5921 lines
		
	
	
		
			225 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5921 lines
		
	
	
		
			225 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines an instruction selector for the ARM target.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ARM.h"
 | 
						|
#include "ARMBaseInstrInfo.h"
 | 
						|
#include "ARMTargetMachine.h"
 | 
						|
#include "MCTargetDesc/ARMAddressingModes.h"
 | 
						|
#include "Utils/ARMBaseInfo.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicsARM.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-isel"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
DisableShifterOp("disable-shifter-op", cl::Hidden,
 | 
						|
  cl::desc("Disable isel of shifter-op"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
 | 
						|
/// instructions for SelectionDAG operations.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
 | 
						|
class ARMDAGToDAGISel : public SelectionDAGISel {
 | 
						|
  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
 | 
						|
  /// make the right decision when generating code for different targets.
 | 
						|
  const ARMSubtarget *Subtarget;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
 | 
						|
      : SelectionDAGISel(tm, OptLevel) {}
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
    // Reset the subtarget each time through.
 | 
						|
    Subtarget = &MF.getSubtarget<ARMSubtarget>();
 | 
						|
    SelectionDAGISel::runOnMachineFunction(MF);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "ARM Instruction Selection"; }
 | 
						|
 | 
						|
  void PreprocessISelDAG() override;
 | 
						|
 | 
						|
  /// getI32Imm - Return a target constant of type i32 with the specified
 | 
						|
  /// value.
 | 
						|
  inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
 | 
						|
    return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  void Select(SDNode *N) override;
 | 
						|
 | 
						|
  /// Return true as some complex patterns, like those that call
 | 
						|
  /// canExtractShiftFromMul can modify the DAG inplace.
 | 
						|
  bool ComplexPatternFuncMutatesDAG() const override { return true; }
 | 
						|
 | 
						|
  bool hasNoVMLxHazardUse(SDNode *N) const;
 | 
						|
  bool isShifterOpProfitable(const SDValue &Shift,
 | 
						|
                             ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
 | 
						|
  bool SelectRegShifterOperand(SDValue N, SDValue &A,
 | 
						|
                               SDValue &B, SDValue &C,
 | 
						|
                               bool CheckProfitability = true);
 | 
						|
  bool SelectImmShifterOperand(SDValue N, SDValue &A,
 | 
						|
                               SDValue &B, bool CheckProfitability = true);
 | 
						|
  bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, SDValue &B,
 | 
						|
                                    SDValue &C) {
 | 
						|
    // Don't apply the profitability check
 | 
						|
    return SelectRegShifterOperand(N, A, B, C, false);
 | 
						|
  }
 | 
						|
  bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, SDValue &B) {
 | 
						|
    // Don't apply the profitability check
 | 
						|
    return SelectImmShifterOperand(N, A, B, false);
 | 
						|
  }
 | 
						|
  bool SelectShiftImmShifterOperandOneUse(SDValue N, SDValue &A, SDValue &B) {
 | 
						|
    if (!N.hasOneUse())
 | 
						|
      return false;
 | 
						|
    return SelectImmShifterOperand(N, A, B, false);
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out);
 | 
						|
 | 
						|
  bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
 | 
						|
 | 
						|
  bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
 | 
						|
    const ConstantSDNode *CN = cast<ConstantSDNode>(N);
 | 
						|
    Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32);
 | 
						|
    Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
 | 
						|
  bool SelectAddrMode3(SDValue N, SDValue &Base,
 | 
						|
                       SDValue &Offset, SDValue &Opc);
 | 
						|
  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
 | 
						|
                             SDValue &Offset, SDValue &Opc);
 | 
						|
  bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, bool FP16);
 | 
						|
  bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
 | 
						|
  bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
 | 
						|
 | 
						|
  bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
 | 
						|
 | 
						|
  // Thumb Addressing Modes:
 | 
						|
  bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectThumbAddrModeRRSext(SDValue N, SDValue &Base, SDValue &Offset);
 | 
						|
  bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
 | 
						|
                                SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  template <unsigned Shift>
 | 
						|
  bool SelectTAddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
 | 
						|
  // Thumb 2 Addressing Modes:
 | 
						|
  bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  template <unsigned Shift>
 | 
						|
  bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
 | 
						|
                            SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
 | 
						|
                                 SDValue &OffImm);
 | 
						|
  template <unsigned Shift>
 | 
						|
  bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm,
 | 
						|
                                  unsigned Shift);
 | 
						|
  template <unsigned Shift>
 | 
						|
  bool SelectT2AddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
  bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
 | 
						|
                             SDValue &OffReg, SDValue &ShImm);
 | 
						|
  bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
 | 
						|
 | 
						|
  template<int Min, int Max>
 | 
						|
  bool SelectImmediateInRange(SDValue N, SDValue &OffImm);
 | 
						|
 | 
						|
  inline bool is_so_imm(unsigned Imm) const {
 | 
						|
    return ARM_AM::getSOImmVal(Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool is_so_imm_not(unsigned Imm) const {
 | 
						|
    return ARM_AM::getSOImmVal(~Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool is_t2_so_imm(unsigned Imm) const {
 | 
						|
    return ARM_AM::getT2SOImmVal(Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool is_t2_so_imm_not(unsigned Imm) const {
 | 
						|
    return ARM_AM::getT2SOImmVal(~Imm) != -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Include the pieces autogenerated from the target description.
 | 
						|
#include "ARMGenDAGISel.inc"
 | 
						|
 | 
						|
private:
 | 
						|
  void transferMemOperands(SDNode *Src, SDNode *Dst);
 | 
						|
 | 
						|
  /// Indexed (pre/post inc/dec) load matching code for ARM.
 | 
						|
  bool tryARMIndexedLoad(SDNode *N);
 | 
						|
  bool tryT1IndexedLoad(SDNode *N);
 | 
						|
  bool tryT2IndexedLoad(SDNode *N);
 | 
						|
  bool tryMVEIndexedLoad(SDNode *N);
 | 
						|
  bool tryFMULFixed(SDNode *N, SDLoc dl);
 | 
						|
  bool tryFP_TO_INT(SDNode *N, SDLoc dl);
 | 
						|
  bool transformFixedFloatingPointConversion(SDNode *N, SDNode *FMul,
 | 
						|
                                             bool IsUnsigned,
 | 
						|
                                             bool FixedToFloat);
 | 
						|
 | 
						|
  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
 | 
						|
  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
 | 
						|
  /// loads of D registers and even subregs and odd subregs of Q registers.
 | 
						|
  /// For NumVecs <= 2, QOpcodes1 is not used.
 | 
						|
  void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
 | 
						|
                 const uint16_t *QOpcodes1);
 | 
						|
 | 
						|
  /// SelectVST - Select NEON store intrinsics.  NumVecs should
 | 
						|
  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
 | 
						|
  /// stores of D registers and even subregs and odd subregs of Q registers.
 | 
						|
  /// For NumVecs <= 2, QOpcodes1 is not used.
 | 
						|
  void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
 | 
						|
                 const uint16_t *QOpcodes1);
 | 
						|
 | 
						|
  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
 | 
						|
  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
 | 
						|
  /// load/store of D registers and Q registers.
 | 
						|
  void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
 | 
						|
                       unsigned NumVecs, const uint16_t *DOpcodes,
 | 
						|
                       const uint16_t *QOpcodes);
 | 
						|
 | 
						|
  /// Helper functions for setting up clusters of MVE predication operands.
 | 
						|
  template <typename SDValueVector>
 | 
						|
  void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
 | 
						|
                            SDValue PredicateMask);
 | 
						|
  template <typename SDValueVector>
 | 
						|
  void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
 | 
						|
                            SDValue PredicateMask, SDValue Inactive);
 | 
						|
 | 
						|
  template <typename SDValueVector>
 | 
						|
  void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc);
 | 
						|
  template <typename SDValueVector>
 | 
						|
  void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, EVT InactiveTy);
 | 
						|
 | 
						|
  /// SelectMVE_WB - Select MVE writeback load/store intrinsics.
 | 
						|
  void SelectMVE_WB(SDNode *N, const uint16_t *Opcodes, bool Predicated);
 | 
						|
 | 
						|
  /// SelectMVE_LongShift - Select MVE 64-bit scalar shift intrinsics.
 | 
						|
  void SelectMVE_LongShift(SDNode *N, uint16_t Opcode, bool Immediate,
 | 
						|
                           bool HasSaturationOperand);
 | 
						|
 | 
						|
  /// SelectMVE_VADCSBC - Select MVE vector add/sub-with-carry intrinsics.
 | 
						|
  void SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry,
 | 
						|
                         uint16_t OpcodeWithNoCarry, bool Add, bool Predicated);
 | 
						|
 | 
						|
  /// SelectMVE_VSHLC - Select MVE intrinsics for a shift that carries between
 | 
						|
  /// vector lanes.
 | 
						|
  void SelectMVE_VSHLC(SDNode *N, bool Predicated);
 | 
						|
 | 
						|
  /// Select long MVE vector reductions with two vector operands
 | 
						|
  /// Stride is the number of vector element widths the instruction can operate
 | 
						|
  /// on:
 | 
						|
  /// 2 for long non-rounding variants, vml{a,s}ldav[a][x]: [i16, i32]
 | 
						|
  /// 1 for long rounding variants: vrml{a,s}ldavh[a][x]: [i32]
 | 
						|
  /// Stride is used when addressing the OpcodesS array which contains multiple
 | 
						|
  /// opcodes for each element width.
 | 
						|
  /// TySize is the index into the list of element types listed above
 | 
						|
  void SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated,
 | 
						|
                             const uint16_t *OpcodesS, const uint16_t *OpcodesU,
 | 
						|
                             size_t Stride, size_t TySize);
 | 
						|
 | 
						|
  /// Select a 64-bit MVE vector reduction with two vector operands
 | 
						|
  /// arm_mve_vmlldava_[predicated]
 | 
						|
  void SelectMVE_VMLLDAV(SDNode *N, bool Predicated, const uint16_t *OpcodesS,
 | 
						|
                         const uint16_t *OpcodesU);
 | 
						|
  /// Select a 72-bit MVE vector rounding reduction with two vector operands
 | 
						|
  /// int_arm_mve_vrmlldavha[_predicated]
 | 
						|
  void SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated, const uint16_t *OpcodesS,
 | 
						|
                           const uint16_t *OpcodesU);
 | 
						|
 | 
						|
  /// SelectMVE_VLD - Select MVE interleaving load intrinsics. NumVecs
 | 
						|
  /// should be 2 or 4. The opcode array specifies the instructions
 | 
						|
  /// used for 8, 16 and 32-bit lane sizes respectively, and each
 | 
						|
  /// pointer points to a set of NumVecs sub-opcodes used for the
 | 
						|
  /// different stages (e.g. VLD20 versus VLD21) of each load family.
 | 
						|
  void SelectMVE_VLD(SDNode *N, unsigned NumVecs,
 | 
						|
                     const uint16_t *const *Opcodes, bool HasWriteback);
 | 
						|
 | 
						|
  /// SelectMVE_VxDUP - Select MVE incrementing-dup instructions. Opcodes is an
 | 
						|
  /// array of 3 elements for the 8, 16 and 32-bit lane sizes.
 | 
						|
  void SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes,
 | 
						|
                       bool Wrapping, bool Predicated);
 | 
						|
 | 
						|
  /// Select SelectCDE_CXxD - Select CDE dual-GPR instruction (one of CX1D,
 | 
						|
  /// CX1DA, CX2D, CX2DA, CX3, CX3DA).
 | 
						|
  /// \arg \c NumExtraOps number of extra operands besides the coprocossor,
 | 
						|
  ///                     the accumulator and the immediate operand, i.e. 0
 | 
						|
  ///                     for CX1*, 1 for CX2*, 2 for CX3*
 | 
						|
  /// \arg \c HasAccum whether the instruction has an accumulator operand
 | 
						|
  void SelectCDE_CXxD(SDNode *N, uint16_t Opcode, size_t NumExtraOps,
 | 
						|
                      bool HasAccum);
 | 
						|
 | 
						|
  /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
 | 
						|
  /// should be 1, 2, 3 or 4.  The opcode array specifies the instructions used
 | 
						|
  /// for loading D registers.
 | 
						|
  void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating,
 | 
						|
                    unsigned NumVecs, const uint16_t *DOpcodes,
 | 
						|
                    const uint16_t *QOpcodes0 = nullptr,
 | 
						|
                    const uint16_t *QOpcodes1 = nullptr);
 | 
						|
 | 
						|
  /// Try to select SBFX/UBFX instructions for ARM.
 | 
						|
  bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
 | 
						|
 | 
						|
  bool tryInsertVectorElt(SDNode *N);
 | 
						|
 | 
						|
  // Select special operations if node forms integer ABS pattern
 | 
						|
  bool tryABSOp(SDNode *N);
 | 
						|
 | 
						|
  bool tryReadRegister(SDNode *N);
 | 
						|
  bool tryWriteRegister(SDNode *N);
 | 
						|
 | 
						|
  bool tryInlineAsm(SDNode *N);
 | 
						|
 | 
						|
  void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI);
 | 
						|
 | 
						|
  void SelectCMP_SWAP(SDNode *N);
 | 
						|
 | 
						|
  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
  /// inline asm expressions.
 | 
						|
  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | 
						|
                                    std::vector<SDValue> &OutOps) override;
 | 
						|
 | 
						|
  // Form pairs of consecutive R, S, D, or Q registers.
 | 
						|
  SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
  SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
  SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
  SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
 | 
						|
 | 
						|
  // Form sequences of 4 consecutive S, D, or Q registers.
 | 
						|
  SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | 
						|
  SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | 
						|
  SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
 | 
						|
 | 
						|
  // Get the alignment operand for a NEON VLD or VST instruction.
 | 
						|
  SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs,
 | 
						|
                        bool is64BitVector);
 | 
						|
 | 
						|
  /// Checks if N is a multiplication by a constant where we can extract out a
 | 
						|
  /// power of two from the constant so that it can be used in a shift, but only
 | 
						|
  /// if it simplifies the materialization of the constant. Returns true if it
 | 
						|
  /// is, and assigns to PowerOfTwo the power of two that should be extracted
 | 
						|
  /// out and to NewMulConst the new constant to be multiplied by.
 | 
						|
  bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift,
 | 
						|
                              unsigned &PowerOfTwo, SDValue &NewMulConst) const;
 | 
						|
 | 
						|
  /// Replace N with M in CurDAG, in a way that also ensures that M gets
 | 
						|
  /// selected when N would have been selected.
 | 
						|
  void replaceDAGValue(const SDValue &N, SDValue M);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | 
						|
/// operand. If so Imm will receive the 32-bit value.
 | 
						|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isInt32Immediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | 
						|
  return isInt32Immediate(N.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc &&
 | 
						|
         isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether a particular node is a constant value representable as
 | 
						|
/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
 | 
						|
///
 | 
						|
/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
 | 
						|
static bool isScaledConstantInRange(SDValue Node, int Scale,
 | 
						|
                                    int RangeMin, int RangeMax,
 | 
						|
                                    int &ScaledConstant) {
 | 
						|
  assert(Scale > 0 && "Invalid scale!");
 | 
						|
 | 
						|
  // Check that this is a constant.
 | 
						|
  const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ScaledConstant = (int) C->getZExtValue();
 | 
						|
  if ((ScaledConstant % Scale) != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ScaledConstant /= Scale;
 | 
						|
  return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::PreprocessISelDAG() {
 | 
						|
  if (!Subtarget->hasV6T2Ops())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool isThumb2 = Subtarget->isThumb();
 | 
						|
  // We use make_early_inc_range to avoid invalidation issues.
 | 
						|
  for (SDNode &N : llvm::make_early_inc_range(CurDAG->allnodes())) {
 | 
						|
    if (N.getOpcode() != ISD::ADD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
 | 
						|
    // leading zeros, followed by consecutive set bits, followed by 1 or 2
 | 
						|
    // trailing zeros, e.g. 1020.
 | 
						|
    // Transform the expression to
 | 
						|
    // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
 | 
						|
    // of trailing zeros of c2. The left shift would be folded as an shifter
 | 
						|
    // operand of 'add' and the 'and' and 'srl' would become a bits extraction
 | 
						|
    // node (UBFX).
 | 
						|
 | 
						|
    SDValue N0 = N.getOperand(0);
 | 
						|
    SDValue N1 = N.getOperand(1);
 | 
						|
    unsigned And_imm = 0;
 | 
						|
    if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
 | 
						|
      if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
 | 
						|
        std::swap(N0, N1);
 | 
						|
    }
 | 
						|
    if (!And_imm)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check if the AND mask is an immediate of the form: 000.....1111111100
 | 
						|
    unsigned TZ = countTrailingZeros(And_imm);
 | 
						|
    if (TZ != 1 && TZ != 2)
 | 
						|
      // Be conservative here. Shifter operands aren't always free. e.g. On
 | 
						|
      // Swift, left shifter operand of 1 / 2 for free but others are not.
 | 
						|
      // e.g.
 | 
						|
      //  ubfx   r3, r1, #16, #8
 | 
						|
      //  ldr.w  r3, [r0, r3, lsl #2]
 | 
						|
      // vs.
 | 
						|
      //  mov.w  r9, #1020
 | 
						|
      //  and.w  r2, r9, r1, lsr #14
 | 
						|
      //  ldr    r2, [r0, r2]
 | 
						|
      continue;
 | 
						|
    And_imm >>= TZ;
 | 
						|
    if (And_imm & (And_imm + 1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Look for (and (srl X, c1), c2).
 | 
						|
    SDValue Srl = N1.getOperand(0);
 | 
						|
    unsigned Srl_imm = 0;
 | 
						|
    if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
 | 
						|
        (Srl_imm <= 2))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure first operand is not a shifter operand which would prevent
 | 
						|
    // folding of the left shift.
 | 
						|
    SDValue CPTmp0;
 | 
						|
    SDValue CPTmp1;
 | 
						|
    SDValue CPTmp2;
 | 
						|
    if (isThumb2) {
 | 
						|
      if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1))
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
 | 
						|
          SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now make the transformation.
 | 
						|
    Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
 | 
						|
                          Srl.getOperand(0),
 | 
						|
                          CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl),
 | 
						|
                                              MVT::i32));
 | 
						|
    N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
 | 
						|
                         Srl,
 | 
						|
                         CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32));
 | 
						|
    N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
 | 
						|
                         N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32));
 | 
						|
    CurDAG->UpdateNodeOperands(&N, N0, N1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
 | 
						|
/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
 | 
						|
/// least on current ARM implementations) which should be avoidded.
 | 
						|
bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
 | 
						|
  if (OptLevel == CodeGenOpt::None)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Subtarget->hasVMLxHazards())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!N->hasOneUse())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDNode *Use = *N->use_begin();
 | 
						|
  if (Use->getOpcode() == ISD::CopyToReg)
 | 
						|
    return true;
 | 
						|
  if (Use->isMachineOpcode()) {
 | 
						|
    const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
 | 
						|
        CurDAG->getSubtarget().getInstrInfo());
 | 
						|
 | 
						|
    const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
 | 
						|
    if (MCID.mayStore())
 | 
						|
      return true;
 | 
						|
    unsigned Opcode = MCID.getOpcode();
 | 
						|
    if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
 | 
						|
      return true;
 | 
						|
    // vmlx feeding into another vmlx. We actually want to unfold
 | 
						|
    // the use later in the MLxExpansion pass. e.g.
 | 
						|
    // vmla
 | 
						|
    // vmla (stall 8 cycles)
 | 
						|
    //
 | 
						|
    // vmul (5 cycles)
 | 
						|
    // vadd (5 cycles)
 | 
						|
    // vmla
 | 
						|
    // This adds up to about 18 - 19 cycles.
 | 
						|
    //
 | 
						|
    // vmla
 | 
						|
    // vmul (stall 4 cycles)
 | 
						|
    // vadd adds up to about 14 cycles.
 | 
						|
    return TII->isFpMLxInstruction(Opcode);
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
 | 
						|
                                            ARM_AM::ShiftOpc ShOpcVal,
 | 
						|
                                            unsigned ShAmt) {
 | 
						|
  if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
 | 
						|
    return true;
 | 
						|
  if (Shift.hasOneUse())
 | 
						|
    return true;
 | 
						|
  // R << 2 is free.
 | 
						|
  return ShOpcVal == ARM_AM::lsl &&
 | 
						|
         (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N,
 | 
						|
                                             unsigned MaxShift,
 | 
						|
                                             unsigned &PowerOfTwo,
 | 
						|
                                             SDValue &NewMulConst) const {
 | 
						|
  assert(N.getOpcode() == ISD::MUL);
 | 
						|
  assert(MaxShift > 0);
 | 
						|
 | 
						|
  // If the multiply is used in more than one place then changing the constant
 | 
						|
  // will make other uses incorrect, so don't.
 | 
						|
  if (!N.hasOneUse()) return false;
 | 
						|
  // Check if the multiply is by a constant
 | 
						|
  ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (!MulConst) return false;
 | 
						|
  // If the constant is used in more than one place then modifying it will mean
 | 
						|
  // we need to materialize two constants instead of one, which is a bad idea.
 | 
						|
  if (!MulConst->hasOneUse()) return false;
 | 
						|
  unsigned MulConstVal = MulConst->getZExtValue();
 | 
						|
  if (MulConstVal == 0) return false;
 | 
						|
 | 
						|
  // Find the largest power of 2 that MulConstVal is a multiple of
 | 
						|
  PowerOfTwo = MaxShift;
 | 
						|
  while ((MulConstVal % (1 << PowerOfTwo)) != 0) {
 | 
						|
    --PowerOfTwo;
 | 
						|
    if (PowerOfTwo == 0) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only optimise if the new cost is better
 | 
						|
  unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo);
 | 
						|
  NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32);
 | 
						|
  unsigned OldCost = ConstantMaterializationCost(MulConstVal, Subtarget);
 | 
						|
  unsigned NewCost = ConstantMaterializationCost(NewMulConstVal, Subtarget);
 | 
						|
  return NewCost < OldCost;
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) {
 | 
						|
  CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode());
 | 
						|
  ReplaceUses(N, M);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
 | 
						|
                                              SDValue &BaseReg,
 | 
						|
                                              SDValue &Opc,
 | 
						|
                                              bool CheckProfitability) {
 | 
						|
  if (DisableShifterOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If N is a multiply-by-constant and it's profitable to extract a shift and
 | 
						|
  // use it in a shifted operand do so.
 | 
						|
  if (N.getOpcode() == ISD::MUL) {
 | 
						|
    unsigned PowerOfTwo = 0;
 | 
						|
    SDValue NewMulConst;
 | 
						|
    if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) {
 | 
						|
      HandleSDNode Handle(N);
 | 
						|
      SDLoc Loc(N);
 | 
						|
      replaceDAGValue(N.getOperand(1), NewMulConst);
 | 
						|
      BaseReg = Handle.getValue();
 | 
						|
      Opc = CurDAG->getTargetConstant(
 | 
						|
          ARM_AM::getSORegOpc(ARM_AM::lsl, PowerOfTwo), Loc, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
 | 
						|
  // Don't match base register only case. That is matched to a separate
 | 
						|
  // lower complexity pattern with explicit register operand.
 | 
						|
  if (ShOpcVal == ARM_AM::no_shift) return false;
 | 
						|
 | 
						|
  BaseReg = N.getOperand(0);
 | 
						|
  unsigned ShImmVal = 0;
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (!RHS) return false;
 | 
						|
  ShImmVal = RHS->getZExtValue() & 31;
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
 | 
						|
                                  SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
 | 
						|
                                              SDValue &BaseReg,
 | 
						|
                                              SDValue &ShReg,
 | 
						|
                                              SDValue &Opc,
 | 
						|
                                              bool CheckProfitability) {
 | 
						|
  if (DisableShifterOp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
 | 
						|
  // Don't match base register only case. That is matched to a separate
 | 
						|
  // lower complexity pattern with explicit register operand.
 | 
						|
  if (ShOpcVal == ARM_AM::no_shift) return false;
 | 
						|
 | 
						|
  BaseReg = N.getOperand(0);
 | 
						|
  unsigned ShImmVal = 0;
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (RHS) return false;
 | 
						|
 | 
						|
  ShReg = N.getOperand(1);
 | 
						|
  if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
 | 
						|
    return false;
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
 | 
						|
                                  SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether an ISD::OR's operands are suitable to turn the operation
 | 
						|
// into an addition, which often has more compact encodings.
 | 
						|
bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) {
 | 
						|
  assert(Parent->getOpcode() == ISD::OR && "unexpected parent");
 | 
						|
  Out = N;
 | 
						|
  return CurDAG->haveNoCommonBitsSet(N, Parent->getOperand(1));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
 | 
						|
                                          SDValue &Base,
 | 
						|
                                          SDValue &OffImm) {
 | 
						|
  // Match simple R + imm12 operands.
