
 | |
|   // unnamed.
 | |
|   if (LeafRec->isSubClassOf("ValueType")) {
 | |
|     // A named ValueType leaf always matches: (add i32:$a, i32:$b).
 | |
|     if (N->hasName())
 | |
|       return;
 | |
|     // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
 | |
|     return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
 | |
|   }
 | |
| 
 | |
|   if (// Handle register references.  Nothing to do here, they always match.
 | |
|       LeafRec->isSubClassOf("RegisterClass") ||
 | |
|       LeafRec->isSubClassOf("RegisterOperand") ||
 | |
|       LeafRec->isSubClassOf("PointerLikeRegClass") ||
 | |
|       LeafRec->isSubClassOf("SubRegIndex") ||
 | |
|       // Place holder for SRCVALUE nodes. Nothing to do here.
 | |
|       LeafRec->getName() == "srcvalue")
 | |
|     return;
 | |
| 
 | |
|   // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
 | |
|   // record the register
 | |
|   if (LeafRec->isSubClassOf("Register")) {
 | |
|     AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
 | |
|                                  NextRecordedOperandNo));
 | |
|     PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LeafRec->isSubClassOf("CondCode"))
 | |
|     return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
 | |
| 
 | |
|   if (LeafRec->isSubClassOf("ComplexPattern")) {
 | |
|     // We can't model ComplexPattern uses that don't have their name taken yet.
 | |
|     // The OPC_CheckComplexPattern operation implicitly records the results.
 | |
|     if (N->getName().empty()) {
 | |
|       std::string S;
 | |
|       raw_string_ostream OS(S);
 | |
|       OS << "We expect complex pattern uses to have names: " << *N;
 | |
|       PrintFatalError(OS.str());
 | |
|     }
 | |
| 
 | |
|     // Remember this ComplexPattern so that we can emit it after all the other
 | |
|     // structural matches are done.
 | |
|     unsigned InputOperand = VariableMap[N->getName()] - 1;
 | |
|     MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (LeafRec->getName() == "immAllOnesV") {
 | |
|     // If this is the root of the dag we're matching, we emit a redundant opcode
 | |
|     // check to ensure that this gets folded into the normal top-level
 | |
|     // OpcodeSwitch.
 | |
|     if (N == Pattern.getSrcPattern()) {
 | |
|       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("build_vector"));
 | |
|       AddMatcher(new CheckOpcodeMatcher(NI));
 | |
|     }
 | |
|     return AddMatcher(new CheckImmAllOnesVMatcher());
 | |
|   }
 | |
|   if (LeafRec->getName() == "immAllZerosV") {
 | |
|     // If this is the root of the dag we're matching, we emit a redundant opcode
 | |
|     // check to ensure that this gets folded into the normal top-level
 | |
|     // OpcodeSwitch.
 | |
|     if (N == Pattern.getSrcPattern()) {
 | |
|       const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("build_vector"));
 | |
|       AddMatcher(new CheckOpcodeMatcher(NI));
 | |
|     }
 | |
|     return AddMatcher(new CheckImmAllZerosVMatcher());
 | |
|   }
 | |
| 
 | |
|   errs() << "Unknown leaf kind: " << *N << "\n";
 | |
|   abort();
 | |
| }
 | |
| 
 | |
| void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
 | |
|                                        TreePatternNode *NodeNoTypes,
 | |
|                                        unsigned ForceMode) {
 | |
|   assert(!N->isLeaf() && "Not an operator?");
 | |
| 
 | |
|   if (N->getOperator()->isSubClassOf("ComplexPattern")) {
 | |
|     // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
 | |
|     // "MY_PAT:op1:op2". We should already have validated that the uses are
 | |
|     // consistent.
 | |
|     std::string PatternName = std::string(N->getOperator()->getName());
 | |
|     for (unsigned i = 0; i < N->getNumChildren(); ++i) {
 | |
|       PatternName += ":";
 | |
|       PatternName += N->getChild(i)->getName();
 | |
|     }
 | |
| 
 | |
|     if (recordUniqueNode(PatternName)) {
 | |
|       auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
 | |
|       MatchedComplexPatterns.push_back(NodeAndOpNum);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|   // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
 | |
|   // a constant without a predicate fn that has more than one bit set, handle
 | |
|   // this as a special case.  This is usually for targets that have special
 | |
|   // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
 | |
|   // handling stuff).  Using these instructions is often far more efficient
 | |
|   // than materializing the constant.  Unfortunately, both the instcombiner
 | |
|   // and the dag combiner can often infer that bits are dead, and thus drop
 | |
|   // them from the mask in the dag.  For example, it might turn 'AND X, 255'
 | |
|   // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
 | |
|   // to handle this.
