472 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the DAG Matcher optimizer.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "DAGISelMatcher.h"
 | |
| #include "CodeGenDAGPatterns.h"
 | |
| #include "llvm/ADT/StringSet.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "isel-opt"
 | |
| 
 | |
| /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
 | |
| /// into single compound nodes like RecordChild.
 | |
| static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
 | |
|                           const CodeGenDAGPatterns &CGP) {
 | |
|   // If we reached the end of the chain, we're done.
 | |
|   Matcher *N = MatcherPtr.get();
 | |
|   if (!N) return;
 | |
|   
 | |
|   // If we have a scope node, walk down all of the children.
 | |
|   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
 | |
|     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
 | |
|       std::unique_ptr<Matcher> Child(Scope->takeChild(i));
 | |
|       ContractNodes(Child, CGP);
 | |
|       Scope->resetChild(i, Child.release());
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If we found a movechild node with a node that comes in a 'foochild' form,
 | |
|   // transform it.
 | |
|   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
 | |
|     Matcher *New = nullptr;
 | |
|     if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
 | |
|       if (MC->getChildNo() < 8)  // Only have RecordChild0...7
 | |
|         New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
 | |
|                                      RM->getResultNo());
 | |
| 
 | |
|     if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
 | |
|       if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
 | |
|           CT->getResNo() == 0)     // CheckChildType checks res #0
 | |
|         New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
 | |
| 
 | |
|     if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
 | |
|       if (MC->getChildNo() < 4)  // Only have CheckChildSame0...3
 | |
|         New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
 | |
| 
 | |
|     if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
 | |
|       if (MC->getChildNo() < 5)  // Only have CheckChildInteger0...4
 | |
|         New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
 | |
| 
 | |
|     if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
 | |
|       if (MC->getChildNo() == 2)  // Only have CheckChild2CondCode
 | |
|         New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
 | |
| 
 | |
|     if (New) {
 | |
|       // Insert the new node.
 | |
|       New->setNext(MatcherPtr.release());
 | |
|       MatcherPtr.reset(New);
 | |
|       // Remove the old one.
 | |
|       MC->setNext(MC->getNext()->takeNext());
 | |
|       return ContractNodes(MatcherPtr, CGP);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Zap movechild -> moveparent.
 | |
|   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
 | |
|     if (MoveParentMatcher *MP = 
 | |
|           dyn_cast<MoveParentMatcher>(MC->getNext())) {
 | |
|       MatcherPtr.reset(MP->takeNext());
 | |
|       return ContractNodes(MatcherPtr, CGP);
 | |
|     }
 | |
| 
 | |
|   // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
 | |
|   if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
 | |
|     if (CompleteMatchMatcher *CM =
 | |
|           dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
 | |
|       // We can only use MorphNodeTo if the result values match up.
 | |
|       unsigned RootResultFirst = EN->getFirstResultSlot();
 | |
|       bool ResultsMatch = true;
 | |
|       for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
 | |
|         if (CM->getResult(i) != RootResultFirst+i)
 | |
|           ResultsMatch = false;
 | |
|       
 | |
|       // If the selected node defines a subset of the glue/chain results, we
 | |
|       // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
 | |
|       // matched pattern has a chain but the root node doesn't.
 | |
|       const PatternToMatch &Pattern = CM->getPattern();
 | |
|       
 | |
|       if (!EN->hasChain() &&
 | |
|           Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
 | |
|         ResultsMatch = false;
 | |
| 
 | |
|       // If the matched node has glue and the output root doesn't, we can't
 | |
|       // use MorphNodeTo.
 | |
|       //
 | |
|       // NOTE: Strictly speaking, we don't have to check for glue here
 | |
|       // because the code in the pattern generator doesn't handle it right.  We
 | |
|       // do it anyway for thoroughness.
 | |
|       if (!EN->hasOutFlag() &&
 | |
|           Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
 | |
|         ResultsMatch = false;
 | |
|       
 | |
|       
 | |
|       // If the root result node defines more results than the source root node
 | |
|       // *and* has a chain or glue input, then we can't match it because it
 | |
|       // would end up replacing the extra result with the chain/glue.
 | |
| #if 0
 | |
|       if ((EN->hasGlue() || EN->hasChain()) &&
 | |
|           EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
 | |
|         ResultMatch = false;
 | |
| #endif
 | |
|           
 | |
|       if (ResultsMatch) {
 | |
|         const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
 | |
|         const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
 | |
|         MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
 | |
|                                                 VTs, Operands,
 | |
|                                                 EN->hasChain(), EN->hasInFlag(),
 | |
|                                                 EN->hasOutFlag(),
 | |
|                                                 EN->hasMemRefs(),
 | |
|                                                 EN->getNumFixedArityOperands(),
 | |
|                                                 Pattern));
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
 | |
|       // variants.