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      // Match frame index.
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(
 | 
						|
          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    } else
 | 
						|
      Base = N;
 | 
						|
    OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getSExtValue();
 | 
						|
    if (N.getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -RHSC;
 | 
						|
 | 
						|
    if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
 | 
						|
      Base   = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(
 | 
						|
            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                                      SDValue &Opc) {
 | 
						|
  if (N.getOpcode() == ISD::MUL &&
 | 
						|
      ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
 | 
						|
    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      // X * [3,5,9] -> X + X * [2,4,8] etc.
 | 
						|
      int RHSC = (int)RHS->getZExtValue();
 | 
						|
      if (RHSC & 1) {
 | 
						|
        RHSC = RHSC & ~1;
 | 
						|
        ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
        if (RHSC < 0) {
 | 
						|
          AddSub = ARM_AM::sub;
 | 
						|
          RHSC = - RHSC;
 | 
						|
        }
 | 
						|
        if (isPowerOf2_32(RHSC)) {
 | 
						|
          unsigned ShAmt = Log2_32(RHSC);
 | 
						|
          Base = Offset = N.getOperand(0);
 | 
						|
          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
 | 
						|
                                                            ARM_AM::lsl),
 | 
						|
                                          SDLoc(N), MVT::i32);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      // ISD::OR that is equivalent to an ISD::ADD.
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Leave simple R +/- imm12 operands for LDRi12
 | 
						|
  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | 
						|
                                -0x1000+1, 0x1000, RHSC)) // 12 bits.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise this is R +/- [possibly shifted] R.
 | 
						|
  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal =
 | 
						|
    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
 | 
						|
  Base   = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
 | 
						|
  if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh =
 | 
						|
           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
 | 
						|
        Offset = N.getOperand(1).getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ShOpcVal = ARM_AM::no_shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try matching (R shl C) + (R).
 | 
						|
  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
 | 
						|
      !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
 | 
						|
        N.getOperand(0).hasOneUse())) {
 | 
						|
    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
 | 
						|
    if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
      // Check to see if the RHS of the shift is a constant, if not, we can't
 | 
						|
      // fold it.
 | 
						|
      if (ConstantSDNode *Sh =
 | 
						|
          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
 | 
						|
        ShAmt = Sh->getZExtValue();
 | 
						|
        if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
 | 
						|
          Offset = N.getOperand(0).getOperand(0);
 | 
						|
          Base = N.getOperand(1);
 | 
						|
        } else {
 | 
						|
          ShAmt = 0;
 | 
						|
          ShOpcVal = ARM_AM::no_shift;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If Offset is a multiply-by-constant and it's profitable to extract a shift
 | 
						|
  // and use it in a shifted operand do so.
 | 
						|
  if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) {
 | 
						|
    unsigned PowerOfTwo = 0;
 | 
						|
    SDValue NewMulConst;
 | 
						|
    if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) {
 | 
						|
      HandleSDNode Handle(Offset);
 | 
						|
      replaceDAGValue(Offset.getOperand(1), NewMulConst);
 | 
						|
      Offset = Handle.getValue();
 | 
						|
      ShAmt = PowerOfTwo;
 | 
						|
      ShOpcVal = ARM_AM::lsl;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | 
						|
                                  SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Offset = N;
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
  if (ShOpcVal != ARM_AM::no_shift) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
 | 
						|
        Offset = N.getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
        ShOpcVal = ARM_AM::no_shift;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      ShOpcVal = ARM_AM::no_shift;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
 | 
						|
                                  SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
 | 
						|
    if (AddSub == ARM_AM::sub) Val *= -1;
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
 | 
						|
                                                      ARM_AM::no_shift),
 | 
						|
                                    SDLoc(Op), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
 | 
						|
  Base = N;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
 | 
						|
                                      SDValue &Base, SDValue &Offset,
 | 
						|
                                      SDValue &Opc) {
 | 
						|
  if (N.getOpcode() == ISD::SUB) {
 | 
						|
    // X - C  is canonicalize to X + -C, no need to handle it here.
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Offset = N.getOperand(1);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N),
 | 
						|
                                    MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    Base = N;
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(
 | 
						|
          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
 | 
						|
                                    MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS is +/- imm8, fold into addr mode.
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
 | 
						|
                              -256 + 1, 256, RHSC)) { // 8 bits.
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(
 | 
						|
          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
    ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
    if (RHSC < 0) {
 | 
						|
      AddSub = ARM_AM::sub;
 | 
						|
      RHSC = -RHSC;
 | 
						|
    }
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N),
 | 
						|
                                    MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
 | 
						|
                                  MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset, SDValue &Opc) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
 | 
						|
    ? ARM_AM::add : ARM_AM::sub;
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
 | 
						|
    Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op),
 | 
						|
                                    MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Offset = N;
 | 
						|
  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op),
 | 
						|
                                  MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset,
 | 
						|
                                        bool FP16) {
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    Base = N;
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(
 | 
						|
          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
    } else if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
               N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | 
						|
               N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | 
						|
               N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    }
 | 
						|
    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
 | 
						|
                                       SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS is +/- imm8, fold into addr mode.
 | 
						|
  int RHSC;
 | 
						|
  const int Scale = FP16 ? 2 : 4;
 | 
						|
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), Scale, -255, 256, RHSC)) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(
 | 
						|
          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
    }
 | 
						|
 | 
						|
    ARM_AM::AddrOpc AddSub = ARM_AM::add;
 | 
						|
    if (RHSC < 0) {
 | 
						|
      AddSub = ARM_AM::sub;
 | 
						|
      RHSC = -RHSC;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FP16)
 | 
						|
      Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub, RHSC),
 | 
						|
                                         SDLoc(N), MVT::i32);
 | 
						|
    else
 | 
						|
      Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
 | 
						|
                                         SDLoc(N), MVT::i32);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N;
 | 
						|
 | 
						|
  if (FP16)
 | 
						|
    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add, 0),
 | 
						|
                                       SDLoc(N), MVT::i32);
 | 
						|
  else
 | 
						|
    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
 | 
						|
                                       SDLoc(N), MVT::i32);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
 | 
						|
                                      SDValue &Base, SDValue &Offset) {
 | 
						|
  return IsAddressingMode5(N, Base, Offset, /*FP16=*/ false);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N,
 | 
						|
                                          SDValue &Base, SDValue &Offset) {
 | 
						|
  return IsAddressingMode5(N, Base, Offset, /*FP16=*/ true);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
 | 
						|
                                      SDValue &Align) {
 | 
						|
  Addr = N;
 | 
						|
 | 
						|
  unsigned Alignment = 0;
 | 
						|
 | 
						|
  MemSDNode *MemN = cast<MemSDNode>(Parent);
 | 
						|
 | 
						|
  if (isa<LSBaseSDNode>(MemN) ||
 | 
						|
      ((MemN->getOpcode() == ARMISD::VST1_UPD ||
 | 
						|
        MemN->getOpcode() == ARMISD::VLD1_UPD) &&
 | 
						|
       MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
 | 
						|
    // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
 | 
						|
    // The maximum alignment is equal to the memory size being referenced.
 | 
						|
    unsigned MMOAlign = MemN->getAlignment();
 | 
						|
    unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
 | 
						|
    if (MMOAlign >= MemSize && MemSize > 1)
 | 
						|
      Alignment = MemSize;
 | 
						|
  } else {
 | 
						|
    // All other uses of addrmode6 are for intrinsics.  For now just record
 | 
						|
    // the raw alignment value; it will be refined later based on the legal
 | 
						|
    // alignment operands for the intrinsic.
 | 
						|
    Alignment = MemN->getAlignment();
 | 
						|
  }
 | 
						|
 | 
						|
  Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
 | 
						|
                                            SDValue &Offset) {
 | 
						|
  LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
 | 
						|
  ISD::MemIndexedMode AM = LdSt->getAddressingMode();
 | 
						|
  if (AM != ISD::POST_INC)
 | 
						|
    return false;
 | 
						|
  Offset = N;
 | 
						|
  if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
 | 
						|
      Offset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
 | 
						|
                                       SDValue &Offset, SDValue &Label) {
 | 
						|
  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
 | 
						|
    Offset = N.getOperand(0);
 | 
						|
    SDValue N1 = N.getOperand(1);
 | 
						|
    Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
 | 
						|
                                      SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Thumb Addressing Modes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool shouldUseZeroOffsetLdSt(SDValue N) {
 | 
						|
  // Negative numbers are difficult to materialise in thumb1. If we are
 | 
						|
  // selecting the add of a negative, instead try to select ri with a zero
 | 
						|
  // offset, so create the add node directly which will become a sub.
 | 
						|
  if (N.getOpcode() != ISD::ADD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Look for an imm which is not legal for ld/st, but is legal for sub.
 | 
						|
  if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1)))
 | 
						|
    return C->getSExtValue() < 0 && C->getSExtValue() >= -255;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N, SDValue &Base,
 | 
						|
                                                SDValue &Offset) {
 | 
						|
  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
 | 
						|
    if (!NC || !NC->isZero())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Base = Offset = N;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  Offset = N.getOperand(1);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, SDValue &Base,
 | 
						|
                                            SDValue &Offset) {
 | 
						|
  if (shouldUseZeroOffsetLdSt(N))
 | 
						|
    return false; // Select ri instead
 | 
						|
  return SelectThumbAddrModeRRSext(N, Base, Offset);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
 | 
						|
                                          SDValue &Base, SDValue &OffImm) {
 | 
						|
  if (shouldUseZeroOffsetLdSt(N)) {
 | 
						|
    Base = N;
 | 
						|
    OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    if (N.getOpcode() == ISD::ADD) {
 | 
						|
      return false; // We want to select register offset instead
 | 
						|
    } else if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetConstantPool &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
    } else {
 | 
						|
      Base = N;
 | 
						|
    }
 | 
						|
 | 
						|
    OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the RHS is + imm5 * scale, fold into addr mode.
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Offset is too large, so use register offset instead.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
 | 
						|
                                            SDValue &Base, SDValue &OffImm) {
 | 
						|
  if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    // Only multiples of 4 are allowed for the offset, so the frame object
 | 
						|
    // alignment must be at least 4.
 | 
						|
    MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
    if (MFI.getObjectAlign(FI) < Align(4))
 | 
						|
      MFI.setObjectAlignment(FI, Align(4));
 | 
						|
    Base = CurDAG->getTargetFrameIndex(
 | 
						|
        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
    OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
 | 
						|
    // If the RHS is + imm8 * scale, fold into addr mode.
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
      // Make sure the offset is inside the object, or we might fail to
 | 
						|
      // allocate an emergency spill slot. (An out-of-range access is UB, but
 | 
						|
      // it could show up anyway.)
 | 
						|
      MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
      if (RHSC * 4 < MFI.getObjectSize(FI)) {
 | 
						|
        // For LHS+RHS to result in an offset that's a multiple of 4 the object
 | 
						|
        // indexed by the LHS must be 4-byte aligned.
 | 
						|
        if (!MFI.isFixedObjectIndex(FI) && MFI.getObjectAlign(FI) < Align(4))
 | 
						|
          MFI.setObjectAlignment(FI, Align(4));
 | 
						|
        if (MFI.getObjectAlign(FI) >= Align(4)) {
 | 
						|
          Base = CurDAG->getTargetFrameIndex(
 | 
						|
              FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
          OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned Shift>
 | 
						|
bool ARMDAGToDAGISel::SelectTAddrModeImm7(SDValue N, SDValue &Base,
 | 
						|
                                          SDValue &OffImm) {
 | 
						|
  if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -0x7f, 0x80,
 | 
						|
                                RHSC)) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (N.getOpcode() == ISD::SUB)
 | 
						|
        RHSC = -RHSC;
 | 
						|
      OffImm =
 | 
						|
          CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Thumb 2 Addressing Modes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
 | 
						|
                                            SDValue &Base, SDValue &OffImm) {
 | 
						|
  // Match simple R + imm12 operands.
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    if (N.getOpcode() == ISD::FrameIndex) {
 | 
						|
      // Match frame index.
 | 
						|
      int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      Base = CurDAG->getTargetFrameIndex(
 | 
						|
          FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (N.getOpcode() == ARMISD::Wrapper &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
 | 
						|
        N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::TargetConstantPool)
 | 
						|
        return false;  // We want to select t2LDRpci instead.
 | 
						|
    } else
 | 
						|
      Base = N;
 | 
						|
    OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    if (SelectT2AddrModeImm8(N, Base, OffImm))
 | 
						|
      // Let t2LDRi8 handle (R - imm8).
 | 
						|
      return false;
 | 
						|
 | 
						|
    int RHSC = (int)RHS->getZExtValue();
 | 
						|
    if (N.getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -RHSC;
 | 
						|
 | 
						|
    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
 | 
						|
      Base   = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(
 | 
						|
            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm  = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned Shift>
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -255, 256, RHSC)) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(
 | 
						|
            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      }
 | 
						|
 | 
						|
      if (N.getOpcode() == ISD::SUB)
 | 
						|
        RHSC = -RHSC;
 | 
						|
      OffImm =
 | 
						|
          CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
 | 
						|
                                           SDValue &Base, SDValue &OffImm) {
 | 
						|
  // Match simple R - imm8 operands.
 | 
						|
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
 | 
						|
      !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getSExtValue();
 | 
						|
    if (N.getOpcode() == ISD::SUB)
 | 
						|
      RHSC = -RHSC;
 | 
						|
 | 
						|
    if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(
 | 
						|
            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      }
 | 
						|
      OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
 | 
						|
                                                 SDValue &OffImm){
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
 | 
						|
    ? cast<LoadSDNode>(Op)->getAddressingMode()
 | 
						|
    : cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
  int RHSC;
 | 
						|
  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
 | 
						|
    OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
 | 
						|
      ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32)
 | 
						|
      : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned Shift>
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N, SDValue &Base,
 | 
						|
                                           SDValue &OffImm) {
 | 
						|
  if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
 | 
						|
    int RHSC;
 | 
						|
    if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -0x7f, 0x80,
 | 
						|
                                RHSC)) {
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
        Base = CurDAG->getTargetFrameIndex(
 | 
						|
            FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
      }
 | 
						|
 | 
						|
      if (N.getOpcode() == ISD::SUB)
 | 
						|
        RHSC = -RHSC;
 | 
						|
      OffImm =
 | 
						|
          CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Base only.
 | 
						|
  Base = N;
 | 
						|
  OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned Shift>
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
 | 
						|
                                                 SDValue &OffImm) {
 | 
						|
  return SelectT2AddrModeImm7Offset(Op, N, OffImm, Shift);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
 | 
						|
                                                 SDValue &OffImm,
 | 
						|
                                                 unsigned Shift) {
 | 
						|
  unsigned Opcode = Op->getOpcode();
 | 
						|
  ISD::MemIndexedMode AM;
 | 
						|
  switch (Opcode) {
 | 
						|
  case ISD::LOAD:
 | 
						|
    AM = cast<LoadSDNode>(Op)->getAddressingMode();
 | 
						|
    break;
 | 
						|
  case ISD::STORE:
 | 
						|
    AM = cast<StoreSDNode>(Op)->getAddressingMode();
 | 
						|
    break;
 | 
						|
  case ISD::MLOAD:
 | 
						|
    AM = cast<MaskedLoadSDNode>(Op)->getAddressingMode();
 | 
						|
    break;
 | 
						|
  case ISD::MSTORE:
 | 
						|
    AM = cast<MaskedStoreSDNode>(Op)->getAddressingMode();
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected Opcode for Imm7Offset");
 | 
						|
  }
 | 
						|
 | 
						|
  int RHSC;
 | 
						|
  // 7 bit constant, shifted by Shift.
 | 
						|
  if (isScaledConstantInRange(N, 1 << Shift, 0, 0x80, RHSC)) {
 | 
						|
    OffImm =
 | 
						|
        ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
 | 
						|
            ? CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32)
 | 
						|
            : CurDAG->getTargetConstant(-RHSC * (1 << Shift), SDLoc(N),
 | 
						|
                                        MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template <int Min, int Max>
 | 
						|
bool ARMDAGToDAGISel::SelectImmediateInRange(SDValue N, SDValue &OffImm) {
 | 
						|
  int Val;
 | 
						|
  if (isScaledConstantInRange(N, 1, Min, Max, Val)) {
 | 
						|
    OffImm = CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
 | 
						|
                                            SDValue &Base,
 | 
						|
                                            SDValue &OffReg, SDValue &ShImm) {
 | 
						|
  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
 | 
						|
  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
 | 
						|
  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
    int RHSC = (int)RHS->getZExtValue();
 | 
						|
    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
 | 
						|
      return false;
 | 
						|
    else if (RHSC < 0 && RHSC >= -255) // 8 bits
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for (R + R) or (R + (R << [1,2,3])).
 | 
						|
  unsigned ShAmt = 0;
 | 
						|
  Base   = N.getOperand(0);
 | 
						|
  OffReg = N.getOperand(1);
 | 
						|
 | 
						|
  // Swap if it is ((R << c) + R).
 | 
						|
  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
 | 
						|
  if (ShOpcVal != ARM_AM::lsl) {
 | 
						|
    ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
 | 
						|
    if (ShOpcVal == ARM_AM::lsl)
 | 
						|
      std::swap(Base, OffReg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShOpcVal == ARM_AM::lsl) {
 | 
						|
    // Check to see if the RHS of the shift is a constant, if not, we can't fold
 | 
						|
    // it.
 | 
						|
    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
 | 
						|
      ShAmt = Sh->getZExtValue();
 | 
						|
      if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
 | 
						|
        OffReg = OffReg.getOperand(0);
 | 
						|
      else {
 | 
						|
        ShAmt = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If OffReg is a multiply-by-constant and it's profitable to extract a shift
 | 
						|
  // and use it in a shifted operand do so.
 | 
						|
  if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) {
 | 
						|
    unsigned PowerOfTwo = 0;
 | 
						|
    SDValue NewMulConst;
 | 
						|
    if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) {
 | 
						|
      HandleSDNode Handle(OffReg);
 | 
						|
      replaceDAGValue(OffReg.getOperand(1), NewMulConst);
 | 
						|
      OffReg = Handle.getValue();
 | 
						|
      ShAmt = PowerOfTwo;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
 | 
						|
                                                SDValue &OffImm) {
 | 
						|
  // This *must* succeed since it's used for the irreplaceable ldrex and strex
 | 
						|
  // instructions.
 | 
						|
  Base = N;
 | 
						|
  OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
 | 
						|
 | 
						|
  if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
  if (!RHS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  uint32_t RHSC = (int)RHS->getZExtValue();
 | 
						|
  if (RHSC > 1020 || RHSC % 4 != 0)
 | 
						|
    return true;
 | 
						|
 | 
						|
  Base = N.getOperand(0);
 | 
						|
  if (Base.getOpcode() == ISD::FrameIndex) {
 | 
						|
    int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | 
						|
    Base = CurDAG->getTargetFrameIndex(
 | 
						|
        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
  }
 | 
						|
 | 
						|
  OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===--------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getAL - Returns a ARMCC::AL immediate node.
 | 
						|
static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) {
 | 
						|
  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
 | 
						|
  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) {
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
  ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
  if (AM == ISD::UNINDEXED)
 | 
						|
    return false;
 | 
						|
 | 
						|
  EVT LoadedVT = LD->getMemoryVT();
 | 
						|
  SDValue Offset, AMOpc;
 | 
						|
  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  bool Match = false;
 | 
						|
  if (LoadedVT == MVT::i32 && isPre &&
 | 
						|
      SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Opcode = ARM::LDR_PRE_IMM;
 | 
						|
    Match = true;
 | 
						|
  } else if (LoadedVT == MVT::i32 && !isPre &&
 | 
						|
      SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Opcode = ARM::LDR_POST_IMM;
 | 
						|
    Match = true;
 | 
						|
  } else if (LoadedVT == MVT::i32 &&
 | 
						|
      SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
 | 
						|
    Match = true;
 | 
						|
 | 
						|
  } else if (LoadedVT == MVT::i16 &&
 | 
						|
             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
    Match = true;
 | 
						|
    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
 | 
						|
      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
 | 
						|
      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
 | 
						|
  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
 | 
						|
    if (LD->getExtensionType() == ISD::SEXTLOAD) {
 | 
						|
      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (isPre &&
 | 
						|
          SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = ARM::LDRB_PRE_IMM;
 | 
						|
      } else if (!isPre &&
 | 
						|
                  SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = ARM::LDRB_POST_IMM;
 | 
						|
      } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
 | 
						|
        Match = true;
 | 
						|
        Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Match) {
 | 
						|
    if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)),
 | 
						|
                       CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
      SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
 | 
						|
                                           MVT::Other, Ops);
 | 
						|
      transferMemOperands(N, New);
 | 
						|
      ReplaceNode(N, New);
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)),
 | 
						|
                       CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
      SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
 | 
						|
                                           MVT::Other, Ops);
 | 
						|
      transferMemOperands(N, New);
 | 
						|
      ReplaceNode(N, New);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) {
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
  EVT LoadedVT = LD->getMemoryVT();
 | 
						|
  ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
  if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD ||
 | 
						|
      LoadedVT.getSimpleVT().SimpleTy != MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset());
 | 
						|
  if (!COffs || COffs->getZExtValue() != 4)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
 | 
						|
  // The encoding of LDM is not how the rest of ISel expects a post-inc load to
 | 
						|
  // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
 | 
						|
  // ISel.
 | 
						|
  SDValue Chain = LD->getChain();
 | 
						|
  SDValue Base = LD->getBasePtr();
 | 
						|
  SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)),
 | 
						|
                   CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
  SDNode *New = CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32,
 | 
						|
                                       MVT::i32, MVT::Other, Ops);
 | 
						|
  transferMemOperands(N, New);
 | 
						|
  ReplaceNode(N, New);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) {
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
  ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
  if (AM == ISD::UNINDEXED)
 | 
						|
    return false;
 | 
						|
 | 
						|
  EVT LoadedVT = LD->getMemoryVT();
 | 
						|
  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
  SDValue Offset;
 | 
						|
  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  bool Match = false;
 | 
						|
  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
 | 
						|
    switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
    case MVT::i32:
 | 
						|
      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
 | 
						|
      break;
 | 
						|
    case MVT::i16:
 | 
						|
      if (isSExtLd)
 | 
						|
        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
 | 
						|
      else
 | 
						|
        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
 | 
						|
      break;
 | 
						|
    case MVT::i8:
 | 
						|
    case MVT::i1:
 | 
						|
      if (isSExtLd)
 | 
						|
        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
 | 
						|
      else
 | 
						|
        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    Match = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Match) {
 | 
						|
    SDValue Chain = LD->getChain();
 | 
						|
    SDValue Base = LD->getBasePtr();
 | 
						|
    SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)),
 | 
						|
                     CurDAG->getRegister(0, MVT::i32), Chain };
 | 
						|
    SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
 | 
						|
                                         MVT::Other, Ops);
 | 
						|
    transferMemOperands(N, New);
 | 
						|
    ReplaceNode(N, New);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode *N) {
 | 
						|
  EVT LoadedVT;
 | 
						|
  unsigned Opcode = 0;
 | 
						|
  bool isSExtLd, isPre;
 | 
						|
  Align Alignment;
 | 
						|
  ARMVCC::VPTCodes Pred;
 | 
						|
  SDValue PredReg;
 | 
						|
  SDValue Chain, Base, Offset;
 | 
						|
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
    if (AM == ISD::UNINDEXED)
 | 
						|
      return false;
 | 
						|
    LoadedVT = LD->getMemoryVT();
 | 
						|
    if (!LoadedVT.isVector())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Chain = LD->getChain();
 | 
						|
    Base = LD->getBasePtr();
 | 
						|
    Offset = LD->getOffset();
 | 
						|
    Alignment = LD->getAlign();
 | 
						|
    isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
    isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | 
						|
    Pred = ARMVCC::None;
 | 
						|
    PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
 | 
						|
    ISD::MemIndexedMode AM = LD->getAddressingMode();
 | 
						|
    if (AM == ISD::UNINDEXED)
 | 
						|
      return false;
 | 
						|
    LoadedVT = LD->getMemoryVT();
 | 
						|
    if (!LoadedVT.isVector())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Chain = LD->getChain();
 | 
						|
    Base = LD->getBasePtr();
 | 
						|
    Offset = LD->getOffset();
 | 
						|
    Alignment = LD->getAlign();
 | 
						|
    isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
    isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
 | 
						|
    Pred = ARMVCC::Then;
 | 
						|
    PredReg = LD->getMask();
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Expected a Load or a Masked Load!");
 | 
						|
 | 
						|
  // We allow LE non-masked loads to change the type (for example use a vldrb.8
 | 
						|
  // as opposed to a vldrw.32). This can allow extra addressing modes or
 | 
						|
  // alignments for what is otherwise an equivalent instruction.