 | |
|   if ((N->getOperator()->getName() == "and" ||
 | |
|        N->getOperator()->getName() == "or") &&
 | |
|       N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateCalls().empty() &&
 | |
|       N->getPredicateCalls().empty()) {
 | |
|     if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
 | |
|       if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
 | |
|         // If this is at the root of the pattern, we emit a redundant
 | |
|         // CheckOpcode so that the following checks get factored properly under
 | |
|         // a single opcode check.
 | |
|         if (N == Pattern.getSrcPattern())
 | |
|           AddMatcher(new CheckOpcodeMatcher(CInfo));
 | |
| 
 | |
|         // Emit the CheckAndImm/CheckOrImm node.
 | |
|         if (N->getOperator()->getName() == "and")
 | |
|           AddMatcher(new CheckAndImmMatcher(II->getValue()));
 | |
|         else
 | |
|           AddMatcher(new CheckOrImmMatcher(II->getValue()));
 | |
| 
 | |
|         // Match the LHS of the AND as appropriate.
 | |
|         AddMatcher(new MoveChildMatcher(0));
 | |
|         EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0), ForceMode);
 | |
|         AddMatcher(new MoveParentMatcher());
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check that the current opcode lines up.
 | |
|   AddMatcher(new CheckOpcodeMatcher(CInfo));
 | |
| 
 | |
|   // If this node has memory references (i.e. is a load or store), tell the
 | |
|   // interpreter to capture them in the memref array.
 | |
|   if (N->NodeHasProperty(SDNPMemOperand, CGP))
 | |
|     AddMatcher(new RecordMemRefMatcher());
 | |
| 
 | |
|   // If this node has a chain, then the chain is operand #0 is the SDNode, and
 | |
|   // the child numbers of the node are all offset by one.
 | |
|   unsigned OpNo = 0;
 | |
|   if (N->NodeHasProperty(SDNPHasChain, CGP)) {
 | |
|     // Record the node and remember it in our chained nodes list.
 | |
|     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
 | |
|                                          "' chained node",
 | |
|                                  NextRecordedOperandNo));
 | |
|     // Remember all of the input chains our pattern will match.
 | |
|     MatchedChainNodes.push_back(NextRecordedOperandNo++);
 | |
| 
 | |
|     // Don't look at the input chain when matching the tree pattern to the
 | |
|     // SDNode.
 | |
|     OpNo = 1;
 | |
| 
 | |
|     // If this node is not the root and the subtree underneath it produces a
 | |
|     // chain, then the result of matching the node is also produce a chain.
 | |
|     // Beyond that, this means that we're also folding (at least) the root node
 | |
|     // into the node that produce the chain (for example, matching
 | |
|     // "(add reg, (load ptr))" as a add_with_memory on X86).  This is
 | |
|     // problematic, if the 'reg' node also uses the load (say, its chain).
 | |
|     // Graphically:
 | |
|     //
 | |
|     //         [LD]
 | |
|     //         ^  ^
 | |
|     //         |  \                              DAG's like cheese.
 | |
|     //        /    |
 | |
|     //       /    [YY]
 | |
|     //       |     ^
 | |
|     //      [XX]--/
 | |
|     //
 | |
|     // It would be invalid to fold XX and LD.  In this case, folding the two
 | |
|     // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
 | |
|     // To prevent this, we emit a dynamic check for legality before allowing
 | |
|     // this to be folded.
 | |
|     //
 | |
|     const TreePatternNode *Root = Pattern.getSrcPattern();
 | |
|     if (N != Root) {                             // Not the root of the pattern.
 | |
|       // If there is a node between the root and this node, then we definitely
 | |
|       // need to emit the check.
 | |
|       bool NeedCheck = !Root->hasChild(N);
 | |
| 
 | |
|       // If it *is* an immediate child of the root, we can still need a check if
 | |
|       // the root SDNode has multiple inputs.  For us, this means that it is an
 | |
|       // intrinsic, has multiple operands, or has other inputs like chain or
 | |
|       // glue).
 | |
|       if (!NeedCheck) {
 | |
|         const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
 | |
|         NeedCheck =
 | |
|           Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
 | |
|           Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
 | |
|           Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
 | |
|           PInfo.getNumOperands() > 1 ||
 | |
|           PInfo.hasProperty(SDNPHasChain) ||
 | |
|           PInfo.hasProperty(SDNPInGlue) ||
 | |
|           PInfo.hasProperty(SDNPOptInGlue);
 | |
|       }
 | |
| 
 | |
|       if (NeedCheck)
 | |
|         AddMatcher(new CheckFoldableChainNodeMatcher());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this node has an output glue and isn't the root, remember it.
 | |
|   if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
 | |
|       N != Pattern.getSrcPattern()) {
 | |
|     // TODO: This redundantly records nodes with both glues and chains.
 | |
| 
 | |
|     // Record the node and remember it in our chained nodes list.