 | |
|     }
 | |
|   
 | |
|   ContractNodes(N->getNextPtr(), CGP);
 | |
|   
 | |
|   
 | |
|   // If we have a CheckType/CheckChildType/Record node followed by a
 | |
|   // CheckOpcode, invert the two nodes.  We prefer to do structural checks
 | |
|   // before type checks, as this opens opportunities for factoring on targets
 | |
|   // like X86 where many operations are valid on multiple types.
 | |
|   if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
 | |
|        isa<RecordMatcher>(N)) &&
 | |
|       isa<CheckOpcodeMatcher>(N->getNext())) {
 | |
|     // Unlink the two nodes from the list.
 | |
|     Matcher *CheckType = MatcherPtr.release();
 | |
|     Matcher *CheckOpcode = CheckType->takeNext();
 | |
|     Matcher *Tail = CheckOpcode->takeNext();
 | |
|     
 | |
|     // Relink them.
 | |
|     MatcherPtr.reset(CheckOpcode);
 | |
|     CheckOpcode->setNext(CheckType);
 | |
|     CheckType->setNext(Tail);
 | |
|     return ContractNodes(MatcherPtr, CGP);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
 | |
| /// specified kind.  Return null if we didn't find one otherwise return the
 | |
| /// matcher.
 | |
| static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
 | |
|   for (; M; M = M->getNext())
 | |
|     if (M->getKind() == Kind)
 | |
|       return M;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FactorNodes - Turn matches like this:
 | |
| ///   Scope
 | |
| ///     OPC_CheckType i32
 | |
| ///       ABC
 | |
| ///     OPC_CheckType i32
 | |
| ///       XYZ
 | |
| /// into:
 | |
| ///   OPC_CheckType i32
 | |
| ///     Scope
 | |
| ///       ABC
 | |
| ///       XYZ
 | |
| ///
 | |
| static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
 | |
|   // Look for a push node. Iterates instead of recurses to reduce stack usage.
 | |
|   ScopeMatcher *Scope = nullptr;
 | |
|   std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr;
 | |
|   while (!Scope) {
 | |
|     // If we reached the end of the chain, we're done.
 | |
|     Matcher *N = RebindableMatcherPtr->get();
 | |
|     if (!N) return;
 | |
| 
 | |
|     // If this is not a push node, just scan for one.
 | |
|     Scope = dyn_cast<ScopeMatcher>(N);
 | |
|     if (!Scope)
 | |
|       RebindableMatcherPtr = &(N->getNextPtr());
 | |
|   }
 | |
|   std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr;
 | |
|   
 | |
|   // Okay, pull together the children of the scope node into a vector so we can
 | |
|   // inspect it more easily.
 | |
|   SmallVector<Matcher*, 32> OptionsToMatch;
 | |
|   
 | |
|   for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
 | |
|     // Factor the subexpression.
 | |
|     std::unique_ptr<Matcher> Child(Scope->takeChild(i));
 | |
|     FactorNodes(Child);
 | |
|     
 | |
|     if (Child) {
 | |
|       // If the child is a ScopeMatcher we can just merge its contents.
 | |
|       if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
 | |
|         for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
 | |
|           OptionsToMatch.push_back(SM->takeChild(j));
 | |
|       } else {
 | |
|         OptionsToMatch.push_back(Child.release());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   SmallVector<Matcher*, 32> NewOptionsToMatch;
 | |
|   
 | |
|   // Loop over options to match, merging neighboring patterns with identical
 | |
|   // starting nodes into a shared matcher.
 | |
|   for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
 | |
|     // Find the set of matchers that start with this node.
 | |
|     Matcher *Optn = OptionsToMatch[OptionIdx++];
 | |
| 
 | |
|     if (OptionIdx == e) {
 | |
|       NewOptionsToMatch.push_back(Optn);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // See if the next option starts with the same matcher.  If the two
 | |
|     // neighbors *do* start with the same matcher, we can factor the matcher out
 | |
|     // of at least these two patterns.  See what the maximal set we can merge
 | |
|     // together is.
 | |
|     SmallVector<Matcher*, 8> EqualMatchers;
 | |
|     EqualMatchers.push_back(Optn);
 | |
|     
 | |
|     // Factor all of the known-equal matchers after this one into the same
 | |
|     // group.