 | 
						|
  bool CanChangeType = Subtarget->isLittle() && !isa<MaskedLoadSDNode>(N);
 | 
						|
 | 
						|
  SDValue NewOffset;
 | 
						|
  if (Alignment >= Align(2) && LoadedVT == MVT::v4i16 &&
 | 
						|
      SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 1)) {
 | 
						|
    if (isSExtLd)
 | 
						|
      Opcode = isPre ? ARM::MVE_VLDRHS32_pre : ARM::MVE_VLDRHS32_post;
 | 
						|
    else
 | 
						|
      Opcode = isPre ? ARM::MVE_VLDRHU32_pre : ARM::MVE_VLDRHU32_post;
 | 
						|
  } else if (LoadedVT == MVT::v8i8 &&
 | 
						|
             SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0)) {
 | 
						|
    if (isSExtLd)
 | 
						|
      Opcode = isPre ? ARM::MVE_VLDRBS16_pre : ARM::MVE_VLDRBS16_post;
 | 
						|
    else
 | 
						|
      Opcode = isPre ? ARM::MVE_VLDRBU16_pre : ARM::MVE_VLDRBU16_post;
 | 
						|
  } else if (LoadedVT == MVT::v4i8 &&
 | 
						|
             SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0)) {
 | 
						|
    if (isSExtLd)
 | 
						|
      Opcode = isPre ? ARM::MVE_VLDRBS32_pre : ARM::MVE_VLDRBS32_post;
 | 
						|
    else
 | 
						|
      Opcode = isPre ? ARM::MVE_VLDRBU32_pre : ARM::MVE_VLDRBU32_post;
 | 
						|
  } else if (Alignment >= Align(4) &&
 | 
						|
             (CanChangeType || LoadedVT == MVT::v4i32 ||
 | 
						|
              LoadedVT == MVT::v4f32) &&
 | 
						|
             SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 2))
 | 
						|
    Opcode = isPre ? ARM::MVE_VLDRWU32_pre : ARM::MVE_VLDRWU32_post;
 | 
						|
  else if (Alignment >= Align(2) &&
 | 
						|
           (CanChangeType || LoadedVT == MVT::v8i16 ||
 | 
						|
            LoadedVT == MVT::v8f16) &&
 | 
						|
           SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 1))
 | 
						|
    Opcode = isPre ? ARM::MVE_VLDRHU16_pre : ARM::MVE_VLDRHU16_post;
 | 
						|
  else if ((CanChangeType || LoadedVT == MVT::v16i8) &&
 | 
						|
           SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0))
 | 
						|
    Opcode = isPre ? ARM::MVE_VLDRBU8_pre : ARM::MVE_VLDRBU8_post;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue Ops[] = {Base,
 | 
						|
                   NewOffset,
 | 
						|
                   CurDAG->getTargetConstant(Pred, SDLoc(N), MVT::i32),
 | 
						|
                   PredReg,
 | 
						|
                   CurDAG->getRegister(0, MVT::i32), // tp_reg
 | 
						|
                   Chain};
 | 
						|
  SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
 | 
						|
                                       N->getValueType(0), MVT::Other, Ops);
 | 
						|
  transferMemOperands(N, New);
 | 
						|
  ReplaceUses(SDValue(N, 0), SDValue(New, 1));
 | 
						|
  ReplaceUses(SDValue(N, 1), SDValue(New, 0));
 | 
						|
  ReplaceUses(SDValue(N, 2), SDValue(New, 2));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Form a GPRPair pseudo register from a pair of GPR regs.
 | 
						|
SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass =
 | 
						|
    CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Form a D register from a pair of S registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass =
 | 
						|
    CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Form a quad register from a pair of D registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl,
 | 
						|
                                               MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Form 4 consecutive D registers from a pair of Q registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
 | 
						|
                                               MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Form 4 consecutive S registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
 | 
						|
                                   SDValue V2, SDValue V3) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass =
 | 
						|
    CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
 | 
						|
  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32);
 | 
						|
  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | 
						|
                                    V2, SubReg2, V3, SubReg3 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Form 4 consecutive D registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
 | 
						|
                                   SDValue V2, SDValue V3) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
 | 
						|
                                               MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
 | 
						|
  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32);
 | 
						|
  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | 
						|
                                    V2, SubReg2, V3, SubReg3 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// Form 4 consecutive Q registers.
 | 
						|
SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
 | 
						|
                                   SDValue V2, SDValue V3) {
 | 
						|
  SDLoc dl(V0.getNode());
 | 
						|
  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl,
 | 
						|
                                               MVT::i32);
 | 
						|
  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
 | 
						|
  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
 | 
						|
  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32);
 | 
						|
  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32);
 | 
						|
  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
 | 
						|
                                    V2, SubReg2, V3, SubReg3 };
 | 
						|
  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
 | 
						|
}
 | 
						|
 | 
						|
/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
 | 
						|
/// of a NEON VLD or VST instruction.  The supported values depend on the
 | 
						|
/// number of registers being loaded.
 | 
						|
SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl,
 | 
						|
                                       unsigned NumVecs, bool is64BitVector) {
 | 
						|
  unsigned NumRegs = NumVecs;
 | 
						|
  if (!is64BitVector && NumVecs < 3)
 | 
						|
    NumRegs *= 2;
 | 
						|
 | 
						|
  unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | 
						|
  if (Alignment >= 32 && NumRegs == 4)
 | 
						|
    Alignment = 32;
 | 
						|
  else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
 | 
						|
    Alignment = 16;
 | 
						|
  else if (Alignment >= 8)
 | 
						|
    Alignment = 8;
 | 
						|
  else
 | 
						|
    Alignment = 0;
 | 
						|
 | 
						|
  return CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
static bool isVLDfixed(unsigned Opc)
 | 
						|
{
 | 
						|
  switch (Opc) {
 | 
						|
  default: return false;
 | 
						|
  case ARM::VLD1d8wb_fixed : return true;
 | 
						|
  case ARM::VLD1d16wb_fixed : return true;
 | 
						|
  case ARM::VLD1d64Qwb_fixed : return true;
 | 
						|
  case ARM::VLD1d32wb_fixed : return true;
 | 
						|
  case ARM::VLD1d64wb_fixed : return true;
 | 
						|
  case ARM::VLD1d8TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d16TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d32TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d64TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d8QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d16QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d32QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1d64QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD1q8wb_fixed : return true;
 | 
						|
  case ARM::VLD1q16wb_fixed : return true;
 | 
						|
  case ARM::VLD1q32wb_fixed : return true;
 | 
						|
  case ARM::VLD1q64wb_fixed : return true;
 | 
						|
  case ARM::VLD1DUPd8wb_fixed : return true;
 | 
						|
  case ARM::VLD1DUPd16wb_fixed : return true;
 | 
						|
  case ARM::VLD1DUPd32wb_fixed : return true;
 | 
						|
  case ARM::VLD1DUPq8wb_fixed : return true;
 | 
						|
  case ARM::VLD1DUPq16wb_fixed : return true;
 | 
						|
  case ARM::VLD1DUPq32wb_fixed : return true;
 | 
						|
  case ARM::VLD2d8wb_fixed : return true;
 | 
						|
  case ARM::VLD2d16wb_fixed : return true;
 | 
						|
  case ARM::VLD2d32wb_fixed : return true;
 | 
						|
  case ARM::VLD2q8PseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD2q16PseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD2q32PseudoWB_fixed : return true;
 | 
						|
  case ARM::VLD2DUPd8wb_fixed : return true;
 | 
						|
  case ARM::VLD2DUPd16wb_fixed : return true;
 | 
						|
  case ARM::VLD2DUPd32wb_fixed : return true;
 | 
						|
  case ARM::VLD2DUPq8OddPseudoWB_fixed: return true;
 | 
						|
  case ARM::VLD2DUPq16OddPseudoWB_fixed: return true;
 | 
						|
  case ARM::VLD2DUPq32OddPseudoWB_fixed: return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isVSTfixed(unsigned Opc)
 | 
						|
{
 | 
						|
  switch (Opc) {
 | 
						|
  default: return false;
 | 
						|
  case ARM::VST1d8wb_fixed : return true;
 | 
						|
  case ARM::VST1d16wb_fixed : return true;
 | 
						|
  case ARM::VST1d32wb_fixed : return true;
 | 
						|
  case ARM::VST1d64wb_fixed : return true;
 | 
						|
  case ARM::VST1q8wb_fixed : return true;
 | 
						|
  case ARM::VST1q16wb_fixed : return true;
 | 
						|
  case ARM::VST1q32wb_fixed : return true;
 | 
						|
  case ARM::VST1q64wb_fixed : return true;
 | 
						|
  case ARM::VST1d8TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d16TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d32TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d64TPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d8QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d16QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d32QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST1d64QPseudoWB_fixed : return true;
 | 
						|
  case ARM::VST2d8wb_fixed : return true;
 | 
						|
  case ARM::VST2d16wb_fixed : return true;
 | 
						|
  case ARM::VST2d32wb_fixed : return true;
 | 
						|
  case ARM::VST2q8PseudoWB_fixed : return true;
 | 
						|
  case ARM::VST2q16PseudoWB_fixed : return true;
 | 
						|
  case ARM::VST2q32PseudoWB_fixed : return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Get the register stride update opcode of a VLD/VST instruction that
 | 
						|
// is otherwise equivalent to the given fixed stride updating instruction.
 | 
						|
static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
 | 
						|
  assert((isVLDfixed(Opc) || isVSTfixed(Opc))
 | 
						|
    && "Incorrect fixed stride updating instruction.");
 | 
						|
  switch (Opc) {
 | 
						|
  default: break;
 | 
						|
  case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
 | 
						|
  case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
 | 
						|
  case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
 | 
						|
  case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
 | 
						|
  case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
 | 
						|
  case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
 | 
						|
  case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
 | 
						|
  case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
 | 
						|
  case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
 | 
						|
  case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
 | 
						|
  case ARM::VLD1d8TPseudoWB_fixed: return ARM::VLD1d8TPseudoWB_register;
 | 
						|
  case ARM::VLD1d16TPseudoWB_fixed: return ARM::VLD1d16TPseudoWB_register;
 | 
						|
  case ARM::VLD1d32TPseudoWB_fixed: return ARM::VLD1d32TPseudoWB_register;
 | 
						|
  case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
 | 
						|
  case ARM::VLD1d8QPseudoWB_fixed: return ARM::VLD1d8QPseudoWB_register;
 | 
						|
  case ARM::VLD1d16QPseudoWB_fixed: return ARM::VLD1d16QPseudoWB_register;
 | 
						|
  case ARM::VLD1d32QPseudoWB_fixed: return ARM::VLD1d32QPseudoWB_register;
 | 
						|
  case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
 | 
						|
  case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register;
 | 
						|
  case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register;
 | 
						|
  case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register;
 | 
						|
  case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register;
 | 
						|
  case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register;
 | 
						|
  case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register;
 | 
						|
  case ARM::VLD2DUPq8OddPseudoWB_fixed: return ARM::VLD2DUPq8OddPseudoWB_register;
 | 
						|
  case ARM::VLD2DUPq16OddPseudoWB_fixed: return ARM::VLD2DUPq16OddPseudoWB_register;
 | 
						|
  case ARM::VLD2DUPq32OddPseudoWB_fixed: return ARM::VLD2DUPq32OddPseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
 | 
						|
  case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
 | 
						|
  case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
 | 
						|
  case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
 | 
						|
  case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
 | 
						|
  case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
 | 
						|
  case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
 | 
						|
  case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
 | 
						|
  case ARM::VST1d8TPseudoWB_fixed: return ARM::VST1d8TPseudoWB_register;
 | 
						|
  case ARM::VST1d16TPseudoWB_fixed: return ARM::VST1d16TPseudoWB_register;
 | 
						|
  case ARM::VST1d32TPseudoWB_fixed: return ARM::VST1d32TPseudoWB_register;
 | 
						|
  case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
 | 
						|
  case ARM::VST1d8QPseudoWB_fixed: return ARM::VST1d8QPseudoWB_register;
 | 
						|
  case ARM::VST1d16QPseudoWB_fixed: return ARM::VST1d16QPseudoWB_register;
 | 
						|
  case ARM::VST1d32QPseudoWB_fixed: return ARM::VST1d32QPseudoWB_register;
 | 
						|
  case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
 | 
						|
  case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
 | 
						|
  case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
 | 
						|
  case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
 | 
						|
  case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
 | 
						|
  case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
 | 
						|
  case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
 | 
						|
  case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
 | 
						|
  case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
 | 
						|
  case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
 | 
						|
  case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
 | 
						|
 | 
						|
  case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
 | 
						|
  case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
 | 
						|
  case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
 | 
						|
  }
 | 
						|
  return Opc; // If not one we handle, return it unchanged.
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if the given increment is a Constant known to be equal to the
 | 
						|
/// access size performed by a NEON load/store. This means the "[rN]!" form can
 | 
						|
/// be used.
 | 
						|
static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) {
 | 
						|
  auto C = dyn_cast<ConstantSDNode>(Inc);
 | 
						|
  return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs;
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                                const uint16_t *DOpcodes,
 | 
						|
                                const uint16_t *QOpcodes0,
 | 
						|
                                const uint16_t *QOpcodes1) {
 | 
						|
  assert(Subtarget->hasNEON());
 | 
						|
  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
 | 
						|
                                   // nodes are not intrinsics.
 | 
						|
  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return;
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
  Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vld type");
 | 
						|
    // Double-register operations:
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4f16:
 | 
						|
  case MVT::v4bf16:
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v1i64: OpcodeIndex = 3; break;
 | 
						|
    // Quad-register operations:
 | 
						|
  case MVT::v16i8: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v8f16:
 | 
						|
  case MVT::v8bf16:
 | 
						|
  case MVT::v8i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v2f64:
 | 
						|
  case MVT::v2i64: OpcodeIndex = 3; break;
 | 
						|
  }
 | 
						|
 | 
						|
  EVT ResTy;
 | 
						|
  if (NumVecs == 1)
 | 
						|
    ResTy = VT;
 | 
						|
  else {
 | 
						|
    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | 
						|
    if (!is64BitVector)
 | 
						|
      ResTyElts *= 2;
 | 
						|
    ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
 | 
						|
  }
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  ResTys.push_back(ResTy);
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG, dl);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  SDNode *VLd;
 | 
						|
  SmallVector<SDValue, 7> Ops;
 | 
						|
 | 
						|
  // Double registers and VLD1/VLD2 quad registers are directly supported.
 | 
						|
  if (is64BitVector || NumVecs <= 2) {
 | 
						|
    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | 
						|
                    QOpcodes0[OpcodeIndex]);
 | 
						|
    Ops.push_back(MemAddr);
 | 
						|
    Ops.push_back(Align);
 | 
						|
    if (isUpdating) {
 | 
						|
      SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
      bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
 | 
						|
      if (!IsImmUpdate) {
 | 
						|
        // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
 | 
						|
        // check for the opcode rather than the number of vector elements.
 | 
						|
        if (isVLDfixed(Opc))
 | 
						|
          Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | 
						|
        Ops.push_back(Inc);
 | 
						|
      // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
 | 
						|
      // the operands if not such an opcode.
 | 
						|
      } else if (!isVLDfixed(Opc))
 | 
						|
        Ops.push_back(Reg0);
 | 
						|
    }
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Otherwise, quad registers are loaded with two separate instructions,
 | 
						|
    // where one loads the even registers and the other loads the odd registers.
 | 
						|
    EVT AddrTy = MemAddr.getValueType();
 | 
						|
 | 
						|
    // Load the even subregs.  This is always an updating load, so that it
 | 
						|
    // provides the address to the second load for the odd subregs.
 | 
						|
    SDValue ImplDef =
 | 
						|
      SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
 | 
						|
    const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
 | 
						|
    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
 | 
						|
                                          ResTy, AddrTy, MVT::Other, OpsA);
 | 
						|
    Chain = SDValue(VLdA, 2);
 | 
						|
 | 
						|
    // Load the odd subregs.
 | 
						|
    Ops.push_back(SDValue(VLdA, 1));
 | 
						|
    Ops.push_back(Align);
 | 
						|
    if (isUpdating) {
 | 
						|
      SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
      assert(isa<ConstantSDNode>(Inc.getNode()) &&
 | 
						|
             "only constant post-increment update allowed for VLD3/4");
 | 
						|
      (void)Inc;
 | 
						|
      Ops.push_back(Reg0);
 | 
						|
    }
 | 
						|
    Ops.push_back(SDValue(VLdA, 0));
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer memoperands.
 | 
						|
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLd), {MemOp});
 | 
						|
 | 
						|
  if (NumVecs == 1) {
 | 
						|
    ReplaceNode(N, VLd);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract out the subregisters.
 | 
						|
  SDValue SuperReg = SDValue(VLd, 0);
 | 
						|
  static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
 | 
						|
                    ARM::qsub_3 == ARM::qsub_0 + 3,
 | 
						|
                "Unexpected subreg numbering");
 | 
						|
  unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
 | 
						|
  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | 
						|
    ReplaceUses(SDValue(N, Vec),
 | 
						|
                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
 | 
						|
  ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
 | 
						|
  if (isUpdating)
 | 
						|
    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
 | 
						|
                                const uint16_t *DOpcodes,
 | 
						|
                                const uint16_t *QOpcodes0,
 | 
						|
                                const uint16_t *QOpcodes1) {
 | 
						|
  assert(Subtarget->hasNEON());
 | 
						|
  assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
 | 
						|
                                   // nodes are not intrinsics.
 | 
						|
  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
 | 
						|
  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  EVT VT = N->getOperand(Vec0Idx).getValueType();
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
  Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vst type");
 | 
						|
    // Double-register operations:
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4f16:
 | 
						|
  case MVT::v4bf16:
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v1i64: OpcodeIndex = 3; break;
 | 
						|
    // Quad-register operations:
 | 
						|
  case MVT::v16i8: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v8f16:
 | 
						|
  case MVT::v8bf16:
 | 
						|
  case MVT::v8i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v2f64:
 | 
						|
  case MVT::v2i64: OpcodeIndex = 3; break;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG, dl);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
  SmallVector<SDValue, 7> Ops;
 | 
						|
 | 
						|
  // Double registers and VST1/VST2 quad registers are directly supported.
 | 
						|
  if (is64BitVector || NumVecs <= 2) {
 | 
						|
    SDValue SrcReg;
 | 
						|
    if (NumVecs == 1) {
 | 
						|
      SrcReg = N->getOperand(Vec0Idx);
 | 
						|
    } else if (is64BitVector) {
 | 
						|
      // Form a REG_SEQUENCE to force register allocation.
 | 
						|
      SDValue V0 = N->getOperand(Vec0Idx + 0);
 | 
						|
      SDValue V1 = N->getOperand(Vec0Idx + 1);
 | 
						|
      if (NumVecs == 2)
 | 
						|
        SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
 | 
						|
      else {
 | 
						|
        SDValue V2 = N->getOperand(Vec0Idx + 2);
 | 
						|
        // If it's a vst3, form a quad D-register and leave the last part as
 | 
						|
        // an undef.
 | 
						|
        SDValue V3 = (NumVecs == 3)
 | 
						|
          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
 | 
						|
          : N->getOperand(Vec0Idx + 3);
 | 
						|
        SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Form a QQ register.
 | 
						|
      SDValue Q0 = N->getOperand(Vec0Idx);
 | 
						|
      SDValue Q1 = N->getOperand(Vec0Idx + 1);
 | 
						|
      SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | 
						|
                    QOpcodes0[OpcodeIndex]);
 | 
						|
    Ops.push_back(MemAddr);
 | 
						|
    Ops.push_back(Align);
 | 
						|
    if (isUpdating) {
 | 
						|
      SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
      bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
 | 
						|
      if (!IsImmUpdate) {
 | 
						|
        // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
 | 
						|
        // check for the opcode rather than the number of vector elements.
 | 
						|
        if (isVSTfixed(Opc))
 | 
						|
          Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | 
						|
        Ops.push_back(Inc);
 | 
						|
      }
 | 
						|
      // VST1/VST2 fixed increment does not need Reg0 so only include it in
 | 
						|
      // the operands if not such an opcode.
 | 
						|
      else if (!isVSTfixed(Opc))
 | 
						|
        Ops.push_back(Reg0);
 | 
						|
    }
 | 
						|
    Ops.push_back(SrcReg);
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
    Ops.push_back(Chain);
 | 
						|
    SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
 | 
						|
    // Transfer memoperands.
 | 
						|
    CurDAG->setNodeMemRefs(cast<MachineSDNode>(VSt), {MemOp});
 | 
						|
 | 
						|
    ReplaceNode(N, VSt);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, quad registers are stored with two separate instructions,
 | 
						|
  // where one stores the even registers and the other stores the odd registers.
 | 
						|
 | 
						|
  // Form the QQQQ REG_SEQUENCE.
 | 
						|
  SDValue V0 = N->getOperand(Vec0Idx + 0);
 | 
						|
  SDValue V1 = N->getOperand(Vec0Idx + 1);
 | 
						|
  SDValue V2 = N->getOperand(Vec0Idx + 2);
 | 
						|
  SDValue V3 = (NumVecs == 3)
 | 
						|
    ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | 
						|
    : N->getOperand(Vec0Idx + 3);
 | 
						|
  SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
 | 
						|
 | 
						|
  // Store the even D registers.  This is always an updating store, so that it
 | 
						|
  // provides the address to the second store for the odd subregs.
 | 
						|
  const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
 | 
						|
  SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
 | 
						|
                                        MemAddr.getValueType(),
 | 
						|
                                        MVT::Other, OpsA);
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStA), {MemOp});
 | 
						|
  Chain = SDValue(VStA, 1);
 | 
						|
 | 
						|
  // Store the odd D registers.
 | 
						|
  Ops.push_back(SDValue(VStA, 0));
 | 
						|
  Ops.push_back(Align);
 | 
						|
  if (isUpdating) {
 | 
						|
    SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
    assert(isa<ConstantSDNode>(Inc.getNode()) &&
 | 
						|
           "only constant post-increment update allowed for VST3/4");
 | 
						|
    (void)Inc;
 | 
						|
    Ops.push_back(Reg0);
 | 
						|
  }
 | 
						|
  Ops.push_back(RegSeq);
 | 
						|
  Ops.push_back(Pred);
 | 
						|
  Ops.push_back(Reg0);
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
 | 
						|
                                        Ops);
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStB), {MemOp});
 | 
						|
  ReplaceNode(N, VStB);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
 | 
						|
                                      unsigned NumVecs,
 | 
						|
                                      const uint16_t *DOpcodes,
 | 
						|
                                      const uint16_t *QOpcodes) {
 | 
						|
  assert(Subtarget->hasNEON());
 | 
						|
  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  bool IsIntrinsic = !isUpdating;  // By coincidence, all supported updating
 | 
						|
                                   // nodes are not intrinsics.
 | 
						|
  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
 | 
						|
  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  unsigned Lane =
 | 
						|
    cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
 | 
						|
  EVT VT = N->getOperand(Vec0Idx).getValueType();
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  if (NumVecs != 3) {
 | 
						|
    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | 
						|
    unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
 | 
						|
    if (Alignment > NumBytes)
 | 
						|
      Alignment = NumBytes;
 | 
						|
    if (Alignment < 8 && Alignment < NumBytes)
 | 
						|
      Alignment = 0;
 | 
						|
    // Alignment must be a power of two; make sure of that.