 | |
|     AddMatcher(new RecordMatcher("'" + N->getOperator()->getName().str() +
 | |
|                                          "' glue output node",
 | |
|                                  NextRecordedOperandNo));
 | |
|   }
 | |
| 
 | |
|   // If this node is known to have an input glue or if it *might* have an input
 | |
|   // glue, capture it as the glue input of the pattern.
 | |
|   if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
 | |
|       N->NodeHasProperty(SDNPInGlue, CGP))
 | |
|     AddMatcher(new CaptureGlueInputMatcher());
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
 | |
|     // Get the code suitable for matching this child.  Move to the child, check
 | |
|     // it then move back to the parent.
 | |
|     AddMatcher(new MoveChildMatcher(OpNo));
 | |
|     EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i), ForceMode);
 | |
|     AddMatcher(new MoveParentMatcher());
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool MatcherGen::recordUniqueNode(ArrayRef<std::string> Names) {
 | |
|   unsigned Entry = 0;
 | |
|   for (const std::string &Name : Names) {
 | |
|     unsigned &VarMapEntry = VariableMap[Name];
 | |
|     if (!Entry)
 | |
|       Entry = VarMapEntry;
 | |
|     assert(Entry == VarMapEntry);
 | |
|   }
 | |
| 
 | |
|   bool NewRecord = false;
 | |
|   if (Entry == 0) {
 | |
|     // If it is a named node, we must emit a 'Record' opcode.
 | |
|     std::string WhatFor;
 | |
|     for (const std::string &Name : Names) {
 | |
|       if (!WhatFor.empty())
 | |
|         WhatFor += ',';
 | |
|       WhatFor += "$" + Name;
 | |
|     }
 | |
|     AddMatcher(new RecordMatcher(WhatFor, NextRecordedOperandNo));
 | |
|     Entry = ++NextRecordedOperandNo;
 | |
|     NewRecord = true;
 | |
|   } else {
 | |
|     // If we get here, this is a second reference to a specific name.  Since
 | |
|     // we already have checked that the first reference is valid, we don't
 | |
|     // have to recursively match it, just check that it's the same as the
 | |
|     // previously named thing.
 | |
|     AddMatcher(new CheckSameMatcher(Entry-1));
 | |
|   }
 | |
| 
 | |
|   for (const std::string &Name : Names)
 | |
|     VariableMap[Name] = Entry;
 | |
| 
 | |
|   return NewRecord;
 | |
| }
 | |
| 
 | |
| void MatcherGen::EmitMatchCode(const TreePatternNode *N,
 | |
|                                TreePatternNode *NodeNoTypes,
 | |
|                                unsigned ForceMode) {
 | |
|   // If N and NodeNoTypes don't agree on a type, then this is a case where we
 | |
|   // need to do a type check.  Emit the check, apply the type to NodeNoTypes and
 | |
|   // reinfer any correlated types.
 | |
|   SmallVector<unsigned, 2> ResultsToTypeCheck;
 | |
| 
 | |
|   for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
 | |
|     if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
 | |
|     NodeNoTypes->setType(i, N->getExtType(i));
 | |
|     InferPossibleTypes(ForceMode);
 | |
|     ResultsToTypeCheck.push_back(i);
 | |
|   }
 | |
| 
 | |
|   // If this node has a name associated with it, capture it in VariableMap. If
 | |
|   // we already saw this in the pattern, emit code to verify dagness.
 | |
|   SmallVector<std::string, 4> Names;
 | |
|   if (!N->getName().empty())
 | |
|     Names.push_back(N->getName());
 | |
| 
 | |
|   for (const ScopedName &Name : N->getNamesAsPredicateArg()) {
 | |
|     Names.push_back(("pred:" + Twine(Name.getScope()) + ":" + Name.getIdentifier()).str());
 | |
|   }
 | |
| 
 | |
|   if (!Names.empty()) {
 | |
|     if (!recordUniqueNode(Names))
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   if (N->isLeaf())
 | |
|     EmitLeafMatchCode(N);
 | |
|   else
 | |
|     EmitOperatorMatchCode(N, NodeNoTypes, ForceMode);
 | |
| 
 | |
|   // If there are node predicates for this node, generate their checks.
 | |
|   for (unsigned i = 0, e = N->getPredicateCalls().size(); i != e; ++i) {
 | |
|     const TreePredicateCall &Pred = N->getPredicateCalls()[i];
 | |
|     SmallVector<unsigned, 4> Operands;
 | |
|     if (Pred.Fn.usesOperands()) {
 | |
|       TreePattern *TP = Pred.Fn.getOrigPatFragRecord();
 | |
|       for (unsigned i = 0; i < TP->getNumArgs(); ++i) {
 | |
|         std::string Name =
 | |
|             ("pred:" + Twine(Pred.Scope) + ":" + TP->getArgName(i)).str();
 | |
|         Operands.push_back(getNamedArgumentSlot(Name));
 | |
|       }
 | |
|     }
 | |
|     AddMatcher(new CheckPredicateMatcher(Pred.Fn, Operands));
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
 | |
|     AddMatcher(new CheckTypeMatcher(N->getSimpleType(ResultsToTypeCheck[i]),
 | |
|                                     ResultsToTypeCheck[i]));
 | |
| }
 | |
| 
 | |
| /// EmitMatcherCode - Generate the code that matches the predicate of this
 | |
| /// pattern for the specified Variant.  If the variant is invalid this returns
 | |
| /// true and does not generate code, if it is valid, it returns false.
