246 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
#include "benchmark/benchmark.h"
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include <chrono>
 | 
						|
#include <cstdlib>
 | 
						|
#include <iostream>
 | 
						|
#include <limits>
 | 
						|
#include <list>
 | 
						|
#include <map>
 | 
						|
#include <mutex>
 | 
						|
#include <set>
 | 
						|
#include <sstream>
 | 
						|
#include <string>
 | 
						|
#include <thread>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#if defined(__GNUC__)
 | 
						|
#define BENCHMARK_NOINLINE __attribute__((noinline))
 | 
						|
#else
 | 
						|
#define BENCHMARK_NOINLINE
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
int BENCHMARK_NOINLINE Factorial(uint32_t n) {
 | 
						|
  return (n == 1) ? 1 : n * Factorial(n - 1);
 | 
						|
}
 | 
						|
 | 
						|
double CalculatePi(int depth) {
 | 
						|
  double pi = 0.0;
 | 
						|
  for (int i = 0; i < depth; ++i) {
 | 
						|
    double numerator = static_cast<double>(((i % 2) * 2) - 1);
 | 
						|
    double denominator = static_cast<double>((2 * i) - 1);
 | 
						|
    pi += numerator / denominator;
 | 
						|
  }
 | 
						|
  return (pi - 1.0) * 4;
 | 
						|
}
 | 
						|
 | 
						|
std::set<int64_t> ConstructRandomSet(int64_t size) {
 | 
						|
  std::set<int64_t> s;
 | 
						|
  for (int i = 0; i < size; ++i) s.insert(s.end(), i);
 | 
						|
  return s;
 | 
						|
}
 | 
						|
 | 
						|
std::mutex test_vector_mu;
 | 
						|
std::vector<int>* test_vector = nullptr;
 | 
						|
 | 
						|
}  // end namespace
 | 
						|
 | 
						|
static void BM_Factorial(benchmark::State& state) {
 | 
						|
  int fac_42 = 0;
 | 
						|
  for (auto _ : state) fac_42 = Factorial(8);
 | 
						|
  // Prevent compiler optimizations
 | 
						|
  std::stringstream ss;
 | 
						|
  ss << fac_42;
 | 
						|
  state.SetLabel(ss.str());
 | 
						|
}
 | 
						|
BENCHMARK(BM_Factorial);
 | 
						|
BENCHMARK(BM_Factorial)->UseRealTime();
 | 
						|
 | 
						|
static void BM_CalculatePiRange(benchmark::State& state) {
 | 
						|
  double pi = 0.0;
 | 
						|
  for (auto _ : state) pi = CalculatePi(static_cast<int>(state.range(0)));
 | 
						|
  std::stringstream ss;
 | 
						|
  ss << pi;
 | 
						|
  state.SetLabel(ss.str());
 | 
						|
}
 | 
						|
BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);
 | 
						|
 | 
						|
static void BM_CalculatePi(benchmark::State& state) {
 | 
						|
  static const int depth = 1024;
 | 
						|
  for (auto _ : state) {
 | 
						|
    benchmark::DoNotOptimize(CalculatePi(static_cast<int>(depth)));
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_CalculatePi)->Threads(8);
 | 
						|
BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32);
 | 
						|
BENCHMARK(BM_CalculatePi)->ThreadPerCpu();
 | 
						|
 | 
						|
static void BM_SetInsert(benchmark::State& state) {
 | 
						|
  std::set<int64_t> data;
 | 
						|
  for (auto _ : state) {
 | 
						|
    state.PauseTiming();
 | 
						|
    data = ConstructRandomSet(state.range(0));
 | 
						|
    state.ResumeTiming();
 | 
						|
    for (int j = 0; j < state.range(1); ++j) data.insert(rand());
 | 
						|
  }
 | 
						|
  state.SetItemsProcessed(state.iterations() * state.range(1));
 | 
						|
  state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int));
 | 
						|
}
 | 
						|
 | 
						|
// Test many inserts at once to reduce the total iterations needed. Otherwise, the slower,
 | 
						|
// non-timed part of each iteration will make the benchmark take forever.
 | 
						|
BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {128, 512}});
 | 
						|
 | 
						|
template <typename Container,
 | 
						|
          typename ValueType = typename Container::value_type>
 | 
						|
static void BM_Sequential(benchmark::State& state) {
 | 
						|
  ValueType v = 42;
 | 
						|
  for (auto _ : state) {
 | 
						|
    Container c;
 | 
						|
    for (int64_t i = state.range(0); --i;) c.push_back(v);
 | 
						|
  }
 | 
						|
  const int64_t items_processed = state.iterations() * state.range(0);
 | 
						|
  state.SetItemsProcessed(items_processed);
 | 
						|
  state.SetBytesProcessed(items_processed * sizeof(v));
 | 
						|
}
 | 
						|
BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int)
 | 
						|
    ->Range(1 << 0, 1 << 10);
 | 
						|
BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10);
 | 
						|
// Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond.