 | 
						|
    Alignment = (Alignment & -Alignment);
 | 
						|
    if (Alignment == 1)
 | 
						|
      Alignment = 0;
 | 
						|
  }
 | 
						|
  Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vld/vst lane type");
 | 
						|
    // Double-register operations:
 | 
						|
  case MVT::v8i8:  OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4f16:
 | 
						|
  case MVT::v4bf16:
 | 
						|
  case MVT::v4i16: OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32: OpcodeIndex = 2; break;
 | 
						|
    // Quad-register operations:
 | 
						|
  case MVT::v8f16:
 | 
						|
  case MVT::v8bf16:
 | 
						|
  case MVT::v8i16: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 1; break;
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  if (IsLoad) {
 | 
						|
    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | 
						|
    if (!is64BitVector)
 | 
						|
      ResTyElts *= 2;
 | 
						|
    ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
 | 
						|
                                      MVT::i64, ResTyElts));
 | 
						|
  }
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG, dl);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  Ops.push_back(MemAddr);
 | 
						|
  Ops.push_back(Align);
 | 
						|
  if (isUpdating) {
 | 
						|
    SDValue Inc = N->getOperand(AddrOpIdx + 1);
 | 
						|
    bool IsImmUpdate =
 | 
						|
        isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
 | 
						|
    Ops.push_back(IsImmUpdate ? Reg0 : Inc);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue SuperReg;
 | 
						|
  SDValue V0 = N->getOperand(Vec0Idx + 0);
 | 
						|
  SDValue V1 = N->getOperand(Vec0Idx + 1);
 | 
						|
  if (NumVecs == 2) {
 | 
						|
    if (is64BitVector)
 | 
						|
      SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
 | 
						|
    else
 | 
						|
      SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
 | 
						|
  } else {
 | 
						|
    SDValue V2 = N->getOperand(Vec0Idx + 2);
 | 
						|
    SDValue V3 = (NumVecs == 3)
 | 
						|
      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
 | 
						|
      : N->getOperand(Vec0Idx + 3);
 | 
						|
    if (is64BitVector)
 | 
						|
      SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
 | 
						|
    else
 | 
						|
      SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
 | 
						|
  }
 | 
						|
  Ops.push_back(SuperReg);
 | 
						|
  Ops.push_back(getI32Imm(Lane, dl));
 | 
						|
  Ops.push_back(Pred);
 | 
						|
  Ops.push_back(Reg0);
 | 
						|
  Ops.push_back(Chain);
 | 
						|
 | 
						|
  unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
 | 
						|
                                  QOpcodes[OpcodeIndex]);
 | 
						|
  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdLn), {MemOp});
 | 
						|
  if (!IsLoad) {
 | 
						|
    ReplaceNode(N, VLdLn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Extract the subregisters.
 | 
						|
  SuperReg = SDValue(VLdLn, 0);
 | 
						|
  static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
 | 
						|
                    ARM::qsub_3 == ARM::qsub_0 + 3,
 | 
						|
                "Unexpected subreg numbering");
 | 
						|
  unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
 | 
						|
  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
 | 
						|
    ReplaceUses(SDValue(N, Vec),
 | 
						|
                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
 | 
						|
  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
 | 
						|
  if (isUpdating)
 | 
						|
    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
template <typename SDValueVector>
 | 
						|
void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
 | 
						|
                                           SDValue PredicateMask) {
 | 
						|
  Ops.push_back(CurDAG->getTargetConstant(ARMVCC::Then, Loc, MVT::i32));
 | 
						|
  Ops.push_back(PredicateMask);
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
 | 
						|
}
 | 
						|
 | 
						|
template <typename SDValueVector>
 | 
						|
void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
 | 
						|
                                           SDValue PredicateMask,
 | 
						|
                                           SDValue Inactive) {
 | 
						|
  Ops.push_back(CurDAG->getTargetConstant(ARMVCC::Then, Loc, MVT::i32));
 | 
						|
  Ops.push_back(PredicateMask);
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
 | 
						|
  Ops.push_back(Inactive);
 | 
						|
}
 | 
						|
 | 
						|
template <typename SDValueVector>
 | 
						|
void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc) {
 | 
						|
  Ops.push_back(CurDAG->getTargetConstant(ARMVCC::None, Loc, MVT::i32));
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
 | 
						|
}
 | 
						|
 | 
						|
template <typename SDValueVector>
 | 
						|
void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
 | 
						|
                                                EVT InactiveTy) {
 | 
						|
  Ops.push_back(CurDAG->getTargetConstant(ARMVCC::None, Loc, MVT::i32));
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // tp_reg
 | 
						|
  Ops.push_back(SDValue(
 | 
						|
      CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, Loc, InactiveTy), 0));
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_WB(SDNode *N, const uint16_t *Opcodes,
 | 
						|
                                   bool Predicated) {
 | 
						|
  SDLoc Loc(N);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
 | 
						|
  uint16_t Opcode;
 | 
						|
  switch (N->getValueType(1).getVectorElementType().getSizeInBits()) {
 | 
						|
  case 32:
 | 
						|
    Opcode = Opcodes[0];
 | 
						|
    break;
 | 
						|
  case 64:
 | 
						|
    Opcode = Opcodes[1];
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("bad vector element size in SelectMVE_WB");
 | 
						|
  }
 | 
						|
 | 
						|
  Ops.push_back(N->getOperand(2)); // vector of base addresses
 | 
						|
 | 
						|
  int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
 | 
						|
  Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate offset
 | 
						|
 | 
						|
  if (Predicated)
 | 
						|
    AddMVEPredicateToOps(Ops, Loc, N->getOperand(4));
 | 
						|
  else
 | 
						|
    AddEmptyMVEPredicateToOps(Ops, Loc);
 | 
						|
 | 
						|
  Ops.push_back(N->getOperand(0)); // chain
 | 
						|
 | 
						|
  SmallVector<EVT, 8> VTs;
 | 
						|
  VTs.push_back(N->getValueType(1));
 | 
						|
  VTs.push_back(N->getValueType(0));
 | 
						|
  VTs.push_back(N->getValueType(2));
 | 
						|
 | 
						|
  SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), VTs, Ops);
 | 
						|
  ReplaceUses(SDValue(N, 0), SDValue(New, 1));
 | 
						|
  ReplaceUses(SDValue(N, 1), SDValue(New, 0));
 | 
						|
  ReplaceUses(SDValue(N, 2), SDValue(New, 2));
 | 
						|
  transferMemOperands(N, New);
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_LongShift(SDNode *N, uint16_t Opcode,
 | 
						|
                                          bool Immediate,
 | 
						|
                                          bool HasSaturationOperand) {
 | 
						|
  SDLoc Loc(N);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
 | 
						|
  // Two 32-bit halves of the value to be shifted
 | 
						|
  Ops.push_back(N->getOperand(1));
 | 
						|
  Ops.push_back(N->getOperand(2));
 | 
						|
 | 
						|
  // The shift count
 | 
						|
  if (Immediate) {
 | 
						|
    int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
 | 
						|
    Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate shift count
 | 
						|
  } else {
 | 
						|
    Ops.push_back(N->getOperand(3));
 | 
						|
  }
 | 
						|
 | 
						|
  // The immediate saturation operand, if any
 | 
						|
  if (HasSaturationOperand) {
 | 
						|
    int32_t SatOp = cast<ConstantSDNode>(N->getOperand(4))->getZExtValue();
 | 
						|
    int SatBit = (SatOp == 64 ? 0 : 1);
 | 
						|
    Ops.push_back(getI32Imm(SatBit, Loc));
 | 
						|
  }
 | 
						|
 | 
						|
  // MVE scalar shifts are IT-predicable, so include the standard
 | 
						|
  // predicate arguments.
 | 
						|
  Ops.push_back(getAL(CurDAG, Loc));
 | 
						|
  Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
 | 
						|
  CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry,
 | 
						|
                                        uint16_t OpcodeWithNoCarry,
 | 
						|
                                        bool Add, bool Predicated) {
 | 
						|
  SDLoc Loc(N);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  uint16_t Opcode;
 | 
						|
 | 
						|
  unsigned FirstInputOp = Predicated ? 2 : 1;
 | 
						|
 | 
						|
  // Two input vectors and the input carry flag
 | 
						|
  Ops.push_back(N->getOperand(FirstInputOp));
 | 
						|
  Ops.push_back(N->getOperand(FirstInputOp + 1));
 | 
						|
  SDValue CarryIn = N->getOperand(FirstInputOp + 2);
 | 
						|
  ConstantSDNode *CarryInConstant = dyn_cast<ConstantSDNode>(CarryIn);
 | 
						|
  uint32_t CarryMask = 1 << 29;
 | 
						|
  uint32_t CarryExpected = Add ? 0 : CarryMask;
 | 
						|
  if (CarryInConstant &&
 | 
						|
      (CarryInConstant->getZExtValue() & CarryMask) == CarryExpected) {
 | 
						|
    Opcode = OpcodeWithNoCarry;
 | 
						|
  } else {
 | 
						|
    Ops.push_back(CarryIn);
 | 
						|
    Opcode = OpcodeWithCarry;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Predicated)
 | 
						|
    AddMVEPredicateToOps(Ops, Loc,
 | 
						|
                         N->getOperand(FirstInputOp + 3),  // predicate
 | 
						|
                         N->getOperand(FirstInputOp - 1)); // inactive
 | 
						|
  else
 | 
						|
    AddEmptyMVEPredicateToOps(Ops, Loc, N->getValueType(0));
 | 
						|
 | 
						|
  CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_VSHLC(SDNode *N, bool Predicated) {
 | 
						|
  SDLoc Loc(N);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
 | 
						|
  // One vector input, followed by a 32-bit word of bits to shift in
 | 
						|
  // and then an immediate shift count
 | 
						|
  Ops.push_back(N->getOperand(1));
 | 
						|
  Ops.push_back(N->getOperand(2));
 | 
						|
  int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
 | 
						|
  Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate shift count
 | 
						|
 | 
						|
  if (Predicated)
 | 
						|
    AddMVEPredicateToOps(Ops, Loc, N->getOperand(4));
 | 
						|
  else
 | 
						|
    AddEmptyMVEPredicateToOps(Ops, Loc);
 | 
						|
 | 
						|
  CurDAG->SelectNodeTo(N, ARM::MVE_VSHLC, N->getVTList(), makeArrayRef(Ops));
 | 
						|
}
 | 
						|
 | 
						|
static bool SDValueToConstBool(SDValue SDVal) {
 | 
						|
  assert(isa<ConstantSDNode>(SDVal) && "expected a compile-time constant");
 | 
						|
  ConstantSDNode *SDValConstant = dyn_cast<ConstantSDNode>(SDVal);
 | 
						|
  uint64_t Value = SDValConstant->getZExtValue();
 | 
						|
  assert((Value == 0 || Value == 1) && "expected value 0 or 1");
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated,
 | 
						|
                                            const uint16_t *OpcodesS,
 | 
						|
                                            const uint16_t *OpcodesU,
 | 
						|
                                            size_t Stride, size_t TySize) {
 | 
						|
  assert(TySize < Stride && "Invalid TySize");
 | 
						|
  bool IsUnsigned = SDValueToConstBool(N->getOperand(1));
 | 
						|
  bool IsSub = SDValueToConstBool(N->getOperand(2));
 | 
						|
  bool IsExchange = SDValueToConstBool(N->getOperand(3));
 | 
						|
  if (IsUnsigned) {
 | 
						|
    assert(!IsSub &&
 | 
						|
           "Unsigned versions of vmlsldav[a]/vrmlsldavh[a] do not exist");
 | 
						|
    assert(!IsExchange &&
 | 
						|
           "Unsigned versions of vmlaldav[a]x/vrmlaldavh[a]x do not exist");
 | 
						|
  }
 | 
						|
 | 
						|
  auto OpIsZero = [N](size_t OpNo) {
 | 
						|
    if (ConstantSDNode *OpConst = dyn_cast<ConstantSDNode>(N->getOperand(OpNo)))
 | 
						|
      if (OpConst->getZExtValue() == 0)
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // If the input accumulator value is not zero, select an instruction with
 | 
						|
  // accumulator, otherwise select an instruction without accumulator
 | 
						|
  bool IsAccum = !(OpIsZero(4) && OpIsZero(5));
 | 
						|
 | 
						|
  const uint16_t *Opcodes = IsUnsigned ? OpcodesU : OpcodesS;
 | 
						|
  if (IsSub)
 | 
						|
    Opcodes += 4 * Stride;
 | 
						|
  if (IsExchange)
 | 
						|
    Opcodes += 2 * Stride;
 | 
						|
  if (IsAccum)
 | 
						|
    Opcodes += Stride;
 | 
						|
  uint16_t Opcode = Opcodes[TySize];
 | 
						|
 | 
						|
  SDLoc Loc(N);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  // Push the accumulator operands, if they are used
 | 
						|
  if (IsAccum) {
 | 
						|
    Ops.push_back(N->getOperand(4));
 | 
						|
    Ops.push_back(N->getOperand(5));
 | 
						|
  }
 | 
						|
  // Push the two vector operands
 | 
						|
  Ops.push_back(N->getOperand(6));
 | 
						|
  Ops.push_back(N->getOperand(7));
 | 
						|
 | 
						|
  if (Predicated)
 | 
						|
    AddMVEPredicateToOps(Ops, Loc, N->getOperand(8));
 | 
						|
  else
 | 
						|
    AddEmptyMVEPredicateToOps(Ops, Loc);
 | 
						|
 | 
						|
  CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_VMLLDAV(SDNode *N, bool Predicated,
 | 
						|
                                        const uint16_t *OpcodesS,
 | 
						|
                                        const uint16_t *OpcodesU) {
 | 
						|
  EVT VecTy = N->getOperand(6).getValueType();
 | 
						|
  size_t SizeIndex;
 | 
						|
  switch (VecTy.getVectorElementType().getSizeInBits()) {
 | 
						|
  case 16:
 | 
						|
    SizeIndex = 0;
 | 
						|
    break;
 | 
						|
  case 32:
 | 
						|
    SizeIndex = 1;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("bad vector element size");
 | 
						|
  }
 | 
						|
 | 
						|
  SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, 2, SizeIndex);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated,
 | 
						|
                                          const uint16_t *OpcodesS,
 | 
						|
                                          const uint16_t *OpcodesU) {
 | 
						|
  assert(
 | 
						|
      N->getOperand(6).getValueType().getVectorElementType().getSizeInBits() ==
 | 
						|
          32 &&
 | 
						|
      "bad vector element size");
 | 
						|
  SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, 1, 0);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_VLD(SDNode *N, unsigned NumVecs,
 | 
						|
                                    const uint16_t *const *Opcodes,
 | 
						|
                                    bool HasWriteback) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc Loc(N);
 | 
						|
 | 
						|
  const uint16_t *OurOpcodes;
 | 
						|
  switch (VT.getVectorElementType().getSizeInBits()) {
 | 
						|
  case 8:
 | 
						|
    OurOpcodes = Opcodes[0];
 | 
						|
    break;
 | 
						|
  case 16:
 | 
						|
    OurOpcodes = Opcodes[1];
 | 
						|
    break;
 | 
						|
  case 32:
 | 
						|
    OurOpcodes = Opcodes[2];
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("bad vector element size in SelectMVE_VLD");
 | 
						|
  }
 | 
						|
 | 
						|
  EVT DataTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, NumVecs * 2);
 | 
						|
  SmallVector<EVT, 4> ResultTys = {DataTy, MVT::Other};
 | 
						|
  unsigned PtrOperand = HasWriteback ? 1 : 2;
 | 
						|
 | 
						|
  auto Data = SDValue(
 | 
						|
      CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, Loc, DataTy), 0);
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  // Add a MVE_VLDn instruction for each Vec, except the last
 | 
						|
  for (unsigned Stage = 0; Stage < NumVecs - 1; ++Stage) {
 | 
						|
    SDValue Ops[] = {Data, N->getOperand(PtrOperand), Chain};
 | 
						|
    auto LoadInst =
 | 
						|
        CurDAG->getMachineNode(OurOpcodes[Stage], Loc, ResultTys, Ops);
 | 
						|
    Data = SDValue(LoadInst, 0);
 | 
						|
    Chain = SDValue(LoadInst, 1);
 | 
						|
    transferMemOperands(N, LoadInst);
 | 
						|
  }
 | 
						|
  // The last may need a writeback on it
 | 
						|
  if (HasWriteback)
 | 
						|
    ResultTys = {DataTy, MVT::i32, MVT::Other};
 | 
						|
  SDValue Ops[] = {Data, N->getOperand(PtrOperand), Chain};
 | 
						|
  auto LoadInst =
 | 
						|
      CurDAG->getMachineNode(OurOpcodes[NumVecs - 1], Loc, ResultTys, Ops);
 | 
						|
  transferMemOperands(N, LoadInst);
 | 
						|
 | 
						|
  unsigned i;
 | 
						|
  for (i = 0; i < NumVecs; i++)
 | 
						|
    ReplaceUses(SDValue(N, i),
 | 
						|
                CurDAG->getTargetExtractSubreg(ARM::qsub_0 + i, Loc, VT,
 | 
						|
                                               SDValue(LoadInst, 0)));
 | 
						|
  if (HasWriteback)
 | 
						|
    ReplaceUses(SDValue(N, i++), SDValue(LoadInst, 1));
 | 
						|
  ReplaceUses(SDValue(N, i), SDValue(LoadInst, HasWriteback ? 2 : 1));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes,
 | 
						|
                                      bool Wrapping, bool Predicated) {
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDLoc Loc(N);
 | 
						|
 | 
						|
  uint16_t Opcode;
 | 
						|
  switch (VT.getScalarSizeInBits()) {
 | 
						|
  case 8:
 | 
						|
    Opcode = Opcodes[0];
 | 
						|
    break;
 | 
						|
  case 16:
 | 
						|
    Opcode = Opcodes[1];
 | 
						|
    break;
 | 
						|
  case 32:
 | 
						|
    Opcode = Opcodes[2];
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("bad vector element size in SelectMVE_VxDUP");
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  unsigned OpIdx = 1;
 | 
						|
 | 
						|
  SDValue Inactive;
 | 
						|
  if (Predicated)
 | 
						|
    Inactive = N->getOperand(OpIdx++);
 | 
						|
 | 
						|
  Ops.push_back(N->getOperand(OpIdx++));     // base
 | 
						|
  if (Wrapping)
 | 
						|
    Ops.push_back(N->getOperand(OpIdx++));   // limit
 | 
						|
 | 
						|
  SDValue ImmOp = N->getOperand(OpIdx++);    // step
 | 
						|
  int ImmValue = cast<ConstantSDNode>(ImmOp)->getZExtValue();
 | 
						|
  Ops.push_back(getI32Imm(ImmValue, Loc));
 | 
						|
 | 
						|
  if (Predicated)
 | 
						|
    AddMVEPredicateToOps(Ops, Loc, N->getOperand(OpIdx), Inactive);
 | 
						|
  else
 | 
						|
    AddEmptyMVEPredicateToOps(Ops, Loc, N->getValueType(0));
 | 
						|
 | 
						|
  CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectCDE_CXxD(SDNode *N, uint16_t Opcode,
 | 
						|
                                     size_t NumExtraOps, bool HasAccum) {
 | 
						|
  bool IsBigEndian = CurDAG->getDataLayout().isBigEndian();
 | 
						|
  SDLoc Loc(N);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
 | 
						|
  unsigned OpIdx = 1;
 | 
						|
 | 
						|
  // Convert and append the immediate operand designating the coprocessor.
 | 
						|
  SDValue ImmCorpoc = N->getOperand(OpIdx++);
 | 
						|
  uint32_t ImmCoprocVal = cast<ConstantSDNode>(ImmCorpoc)->getZExtValue();
 | 
						|
  Ops.push_back(getI32Imm(ImmCoprocVal, Loc));
 | 
						|
 | 
						|
  // For accumulating variants copy the low and high order parts of the
 | 
						|
  // accumulator into a register pair and add it to the operand vector.
 | 
						|
  if (HasAccum) {
 | 
						|
    SDValue AccLo = N->getOperand(OpIdx++);
 | 
						|
    SDValue AccHi = N->getOperand(OpIdx++);
 | 
						|
    if (IsBigEndian)
 | 
						|
      std::swap(AccLo, AccHi);
 | 
						|
    Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, AccLo, AccHi), 0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy extra operands as-is.
 | 
						|
  for (size_t I = 0; I < NumExtraOps; I++)
 | 
						|
    Ops.push_back(N->getOperand(OpIdx++));
 | 
						|
 | 
						|
  // Convert and append the immediate operand
 | 
						|
  SDValue Imm = N->getOperand(OpIdx);
 | 
						|
  uint32_t ImmVal = cast<ConstantSDNode>(Imm)->getZExtValue();
 | 
						|
  Ops.push_back(getI32Imm(ImmVal, Loc));
 | 
						|
 | 
						|
  // Accumulating variants are IT-predicable, add predicate operands.
 | 
						|
  if (HasAccum) {
 | 
						|
    SDValue Pred = getAL(CurDAG, Loc);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    Ops.push_back(Pred);
 | 
						|
    Ops.push_back(PredReg);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the CDE intruction
 | 
						|
  SDNode *InstrNode = CurDAG->getMachineNode(Opcode, Loc, MVT::Untyped, Ops);
 | 
						|
  SDValue ResultPair = SDValue(InstrNode, 0);
 | 
						|
 | 
						|
  // The original intrinsic had two outputs, and the output of the dual-register
 | 
						|
  // CDE instruction is a register pair. We need to extract the two subregisters
 | 
						|
  // and replace all uses of the original outputs with the extracted
 | 
						|
  // subregisters.
 | 
						|
  uint16_t SubRegs[2] = {ARM::gsub_0, ARM::gsub_1};
 | 
						|
  if (IsBigEndian)
 | 
						|
    std::swap(SubRegs[0], SubRegs[1]);
 | 
						|
 | 
						|
  for (size_t ResIdx = 0; ResIdx < 2; ResIdx++) {
 | 
						|
    if (SDValue(N, ResIdx).use_empty())
 | 
						|
      continue;
 | 
						|
    SDValue SubReg = CurDAG->getTargetExtractSubreg(SubRegs[ResIdx], Loc,
 | 
						|
                                                    MVT::i32, ResultPair);
 | 
						|
    ReplaceUses(SDValue(N, ResIdx), SubReg);
 | 
						|
  }
 | 
						|
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic,
 | 
						|
                                   bool isUpdating, unsigned NumVecs,
 | 
						|
                                   const uint16_t *DOpcodes,
 | 
						|
                                   const uint16_t *QOpcodes0,
 | 
						|
                                   const uint16_t *QOpcodes1) {
 | 
						|
  assert(Subtarget->hasNEON());
 | 
						|
  assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  SDValue MemAddr, Align;
 | 
						|
  unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
 | 
						|
  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
 | 
						|
    return;
 | 
						|
 | 
						|
  SDValue Chain = N->getOperand(0);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  bool is64BitVector = VT.is64BitVector();
 | 
						|
 | 
						|
  unsigned Alignment = 0;
 | 
						|
  if (NumVecs != 3) {
 | 
						|
    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
 | 
						|
    unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
 | 
						|
    if (Alignment > NumBytes)
 | 
						|
      Alignment = NumBytes;
 | 
						|
    if (Alignment < 8 && Alignment < NumBytes)
 | 
						|
      Alignment = 0;
 | 
						|
    // Alignment must be a power of two; make sure of that.