 | |
| bool MatcherGen::EmitMatcherCode(unsigned Variant) {
 | |
|   // If the root of the pattern is a ComplexPattern and if it is specified to
 | |
|   // match some number of root opcodes, these are considered to be our variants.
 | |
|   // Depending on which variant we're generating code for, emit the root opcode
 | |
|   // check.
 | |
|   if (const ComplexPattern *CP =
 | |
|                    Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
 | |
|     const std::vector<Record*> &OpNodes = CP->getRootNodes();
 | |
|     assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
 | |
|     if (Variant >= OpNodes.size()) return true;
 | |
| 
 | |
|     AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
 | |
|   } else {
 | |
|     if (Variant != 0) return true;
 | |
|   }
 | |
| 
 | |
|   // Emit the matcher for the pattern structure and types.
 | |
|   EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes.get(),
 | |
|                 Pattern.ForceMode);
 | |
| 
 | |
|   // If the pattern has a predicate on it (e.g. only enabled when a subtarget
 | |
|   // feature is around, do the check).
 | |
|   if (!Pattern.getPredicateCheck().empty())
 | |
|     AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
 | |
| 
 | |
|   // Now that we've completed the structural type match, emit any ComplexPattern
 | |
|   // checks (e.g. addrmode matches).  We emit this after the structural match
 | |
|   // because they are generally more expensive to evaluate and more difficult to
 | |
|   // factor.
 | |
|   for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
 | |
|     auto N = MatchedComplexPatterns[i].first;
 | |
| 
 | |
|     // Remember where the results of this match get stuck.
 | |
|     if (N->isLeaf()) {
 | |
|       NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
 | |
|     } else {
 | |
|       unsigned CurOp = NextRecordedOperandNo;
 | |
|       for (unsigned i = 0; i < N->getNumChildren(); ++i) {
 | |
|         NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
 | |
|         CurOp += N->getChild(i)->getNumMIResults(CGP);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Get the slot we recorded the value in from the name on the node.
 | |
|     unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
 | |
| 
 | |
|     const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
 | |
| 
 | |
|     // Emit a CheckComplexPat operation, which does the match (aborting if it
 | |
|     // fails) and pushes the matched operands onto the recorded nodes list.
 | |
|     AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
 | |
|                                           N->getName(), NextRecordedOperandNo));
 | |
| 
 | |
|     // Record the right number of operands.
 | |
|     NextRecordedOperandNo += CP.getNumOperands();
 | |
|     if (CP.hasProperty(SDNPHasChain)) {
 | |
|       // If the complex pattern has a chain, then we need to keep track of the
 | |
|       // fact that we just recorded a chain input.  The chain input will be
 | |
|       // matched as the last operand of the predicate if it was successful.
 | |
|       ++NextRecordedOperandNo; // Chained node operand.
 | |
| 
 | |
|       // It is the last operand recorded.
 | |
|       assert(NextRecordedOperandNo > 1 &&
 | |
|              "Should have recorded input/result chains at least!");
 | |
|       MatchedChainNodes.push_back(NextRecordedOperandNo-1);
 | |
|     }
 | |
| 
 | |
|     // TODO: Complex patterns can't have output glues, if they did, we'd want
 | |
|     // to record them.
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Node Result Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
 | |
|                                           SmallVectorImpl<unsigned> &ResultOps){
 | |
|   assert(!N->getName().empty() && "Operand not named!");
 | |
| 
 | |
|   if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
 | |
|     // Complex operands have already been completely selected, just find the
 | |
|     // right slot ant add the arguments directly.
 | |
|     for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
 | |
|       ResultOps.push_back(SlotNo - 1 + i);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned SlotNo = getNamedArgumentSlot(N->getName());
 | |
| 
 | |
|   // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
 | |
|   // version of the immediate so that it doesn't get selected due to some other
 | |
|   // node use.
 | |
|   if (!N->isLeaf()) {
 | |
|     StringRef OperatorName = N->getOperator()->getName();
 | |
|     if (OperatorName == "imm" || OperatorName == "fpimm") {
 | |
|       AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
 | |
|       ResultOps.push_back(NextRecordedOperandNo++);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
 | |
|     ResultOps.push_back(SlotNo + i);
 | |
| }
 | |
| 
 | |
| void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
 | |
|                                          SmallVectorImpl<unsigned> &ResultOps) {
 | |
|   assert(N->isLeaf() && "Must be a leaf");
 | |
| 
 | |
|   if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
 | |
|     AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getSimpleType(0)));
 | |
|     ResultOps.push_back(NextRecordedOperandNo++);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this is an explicit register reference, handle it.