 | |
|     while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
 | |
|       EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
 | |
| 
 | |
|     // If we found a non-equal matcher, see if it is contradictory with the
 | |
|     // current node.  If so, we know that the ordering relation between the
 | |
|     // current sets of nodes and this node don't matter.  Look past it to see if
 | |
|     // we can merge anything else into this matching group.
 | |
|     unsigned Scan = OptionIdx;
 | |
|     while (1) {
 | |
|       // If we ran out of stuff to scan, we're done.
 | |
|       if (Scan == e) break;
 | |
|       
 | |
|       Matcher *ScanMatcher = OptionsToMatch[Scan];
 | |
|       
 | |
|       // If we found an entry that matches out matcher, merge it into the set to
 | |
|       // handle.
 | |
|       if (Optn->isEqual(ScanMatcher)) {
 | |
|         // If is equal after all, add the option to EqualMatchers and remove it
 | |
|         // from OptionsToMatch.
 | |
|         EqualMatchers.push_back(ScanMatcher);
 | |
|         OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
 | |
|         --e;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // If the option we're checking for contradicts the start of the list,
 | |
|       // skip over it.
 | |
|       if (Optn->isContradictory(ScanMatcher)) {
 | |
|         ++Scan;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we're scanning for a simple node, see if it occurs later in the
 | |
|       // sequence.  If so, and if we can move it up, it might be contradictory
 | |
|       // or the same as what we're looking for.  If so, reorder it.
 | |
|       if (Optn->isSimplePredicateOrRecordNode()) {
 | |
|         Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
 | |
|         if (M2 && M2 != ScanMatcher &&
 | |
|             M2->canMoveBefore(ScanMatcher) &&
 | |
|             (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
 | |
|           Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
 | |
|           M2->setNext(MatcherWithoutM2);
 | |
|           OptionsToMatch[Scan] = M2;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Otherwise, we don't know how to handle this entry, we have to bail.
 | |
|       break;
 | |
|     }
 | |
|       
 | |
|     if (Scan != e &&
 | |
|         // Don't print it's obvious nothing extra could be merged anyway.
 | |
|         Scan+1 != e) {
 | |
|       LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4);
 | |
|                  errs() << "into this:\n";
 | |
|                  OptionsToMatch[Scan]->print(errs(), 4);
 | |
|                  if (Scan + 1 != e) OptionsToMatch[Scan + 1]->printOne(errs());
 | |
|                  if (Scan + 2 < e) OptionsToMatch[Scan + 2]->printOne(errs());
 | |
|                  errs() << "\n");
 | |
|     }
 | |
|     
 | |
|     // If we only found one option starting with this matcher, no factoring is
 | |
|     // possible.
 | |
|     if (EqualMatchers.size() == 1) {
 | |
|       NewOptionsToMatch.push_back(EqualMatchers[0]);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Factor these checks by pulling the first node off each entry and
 | |
|     // discarding it.  Take the first one off the first entry to reuse.
 | |
|     Matcher *Shared = Optn;
 | |
|     Optn = Optn->takeNext();
 | |
|     EqualMatchers[0] = Optn;
 | |
| 
 | |
|     // Remove and delete the first node from the other matchers we're factoring.
 | |
|     for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
 | |
|       Matcher *Tmp = EqualMatchers[i]->takeNext();
 | |
|       delete EqualMatchers[i];
 | |
|       EqualMatchers[i] = Tmp;
 | |
|     }
 | |
|     
 | |
|     Shared->setNext(new ScopeMatcher(EqualMatchers));
 | |
| 
 | |
|     // Recursively factor the newly created node.
 | |
|     FactorNodes(Shared->getNextPtr());
 | |
|     
 | |
|     NewOptionsToMatch.push_back(Shared);
 | |
|   }
 | |
|   
 | |
|   // If we're down to a single pattern to match, then we don't need this scope
 | |
|   // anymore.
 | |
|   if (NewOptionsToMatch.size() == 1) {
 | |
|     MatcherPtr.reset(NewOptionsToMatch[0]);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (NewOptionsToMatch.empty()) {
 | |
|     MatcherPtr.reset();
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If our factoring failed (didn't achieve anything) see if we can simplify in
 | |
|   // other ways.
 | |
|   
 | |
|   // Check to see if all of the leading entries are now opcode checks.  If so,
 | |
|   // we can convert this Scope to be a OpcodeSwitch instead.