 | 
						|
    Alignment = (Alignment & -Alignment);
 | 
						|
    if (Alignment == 1)
 | 
						|
      Alignment = 0;
 | 
						|
  }
 | 
						|
  Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
 | 
						|
 | 
						|
  unsigned OpcodeIndex;
 | 
						|
  switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
  default: llvm_unreachable("unhandled vld-dup type");
 | 
						|
  case MVT::v8i8:
 | 
						|
  case MVT::v16i8: OpcodeIndex = 0; break;
 | 
						|
  case MVT::v4i16:
 | 
						|
  case MVT::v8i16:
 | 
						|
  case MVT::v4f16:
 | 
						|
  case MVT::v8f16:
 | 
						|
  case MVT::v4bf16:
 | 
						|
  case MVT::v8bf16:
 | 
						|
                  OpcodeIndex = 1; break;
 | 
						|
  case MVT::v2f32:
 | 
						|
  case MVT::v2i32:
 | 
						|
  case MVT::v4f32:
 | 
						|
  case MVT::v4i32: OpcodeIndex = 2; break;
 | 
						|
  case MVT::v1f64:
 | 
						|
  case MVT::v1i64: OpcodeIndex = 3; break;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
 | 
						|
  if (!is64BitVector)
 | 
						|
    ResTyElts *= 2;
 | 
						|
  EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
 | 
						|
 | 
						|
  std::vector<EVT> ResTys;
 | 
						|
  ResTys.push_back(ResTy);
 | 
						|
  if (isUpdating)
 | 
						|
    ResTys.push_back(MVT::i32);
 | 
						|
  ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
  SDValue Pred = getAL(CurDAG, dl);
 | 
						|
  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
  SmallVector<SDValue, 6> Ops;
 | 
						|
  Ops.push_back(MemAddr);
 | 
						|
  Ops.push_back(Align);
 | 
						|
  unsigned Opc = is64BitVector    ? DOpcodes[OpcodeIndex]
 | 
						|
                 : (NumVecs == 1) ? QOpcodes0[OpcodeIndex]
 | 
						|
                                  : QOpcodes1[OpcodeIndex];
 | 
						|
  if (isUpdating) {
 | 
						|
    SDValue Inc = N->getOperand(2);
 | 
						|
    bool IsImmUpdate =
 | 
						|
        isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
 | 
						|
    if (IsImmUpdate) {
 | 
						|
      if (!isVLDfixed(Opc))
 | 
						|
        Ops.push_back(Reg0);
 | 
						|
    } else {
 | 
						|
      if (isVLDfixed(Opc))
 | 
						|
        Opc = getVLDSTRegisterUpdateOpcode(Opc);
 | 
						|
      Ops.push_back(Inc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (is64BitVector || NumVecs == 1) {
 | 
						|
    // Double registers and VLD1 quad registers are directly supported.
 | 
						|
  } else if (NumVecs == 2) {
 | 
						|
    const SDValue OpsA[] = {MemAddr, Align, Pred, Reg0, Chain};
 | 
						|
    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, ResTy,
 | 
						|
                                          MVT::Other, OpsA);
 | 
						|
    Chain = SDValue(VLdA, 1);
 | 
						|
  } else {
 | 
						|
    SDValue ImplDef = SDValue(
 | 
						|
        CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
 | 
						|
    const SDValue OpsA[] = {MemAddr, Align, ImplDef, Pred, Reg0, Chain};
 | 
						|
    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, ResTy,
 | 
						|
                                          MVT::Other, OpsA);
 | 
						|
    Ops.push_back(SDValue(VLdA, 0));
 | 
						|
    Chain = SDValue(VLdA, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  Ops.push_back(Pred);
 | 
						|
  Ops.push_back(Reg0);
 | 
						|
  Ops.push_back(Chain);
 | 
						|
 | 
						|
  SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | 
						|
 | 
						|
  // Transfer memoperands.
 | 
						|
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdDup), {MemOp});
 | 
						|
 | 
						|
  // Extract the subregisters.
 | 
						|
  if (NumVecs == 1) {
 | 
						|
    ReplaceUses(SDValue(N, 0), SDValue(VLdDup, 0));
 | 
						|
  } else {
 | 
						|
    SDValue SuperReg = SDValue(VLdDup, 0);
 | 
						|
    static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering");
 | 
						|
    unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
 | 
						|
    for (unsigned Vec = 0; Vec != NumVecs; ++Vec) {
 | 
						|
      ReplaceUses(SDValue(N, Vec),
 | 
						|
                  CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
 | 
						|
  if (isUpdating)
 | 
						|
    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryInsertVectorElt(SDNode *N) {
 | 
						|
  if (!Subtarget->hasMVEIntegerOps())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // We are trying to use VMOV/VMOVX/VINS to more efficiently lower insert and
 | 
						|
  // extracts of v8f16 and v8i16 vectors. Check that we have two adjacent
 | 
						|
  // inserts of the correct type:
 | 
						|
  SDValue Ins1 = SDValue(N, 0);
 | 
						|
  SDValue Ins2 = N->getOperand(0);
 | 
						|
  EVT VT = Ins1.getValueType();
 | 
						|
  if (Ins2.getOpcode() != ISD::INSERT_VECTOR_ELT || !Ins2.hasOneUse() ||
 | 
						|
      !isa<ConstantSDNode>(Ins1.getOperand(2)) ||
 | 
						|
      !isa<ConstantSDNode>(Ins2.getOperand(2)) ||
 | 
						|
      (VT != MVT::v8f16 && VT != MVT::v8i16) || (Ins2.getValueType() != VT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Lane1 = Ins1.getConstantOperandVal(2);
 | 
						|
  unsigned Lane2 = Ins2.getConstantOperandVal(2);
 | 
						|
  if (Lane2 % 2 != 0 || Lane1 != Lane2 + 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the inserted values will be able to use T/B already, leave it to the
 | 
						|
  // existing tablegen patterns. For example VCVTT/VCVTB.
 | 
						|
  SDValue Val1 = Ins1.getOperand(1);
 | 
						|
  SDValue Val2 = Ins2.getOperand(1);
 | 
						|
  if (Val1.getOpcode() == ISD::FP_ROUND || Val2.getOpcode() == ISD::FP_ROUND)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the inserted values are both extracts.
 | 
						|
  if ((Val1.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
       Val1.getOpcode() == ARMISD::VGETLANEu) &&
 | 
						|
      (Val2.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
 | 
						|
       Val2.getOpcode() == ARMISD::VGETLANEu) &&
 | 
						|
      isa<ConstantSDNode>(Val1.getOperand(1)) &&
 | 
						|
      isa<ConstantSDNode>(Val2.getOperand(1)) &&
 | 
						|
      (Val1.getOperand(0).getValueType() == MVT::v8f16 ||
 | 
						|
       Val1.getOperand(0).getValueType() == MVT::v8i16) &&
 | 
						|
      (Val2.getOperand(0).getValueType() == MVT::v8f16 ||
 | 
						|
       Val2.getOperand(0).getValueType() == MVT::v8i16)) {
 | 
						|
    unsigned ExtractLane1 = Val1.getConstantOperandVal(1);
 | 
						|
    unsigned ExtractLane2 = Val2.getConstantOperandVal(1);
 | 
						|
 | 
						|
    // If the two extracted lanes are from the same place and adjacent, this
 | 
						|
    // simplifies into a f32 lane move.
 | 
						|
    if (Val1.getOperand(0) == Val2.getOperand(0) && ExtractLane2 % 2 == 0 &&
 | 
						|
        ExtractLane1 == ExtractLane2 + 1) {
 | 
						|
      SDValue NewExt = CurDAG->getTargetExtractSubreg(
 | 
						|
          ARM::ssub_0 + ExtractLane2 / 2, dl, MVT::f32, Val1.getOperand(0));
 | 
						|
      SDValue NewIns = CurDAG->getTargetInsertSubreg(
 | 
						|
          ARM::ssub_0 + Lane2 / 2, dl, VT, Ins2.getOperand(0),
 | 
						|
          NewExt);
 | 
						|
      ReplaceUses(Ins1, NewIns);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Else v8i16 pattern of an extract and an insert, with a optional vmovx for
 | 
						|
    // extracting odd lanes.
 | 
						|
    if (VT == MVT::v8i16) {
 | 
						|
      SDValue Inp1 = CurDAG->getTargetExtractSubreg(
 | 
						|
          ARM::ssub_0 + ExtractLane1 / 2, dl, MVT::f32, Val1.getOperand(0));
 | 
						|
      SDValue Inp2 = CurDAG->getTargetExtractSubreg(
 | 
						|
          ARM::ssub_0 + ExtractLane2 / 2, dl, MVT::f32, Val2.getOperand(0));
 | 
						|
      if (ExtractLane1 % 2 != 0)
 | 
						|
        Inp1 = SDValue(CurDAG->getMachineNode(ARM::VMOVH, dl, MVT::f32, Inp1), 0);
 | 
						|
      if (ExtractLane2 % 2 != 0)
 | 
						|
        Inp2 = SDValue(CurDAG->getMachineNode(ARM::VMOVH, dl, MVT::f32, Inp2), 0);
 | 
						|
      SDNode *VINS = CurDAG->getMachineNode(ARM::VINSH, dl, MVT::f32, Inp2, Inp1);
 | 
						|
      SDValue NewIns =
 | 
						|
          CurDAG->getTargetInsertSubreg(ARM::ssub_0 + Lane2 / 2, dl, MVT::v4f32,
 | 
						|
                                        Ins2.getOperand(0), SDValue(VINS, 0));
 | 
						|
      ReplaceUses(Ins1, NewIns);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The inserted values are not extracted - if they are f16 then insert them
 | 
						|
  // directly using a VINS.
 | 
						|
  if (VT == MVT::v8f16) {
 | 
						|
    SDNode *VINS = CurDAG->getMachineNode(ARM::VINSH, dl, MVT::f32, Val2, Val1);
 | 
						|
    SDValue NewIns =
 | 
						|
        CurDAG->getTargetInsertSubreg(ARM::ssub_0 + Lane2 / 2, dl, MVT::v4f32,
 | 
						|
                                      Ins2.getOperand(0), SDValue(VINS, 0));
 | 
						|
    ReplaceUses(Ins1, NewIns);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::transformFixedFloatingPointConversion(SDNode *N,
 | 
						|
                                                            SDNode *FMul,
 | 
						|
                                                            bool IsUnsigned,
 | 
						|
                                                            bool FixedToFloat) {
 | 
						|
  auto Type = N->getValueType(0);
 | 
						|
  unsigned ScalarBits = Type.getScalarSizeInBits();
 | 
						|
  if (ScalarBits > 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDNodeFlags FMulFlags = FMul->getFlags();
 | 
						|
  // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is
 | 
						|
  // allowed in 16 bit unsigned floats
 | 
						|
  if (ScalarBits == 16 && !FMulFlags.hasNoInfs() && IsUnsigned)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue ImmNode = FMul->getOperand(1);
 | 
						|
  SDValue VecVal = FMul->getOperand(0);
 | 
						|
  if (VecVal->getOpcode() == ISD::UINT_TO_FP ||
 | 
						|
      VecVal->getOpcode() == ISD::SINT_TO_FP)
 | 
						|
    VecVal = VecVal->getOperand(0);
 | 
						|
 | 
						|
  if (VecVal.getValueType().getScalarSizeInBits() != ScalarBits)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (ImmNode.getOpcode() == ISD::BITCAST) {
 | 
						|
    if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits)
 | 
						|
      return false;
 | 
						|
    ImmNode = ImmNode.getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits)
 | 
						|
    return false;
 | 
						|
 | 
						|
  APFloat ImmAPF(0.0f);
 | 
						|
  switch (ImmNode.getOpcode()) {
 | 
						|
  case ARMISD::VMOVIMM:
 | 
						|
  case ARMISD::VDUP: {
 | 
						|
    if (!isa<ConstantSDNode>(ImmNode.getOperand(0)))
 | 
						|
      return false;
 | 
						|
    unsigned Imm = ImmNode.getConstantOperandVal(0);
 | 
						|
    if (ImmNode.getOpcode() == ARMISD::VMOVIMM)
 | 
						|
      Imm = ARM_AM::decodeVMOVModImm(Imm, ScalarBits);
 | 
						|
    ImmAPF =
 | 
						|
        APFloat(ScalarBits == 32 ? APFloat::IEEEsingle() : APFloat::IEEEhalf(),
 | 
						|
                APInt(ScalarBits, Imm));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARMISD::VMOVFPIMM: {
 | 
						|
    ImmAPF = APFloat(ARM_AM::getFPImmFloat(ImmNode.getConstantOperandVal(0)));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Where n is the number of fractional bits, multiplying by 2^n will convert
 | 
						|
  // from float to fixed and multiplying by 2^-n will convert from fixed to
 | 
						|
  // float. Taking log2 of the factor (after taking the inverse in the case of
 | 
						|
  // float to fixed) will give n.
 | 
						|
  APFloat ToConvert = ImmAPF;
 | 
						|
  if (FixedToFloat) {
 | 
						|
    if (!ImmAPF.getExactInverse(&ToConvert))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  APSInt Converted(64, false);
 | 
						|
  bool IsExact;
 | 
						|
  ToConvert.convertToInteger(Converted, llvm::RoundingMode::NearestTiesToEven,
 | 
						|
                             &IsExact);
 | 
						|
  if (!IsExact || !Converted.isPowerOf2())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned FracBits = Converted.logBase2();
 | 
						|
  if (FracBits > ScalarBits)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<SDValue, 3> Ops{
 | 
						|
      VecVal, CurDAG->getConstant(FracBits, SDLoc(N), MVT::i32)};
 | 
						|
  AddEmptyMVEPredicateToOps(Ops, SDLoc(N), Type);
 | 
						|
 | 
						|
  unsigned int Opcode;
 | 
						|
  switch (ScalarBits) {
 | 
						|
  case 16:
 | 
						|
    if (FixedToFloat)
 | 
						|
      Opcode = IsUnsigned ? ARM::MVE_VCVTf16u16_fix : ARM::MVE_VCVTf16s16_fix;
 | 
						|
    else
 | 
						|
      Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix;
 | 
						|
    break;
 | 
						|
  case 32:
 | 
						|
    if (FixedToFloat)
 | 
						|
      Opcode = IsUnsigned ? ARM::MVE_VCVTf32u32_fix : ARM::MVE_VCVTf32s32_fix;
 | 
						|
    else
 | 
						|
      Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected number of scalar bits");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  ReplaceNode(N, CurDAG->getMachineNode(Opcode, SDLoc(N), Type, Ops));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryFP_TO_INT(SDNode *N, SDLoc dl) {
 | 
						|
  // Transform a floating-point to fixed-point conversion to a VCVT
 | 
						|
  if (!Subtarget->hasMVEFloatOps())
 | 
						|
    return false;
 | 
						|
  EVT Type = N->getValueType(0);
 | 
						|
  if (!Type.isVector())
 | 
						|
    return false;
 | 
						|
  unsigned int ScalarBits = Type.getScalarSizeInBits();
 | 
						|
 | 
						|
  bool IsUnsigned = N->getOpcode() == ISD::FP_TO_UINT ||
 | 
						|
                    N->getOpcode() == ISD::FP_TO_UINT_SAT;
 | 
						|
  SDNode *Node = N->getOperand(0).getNode();
 | 
						|
 | 
						|
  // floating-point to fixed-point with one fractional bit gets turned into an
 | 
						|
  // FP_TO_[U|S]INT(FADD (x, x)) rather than an FP_TO_[U|S]INT(FMUL (x, y))
 | 
						|
  if (Node->getOpcode() == ISD::FADD) {
 | 
						|
    if (Node->getOperand(0) != Node->getOperand(1))
 | 
						|
      return false;
 | 
						|
    SDNodeFlags Flags = Node->getFlags();
 | 
						|
    // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is
 | 
						|
    // allowed in 16 bit unsigned floats
 | 
						|
    if (ScalarBits == 16 && !Flags.hasNoInfs() && IsUnsigned)
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned Opcode;
 | 
						|
    switch (ScalarBits) {
 | 
						|
    case 16:
 | 
						|
      Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix;
 | 
						|
      break;
 | 
						|
    case 32:
 | 
						|
      Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    SmallVector<SDValue, 3> Ops{Node->getOperand(0),
 | 
						|
                                CurDAG->getConstant(1, dl, MVT::i32)};
 | 
						|
    AddEmptyMVEPredicateToOps(Ops, dl, Type);
 | 
						|
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opcode, dl, Type, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Node->getOpcode() != ISD::FMUL)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return transformFixedFloatingPointConversion(N, Node, IsUnsigned, false);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryFMULFixed(SDNode *N, SDLoc dl) {
 | 
						|
  // Transform a fixed-point to floating-point conversion to a VCVT
 | 
						|
  if (!Subtarget->hasMVEFloatOps())
 | 
						|
    return false;
 | 
						|
  auto Type = N->getValueType(0);
 | 
						|
  if (!Type.isVector())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto LHS = N->getOperand(0);
 | 
						|
  if (LHS.getOpcode() != ISD::SINT_TO_FP && LHS.getOpcode() != ISD::UINT_TO_FP)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return transformFixedFloatingPointConversion(
 | 
						|
      N, N, LHS.getOpcode() == ISD::UINT_TO_FP, true);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) {
 | 
						|
  if (!Subtarget->hasV6T2Ops())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Opc = isSigned
 | 
						|
    ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
 | 
						|
    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // For unsigned extracts, check for a shift right and mask
 | 
						|
  unsigned And_imm = 0;
 | 
						|
  if (N->getOpcode() == ISD::AND) {
 | 
						|
    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
 | 
						|
 | 
						|
      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
 | 
						|
      if (And_imm & (And_imm + 1))
 | 
						|
        return false;
 | 
						|
 | 
						|
      unsigned Srl_imm = 0;
 | 
						|
      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
 | 
						|
                                Srl_imm)) {
 | 
						|
        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | 
						|
 | 
						|
        // Mask off the unnecessary bits of the AND immediate; normally
 | 
						|
        // DAGCombine will do this, but that might not happen if
 | 
						|
        // targetShrinkDemandedConstant chooses a different immediate.
 | 
						|
        And_imm &= -1U >> Srl_imm;
 | 
						|
 | 
						|
        // Note: The width operand is encoded as width-1.
 | 
						|
        unsigned Width = countTrailingOnes(And_imm) - 1;
 | 
						|
        unsigned LSB = Srl_imm;
 | 
						|
 | 
						|
        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
 | 
						|
        if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
 | 
						|
          // It's cheaper to use a right shift to extract the top bits.
 | 
						|
          if (Subtarget->isThumb()) {
 | 
						|
            Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
 | 
						|
            SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                              CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | 
						|
                              getAL(CurDAG, dl), Reg0, Reg0 };
 | 
						|
            CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
 | 
						|
          // ARM models shift instructions as MOVsi with shifter operand.
 | 
						|
          ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
 | 
						|
          SDValue ShOpc =
 | 
						|
            CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl,
 | 
						|
                                      MVT::i32);
 | 
						|
          SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
 | 
						|
                            getAL(CurDAG, dl), Reg0, Reg0 };
 | 
						|
          CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
 | 
						|
        SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | 
						|
                          CurDAG->getTargetConstant(Width, dl, MVT::i32),
 | 
						|
                          getAL(CurDAG, dl), Reg0 };
 | 
						|
        CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we're looking for a shift of a shift
 | 
						|
  unsigned Shl_imm = 0;
 | 
						|
  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
 | 
						|
    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
 | 
						|
    unsigned Srl_imm = 0;
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
 | 
						|
      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | 
						|
      // Note: The width operand is encoded as width-1.
 | 
						|
      unsigned Width = 32 - Srl_imm - 1;
 | 
						|
      int LSB = Srl_imm - Shl_imm;
 | 
						|
      if (LSB < 0)
 | 
						|
        return false;
 | 
						|
      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
      assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                        CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | 
						|
                        CurDAG->getTargetConstant(Width, dl, MVT::i32),
 | 
						|
                        getAL(CurDAG, dl), Reg0 };
 | 
						|
      CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Or we are looking for a shift of an and, with a mask operand
 | 
						|
  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) &&
 | 
						|
      isShiftedMask_32(And_imm)) {
 | 
						|
    unsigned Srl_imm = 0;
 | 
						|
    unsigned LSB = countTrailingZeros(And_imm);
 | 
						|
    // Shift must be the same as the ands lsb
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) {
 | 
						|
      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
 | 
						|
      unsigned MSB = 31 - countLeadingZeros(And_imm);
 | 
						|
      // Note: The width operand is encoded as width-1.
 | 
						|
      unsigned Width = MSB - LSB;
 | 
						|
      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
      assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                        CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32),
 | 
						|
                        CurDAG->getTargetConstant(Width, dl, MVT::i32),
 | 
						|
                        getAL(CurDAG, dl), Reg0 };
 | 
						|
      CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
 | 
						|
    unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
 | 
						|
    unsigned LSB = 0;
 | 
						|
    if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
 | 
						|
        !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (LSB + Width > 32)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx");
 | 
						|
    SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                      CurDAG->getTargetConstant(LSB, dl, MVT::i32),
 | 
						|
                      CurDAG->getTargetConstant(Width - 1, dl, MVT::i32),
 | 
						|
                      getAL(CurDAG, dl), Reg0 };
 | 
						|
    CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Target-specific DAG combining for ISD::XOR.
 | 
						|
/// Target-independent combining lowers SELECT_CC nodes of the form
 | 
						|
/// select_cc setg[ge] X,  0,  X, -X
 | 
						|
/// select_cc setgt    X, -1,  X, -X
 | 
						|
/// select_cc setl[te] X,  0, -X,  X
 | 
						|
/// select_cc setlt    X,  1, -X,  X
 | 
						|
/// which represent Integer ABS into:
 | 
						|
/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
 | 
						|
/// ARM instruction selection detects the latter and matches it to
 | 
						|
/// ARM::ABS or ARM::t2ABS machine node.
 | 
						|
bool ARMDAGToDAGISel::tryABSOp(SDNode *N){
 | 
						|
  SDValue XORSrc0 = N->getOperand(0);
 | 
						|
  SDValue XORSrc1 = N->getOperand(1);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  if (Subtarget->isThumb1Only())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue ADDSrc0 = XORSrc0.getOperand(0);
 | 
						|
  SDValue ADDSrc1 = XORSrc0.getOperand(1);
 | 
						|
  SDValue SRASrc0 = XORSrc1.getOperand(0);
 | 
						|
  SDValue SRASrc1 = XORSrc1.getOperand(1);
 | 
						|
  ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
 | 
						|
  EVT XType = SRASrc0.getValueType();
 | 
						|
  unsigned Size = XType.getSizeInBits() - 1;
 | 
						|
 | 
						|
  if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
 | 
						|
      XType.isInteger() && SRAConstant != nullptr &&
 | 
						|
      Size == SRAConstant->getZExtValue()) {
 | 
						|
    unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
 | 
						|
    CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// We've got special pseudo-instructions for these
 | 
						|
void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
 | 
						|
  unsigned Opcode;
 | 
						|
  EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
 | 
						|
  if (MemTy == MVT::i8)
 | 
						|
    Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_8 : ARM::CMP_SWAP_8;
 | 
						|
  else if (MemTy == MVT::i16)
 | 
						|
    Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_16 : ARM::CMP_SWAP_16;
 | 
						|
  else if (MemTy == MVT::i32)
 | 
						|
    Opcode = ARM::CMP_SWAP_32;
 | 
						|
  else
 | 
						|
    llvm_unreachable("Unknown AtomicCmpSwap type");
 | 
						|
 | 
						|
  SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
 | 
						|
                   N->getOperand(0)};
 | 
						|
  SDNode *CmpSwap = CurDAG->getMachineNode(
 | 
						|
      Opcode, SDLoc(N),
 | 
						|
      CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops);
 | 
						|
 | 
						|
  MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
 | 
						|
 | 
						|
  ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
 | 
						|
  ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
 | 
						|
  CurDAG->RemoveDeadNode(N);
 | 
						|
}
 | 
						|
 | 
						|
static Optional<std::pair<unsigned, unsigned>>
 | 
						|
getContiguousRangeOfSetBits(const APInt &A) {
 | 
						|
  unsigned FirstOne = A.getBitWidth() - A.countLeadingZeros() - 1;
 | 
						|
  unsigned LastOne = A.countTrailingZeros();
 | 
						|
  if (A.countPopulation() != (FirstOne - LastOne + 1))
 | 
						|
    return Optional<std::pair<unsigned,unsigned>>();
 | 
						|
  return std::make_pair(FirstOne, LastOne);
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) {
 | 
						|
  assert(N->getOpcode() == ARMISD::CMPZ);
 | 
						|
  SwitchEQNEToPLMI = false;
 | 
						|
 | 
						|
  if (!Subtarget->isThumb())
 | 
						|
    // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
 | 
						|
    // LSR don't exist as standalone instructions - they need the barrel shifter.