 | |
|   if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
 | |
|     Record *Def = DI->getDef();
 | |
|     if (Def->isSubClassOf("Register")) {
 | |
|       const CodeGenRegister *Reg =
 | |
|         CGP.getTargetInfo().getRegBank().getReg(Def);
 | |
|       AddMatcher(new EmitRegisterMatcher(Reg, N->getSimpleType(0)));
 | |
|       ResultOps.push_back(NextRecordedOperandNo++);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (Def->getName() == "zero_reg") {
 | |
|       AddMatcher(new EmitRegisterMatcher(nullptr, N->getSimpleType(0)));
 | |
|       ResultOps.push_back(NextRecordedOperandNo++);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (Def->getName() == "undef_tied_input") {
 | |
|       std::array<MVT::SimpleValueType, 1> ResultVTs = {{ N->getSimpleType(0) }};
 | |
|       std::array<unsigned, 0> InstOps;
 | |
|       auto IDOperandNo = NextRecordedOperandNo++;
 | |
|       AddMatcher(new EmitNodeMatcher("TargetOpcode::IMPLICIT_DEF",
 | |
|                                      ResultVTs, InstOps, false, false, false,
 | |
|                                      false, -1, IDOperandNo));
 | |
|       ResultOps.push_back(IDOperandNo);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Handle a reference to a register class. This is used
 | |
|     // in COPY_TO_SUBREG instructions.
 | |
|     if (Def->isSubClassOf("RegisterOperand"))
 | |
|       Def = Def->getValueAsDef("RegClass");
 | |
|     if (Def->isSubClassOf("RegisterClass")) {
 | |
|       std::string Value = getQualifiedName(Def) + "RegClassID";
 | |
|       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
 | |
|       ResultOps.push_back(NextRecordedOperandNo++);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Handle a subregister index. This is used for INSERT_SUBREG etc.
 | |
|     if (Def->isSubClassOf("SubRegIndex")) {
 | |
|       const CodeGenRegBank &RB = CGP.getTargetInfo().getRegBank();
 | |
|       // If we have more than 127 subreg indices the encoding can overflow
 | |
|       // 7 bit and we cannot use StringInteger.
 | |
|       if (RB.getSubRegIndices().size() > 127) {
 | |
|         const CodeGenSubRegIndex *I = RB.findSubRegIdx(Def);
 | |
|         assert(I && "Cannot find subreg index by name!");
 | |
|         if (I->EnumValue > 127) {
 | |
|           AddMatcher(new EmitIntegerMatcher(I->EnumValue, MVT::i32));
 | |
|           ResultOps.push_back(NextRecordedOperandNo++);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       std::string Value = getQualifiedName(Def);
 | |
|       AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
 | |
|       ResultOps.push_back(NextRecordedOperandNo++);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   errs() << "unhandled leaf node: \n";
 | |
|   N->dump();
 | |
| }
 | |
| 
 | |
| static bool
 | |
| mayInstNodeLoadOrStore(const TreePatternNode *N,
 | |
|                        const CodeGenDAGPatterns &CGP) {
 | |
|   Record *Op = N->getOperator();
 | |
|   const CodeGenTarget &CGT = CGP.getTargetInfo();
 | |
|   CodeGenInstruction &II = CGT.getInstruction(Op);
 | |
|   return II.mayLoad || II.mayStore;
 | |
| }
 | |
| 
 | |
| static unsigned
 | |
| numNodesThatMayLoadOrStore(const TreePatternNode *N,
 | |
|                            const CodeGenDAGPatterns &CGP) {
 | |
|   if (N->isLeaf())
 | |
|     return 0;
 | |
| 
 | |
|   Record *OpRec = N->getOperator();
 | |
|   if (!OpRec->isSubClassOf("Instruction"))
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Count = 0;
 | |
|   if (mayInstNodeLoadOrStore(N, CGP))
 | |
|     ++Count;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
 | |
| 
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| void MatcherGen::
 | |
| EmitResultInstructionAsOperand(const TreePatternNode *N,
 | |
|                                SmallVectorImpl<unsigned> &OutputOps) {
 | |
|   Record *Op = N->getOperator();
 | |
|   const CodeGenTarget &CGT = CGP.getTargetInfo();
 | |
|   CodeGenInstruction &II = CGT.getInstruction(Op);
 | |
|   const DAGInstruction &Inst = CGP.getInstruction(Op);
 | |
| 
 | |
|   bool isRoot = N == Pattern.getDstPattern();
 | |
| 
 | |
|   // TreeHasOutGlue - True if this tree has glue.