 | 
						|
#ifdef BENCHMARK_HAS_CXX11
 | 
						|
BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
 | 
						|
#endif
 | 
						|
 | 
						|
static void BM_StringCompare(benchmark::State& state) {
 | 
						|
  size_t len = static_cast<size_t>(state.range(0));
 | 
						|
  std::string s1(len, '-');
 | 
						|
  std::string s2(len, '-');
 | 
						|
  for (auto _ : state) benchmark::DoNotOptimize(s1.compare(s2));
 | 
						|
}
 | 
						|
BENCHMARK(BM_StringCompare)->Range(1, 1 << 20);
 | 
						|
 | 
						|
static void BM_SetupTeardown(benchmark::State& state) {
 | 
						|
  if (state.thread_index == 0) {
 | 
						|
    // No need to lock test_vector_mu here as this is running single-threaded.
 | 
						|
    test_vector = new std::vector<int>();
 | 
						|
  }
 | 
						|
  int i = 0;
 | 
						|
  for (auto _ : state) {
 | 
						|
    std::lock_guard<std::mutex> l(test_vector_mu);
 | 
						|
    if (i % 2 == 0)
 | 
						|
      test_vector->push_back(i);
 | 
						|
    else
 | 
						|
      test_vector->pop_back();
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
  if (state.thread_index == 0) {
 | 
						|
    delete test_vector;
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();
 | 
						|
 | 
						|
static void BM_LongTest(benchmark::State& state) {
 | 
						|
  double tracker = 0.0;
 | 
						|
  for (auto _ : state) {
 | 
						|
    for (int i = 0; i < state.range(0); ++i)
 | 
						|
      benchmark::DoNotOptimize(tracker += i);
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28);
 | 
						|
 | 
						|
static void BM_ParallelMemset(benchmark::State& state) {
 | 
						|
  int64_t size = state.range(0) / static_cast<int64_t>(sizeof(int));
 | 
						|
  int thread_size = static_cast<int>(size) / state.threads;
 | 
						|
  int from = thread_size * state.thread_index;
 | 
						|
  int to = from + thread_size;
 | 
						|
 | 
						|
  if (state.thread_index == 0) {
 | 
						|
    test_vector = new std::vector<int>(static_cast<size_t>(size));
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto _ : state) {
 | 
						|
    for (int i = from; i < to; i++) {
 | 
						|
      // No need to lock test_vector_mu as ranges
 | 
						|
      // do not overlap between threads.
 | 
						|
      benchmark::DoNotOptimize(test_vector->at(i) = 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (state.thread_index == 0) {
 | 
						|
    delete test_vector;
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);
 | 
						|
 | 
						|
static void BM_ManualTiming(benchmark::State& state) {
 | 
						|
  int64_t slept_for = 0;
 | 
						|
  int64_t microseconds = state.range(0);
 | 
						|
  std::chrono::duration<double, std::micro> sleep_duration{
 | 
						|
      static_cast<double>(microseconds)};
 | 
						|
 | 
						|
  for (auto _ : state) {
 | 
						|
    auto start = std::chrono::high_resolution_clock::now();
 | 
						|
    // Simulate some useful workload with a sleep
 | 
						|
    std::this_thread::sleep_for(
 | 
						|
        std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration));
 | 
						|
    auto end = std::chrono::high_resolution_clock::now();
 | 
						|
 | 
						|
    auto elapsed =
 | 
						|
        std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
 | 
						|
 | 
						|
    state.SetIterationTime(elapsed.count());
 | 
						|
    slept_for += microseconds;
 | 
						|
  }
 | 
						|
  state.SetItemsProcessed(slept_for);
 | 
						|
}
 | 
						|
BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime();
 | 
						|
BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime();
 | 
						|
 | 
						|
#ifdef BENCHMARK_HAS_CXX11
 | 
						|
 | 
						|
template <class... Args>
 | 
						|
void BM_with_args(benchmark::State& state, Args&&...) {
 | 
						|
  for (auto _ : state) {
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44);
 | 
						|
BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"),
 | 
						|
                  std::pair<int, double>(42, 3.8));
 | 
						|
 | 
						|
void BM_non_template_args(benchmark::State& state, int, double) {
 | 
						|
  while(state.KeepRunning()) {}
 | 
						|
}
 | 
						|
BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0);
 | 
						|
 | 
						|
#endif  // BENCHMARK_HAS_CXX11
 | 
						|
 | 
						|
static void BM_DenseThreadRanges(benchmark::State& st) {
 | 
						|
  switch (st.range(0)) {
 | 
						|
    case 1:
 | 
						|
      assert(st.threads == 1 || st.threads == 2 || st.threads == 3);
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      assert(st.threads == 1 || st.threads == 3 || st.threads == 4);
 | 
						|
      break;
 | 
						|
    case 3:
 | 
						|
      assert(st.threads == 5 || st.threads == 8 || st.threads == 11 ||
 | 
						|
             st.threads == 14);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(false && "Invalid test case number");
 | 
						|
  }
 | 
						|
  while (st.KeepRunning()) {
 | 
						|
  }
 | 
						|
}
 | 
						|
BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3);
 | 
						|
BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2);
 | 
						|
BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3);
 | 
						|
 | 
						|
BENCHMARK_MAIN();
 |