 | 
						|
    return;
 | 
						|
 | 
						|
  // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
 | 
						|
  SDValue And = N->getOperand(0);
 | 
						|
  if (!And->hasOneUse())
 | 
						|
    return;
 | 
						|
 | 
						|
  SDValue Zero = N->getOperand(1);
 | 
						|
  if (!isa<ConstantSDNode>(Zero) || !cast<ConstantSDNode>(Zero)->isZero() ||
 | 
						|
      And->getOpcode() != ISD::AND)
 | 
						|
    return;
 | 
						|
  SDValue X = And.getOperand(0);
 | 
						|
  auto C = dyn_cast<ConstantSDNode>(And.getOperand(1));
 | 
						|
 | 
						|
  if (!C)
 | 
						|
    return;
 | 
						|
  auto Range = getContiguousRangeOfSetBits(C->getAPIntValue());
 | 
						|
  if (!Range)
 | 
						|
    return;
 | 
						|
 | 
						|
  // There are several ways to lower this:
 | 
						|
  SDNode *NewN;
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* {
 | 
						|
    if (Subtarget->isThumb2()) {
 | 
						|
      Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri;
 | 
						|
      SDValue Ops[] = { Src, CurDAG->getTargetConstant(Imm, dl, MVT::i32),
 | 
						|
                        getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
 | 
						|
    } else {
 | 
						|
      SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), Src,
 | 
						|
                       CurDAG->getTargetConstant(Imm, dl, MVT::i32),
 | 
						|
                       getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
 | 
						|
      return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  if (Range->second == 0) {
 | 
						|
    //  1. Mask includes the LSB -> Simply shift the top N bits off
 | 
						|
    NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
 | 
						|
    ReplaceNode(And.getNode(), NewN);
 | 
						|
  } else if (Range->first == 31) {
 | 
						|
    //  2. Mask includes the MSB -> Simply shift the bottom N bits off
 | 
						|
    NewN = EmitShift(ARM::tLSRri, X, Range->second);
 | 
						|
    ReplaceNode(And.getNode(), NewN);
 | 
						|
  } else if (Range->first == Range->second) {
 | 
						|
    //  3. Only one bit is set. We can shift this into the sign bit and use a
 | 
						|
    //     PL/MI comparison.
 | 
						|
    NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
 | 
						|
    ReplaceNode(And.getNode(), NewN);
 | 
						|
 | 
						|
    SwitchEQNEToPLMI = true;
 | 
						|
  } else if (!Subtarget->hasV6T2Ops()) {
 | 
						|
    //  4. Do a double shift to clear bottom and top bits, but only in
 | 
						|
    //     thumb-1 mode as in thumb-2 we can use UBFX.
 | 
						|
    NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
 | 
						|
    NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0),
 | 
						|
                     Range->second + (31 - Range->first));
 | 
						|
    ReplaceNode(And.getNode(), NewN);
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void ARMDAGToDAGISel::Select(SDNode *N) {
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  if (N->isMachineOpcode()) {
 | 
						|
    N->setNodeId(-1);
 | 
						|
    return;   // Already selected.
 | 
						|
  }
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::STORE: {
 | 
						|
    // For Thumb1, match an sp-relative store in C++. This is a little
 | 
						|
    // unfortunate, but I don't think I can make the chain check work
 | 
						|
    // otherwise.  (The chain of the store has to be the same as the chain
 | 
						|
    // of the CopyFromReg, or else we can't replace the CopyFromReg with
 | 
						|
    // a direct reference to "SP".)
 | 
						|
    //
 | 
						|
    // This is only necessary on Thumb1 because Thumb1 sp-relative stores use
 | 
						|
    // a different addressing mode from other four-byte stores.
 | 
						|
    //
 | 
						|
    // This pattern usually comes up with call arguments.
 | 
						|
    StoreSDNode *ST = cast<StoreSDNode>(N);
 | 
						|
    SDValue Ptr = ST->getBasePtr();
 | 
						|
    if (Subtarget->isThumb1Only() && ST->isUnindexed()) {
 | 
						|
      int RHSC = 0;
 | 
						|
      if (Ptr.getOpcode() == ISD::ADD &&
 | 
						|
          isScaledConstantInRange(Ptr.getOperand(1), /*Scale=*/4, 0, 256, RHSC))
 | 
						|
        Ptr = Ptr.getOperand(0);
 | 
						|
 | 
						|
      if (Ptr.getOpcode() == ISD::CopyFromReg &&
 | 
						|
          cast<RegisterSDNode>(Ptr.getOperand(1))->getReg() == ARM::SP &&
 | 
						|
          Ptr.getOperand(0) == ST->getChain()) {
 | 
						|
        SDValue Ops[] = {ST->getValue(),
 | 
						|
                         CurDAG->getRegister(ARM::SP, MVT::i32),
 | 
						|
                         CurDAG->getTargetConstant(RHSC, dl, MVT::i32),
 | 
						|
                         getAL(CurDAG, dl),
 | 
						|
                         CurDAG->getRegister(0, MVT::i32),
 | 
						|
                         ST->getChain()};
 | 
						|
        MachineSDNode *ResNode =
 | 
						|
            CurDAG->getMachineNode(ARM::tSTRspi, dl, MVT::Other, Ops);
 | 
						|
        MachineMemOperand *MemOp = ST->getMemOperand();
 | 
						|
        CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
 | 
						|
        ReplaceNode(N, ResNode);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::WRITE_REGISTER:
 | 
						|
    if (tryWriteRegister(N))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::READ_REGISTER:
 | 
						|
    if (tryReadRegister(N))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::INLINEASM:
 | 
						|
  case ISD::INLINEASM_BR:
 | 
						|
    if (tryInlineAsm(N))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::XOR:
 | 
						|
    // Select special operations if XOR node forms integer ABS pattern
 | 
						|
    if (tryABSOp(N))
 | 
						|
      return;
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  case ISD::Constant: {
 | 
						|
    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    // If we can't materialize the constant we need to use a literal pool
 | 
						|
    if (ConstantMaterializationCost(Val, Subtarget) > 2) {
 | 
						|
      SDValue CPIdx = CurDAG->getTargetConstantPool(
 | 
						|
          ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
 | 
						|
          TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
 | 
						|
      SDNode *ResNode;
 | 
						|
      if (Subtarget->isThumb()) {
 | 
						|
        SDValue Ops[] = {
 | 
						|
          CPIdx,
 | 
						|
          getAL(CurDAG, dl),
 | 
						|
          CurDAG->getRegister(0, MVT::i32),
 | 
						|
          CurDAG->getEntryNode()
 | 
						|
        };
 | 
						|
        ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
 | 
						|
                                         Ops);
 | 
						|
      } else {
 | 
						|
        SDValue Ops[] = {
 | 
						|
          CPIdx,
 | 
						|
          CurDAG->getTargetConstant(0, dl, MVT::i32),
 | 
						|
          getAL(CurDAG, dl),
 | 
						|
          CurDAG->getRegister(0, MVT::i32),
 | 
						|
          CurDAG->getEntryNode()
 | 
						|
        };
 | 
						|
        ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
 | 
						|
                                         Ops);
 | 
						|
      }
 | 
						|
      // Annotate the Node with memory operand information so that MachineInstr
 | 
						|
      // queries work properly. This e.g. gives the register allocation the
 | 
						|
      // required information for rematerialization.
 | 
						|
      MachineFunction& MF = CurDAG->getMachineFunction();
 | 
						|
      MachineMemOperand *MemOp =
 | 
						|
          MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
 | 
						|
                                  MachineMemOperand::MOLoad, 4, Align(4));
 | 
						|
 | 
						|
      CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
 | 
						|
 | 
						|
      ReplaceNode(N, ResNode);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::FrameIndex: {
 | 
						|
    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    SDValue TFI = CurDAG->getTargetFrameIndex(
 | 
						|
        FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | 
						|
    if (Subtarget->isThumb1Only()) {
 | 
						|
      // Set the alignment of the frame object to 4, to avoid having to generate
 | 
						|
      // more than one ADD
 | 
						|
      MachineFrameInfo &MFI = MF->getFrameInfo();
 | 
						|
      if (MFI.getObjectAlign(FI) < Align(4))
 | 
						|
        MFI.setObjectAlignment(FI, Align(4));
 | 
						|
      CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
 | 
						|
                           CurDAG->getTargetConstant(0, dl, MVT::i32));
 | 
						|
      return;
 | 
						|
    } else {
 | 
						|
      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
 | 
						|
                      ARM::t2ADDri : ARM::ADDri);
 | 
						|
      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32),
 | 
						|
                        getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ISD::INSERT_VECTOR_ELT: {
 | 
						|
    if (tryInsertVectorElt(N))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SRL:
 | 
						|
    if (tryV6T2BitfieldExtractOp(N, false))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::SIGN_EXTEND_INREG:
 | 
						|
  case ISD::SRA:
 | 
						|
    if (tryV6T2BitfieldExtractOp(N, true))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT_SAT:
 | 
						|
  case ISD::FP_TO_SINT_SAT:
 | 
						|
    if (tryFP_TO_INT(N, dl))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::FMUL:
 | 
						|
    if (tryFMULFixed(N, dl))
 | 
						|
      return;
 | 
						|
    break;
 | 
						|
  case ISD::MUL:
 | 
						|
    if (Subtarget->isThumb1Only())
 | 
						|
      break;
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | 
						|
      unsigned RHSV = C->getZExtValue();
 | 
						|
      if (!RHSV) break;
 | 
						|
      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
 | 
						|
        unsigned ShImm = Log2_32(RHSV-1);
 | 
						|
        if (ShImm >= 32)
 | 
						|
          break;
 | 
						|
        SDValue V = N->getOperand(0);
 | 
						|
        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
 | 
						|
        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
 | 
						|
        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
        if (Subtarget->isThumb()) {
 | 
						|
          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
 | 
						|
          CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
 | 
						|
          return;
 | 
						|
        } else {
 | 
						|
          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
 | 
						|
                            Reg0 };
 | 
						|
          CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
 | 
						|
        unsigned ShImm = Log2_32(RHSV+1);
 | 
						|
        if (ShImm >= 32)
 | 
						|
          break;
 | 
						|
        SDValue V = N->getOperand(0);
 | 
						|
        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
 | 
						|
        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
 | 
						|
        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
        if (Subtarget->isThumb()) {
 | 
						|
          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
 | 
						|
          CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
 | 
						|
          return;
 | 
						|
        } else {
 | 
						|
          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
 | 
						|
                            Reg0 };
 | 
						|
          CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::AND: {
 | 
						|
    // Check for unsigned bitfield extract
 | 
						|
    if (tryV6T2BitfieldExtractOp(N, false))
 | 
						|
      return;
 | 
						|
 | 
						|
    // If an immediate is used in an AND node, it is possible that the immediate
 | 
						|
    // can be more optimally materialized when negated. If this is the case we
 | 
						|
    // can negate the immediate and use a BIC instead.
 | 
						|
    auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
    if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) {
 | 
						|
      uint32_t Imm = (uint32_t) N1C->getZExtValue();
 | 
						|
 | 
						|
      // In Thumb2 mode, an AND can take a 12-bit immediate. If this
 | 
						|
      // immediate can be negated and fit in the immediate operand of
 | 
						|
      // a t2BIC, don't do any manual transform here as this can be
 | 
						|
      // handled by the generic ISel machinery.
 | 
						|
      bool PreferImmediateEncoding =
 | 
						|
        Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm));
 | 
						|
      if (!PreferImmediateEncoding &&
 | 
						|
          ConstantMaterializationCost(Imm, Subtarget) >
 | 
						|
              ConstantMaterializationCost(~Imm, Subtarget)) {
 | 
						|
        // The current immediate costs more to materialize than a negated
 | 
						|
        // immediate, so negate the immediate and use a BIC.
 | 
						|
        SDValue NewImm =
 | 
						|
          CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32);
 | 
						|
        // If the new constant didn't exist before, reposition it in the topological
 | 
						|
        // ordering so it is just before N. Otherwise, don't touch its location.
 | 
						|
        if (NewImm->getNodeId() == -1)
 | 
						|
          CurDAG->RepositionNode(N->getIterator(), NewImm.getNode());
 | 
						|
 | 
						|
        if (!Subtarget->hasThumb2()) {
 | 
						|
          SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32),
 | 
						|
                           N->getOperand(0), NewImm, getAL(CurDAG, dl),
 | 
						|
                           CurDAG->getRegister(0, MVT::i32)};
 | 
						|
          ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops));
 | 
						|
          return;
 | 
						|
        } else {
 | 
						|
          SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl),
 | 
						|
                           CurDAG->getRegister(0, MVT::i32),
 | 
						|
                           CurDAG->getRegister(0, MVT::i32)};
 | 
						|
          ReplaceNode(N,
 | 
						|
                      CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops));
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
 | 
						|
    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
 | 
						|
    // are entirely contributed by c2 and lower 16-bits are entirely contributed
 | 
						|
    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
 | 
						|
    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    if (VT != MVT::i32)
 | 
						|
      break;
 | 
						|
    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
 | 
						|
      ? ARM::t2MOVTi16
 | 
						|
      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
 | 
						|
    if (!Opc)
 | 
						|
      break;
 | 
						|
    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
 | 
						|
    N1C = dyn_cast<ConstantSDNode>(N1);
 | 
						|
    if (!N1C)
 | 
						|
      break;
 | 
						|
    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
 | 
						|
      SDValue N2 = N0.getOperand(1);
 | 
						|
      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
 | 
						|
      if (!N2C)
 | 
						|
        break;
 | 
						|
      unsigned N1CVal = N1C->getZExtValue();
 | 
						|
      unsigned N2CVal = N2C->getZExtValue();
 | 
						|
      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
 | 
						|
          (N1CVal & 0xffffU) == 0xffffU &&
 | 
						|
          (N2CVal & 0xffffU) == 0x0U) {
 | 
						|
        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
 | 
						|
                                                  dl, MVT::i32);
 | 
						|
        SDValue Ops[] = { N0.getOperand(0), Imm16,
 | 
						|
                          getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
 | 
						|
        ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARMISD::UMAAL: {
 | 
						|
    unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
 | 
						|
                      N->getOperand(2), N->getOperand(3),
 | 
						|
                      getAL(CurDAG, dl),
 | 
						|
                      CurDAG->getRegister(0, MVT::i32) };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::UMLAL:{
 | 
						|
    if (Subtarget->isThumb()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG, dl),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32)};
 | 
						|
      ReplaceNode(
 | 
						|
          N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops));
 | 
						|
      return;
 | 
						|
    }else{
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG, dl),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      ReplaceNode(N, CurDAG->getMachineNode(
 | 
						|
                         Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl,
 | 
						|
                         MVT::i32, MVT::i32, Ops));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ARMISD::SMLAL:{
 | 
						|
    if (Subtarget->isThumb()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG, dl),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32)};
 | 
						|
      ReplaceNode(
 | 
						|
          N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops));
 | 
						|
      return;
 | 
						|
    }else{
 | 
						|
      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
 | 
						|
                        N->getOperand(3), getAL(CurDAG, dl),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32),
 | 
						|
                        CurDAG->getRegister(0, MVT::i32) };
 | 
						|
      ReplaceNode(N, CurDAG->getMachineNode(
 | 
						|
                         Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl,
 | 
						|
                         MVT::i32, MVT::i32, Ops));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  case ARMISD::SUBE: {
 | 
						|
    if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
 | 
						|
      break;
 | 
						|
    // Look for a pattern to match SMMLS
 | 
						|
    // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
 | 
						|
    if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI ||
 | 
						|
        N->getOperand(2).getOpcode() != ARMISD::SUBC ||
 | 
						|
        !SDValue(N, 1).use_empty())
 | 
						|
      break;
 | 
						|
 | 
						|
    if (Subtarget->isThumb())
 | 
						|
      assert(Subtarget->hasThumb2() &&
 | 
						|
             "This pattern should not be generated for Thumb");
 | 
						|
 | 
						|
    SDValue SmulLoHi = N->getOperand(1);
 | 
						|
    SDValue Subc = N->getOperand(2);
 | 
						|
    auto *Zero = dyn_cast<ConstantSDNode>(Subc.getOperand(0));
 | 
						|
 | 
						|
    if (!Zero || Zero->getZExtValue() != 0 ||
 | 
						|
        Subc.getOperand(1) != SmulLoHi.getValue(0) ||
 | 
						|
        N->getOperand(1) != SmulLoHi.getValue(1) ||
 | 
						|
        N->getOperand(2) != Subc.getValue(1))
 | 
						|
      break;
 | 
						|
 | 
						|
    unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS;
 | 
						|
    SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1),
 | 
						|
                      N->getOperand(0), getAL(CurDAG, dl),
 | 
						|
                      CurDAG->getRegister(0, MVT::i32) };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::LOAD: {
 | 
						|
    if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
 | 
						|
      return;
 | 
						|
    if (Subtarget->isThumb() && Subtarget->hasThumb2()) {
 | 
						|
      if (tryT2IndexedLoad(N))
 | 
						|
        return;
 | 
						|
    } else if (Subtarget->isThumb()) {
 | 
						|
      if (tryT1IndexedLoad(N))
 | 
						|
        return;
 | 
						|
    } else if (tryARMIndexedLoad(N))
 | 
						|
      return;
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::MLOAD:
 | 
						|
    if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
 | 
						|
      return;
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  case ARMISD::WLSSETUP: {
 | 
						|
    SDNode *New = CurDAG->getMachineNode(ARM::t2WhileLoopSetup, dl, MVT::i32,
 | 
						|
                                         N->getOperand(0));
 | 
						|
    ReplaceUses(N, New);
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::WLS: {
 | 
						|
    SDNode *New = CurDAG->getMachineNode(ARM::t2WhileLoopStart, dl, MVT::Other,
 | 
						|
                                         N->getOperand(1), N->getOperand(2),
 | 
						|
                                         N->getOperand(0));
 | 
						|
    ReplaceUses(N, New);
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::LE: {
 | 
						|
    SDValue Ops[] = { N->getOperand(1),
 | 
						|
                      N->getOperand(2),
 | 
						|
                      N->getOperand(0) };
 | 
						|
    unsigned Opc = ARM::t2LoopEnd;
 | 
						|
    SDNode *New = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
 | 
						|
    ReplaceUses(N, New);
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::LDRD: {
 | 
						|
    if (Subtarget->isThumb2())
 | 
						|
      break; // TableGen handles isel in this case.
 | 
						|
    SDValue Base, RegOffset, ImmOffset;
 | 
						|
    const SDValue &Chain = N->getOperand(0);
 | 
						|
    const SDValue &Addr = N->getOperand(1);
 | 
						|
    SelectAddrMode3(Addr, Base, RegOffset, ImmOffset);
 | 
						|
    if (RegOffset != CurDAG->getRegister(0, MVT::i32)) {
 | 
						|
      // The register-offset variant of LDRD mandates that the register
 | 
						|
      // allocated to RegOffset is not reused in any of the remaining operands.
 | 
						|
      // This restriction is currently not enforced. Therefore emitting this
 | 
						|
      // variant is explicitly avoided.
 | 
						|
      Base = Addr;
 | 
						|
      RegOffset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    }
 | 
						|
    SDValue Ops[] = {Base, RegOffset, ImmOffset, Chain};
 | 
						|
    SDNode *New = CurDAG->getMachineNode(ARM::LOADDUAL, dl,
 | 
						|
                                         {MVT::Untyped, MVT::Other}, Ops);
 | 
						|
    SDValue Lo = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
 | 
						|
                                                SDValue(New, 0));
 | 
						|
    SDValue Hi = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
 | 
						|
                                                SDValue(New, 0));
 | 
						|
    transferMemOperands(N, New);
 | 
						|
    ReplaceUses(SDValue(N, 0), Lo);
 | 
						|
    ReplaceUses(SDValue(N, 1), Hi);
 | 
						|
    ReplaceUses(SDValue(N, 2), SDValue(New, 1));
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::STRD: {
 | 
						|
    if (Subtarget->isThumb2())
 | 
						|
      break; // TableGen handles isel in this case.
 | 
						|
    SDValue Base, RegOffset, ImmOffset;
 | 
						|
    const SDValue &Chain = N->getOperand(0);
 | 
						|
    const SDValue &Addr = N->getOperand(3);
 | 
						|
    SelectAddrMode3(Addr, Base, RegOffset, ImmOffset);
 | 
						|
    if (RegOffset != CurDAG->getRegister(0, MVT::i32)) {
 | 
						|
      // The register-offset variant of STRD mandates that the register
 | 
						|
      // allocated to RegOffset is not reused in any of the remaining operands.
 | 
						|
      // This restriction is currently not enforced. Therefore emitting this
 | 
						|
      // variant is explicitly avoided.
 | 
						|
      Base = Addr;
 | 
						|
      RegOffset = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    }
 | 
						|
    SDNode *RegPair =
 | 
						|
        createGPRPairNode(MVT::Untyped, N->getOperand(1), N->getOperand(2));
 | 
						|
    SDValue Ops[] = {SDValue(RegPair, 0), Base, RegOffset, ImmOffset, Chain};
 | 
						|
    SDNode *New = CurDAG->getMachineNode(ARM::STOREDUAL, dl, MVT::Other, Ops);
 | 
						|
    transferMemOperands(N, New);
 | 
						|
    ReplaceUses(SDValue(N, 0), SDValue(New, 0));
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::LOOP_DEC: {
 | 
						|
    SDValue Ops[] = { N->getOperand(1),
 | 
						|
                      N->getOperand(2),
 | 
						|
                      N->getOperand(0) };
 | 
						|
    SDNode *Dec =
 | 
						|
      CurDAG->getMachineNode(ARM::t2LoopDec, dl,
 | 
						|
                             CurDAG->getVTList(MVT::i32, MVT::Other), Ops);
 | 
						|
    ReplaceUses(N, Dec);
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::BRCOND: {
 | 
						|
    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Pattern complexity = 6  cost = 1  size = 0
 | 
						|
 | 
						|
    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Pattern complexity = 6  cost = 1  size = 0
 | 
						|
 | 
						|
    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
 | 
						|
    // Pattern complexity = 6  cost = 1  size = 0
 | 
						|
 | 
						|
    unsigned Opc = Subtarget->isThumb() ?
 | 
						|
      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
 | 
						|
    SDValue Chain = N->getOperand(0);
 | 
						|
    SDValue N1 = N->getOperand(1);
 | 
						|
    SDValue N2 = N->getOperand(2);
 | 
						|
    SDValue N3 = N->getOperand(3);
 | 
						|
    SDValue InFlag = N->getOperand(4);
 | 
						|
    assert(N1.getOpcode() == ISD::BasicBlock);
 | 
						|
    assert(N2.getOpcode() == ISD::Constant);
 | 
						|
    assert(N3.getOpcode() == ISD::Register);
 | 
						|
 | 
						|
    unsigned CC = (unsigned) cast<ConstantSDNode>(N2)->getZExtValue();
 | 
						|
 | 
						|
    if (InFlag.getOpcode() == ARMISD::CMPZ) {
 | 
						|
      if (InFlag.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN) {
 | 
						|
        SDValue Int = InFlag.getOperand(0);
 | 
						|
        uint64_t ID = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
 | 
						|
 | 
						|
        // Handle low-overhead loops.
 | 
						|
        if (ID == Intrinsic::loop_decrement_reg) {
 | 
						|
          SDValue Elements = Int.getOperand(2);
 | 
						|
          SDValue Size = CurDAG->getTargetConstant(
 | 
						|
            cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl,
 | 
						|
                                 MVT::i32);
 | 
						|
 | 
						|
          SDValue Args[] = { Elements, Size, Int.getOperand(0) };
 | 
						|
          SDNode *LoopDec =
 | 
						|
            CurDAG->getMachineNode(ARM::t2LoopDec, dl,
 | 
						|
                                   CurDAG->getVTList(MVT::i32, MVT::Other),
 | 
						|
                                   Args);
 | 
						|
          ReplaceUses(Int.getNode(), LoopDec);
 | 
						|
 | 
						|
          SDValue EndArgs[] = { SDValue(LoopDec, 0), N1, Chain };
 | 
						|
          SDNode *LoopEnd =
 | 
						|
            CurDAG->getMachineNode(ARM::t2LoopEnd, dl, MVT::Other, EndArgs);
 | 
						|
 | 
						|
          ReplaceUses(N, LoopEnd);
 | 
						|
          CurDAG->RemoveDeadNode(N);
 | 
						|
          CurDAG->RemoveDeadNode(InFlag.getNode());
 | 
						|
          CurDAG->RemoveDeadNode(Int.getNode());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      bool SwitchEQNEToPLMI;
 | 
						|
      SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
 | 
						|
      InFlag = N->getOperand(4);
 | 
						|
 | 
						|
      if (SwitchEQNEToPLMI) {
 | 
						|
        switch ((ARMCC::CondCodes)CC) {
 | 
						|
        default: llvm_unreachable("CMPZ must be either NE or EQ!");
 | 
						|
        case ARMCC::NE:
 | 
						|
          CC = (unsigned)ARMCC::MI;
 | 
						|
          break;
 | 
						|
        case ARMCC::EQ:
 | 
						|
          CC = (unsigned)ARMCC::PL;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue Tmp2 = CurDAG->getTargetConstant(CC, dl, MVT::i32);
 | 
						|
    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
 | 
						|
    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
 | 
						|
                                             MVT::Glue, Ops);
 | 
						|
    Chain = SDValue(ResNode, 0);
 | 
						|
    if (N->getNumValues() == 2) {
 | 
						|
      InFlag = SDValue(ResNode, 1);
 | 
						|
      ReplaceUses(SDValue(N, 1), InFlag);
 | 
						|
    }
 | 
						|
    ReplaceUses(SDValue(N, 0),
 | 
						|
                SDValue(Chain.getNode(), Chain.getResNo()));
 | 
						|
    CurDAG->RemoveDeadNode(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::CMPZ: {
 | 
						|
    // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
 | 
						|
    //   This allows us to avoid materializing the expensive negative constant.