 | |
|   bool TreeHasInGlue = false, TreeHasOutGlue = false;
 | |
|   if (isRoot) {
 | |
|     const TreePatternNode *SrcPat = Pattern.getSrcPattern();
 | |
|     TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
 | |
|                     SrcPat->TreeHasProperty(SDNPInGlue, CGP);
 | |
| 
 | |
|     // FIXME2: this is checking the entire pattern, not just the node in
 | |
|     // question, doing this just for the root seems like a total hack.
 | |
|     TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
 | |
|   }
 | |
| 
 | |
|   // NumResults - This is the number of results produced by the instruction in
 | |
|   // the "outs" list.
 | |
|   unsigned NumResults = Inst.getNumResults();
 | |
| 
 | |
|   // Number of operands we know the output instruction must have. If it is
 | |
|   // variadic, we could have more operands.
 | |
|   unsigned NumFixedOperands = II.Operands.size();
 | |
| 
 | |
|   SmallVector<unsigned, 8> InstOps;
 | |
| 
 | |
|   // Loop over all of the fixed operands of the instruction pattern, emitting
 | |
|   // code to fill them all in. The node 'N' usually has number children equal to
 | |
|   // the number of input operands of the instruction.  However, in cases where
 | |
|   // there are predicate operands for an instruction, we need to fill in the
 | |
|   // 'execute always' values. Match up the node operands to the instruction
 | |
|   // operands to do this.
 | |
|   unsigned ChildNo = 0;
 | |
| 
 | |
|   // Similarly to the code in TreePatternNode::ApplyTypeConstraints, count the
 | |
|   // number of operands at the end of the list which have default values.
 | |
|   // Those can come from the pattern if it provides enough arguments, or be
 | |
|   // filled in with the default if the pattern hasn't provided them. But any
 | |
|   // operand with a default value _before_ the last mandatory one will be
 | |
|   // filled in with their defaults unconditionally.
 | |
|   unsigned NonOverridableOperands = NumFixedOperands;
 | |
|   while (NonOverridableOperands > NumResults &&
 | |
|          CGP.operandHasDefault(II.Operands[NonOverridableOperands-1].Rec))
 | |
|     --NonOverridableOperands;
 | |
| 
 | |
|   for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
 | |
|        InstOpNo != e; ++InstOpNo) {
 | |
|     // Determine what to emit for this operand.
 | |
|     Record *OperandNode = II.Operands[InstOpNo].Rec;
 | |
|     if (CGP.operandHasDefault(OperandNode) &&
 | |
|         (InstOpNo < NonOverridableOperands || ChildNo >= N->getNumChildren())) {
 | |
|       // This is a predicate or optional def operand which the pattern has not
 | |
|       // overridden, or which we aren't letting it override; emit the 'default
 | |
|       // ops' operands.
 | |
|       const DAGDefaultOperand &DefaultOp
 | |
|         = CGP.getDefaultOperand(OperandNode);
 | |
|       for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
 | |
|         EmitResultOperand(DefaultOp.DefaultOps[i].get(), InstOps);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise this is a normal operand or a predicate operand without
 | |
|     // 'execute always'; emit it.
 | |
| 
 | |
|     // For operands with multiple sub-operands we may need to emit
 | |
|     // multiple child patterns to cover them all.  However, ComplexPattern
 | |
|     // children may themselves emit multiple MI operands.
 | |
|     unsigned NumSubOps = 1;
 | |
|     if (OperandNode->isSubClassOf("Operand")) {
 | |
|       DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
 | |
|       if (unsigned NumArgs = MIOpInfo->getNumArgs())
 | |
|         NumSubOps = NumArgs;
 | |
|     }
 | |
| 
 | |
|     unsigned FinalNumOps = InstOps.size() + NumSubOps;
 | |
|     while (InstOps.size() < FinalNumOps) {
 | |
|       const TreePatternNode *Child = N->getChild(ChildNo);
 | |
|       unsigned BeforeAddingNumOps = InstOps.size();
 | |
|       EmitResultOperand(Child, InstOps);
 | |
|       assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
 | |
| 
 | |
|       // If the operand is an instruction and it produced multiple results, just
 | |
|       // take the first one.
 | |
|       if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
 | |
|         InstOps.resize(BeforeAddingNumOps+1);
 | |
| 
 | |
|       ++ChildNo;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
 | |
|   // expand suboperands, use default operands, or other features determined from
 | |
|   // the CodeGenInstruction after the fixed operands, which were handled
 | |
|   // above. Emit the remaining instructions implicitly added by the use for
 | |
|   // variable_ops.
 | |
|   if (II.Operands.isVariadic) {
 | |
|     for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
 | |
|       EmitResultOperand(N->getChild(I), InstOps);
 | |
|   }
 | |
| 
 | |
|   // If this node has input glue or explicitly specified input physregs, we
 | |
|   // need to add chained and glued copyfromreg nodes and materialize the glue
 | |
|   // input.