 | |
|   bool AllOpcodeChecks = true, AllTypeChecks = true;
 | |
|   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
 | |
|     // Check to see if this breaks a series of CheckOpcodeMatchers.
 | |
|     if (AllOpcodeChecks &&
 | |
|         !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
 | |
| #if 0
 | |
|       if (i > 3) {
 | |
|         errs() << "FAILING OPC #" << i << "\n";
 | |
|         NewOptionsToMatch[i]->dump();
 | |
|       }
 | |
| #endif
 | |
|       AllOpcodeChecks = false;
 | |
|     }
 | |
| 
 | |
|     // Check to see if this breaks a series of CheckTypeMatcher's.
 | |
|     if (AllTypeChecks) {
 | |
|       CheckTypeMatcher *CTM =
 | |
|         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
 | |
|                                                         Matcher::CheckType));
 | |
|       if (!CTM ||
 | |
|           // iPTR checks could alias any other case without us knowing, don't
 | |
|           // bother with them.
 | |
|           CTM->getType() == MVT::iPTR ||
 | |
|           // SwitchType only works for result #0.
 | |
|           CTM->getResNo() != 0 ||
 | |
|           // If the CheckType isn't at the start of the list, see if we can move
 | |
|           // it there.
 | |
|           !CTM->canMoveBefore(NewOptionsToMatch[i])) {
 | |
| #if 0
 | |
|         if (i > 3 && AllTypeChecks) {
 | |
|           errs() << "FAILING TYPE #" << i << "\n";
 | |
|           NewOptionsToMatch[i]->dump();
 | |
|         }
 | |
| #endif
 | |
|         AllTypeChecks = false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
 | |
|   if (AllOpcodeChecks) {
 | |
|     StringSet<> Opcodes;
 | |
|     SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
 | |
|     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
 | |
|       CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
 | |
|       assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
 | |
|              "Duplicate opcodes not factored?");
 | |
|       Cases.push_back(std::make_pair(&COM->getOpcode(), COM->takeNext()));
 | |
|       delete COM;
 | |
|     }
 | |
|     
 | |
|     MatcherPtr.reset(new SwitchOpcodeMatcher(Cases));
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If all the options are CheckType's, we can form the SwitchType, woot.
 | |
|   if (AllTypeChecks) {
 | |
|     DenseMap<unsigned, unsigned> TypeEntry;
 | |
|     SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
 | |
|     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
 | |
|       Matcher* M = FindNodeWithKind(NewOptionsToMatch[i], Matcher::CheckType);
 | |
|       assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
 | |
| 
 | |
|       auto *CTM = cast<CheckTypeMatcher>(M);
 | |
|       Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
 | |
|       MVT::SimpleValueType CTMTy = CTM->getType();
 | |
|       delete CTM;
 | |
| 
 | |
|       unsigned &Entry = TypeEntry[CTMTy];
 | |
|       if (Entry != 0) {
 | |
|         // If we have unfactored duplicate types, then we should factor them.
 | |
|         Matcher *PrevMatcher = Cases[Entry-1].second;
 | |
|         if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
 | |
|           SM->setNumChildren(SM->getNumChildren()+1);
 | |
|           SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
 | |
|         Cases[Entry-1].second = new ScopeMatcher(Entries);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       Entry = Cases.size()+1;
 | |
|       Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
 | |
|     }
 | |
|     
 | |
|     // Make sure we recursively factor any scopes we may have created.
 | |
|     for (auto &M : Cases) {
 | |
|       if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
 | |
|         std::unique_ptr<Matcher> Scope(SM);
 | |
|         FactorNodes(Scope);
 | |
|         M.second = Scope.release();
 | |
|         assert(M.second && "null matcher");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Cases.size() != 1) {
 | |
|       MatcherPtr.reset(new SwitchTypeMatcher(Cases));
 | |
|     } else {
 | |
|       // If we factored and ended up with one case, create it now.
 | |
|       MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
 | |
|       MatcherPtr->setNext(Cases[0].second);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   
 | |
| 
 | |
|   // Reassemble the Scope node with the adjusted children.
 | |
|   Scope->setNumChildren(NewOptionsToMatch.size());
 | |
|   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
 | |
|     Scope->resetChild(i, NewOptionsToMatch[i]);
 | |
| }
 | |
| 
 | |
| void
 | |
| llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
 | |
|                       const CodeGenDAGPatterns &CGP) {
 | |
|   ContractNodes(MatcherPtr, CGP);
 | |
|   FactorNodes(MatcherPtr);
 | |
| }
 |