 | 
						|
    //   The CMPZ #0 is useless and will be peepholed away but we need to keep it
 | 
						|
    //   for its glue output.
 | 
						|
    SDValue X = N->getOperand(0);
 | 
						|
    auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1).getNode());
 | 
						|
    if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) {
 | 
						|
      int64_t Addend = -C->getSExtValue();
 | 
						|
 | 
						|
      SDNode *Add = nullptr;
 | 
						|
      // ADDS can be better than CMN if the immediate fits in a
 | 
						|
      // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
 | 
						|
      // Outside that range we can just use a CMN which is 32-bit but has a
 | 
						|
      // 12-bit immediate range.
 | 
						|
      if (Addend < 1<<8) {
 | 
						|
        if (Subtarget->isThumb2()) {
 | 
						|
          SDValue Ops[] = { X, CurDAG->getTargetConstant(Addend, dl, MVT::i32),
 | 
						|
                            getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                            CurDAG->getRegister(0, MVT::i32) };
 | 
						|
          Add = CurDAG->getMachineNode(ARM::t2ADDri, dl, MVT::i32, Ops);
 | 
						|
        } else {
 | 
						|
          unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8;
 | 
						|
          SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), X,
 | 
						|
                           CurDAG->getTargetConstant(Addend, dl, MVT::i32),
 | 
						|
                           getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
 | 
						|
          Add = CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (Add) {
 | 
						|
        SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(0, dl, MVT::i32)};
 | 
						|
        CurDAG->MorphNodeTo(N, ARMISD::CMPZ, CurDAG->getVTList(MVT::Glue), Ops2);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::CMOV: {
 | 
						|
    SDValue InFlag = N->getOperand(4);
 | 
						|
 | 
						|
    if (InFlag.getOpcode() == ARMISD::CMPZ) {
 | 
						|
      bool SwitchEQNEToPLMI;
 | 
						|
      SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
 | 
						|
 | 
						|
      if (SwitchEQNEToPLMI) {
 | 
						|
        SDValue ARMcc = N->getOperand(2);
 | 
						|
        ARMCC::CondCodes CC =
 | 
						|
          (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
 | 
						|
 | 
						|
        switch (CC) {
 | 
						|
        default: llvm_unreachable("CMPZ must be either NE or EQ!");
 | 
						|
        case ARMCC::NE:
 | 
						|
          CC = ARMCC::MI;
 | 
						|
          break;
 | 
						|
        case ARMCC::EQ:
 | 
						|
          CC = ARMCC::PL;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        SDValue NewARMcc = CurDAG->getConstant((unsigned)CC, dl, MVT::i32);
 | 
						|
        SDValue Ops[] = {N->getOperand(0), N->getOperand(1), NewARMcc,
 | 
						|
                         N->getOperand(3), N->getOperand(4)};
 | 
						|
        CurDAG->MorphNodeTo(N, ARMISD::CMOV, N->getVTList(), Ops);
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VZIP: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return;
 | 
						|
    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
 | 
						|
    case MVT::v4f16:
 | 
						|
    case MVT::v4i16: Opc = ARM::VZIPd16; break;
 | 
						|
    case MVT::v2f32:
 | 
						|
    // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
 | 
						|
    case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | 
						|
    case MVT::v16i8: Opc = ARM::VZIPq8; break;
 | 
						|
    case MVT::v8f16:
 | 
						|
    case MVT::v8i16: Opc = ARM::VZIPq16; break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32: Opc = ARM::VZIPq32; break;
 | 
						|
    }
 | 
						|
    SDValue Pred = getAL(CurDAG, dl);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::VUZP: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return;
 | 
						|
    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
 | 
						|
    case MVT::v4f16:
 | 
						|
    case MVT::v4i16: Opc = ARM::VUZPd16; break;
 | 
						|
    case MVT::v2f32:
 | 
						|
    // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
 | 
						|
    case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | 
						|
    case MVT::v16i8: Opc = ARM::VUZPq8; break;
 | 
						|
    case MVT::v8f16:
 | 
						|
    case MVT::v8i16: Opc = ARM::VUZPq16; break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32: Opc = ARM::VUZPq32; break;
 | 
						|
    }
 | 
						|
    SDValue Pred = getAL(CurDAG, dl);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::VTRN: {
 | 
						|
    unsigned Opc = 0;
 | 
						|
    EVT VT = N->getValueType(0);
 | 
						|
    switch (VT.getSimpleVT().SimpleTy) {
 | 
						|
    default: return;
 | 
						|
    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
 | 
						|
    case MVT::v4f16:
 | 
						|
    case MVT::v4i16: Opc = ARM::VTRNd16; break;
 | 
						|
    case MVT::v2f32:
 | 
						|
    case MVT::v2i32: Opc = ARM::VTRNd32; break;
 | 
						|
    case MVT::v16i8: Opc = ARM::VTRNq8; break;
 | 
						|
    case MVT::v8f16:
 | 
						|
    case MVT::v8i16: Opc = ARM::VTRNq16; break;
 | 
						|
    case MVT::v4f32:
 | 
						|
    case MVT::v4i32: Opc = ARM::VTRNq32; break;
 | 
						|
    }
 | 
						|
    SDValue Pred = getAL(CurDAG, dl);
 | 
						|
    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
 | 
						|
    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ARMISD::BUILD_VECTOR: {
 | 
						|
    EVT VecVT = N->getValueType(0);
 | 
						|
    EVT EltVT = VecVT.getVectorElementType();
 | 
						|
    unsigned NumElts = VecVT.getVectorNumElements();
 | 
						|
    if (EltVT == MVT::f64) {
 | 
						|
      assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
 | 
						|
      ReplaceNode(
 | 
						|
          N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
 | 
						|
    if (NumElts == 2) {
 | 
						|
      ReplaceNode(
 | 
						|
          N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
 | 
						|
    ReplaceNode(N,
 | 
						|
                createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
 | 
						|
                                    N->getOperand(2), N->getOperand(3)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1DUP: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16,
 | 
						|
                                         ARM::VLD1DUPd32 };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16,
 | 
						|
                                         ARM::VLD1DUPq32 };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 1, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2DUP: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
 | 
						|
                                        ARM::VLD2DUPd32 };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 2, Opcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3DUP: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
 | 
						|
                                        ARM::VLD3DUPd16Pseudo,
 | 
						|
                                        ARM::VLD3DUPd32Pseudo };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 3, Opcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4DUP: {
 | 
						|
    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
 | 
						|
                                        ARM::VLD4DUPd16Pseudo,
 | 
						|
                                        ARM::VLD4DUPd32Pseudo };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, false, 4, Opcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1DUP_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed,
 | 
						|
                                         ARM::VLD1DUPd16wb_fixed,
 | 
						|
                                         ARM::VLD1DUPd32wb_fixed };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed,
 | 
						|
                                         ARM::VLD1DUPq16wb_fixed,
 | 
						|
                                         ARM::VLD1DUPq32wb_fixed };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 1, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2DUP_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8wb_fixed,
 | 
						|
                                         ARM::VLD2DUPd16wb_fixed,
 | 
						|
                                         ARM::VLD2DUPd32wb_fixed,
 | 
						|
                                         ARM::VLD1q64wb_fixed };
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
 | 
						|
                                          ARM::VLD2DUPq16EvenPseudo,
 | 
						|
                                          ARM::VLD2DUPq32EvenPseudo };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudoWB_fixed,
 | 
						|
                                          ARM::VLD2DUPq16OddPseudoWB_fixed,
 | 
						|
                                          ARM::VLD2DUPq32OddPseudoWB_fixed };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3DUP_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD3DUPd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3DUPd32Pseudo_UPD,
 | 
						|
                                         ARM::VLD1d64TPseudoWB_fixed };
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
 | 
						|
                                          ARM::VLD3DUPq16EvenPseudo,
 | 
						|
                                          ARM::VLD3DUPq32EvenPseudo };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo_UPD,
 | 
						|
                                          ARM::VLD3DUPq16OddPseudo_UPD,
 | 
						|
                                          ARM::VLD3DUPq32OddPseudo_UPD };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4DUP_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD4DUPd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD4DUPd32Pseudo_UPD,
 | 
						|
                                         ARM::VLD1d64QPseudoWB_fixed };
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
 | 
						|
                                          ARM::VLD4DUPq16EvenPseudo,
 | 
						|
                                          ARM::VLD4DUPq32EvenPseudo };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo_UPD,
 | 
						|
                                          ARM::VLD4DUPq16OddPseudo_UPD,
 | 
						|
                                          ARM::VLD4DUPq32OddPseudo_UPD };
 | 
						|
    SelectVLDDup(N, /* IsIntrinsic= */ false, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
 | 
						|
                                         ARM::VLD1d16wb_fixed,
 | 
						|
                                         ARM::VLD1d32wb_fixed,
 | 
						|
                                         ARM::VLD1d64wb_fixed };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
 | 
						|
                                         ARM::VLD1q16wb_fixed,
 | 
						|
                                         ARM::VLD1q32wb_fixed,
 | 
						|
                                         ARM::VLD1q64wb_fixed };
 | 
						|
    SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VLD2d8wb_fixed, ARM::VLD2d16wb_fixed, ARM::VLD2d32wb_fixed,
 | 
						|
          ARM::VLD1q64wb_fixed};
 | 
						|
      static const uint16_t QOpcodes[] = {ARM::VLD2q8PseudoWB_fixed,
 | 
						|
                                          ARM::VLD2q16PseudoWB_fixed,
 | 
						|
                                          ARM::VLD2q32PseudoWB_fixed};
 | 
						|
      SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
    } else {
 | 
						|
      static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8,
 | 
						|
                                          ARM::MVE_VLD21_8_wb};
 | 
						|
      static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16,
 | 
						|
                                           ARM::MVE_VLD21_16_wb};
 | 
						|
      static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32,
 | 
						|
                                           ARM::MVE_VLD21_32_wb};
 | 
						|
      static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
 | 
						|
      SelectMVE_VLD(N, 2, Opcodes, true);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
 | 
						|
                                         ARM::VLD3d16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3d32Pseudo_UPD,
 | 
						|
                                         ARM::VLD1d64TPseudoWB_fixed};
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
 | 
						|
                                          ARM::VLD3q16Pseudo_UPD,
 | 
						|
                                          ARM::VLD3q32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
 | 
						|
                                          ARM::VLD3q16oddPseudo_UPD,
 | 
						|
                                          ARM::VLD3q32oddPseudo_UPD };
 | 
						|
    SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD, ARM::VLD4d32Pseudo_UPD,
 | 
						|
          ARM::VLD1d64QPseudoWB_fixed};
 | 
						|
      static const uint16_t QOpcodes0[] = {ARM::VLD4q8Pseudo_UPD,
 | 
						|
                                           ARM::VLD4q16Pseudo_UPD,
 | 
						|
                                           ARM::VLD4q32Pseudo_UPD};
 | 
						|
      static const uint16_t QOpcodes1[] = {ARM::VLD4q8oddPseudo_UPD,
 | 
						|
                                           ARM::VLD4q16oddPseudo_UPD,
 | 
						|
                                           ARM::VLD4q32oddPseudo_UPD};
 | 
						|
      SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    } else {
 | 
						|
      static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8,
 | 
						|
                                          ARM::MVE_VLD42_8,
 | 
						|
                                          ARM::MVE_VLD43_8_wb};
 | 
						|
      static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16,
 | 
						|
                                           ARM::MVE_VLD42_16,
 | 
						|
                                           ARM::MVE_VLD43_16_wb};
 | 
						|
      static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32,
 | 
						|
                                           ARM::MVE_VLD42_32,
 | 
						|
                                           ARM::MVE_VLD43_32_wb};
 | 
						|
      static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
 | 
						|
      SelectMVE_VLD(N, 4, Opcodes, true);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1x2_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VLD1q8wb_fixed, ARM::VLD1q16wb_fixed, ARM::VLD1q32wb_fixed,
 | 
						|
          ARM::VLD1q64wb_fixed};
 | 
						|
      static const uint16_t QOpcodes[] = {
 | 
						|
          ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed,
 | 
						|
          ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed};
 | 
						|
      SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1x3_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VLD1d8TPseudoWB_fixed, ARM::VLD1d16TPseudoWB_fixed,
 | 
						|
          ARM::VLD1d32TPseudoWB_fixed, ARM::VLD1d64TPseudoWB_fixed};
 | 
						|
      static const uint16_t QOpcodes0[] = {
 | 
						|
          ARM::VLD1q8LowTPseudo_UPD, ARM::VLD1q16LowTPseudo_UPD,
 | 
						|
          ARM::VLD1q32LowTPseudo_UPD, ARM::VLD1q64LowTPseudo_UPD};
 | 
						|
      static const uint16_t QOpcodes1[] = {
 | 
						|
          ARM::VLD1q8HighTPseudo_UPD, ARM::VLD1q16HighTPseudo_UPD,
 | 
						|
          ARM::VLD1q32HighTPseudo_UPD, ARM::VLD1q64HighTPseudo_UPD};
 | 
						|
      SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD1x4_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed,
 | 
						|
          ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed};
 | 
						|
      static const uint16_t QOpcodes0[] = {
 | 
						|
          ARM::VLD1q8LowQPseudo_UPD, ARM::VLD1q16LowQPseudo_UPD,
 | 
						|
          ARM::VLD1q32LowQPseudo_UPD, ARM::VLD1q64LowQPseudo_UPD};
 | 
						|
      static const uint16_t QOpcodes1[] = {
 | 
						|
          ARM::VLD1q8HighQPseudo_UPD, ARM::VLD1q16HighQPseudo_UPD,
 | 
						|
          ARM::VLD1q32HighQPseudo_UPD, ARM::VLD1q64HighQPseudo_UPD};
 | 
						|
      SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD2LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD2LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD2LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VLD2LNq32Pseudo_UPD };
 | 
						|
    SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD3LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD3LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VLD3LNq32Pseudo_UPD };
 | 
						|
    SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VLD4LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VLD4LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VLD4LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VLD4LNq32Pseudo_UPD };
 | 
						|
    SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST1_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
 | 
						|
                                         ARM::VST1d16wb_fixed,
 | 
						|
                                         ARM::VST1d32wb_fixed,
 | 
						|
                                         ARM::VST1d64wb_fixed };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
 | 
						|
                                         ARM::VST1q16wb_fixed,
 | 
						|
                                         ARM::VST1q32wb_fixed,
 | 
						|
                                         ARM::VST1q64wb_fixed };
 | 
						|
    SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST2_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VST2d8wb_fixed, ARM::VST2d16wb_fixed, ARM::VST2d32wb_fixed,
 | 
						|
          ARM::VST1q64wb_fixed};
 | 
						|
      static const uint16_t QOpcodes[] = {ARM::VST2q8PseudoWB_fixed,
 | 
						|
                                          ARM::VST2q16PseudoWB_fixed,
 | 
						|
                                          ARM::VST2q32PseudoWB_fixed};
 | 
						|
      SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST3_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
 | 
						|
                                         ARM::VST3d16Pseudo_UPD,
 | 
						|
                                         ARM::VST3d32Pseudo_UPD,
 | 
						|
                                         ARM::VST1d64TPseudoWB_fixed};
 | 
						|
    static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
 | 
						|
                                          ARM::VST3q16Pseudo_UPD,
 | 
						|
                                          ARM::VST3q32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
 | 
						|
                                          ARM::VST3q16oddPseudo_UPD,
 | 
						|
                                          ARM::VST3q32oddPseudo_UPD };
 | 
						|
    SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST4_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = {
 | 
						|
          ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD, ARM::VST4d32Pseudo_UPD,
 | 
						|
          ARM::VST1d64QPseudoWB_fixed};
 | 
						|
      static const uint16_t QOpcodes0[] = {ARM::VST4q8Pseudo_UPD,
 | 
						|
                                           ARM::VST4q16Pseudo_UPD,
 | 
						|
                                           ARM::VST4q32Pseudo_UPD};
 | 
						|
      static const uint16_t QOpcodes1[] = {ARM::VST4q8oddPseudo_UPD,
 | 
						|
                                           ARM::VST4q16oddPseudo_UPD,
 | 
						|
                                           ARM::VST4q32oddPseudo_UPD};
 | 
						|
      SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST1x2_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1q8wb_fixed,
 | 
						|
                                           ARM::VST1q16wb_fixed,
 | 
						|
                                           ARM::VST1q32wb_fixed,
 | 
						|
                                           ARM::VST1q64wb_fixed};
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d16QPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d32QPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d64QPseudoWB_fixed };
 | 
						|
      SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST1x3_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d16TPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d32TPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d64TPseudoWB_fixed };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
 | 
						|
                                            ARM::VST1q16LowTPseudo_UPD,
 | 
						|
                                            ARM::VST1q32LowTPseudo_UPD,
 | 
						|
                                            ARM::VST1q64LowTPseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo_UPD,
 | 
						|
                                            ARM::VST1q16HighTPseudo_UPD,
 | 
						|
                                            ARM::VST1q32HighTPseudo_UPD,
 | 
						|
                                            ARM::VST1q64HighTPseudo_UPD };
 | 
						|
      SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST1x4_UPD: {
 | 
						|
    if (Subtarget->hasNEON()) {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d16QPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d32QPseudoWB_fixed,
 | 
						|
                                           ARM::VST1d64QPseudoWB_fixed };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
 | 
						|
                                            ARM::VST1q16LowQPseudo_UPD,
 | 
						|
                                            ARM::VST1q32LowQPseudo_UPD,
 | 
						|
                                            ARM::VST1q64LowQPseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo_UPD,
 | 
						|
                                            ARM::VST1q16HighQPseudo_UPD,
 | 
						|
                                            ARM::VST1q32HighQPseudo_UPD,
 | 
						|
                                            ARM::VST1q64HighQPseudo_UPD };
 | 
						|
      SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ARMISD::VST2LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VST2LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VST2LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VST2LNq32Pseudo_UPD };
 | 
						|
    SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST3LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VST3LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VST3LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VST3LNq32Pseudo_UPD };
 | 
						|
    SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ARMISD::VST4LN_UPD: {
 | 
						|
    static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
 | 
						|
                                         ARM::VST4LNd16Pseudo_UPD,
 | 
						|
                                         ARM::VST4LNd32Pseudo_UPD };
 | 
						|
    static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
 | 
						|
                                         ARM::VST4LNq32Pseudo_UPD };
 | 
						|
    SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_VOID:
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::arm_mrrc:
 | 
						|
    case Intrinsic::arm_mrrc2: {
 | 
						|
      SDLoc dl(N);
 | 
						|
      SDValue Chain = N->getOperand(0);
 | 
						|
      unsigned Opc;
 | 
						|
 | 
						|
      if (Subtarget->isThumb())
 | 
						|
        Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2);
 | 
						|
      else
 | 
						|
        Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2);
 | 
						|
 | 
						|
      SmallVector<SDValue, 5> Ops;
 | 
						|
      Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */
 | 
						|
      Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */
 | 
						|
      Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */
 | 
						|
 | 
						|
      // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
 | 
						|
      // instruction will always be '1111' but it is possible in assembly language to specify
 | 
						|
      // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
 | 
						|
      if (Opc != ARM::MRRC2) {
 | 
						|
        Ops.push_back(getAL(CurDAG, dl));
 | 
						|
        Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
      }
 | 
						|
 | 
						|
      Ops.push_back(Chain);
 | 
						|
 | 
						|
      // Writes to two registers.
 | 
						|
      const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other};
 | 
						|
 | 
						|
      ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Intrinsic::arm_ldaexd:
 | 
						|
    case Intrinsic::arm_ldrexd: {
 | 
						|
      SDLoc dl(N);
 | 
						|
      SDValue Chain = N->getOperand(0);
 | 
						|
      SDValue MemAddr = N->getOperand(2);
 | 
						|
      bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps();
 | 
						|
 | 
						|
      bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
 | 
						|
      unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
 | 
						|
                                : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
 | 
						|
 | 
						|
      // arm_ldrexd returns a i64 value in {i32, i32}
 | 
						|
      std::vector<EVT> ResTys;
 | 
						|
      if (isThumb) {
 | 
						|
        ResTys.push_back(MVT::i32);
 | 
						|
        ResTys.push_back(MVT::i32);
 | 
						|
      } else
 | 
						|
        ResTys.push_back(MVT::Untyped);
 | 
						|
      ResTys.push_back(MVT::Other);
 | 
						|
 | 
						|
      // Place arguments in the right order.
 | 
						|
      SDValue Ops[] = {MemAddr, getAL(CurDAG, dl),
 | 
						|
                       CurDAG->getRegister(0, MVT::i32), Chain};
 | 
						|
      SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
 | 
						|
      // Transfer memoperands.
 | 
						|
      MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
      CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
 | 
						|
 | 
						|
      // Remap uses.
 | 
						|
      SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
 | 
						|
      if (!SDValue(N, 0).use_empty()) {
 | 
						|
        SDValue Result;
 | 
						|
        if (isThumb)
 | 
						|
          Result = SDValue(Ld, 0);
 | 
						|
        else {
 | 
						|
          SDValue SubRegIdx =
 | 
						|
            CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
 | 
						|
          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | 
						|
              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
 | 
						|
          Result = SDValue(ResNode,0);
 | 
						|
        }
 | 
						|
        ReplaceUses(SDValue(N, 0), Result);
 | 
						|
      }
 | 
						|
      if (!SDValue(N, 1).use_empty()) {
 | 
						|
        SDValue Result;
 | 
						|
        if (isThumb)
 | 
						|
          Result = SDValue(Ld, 1);
 | 
						|
        else {
 | 
						|
          SDValue SubRegIdx =
 | 
						|
            CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
 | 
						|
          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | 
						|
              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
 | 
						|
          Result = SDValue(ResNode,0);
 | 
						|
        }
 | 
						|
        ReplaceUses(SDValue(N, 1), Result);
 | 
						|
      }
 | 
						|
      ReplaceUses(SDValue(N, 2), OutChain);
 | 
						|
      CurDAG->RemoveDeadNode(N);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case Intrinsic::arm_stlexd:
 | 
						|
    case Intrinsic::arm_strexd: {
 | 
						|
      SDLoc dl(N);
 | 
						|
      SDValue Chain = N->getOperand(0);
 | 
						|
      SDValue Val0 = N->getOperand(2);
 | 
						|
      SDValue Val1 = N->getOperand(3);
 | 
						|
      SDValue MemAddr = N->getOperand(4);
 | 
						|
 | 
						|
      // Store exclusive double return a i32 value which is the return status
 | 
						|
      // of the issued store.
 | 
						|
      const EVT ResTys[] = {MVT::i32, MVT::Other};
 | 
						|
 | 
						|
      bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
 | 
						|
      // Place arguments in the right order.
 | 
						|
      SmallVector<SDValue, 7> Ops;
 | 
						|
      if (isThumb) {
 | 
						|
        Ops.push_back(Val0);
 | 
						|
        Ops.push_back(Val1);
 | 
						|
      } else
 | 
						|
        // arm_strexd uses GPRPair.
 | 
						|
        Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
 | 
						|
      Ops.push_back(MemAddr);
 | 
						|
      Ops.push_back(getAL(CurDAG, dl));
 | 
						|
      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
      Ops.push_back(Chain);
 | 
						|
 | 
						|
      bool IsRelease = IntNo == Intrinsic::arm_stlexd;
 | 
						|
      unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
 | 
						|
                                : (IsRelease ? ARM::STLEXD : ARM::STREXD);
 | 
						|
 | 
						|
      SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
 | 
						|
      // Transfer memoperands.