 | |
|   if (isRoot && !PhysRegInputs.empty()) {
 | |
|     // Emit all of the CopyToReg nodes for the input physical registers.  These
 | |
|     // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
 | |
|     for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) {
 | |
|       const CodeGenRegister *Reg =
 | |
|         CGP.getTargetInfo().getRegBank().getReg(PhysRegInputs[i].first);
 | |
|       AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
 | |
|                                           Reg));
 | |
|     }
 | |
| 
 | |
|     // Even if the node has no other glue inputs, the resultant node must be
 | |
|     // glued to the CopyFromReg nodes we just generated.
 | |
|     TreeHasInGlue = true;
 | |
|   }
 | |
| 
 | |
|   // Result order: node results, chain, glue
 | |
| 
 | |
|   // Determine the result types.
 | |
|   SmallVector<MVT::SimpleValueType, 4> ResultVTs;
 | |
|   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
 | |
|     ResultVTs.push_back(N->getSimpleType(i));
 | |
| 
 | |
|   // If this is the root instruction of a pattern that has physical registers in
 | |
|   // its result pattern, add output VTs for them.  For example, X86 has:
 | |
|   //   (set AL, (mul ...))
 | |
|   // This also handles implicit results like:
 | |
|   //   (implicit EFLAGS)
 | |
|   if (isRoot && !Pattern.getDstRegs().empty()) {
 | |
|     // If the root came from an implicit def in the instruction handling stuff,
 | |
|     // don't re-add it.
 | |
|     Record *HandledReg = nullptr;
 | |
|     if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
 | |
|       HandledReg = II.ImplicitDefs[0];
 | |
| 
 | |
|     for (Record *Reg : Pattern.getDstRegs()) {
 | |
|       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
 | |
|       ResultVTs.push_back(getRegisterValueType(Reg, CGT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is the root of the pattern and the pattern we're matching includes
 | |
|   // a node that is variadic, mark the generated node as variadic so that it
 | |
|   // gets the excess operands from the input DAG.
 | |
|   int NumFixedArityOperands = -1;
 | |
|   if (isRoot &&
 | |
|       Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
 | |
|     NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
 | |
| 
 | |
|   // If this is the root node and multiple matched nodes in the input pattern
 | |
|   // have MemRefs in them, have the interpreter collect them and plop them onto
 | |
|   // this node. If there is just one node with MemRefs, leave them on that node
 | |
|   // even if it is not the root.
 | |
|   //
 | |
|   // FIXME3: This is actively incorrect for result patterns with multiple
 | |
|   // memory-referencing instructions.
 | |
|   bool PatternHasMemOperands =
 | |
|     Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
 | |
| 
 | |
|   bool NodeHasMemRefs = false;
 | |
|   if (PatternHasMemOperands) {
 | |
|     unsigned NumNodesThatLoadOrStore =
 | |
|       numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
 | |
|     bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
 | |
|                                    NumNodesThatLoadOrStore == 1;
 | |
|     NodeHasMemRefs =
 | |
|       NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
 | |
|                                              NumNodesThatLoadOrStore != 1));
 | |
|   }
 | |
| 
 | |
|   // Determine whether we need to attach a chain to this node.
 | |
|   bool NodeHasChain = false;
 | |
|   if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)) {
 | |
|     // For some instructions, we were able to infer from the pattern whether
 | |
|     // they should have a chain.  Otherwise, attach the chain to the root.
 | |
|     //
 | |
|     // FIXME2: This is extremely dubious for several reasons, not the least of
 | |
|     // which it gives special status to instructions with patterns that Pat<>
 | |
|     // nodes can't duplicate.
 | |
|     if (II.hasChain_Inferred)
 | |
|       NodeHasChain = II.hasChain;
 | |
|     else
 | |
|       NodeHasChain = isRoot;
 | |
|     // Instructions which load and store from memory should have a chain,
 | |
|     // regardless of whether they happen to have a pattern saying so.
 | |
|     if (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
 | |
|         II.hasSideEffects)
 | |
|       NodeHasChain = true;
 | |
|   }
 | |
| 
 | |
|   assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
 | |
|          "Node has no result");
 | |
| 
 | |
|   AddMatcher(new EmitNodeMatcher(II.Namespace.str()+"::"+II.TheDef->getName().str(),
 | |
|                                  ResultVTs, InstOps,
 | |
|                                  NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
 | |
|                                  NodeHasMemRefs, NumFixedArityOperands,
 | |
|                                  NextRecordedOperandNo));
 | |
| 
 | |
|   // The non-chain and non-glue results of the newly emitted node get recorded.
 | |
|   for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
 | |
|     if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
 | |
|     OutputOps.push_back(NextRecordedOperandNo++);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MatcherGen::
 | |
| EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
 | |
|                                SmallVectorImpl<unsigned> &ResultOps) {
 | |
|   assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
 | |
| 
 | |
|   // Emit the operand.
 | |
|   SmallVector<unsigned, 8> InputOps;
 | |
| 
 | |
|   // FIXME2: Could easily generalize this to support multiple inputs and outputs
 | |
|   // to the SDNodeXForm.  For now we just support one input and one output like
 | |
|   // the old instruction selector.
 | |
|   assert(N->getNumChildren() == 1);
 | |
|   EmitResultOperand(N->getChild(0), InputOps);
 | |
| 
 | |
|   // The input currently must have produced exactly one result.
 | |
|   assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
 | |
| 
 | |
|   AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
 | |
|   ResultOps.push_back(NextRecordedOperandNo++);
 | |
| }
 | |
| 
 | |
| void MatcherGen::EmitResultOperand(const TreePatternNode *N,
 | |
|                                    SmallVectorImpl<unsigned> &ResultOps) {
 | |
|   // This is something selected from the pattern we matched.
 | |
|   if (!N->getName().empty())
 | |
|     return EmitResultOfNamedOperand(N, ResultOps);
 | |
| 
 | |
|   if (N->isLeaf())
 | |
|     return EmitResultLeafAsOperand(N, ResultOps);
 | |
| 
 | |
|   Record *OpRec = N->getOperator();
 | |
|   if (OpRec->isSubClassOf("Instruction"))
 | |
|     return EmitResultInstructionAsOperand(N, ResultOps);
 | |
|   if (OpRec->isSubClassOf("SDNodeXForm"))
 | |
|     return EmitResultSDNodeXFormAsOperand(N, ResultOps);
 | |
|   errs() << "Unknown result node to emit code for: " << *N << '\n';
 | |
|   PrintFatalError("Unknown node in result pattern!");
 | |
| }
 | |
| 
 | |
| void MatcherGen::EmitResultCode() {
 | |
|   // Patterns that match nodes with (potentially multiple) chain inputs have to
 | |
|   // merge them together into a token factor.  This informs the generated code
 | |
|   // what all the chained nodes are.
 | |
|   if (!MatchedChainNodes.empty())
 | |
|     AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
 | |
| 
 | |
|   // Codegen the root of the result pattern, capturing the resulting values.
 | |
|   SmallVector<unsigned, 8> Ops;
 | |
|   EmitResultOperand(Pattern.getDstPattern(), Ops);
 | |
| 
 | |
|   // At this point, we have however many values the result pattern produces.
 | |
|   // However, the input pattern might not need all of these.  If there are
 | |
|   // excess values at the end (such as implicit defs of condition codes etc)
 | |
|   // just lop them off.  This doesn't need to worry about glue or chains, just
 | |
|   // explicit results.
 | |
|   //
 | |
|   unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
 | |
| 
 | |
|   // If the pattern also has (implicit) results, count them as well.
 | |
|   if (!Pattern.getDstRegs().empty()) {
 | |
|     // If the root came from an implicit def in the instruction handling stuff,
 | |
|     // don't re-add it.
 | |
|     Record *HandledReg = nullptr;
 | |
|     const TreePatternNode *DstPat = Pattern.getDstPattern();
 | |
|     if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
 | |
|       const CodeGenTarget &CGT = CGP.getTargetInfo();
 | |
|       CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
 | |
| 
 | |
|       if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
 | |
|         HandledReg = II.ImplicitDefs[0];
 | |
|     }
 | |
| 
 | |
|     for (Record *Reg : Pattern.getDstRegs()) {
 | |
|       if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
 | |
|       ++NumSrcResults;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<unsigned, 8> Results(Ops);
 | |
| 
 | |
|   // Apply result permutation.
 | |
|   for (unsigned ResNo = 0; ResNo < Pattern.getDstPattern()->getNumResults();
 | |
|        ++ResNo) {
 | |
|     Results[ResNo] = Ops[Pattern.getDstPattern()->getResultIndex(ResNo)];
 | |
|   }
 | |
| 
 | |
|   Results.resize(NumSrcResults);
 | |
|   AddMatcher(new CompleteMatchMatcher(Results, Pattern));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
 | |
| /// the specified variant.  If the variant number is invalid, this returns null.
 | |
| Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
 | |
|                                        unsigned Variant,
 | |
|                                        const CodeGenDAGPatterns &CGP) {
 | |
|   MatcherGen Gen(Pattern, CGP);
 | |
| 
 | |
|   // Generate the code for the matcher.
 | |
|   if (Gen.EmitMatcherCode(Variant))
 | |
|     return nullptr;
 | |
| 
 | |
|   // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
 | |
|   // FIXME2: Split result code out to another table, and make the matcher end
 | |
|   // with an "Emit <index>" command.  This allows result generation stuff to be
 | |
|   // shared and factored?
 | |
| 
 | |
|   // If the match succeeds, then we generate Pattern.
 | |
|   Gen.EmitResultCode();
 | |
| 
 | |
|   // Unconditional match.
 | |
|   return Gen.GetMatcher();
 | |
| }
 |