 | 
						|
      MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | 
						|
      CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
 | 
						|
 | 
						|
      ReplaceNode(N, St);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld1: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
 | 
						|
                                           ARM::VLD1d32, ARM::VLD1d64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
 | 
						|
                                           ARM::VLD1q32, ARM::VLD1q64};
 | 
						|
      SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld1x2: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
 | 
						|
                                           ARM::VLD1q32, ARM::VLD1q64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo,
 | 
						|
                                           ARM::VLD1d16QPseudo,
 | 
						|
                                           ARM::VLD1d32QPseudo,
 | 
						|
                                           ARM::VLD1d64QPseudo };
 | 
						|
      SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld1x3: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo,
 | 
						|
                                           ARM::VLD1d16TPseudo,
 | 
						|
                                           ARM::VLD1d32TPseudo,
 | 
						|
                                           ARM::VLD1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD,
 | 
						|
                                            ARM::VLD1q16LowTPseudo_UPD,
 | 
						|
                                            ARM::VLD1q32LowTPseudo_UPD,
 | 
						|
                                            ARM::VLD1q64LowTPseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo,
 | 
						|
                                            ARM::VLD1q16HighTPseudo,
 | 
						|
                                            ARM::VLD1q32HighTPseudo,
 | 
						|
                                            ARM::VLD1q64HighTPseudo };
 | 
						|
      SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld1x4: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo,
 | 
						|
                                           ARM::VLD1d16QPseudo,
 | 
						|
                                           ARM::VLD1d32QPseudo,
 | 
						|
                                           ARM::VLD1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD,
 | 
						|
                                            ARM::VLD1q16LowQPseudo_UPD,
 | 
						|
                                            ARM::VLD1q32LowQPseudo_UPD,
 | 
						|
                                            ARM::VLD1q64LowQPseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo,
 | 
						|
                                            ARM::VLD1q16HighQPseudo,
 | 
						|
                                            ARM::VLD1q32HighQPseudo,
 | 
						|
                                            ARM::VLD1q64HighQPseudo };
 | 
						|
      SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld2: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
 | 
						|
                                           ARM::VLD2d32, ARM::VLD1q64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
 | 
						|
                                           ARM::VLD2q32Pseudo };
 | 
						|
      SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld3: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
 | 
						|
                                           ARM::VLD3d16Pseudo,
 | 
						|
                                           ARM::VLD3d32Pseudo,
 | 
						|
                                           ARM::VLD1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
 | 
						|
                                            ARM::VLD3q16Pseudo_UPD,
 | 
						|
                                            ARM::VLD3q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
 | 
						|
                                            ARM::VLD3q16oddPseudo,
 | 
						|
                                            ARM::VLD3q32oddPseudo };
 | 
						|
      SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld4: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
 | 
						|
                                           ARM::VLD4d16Pseudo,
 | 
						|
                                           ARM::VLD4d32Pseudo,
 | 
						|
                                           ARM::VLD1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
 | 
						|
                                            ARM::VLD4q16Pseudo_UPD,
 | 
						|
                                            ARM::VLD4q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
 | 
						|
                                            ARM::VLD4q16oddPseudo,
 | 
						|
                                            ARM::VLD4q32oddPseudo };
 | 
						|
      SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld2dup: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
 | 
						|
                                           ARM::VLD2DUPd32, ARM::VLD1q64 };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
 | 
						|
                                            ARM::VLD2DUPq16EvenPseudo,
 | 
						|
                                            ARM::VLD2DUPq32EvenPseudo };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo,
 | 
						|
                                            ARM::VLD2DUPq16OddPseudo,
 | 
						|
                                            ARM::VLD2DUPq32OddPseudo };
 | 
						|
      SelectVLDDup(N, /* IsIntrinsic= */ true, false, 2,
 | 
						|
                   DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld3dup: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo,
 | 
						|
                                           ARM::VLD3DUPd16Pseudo,
 | 
						|
                                           ARM::VLD3DUPd32Pseudo,
 | 
						|
                                           ARM::VLD1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
 | 
						|
                                            ARM::VLD3DUPq16EvenPseudo,
 | 
						|
                                            ARM::VLD3DUPq32EvenPseudo };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo,
 | 
						|
                                            ARM::VLD3DUPq16OddPseudo,
 | 
						|
                                            ARM::VLD3DUPq32OddPseudo };
 | 
						|
      SelectVLDDup(N, /* IsIntrinsic= */ true, false, 3,
 | 
						|
                   DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld4dup: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo,
 | 
						|
                                           ARM::VLD4DUPd16Pseudo,
 | 
						|
                                           ARM::VLD4DUPd32Pseudo,
 | 
						|
                                           ARM::VLD1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
 | 
						|
                                            ARM::VLD4DUPq16EvenPseudo,
 | 
						|
                                            ARM::VLD4DUPq32EvenPseudo };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo,
 | 
						|
                                            ARM::VLD4DUPq16OddPseudo,
 | 
						|
                                            ARM::VLD4DUPq32OddPseudo };
 | 
						|
      SelectVLDDup(N, /* IsIntrinsic= */ true, false, 4,
 | 
						|
                   DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld2lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
 | 
						|
                                           ARM::VLD2LNd16Pseudo,
 | 
						|
                                           ARM::VLD2LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
 | 
						|
                                           ARM::VLD2LNq32Pseudo };
 | 
						|
      SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld3lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
 | 
						|
                                           ARM::VLD3LNd16Pseudo,
 | 
						|
                                           ARM::VLD3LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
 | 
						|
                                           ARM::VLD3LNq32Pseudo };
 | 
						|
      SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vld4lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
 | 
						|
                                           ARM::VLD4LNd16Pseudo,
 | 
						|
                                           ARM::VLD4LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
 | 
						|
                                           ARM::VLD4LNq32Pseudo };
 | 
						|
      SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst1: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
 | 
						|
                                           ARM::VST1d32, ARM::VST1d64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
 | 
						|
                                           ARM::VST1q32, ARM::VST1q64 };
 | 
						|
      SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst1x2: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
 | 
						|
                                           ARM::VST1q32, ARM::VST1q64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo,
 | 
						|
                                           ARM::VST1d16QPseudo,
 | 
						|
                                           ARM::VST1d32QPseudo,
 | 
						|
                                           ARM::VST1d64QPseudo };
 | 
						|
      SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst1x3: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo,
 | 
						|
                                           ARM::VST1d16TPseudo,
 | 
						|
                                           ARM::VST1d32TPseudo,
 | 
						|
                                           ARM::VST1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
 | 
						|
                                            ARM::VST1q16LowTPseudo_UPD,
 | 
						|
                                            ARM::VST1q32LowTPseudo_UPD,
 | 
						|
                                            ARM::VST1q64LowTPseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo,
 | 
						|
                                            ARM::VST1q16HighTPseudo,
 | 
						|
                                            ARM::VST1q32HighTPseudo,
 | 
						|
                                            ARM::VST1q64HighTPseudo };
 | 
						|
      SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst1x4: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo,
 | 
						|
                                           ARM::VST1d16QPseudo,
 | 
						|
                                           ARM::VST1d32QPseudo,
 | 
						|
                                           ARM::VST1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
 | 
						|
                                            ARM::VST1q16LowQPseudo_UPD,
 | 
						|
                                            ARM::VST1q32LowQPseudo_UPD,
 | 
						|
                                            ARM::VST1q64LowQPseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo,
 | 
						|
                                            ARM::VST1q16HighQPseudo,
 | 
						|
                                            ARM::VST1q32HighQPseudo,
 | 
						|
                                            ARM::VST1q64HighQPseudo };
 | 
						|
      SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst2: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
 | 
						|
                                           ARM::VST2d32, ARM::VST1q64 };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
 | 
						|
                                           ARM::VST2q32Pseudo };
 | 
						|
      SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst3: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
 | 
						|
                                           ARM::VST3d16Pseudo,
 | 
						|
                                           ARM::VST3d32Pseudo,
 | 
						|
                                           ARM::VST1d64TPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
 | 
						|
                                            ARM::VST3q16Pseudo_UPD,
 | 
						|
                                            ARM::VST3q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
 | 
						|
                                            ARM::VST3q16oddPseudo,
 | 
						|
                                            ARM::VST3q32oddPseudo };
 | 
						|
      SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst4: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
 | 
						|
                                           ARM::VST4d16Pseudo,
 | 
						|
                                           ARM::VST4d32Pseudo,
 | 
						|
                                           ARM::VST1d64QPseudo };
 | 
						|
      static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
 | 
						|
                                            ARM::VST4q16Pseudo_UPD,
 | 
						|
                                            ARM::VST4q32Pseudo_UPD };
 | 
						|
      static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
 | 
						|
                                            ARM::VST4q16oddPseudo,
 | 
						|
                                            ARM::VST4q32oddPseudo };
 | 
						|
      SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst2lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
 | 
						|
                                           ARM::VST2LNd16Pseudo,
 | 
						|
                                           ARM::VST2LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
 | 
						|
                                           ARM::VST2LNq32Pseudo };
 | 
						|
      SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst3lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
 | 
						|
                                           ARM::VST3LNd16Pseudo,
 | 
						|
                                           ARM::VST3LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
 | 
						|
                                           ARM::VST3LNq32Pseudo };
 | 
						|
      SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_neon_vst4lane: {
 | 
						|
      static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
 | 
						|
                                           ARM::VST4LNd16Pseudo,
 | 
						|
                                           ARM::VST4LNd32Pseudo };
 | 
						|
      static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
 | 
						|
                                           ARM::VST4LNq32Pseudo };
 | 
						|
      SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vldr_gather_base_wb:
 | 
						|
    case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
 | 
						|
      static const uint16_t Opcodes[] = {ARM::MVE_VLDRWU32_qi_pre,
 | 
						|
                                         ARM::MVE_VLDRDU64_qi_pre};
 | 
						|
      SelectMVE_WB(N, Opcodes,
 | 
						|
                   IntNo == Intrinsic::arm_mve_vldr_gather_base_wb_predicated);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vld2q: {
 | 
						|
      static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8, ARM::MVE_VLD21_8};
 | 
						|
      static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16,
 | 
						|
                                           ARM::MVE_VLD21_16};
 | 
						|
      static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32,
 | 
						|
                                           ARM::MVE_VLD21_32};
 | 
						|
      static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
 | 
						|
      SelectMVE_VLD(N, 2, Opcodes, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vld4q: {
 | 
						|
      static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8,
 | 
						|
                                          ARM::MVE_VLD42_8, ARM::MVE_VLD43_8};
 | 
						|
      static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16,
 | 
						|
                                           ARM::MVE_VLD42_16,
 | 
						|
                                           ARM::MVE_VLD43_16};
 | 
						|
      static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32,
 | 
						|
                                           ARM::MVE_VLD42_32,
 | 
						|
                                           ARM::MVE_VLD43_32};
 | 
						|
      static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
 | 
						|
      SelectMVE_VLD(N, 4, Opcodes, false);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
 | 
						|
    switch (IntNo) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    // Scalar f32 -> bf16
 | 
						|
    case Intrinsic::arm_neon_vcvtbfp2bf: {
 | 
						|
      SDLoc dl(N);
 | 
						|
      const SDValue &Src = N->getOperand(1);
 | 
						|
      llvm::EVT DestTy = N->getValueType(0);
 | 
						|
      SDValue Pred = getAL(CurDAG, dl);
 | 
						|
      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
      SDValue Ops[] = { Src, Src, Pred, Reg0 };
 | 
						|
      CurDAG->SelectNodeTo(N, ARM::BF16_VCVTB, DestTy, Ops);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Vector v4f32 -> v4bf16
 | 
						|
    case Intrinsic::arm_neon_vcvtfp2bf: {
 | 
						|
      SDLoc dl(N);
 | 
						|
      const SDValue &Src = N->getOperand(1);
 | 
						|
      SDValue Pred = getAL(CurDAG, dl);
 | 
						|
      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
 | 
						|
      SDValue Ops[] = { Src, Pred, Reg0 };
 | 
						|
      CurDAG->SelectNodeTo(N, ARM::BF16_VCVT, MVT::v4bf16, Ops);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_urshrl:
 | 
						|
      SelectMVE_LongShift(N, ARM::MVE_URSHRL, true, false);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_uqshll:
 | 
						|
      SelectMVE_LongShift(N, ARM::MVE_UQSHLL, true, false);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_srshrl:
 | 
						|
      SelectMVE_LongShift(N, ARM::MVE_SRSHRL, true, false);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_sqshll:
 | 
						|
      SelectMVE_LongShift(N, ARM::MVE_SQSHLL, true, false);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_uqrshll:
 | 
						|
      SelectMVE_LongShift(N, ARM::MVE_UQRSHLL, false, true);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_sqrshrl:
 | 
						|
      SelectMVE_LongShift(N, ARM::MVE_SQRSHRL, false, true);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vadc:
 | 
						|
    case Intrinsic::arm_mve_vadc_predicated:
 | 
						|
      SelectMVE_VADCSBC(N, ARM::MVE_VADC, ARM::MVE_VADCI, true,
 | 
						|
                        IntNo == Intrinsic::arm_mve_vadc_predicated);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_vsbc:
 | 
						|
    case Intrinsic::arm_mve_vsbc_predicated:
 | 
						|
      SelectMVE_VADCSBC(N, ARM::MVE_VSBC, ARM::MVE_VSBCI, true,
 | 
						|
                        IntNo == Intrinsic::arm_mve_vsbc_predicated);
 | 
						|
      return;
 | 
						|
    case Intrinsic::arm_mve_vshlc:
 | 
						|
    case Intrinsic::arm_mve_vshlc_predicated:
 | 
						|
      SelectMVE_VSHLC(N, IntNo == Intrinsic::arm_mve_vshlc_predicated);
 | 
						|
      return;
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vmlldava:
 | 
						|
    case Intrinsic::arm_mve_vmlldava_predicated: {
 | 
						|
      static const uint16_t OpcodesU[] = {
 | 
						|
          ARM::MVE_VMLALDAVu16,   ARM::MVE_VMLALDAVu32,
 | 
						|
          ARM::MVE_VMLALDAVau16,  ARM::MVE_VMLALDAVau32,
 | 
						|
      };
 | 
						|
      static const uint16_t OpcodesS[] = {
 | 
						|
          ARM::MVE_VMLALDAVs16,   ARM::MVE_VMLALDAVs32,
 | 
						|
          ARM::MVE_VMLALDAVas16,  ARM::MVE_VMLALDAVas32,
 | 
						|
          ARM::MVE_VMLALDAVxs16,  ARM::MVE_VMLALDAVxs32,
 | 
						|
          ARM::MVE_VMLALDAVaxs16, ARM::MVE_VMLALDAVaxs32,
 | 
						|
          ARM::MVE_VMLSLDAVs16,   ARM::MVE_VMLSLDAVs32,
 | 
						|
          ARM::MVE_VMLSLDAVas16,  ARM::MVE_VMLSLDAVas32,
 | 
						|
          ARM::MVE_VMLSLDAVxs16,  ARM::MVE_VMLSLDAVxs32,
 | 
						|
          ARM::MVE_VMLSLDAVaxs16, ARM::MVE_VMLSLDAVaxs32,
 | 
						|
      };
 | 
						|
      SelectMVE_VMLLDAV(N, IntNo == Intrinsic::arm_mve_vmlldava_predicated,
 | 
						|
                        OpcodesS, OpcodesU);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vrmlldavha:
 | 
						|
    case Intrinsic::arm_mve_vrmlldavha_predicated: {
 | 
						|
      static const uint16_t OpcodesU[] = {
 | 
						|
          ARM::MVE_VRMLALDAVHu32,  ARM::MVE_VRMLALDAVHau32,
 | 
						|
      };
 | 
						|
      static const uint16_t OpcodesS[] = {
 | 
						|
          ARM::MVE_VRMLALDAVHs32,  ARM::MVE_VRMLALDAVHas32,
 | 
						|
          ARM::MVE_VRMLALDAVHxs32, ARM::MVE_VRMLALDAVHaxs32,
 | 
						|
          ARM::MVE_VRMLSLDAVHs32,  ARM::MVE_VRMLSLDAVHas32,
 | 
						|
          ARM::MVE_VRMLSLDAVHxs32, ARM::MVE_VRMLSLDAVHaxs32,
 | 
						|
      };
 | 
						|
      SelectMVE_VRMLLDAVH(N, IntNo == Intrinsic::arm_mve_vrmlldavha_predicated,
 | 
						|
                          OpcodesS, OpcodesU);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vidup:
 | 
						|
    case Intrinsic::arm_mve_vidup_predicated: {
 | 
						|
      static const uint16_t Opcodes[] = {
 | 
						|
          ARM::MVE_VIDUPu8, ARM::MVE_VIDUPu16, ARM::MVE_VIDUPu32,
 | 
						|
      };
 | 
						|
      SelectMVE_VxDUP(N, Opcodes, false,
 | 
						|
                      IntNo == Intrinsic::arm_mve_vidup_predicated);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vddup:
 | 
						|
    case Intrinsic::arm_mve_vddup_predicated: {
 | 
						|
      static const uint16_t Opcodes[] = {
 | 
						|
          ARM::MVE_VDDUPu8, ARM::MVE_VDDUPu16, ARM::MVE_VDDUPu32,
 | 
						|
      };
 | 
						|
      SelectMVE_VxDUP(N, Opcodes, false,
 | 
						|
                      IntNo == Intrinsic::arm_mve_vddup_predicated);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_viwdup:
 | 
						|
    case Intrinsic::arm_mve_viwdup_predicated: {
 | 
						|
      static const uint16_t Opcodes[] = {
 | 
						|
          ARM::MVE_VIWDUPu8, ARM::MVE_VIWDUPu16, ARM::MVE_VIWDUPu32,
 | 
						|
      };
 | 
						|
      SelectMVE_VxDUP(N, Opcodes, true,
 | 
						|
                      IntNo == Intrinsic::arm_mve_viwdup_predicated);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_mve_vdwdup:
 | 
						|
    case Intrinsic::arm_mve_vdwdup_predicated: {
 | 
						|
      static const uint16_t Opcodes[] = {
 | 
						|
          ARM::MVE_VDWDUPu8, ARM::MVE_VDWDUPu16, ARM::MVE_VDWDUPu32,
 | 
						|
      };
 | 
						|
      SelectMVE_VxDUP(N, Opcodes, true,
 | 
						|
                      IntNo == Intrinsic::arm_mve_vdwdup_predicated);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    case Intrinsic::arm_cde_cx1d:
 | 
						|
    case Intrinsic::arm_cde_cx1da:
 | 
						|
    case Intrinsic::arm_cde_cx2d:
 | 
						|
    case Intrinsic::arm_cde_cx2da:
 | 
						|
    case Intrinsic::arm_cde_cx3d:
 | 
						|
    case Intrinsic::arm_cde_cx3da: {
 | 
						|
      bool HasAccum = IntNo == Intrinsic::arm_cde_cx1da ||
 | 
						|
                      IntNo == Intrinsic::arm_cde_cx2da ||
 | 
						|
                      IntNo == Intrinsic::arm_cde_cx3da;
 | 
						|
      size_t NumExtraOps;
 | 
						|
      uint16_t Opcode;
 | 
						|
      switch (IntNo) {
 | 
						|
      case Intrinsic::arm_cde_cx1d:
 | 
						|
      case Intrinsic::arm_cde_cx1da:
 | 
						|
        NumExtraOps = 0;
 | 
						|
        Opcode = HasAccum ? ARM::CDE_CX1DA : ARM::CDE_CX1D;
 | 
						|
        break;
 | 
						|
      case Intrinsic::arm_cde_cx2d:
 | 
						|
      case Intrinsic::arm_cde_cx2da:
 | 
						|
        NumExtraOps = 1;
 | 
						|
        Opcode = HasAccum ? ARM::CDE_CX2DA : ARM::CDE_CX2D;
 | 
						|
        break;
 | 
						|
      case Intrinsic::arm_cde_cx3d:
 | 
						|
      case Intrinsic::arm_cde_cx3da:
 | 
						|
        NumExtraOps = 2;
 | 
						|
        Opcode = HasAccum ? ARM::CDE_CX3DA : ARM::CDE_CX3D;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unexpected opcode");
 | 
						|
      }
 | 
						|
      SelectCDE_CXxD(N, Opcode, NumExtraOps, HasAccum);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::ATOMIC_CMP_SWAP:
 | 
						|
    SelectCMP_SWAP(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SelectCode(N);
 | 
						|
}
 | 
						|
 | 
						|
// Inspect a register string of the form
 | 
						|
// cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
 | 
						|
// cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
 | 
						|
// and obtain the integer operands from them, adding these operands to the
 | 
						|
// provided vector.
 | 
						|
static void getIntOperandsFromRegisterString(StringRef RegString,
 | 
						|
                                             SelectionDAG *CurDAG,
 | 
						|
                                             const SDLoc &DL,
 | 
						|
                                             std::vector<SDValue> &Ops) {
 | 
						|
  SmallVector<StringRef, 5> Fields;
 | 
						|
  RegString.split(Fields, ':');
 | 
						|
 | 
						|
  if (Fields.size() > 1) {
 | 
						|
    bool AllIntFields = true;
 | 
						|
 | 
						|
    for (StringRef Field : Fields) {
 | 
						|
      // Need to trim out leading 'cp' characters and get the integer field.
 | 
						|
      unsigned IntField;
 | 
						|
      AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
 | 
						|
      Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    assert(AllIntFields &&
 | 
						|
            "Unexpected non-integer value in special register string.");
 | 
						|
    (void)AllIntFields;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Maps a Banked Register string to its mask value. The mask value returned is
 | 
						|
// for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
 | 
						|
// mask operand, which expresses which register is to be used, e.g. r8, and in
 | 
						|
// which mode it is to be used, e.g. usr. Returns -1 to signify that the string
 | 
						|
// was invalid.
 | 
						|
static inline int getBankedRegisterMask(StringRef RegString) {
 | 
						|
  auto TheReg = ARMBankedReg::lookupBankedRegByName(RegString.lower());
 | 
						|
  if (!TheReg)
 | 
						|
     return -1;
 | 
						|
  return TheReg->Encoding;
 | 
						|
}
 | 
						|
 | 
						|
// The flags here are common to those allowed for apsr in the A class cores and
 | 
						|
// those allowed for the special registers in the M class cores. Returns a
 | 
						|
// value representing which flags were present, -1 if invalid.
 | 
						|
static inline int getMClassFlagsMask(StringRef Flags) {
 | 
						|
  return StringSwitch<int>(Flags)
 | 
						|
          .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
 | 
						|
                         // correct when flags are not permitted
 | 
						|
          .Case("g", 0x1)
 | 
						|
          .Case("nzcvq", 0x2)
 | 
						|
          .Case("nzcvqg", 0x3)
 | 
						|
          .Default(-1);
 | 
						|
}
 | 
						|
 | 
						|
// Maps MClass special registers string to its value for use in the
 | 
						|
// t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
 | 
						|
// Returns -1 to signify that the string was invalid.
 | 
						|
static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) {
 | 
						|
  auto TheReg = ARMSysReg::lookupMClassSysRegByName(Reg);
 | 
						|
  const FeatureBitset &FeatureBits = Subtarget->getFeatureBits();
 | 
						|
  if (!TheReg || !TheReg->hasRequiredFeatures(FeatureBits))
 | 
						|
    return -1;
 | 
						|
  return (int)(TheReg->Encoding & 0xFFF); // SYSm value
 | 
						|
}
 | 
						|
 | 
						|
static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
 | 
						|
  // The mask operand contains the special register (R Bit) in bit 4, whether
 | 
						|
  // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
 | 
						|
  // bits 3-0 contains the fields to be accessed in the special register, set by
 | 
						|
  // the flags provided with the register.
 | 
						|
  int Mask = 0;
 | 
						|
  if (Reg == "apsr") {
 | 
						|
    // The flags permitted for apsr are the same flags that are allowed in
 | 
						|
    // M class registers. We get the flag value and then shift the flags into
 | 
						|
    // the correct place to combine with the mask.
 | 
						|
    Mask = getMClassFlagsMask(Flags);
 | 
						|
    if (Mask == -1)
 | 
						|
      return -1;
 | 
						|
    return Mask << 2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Reg != "cpsr" && Reg != "spsr") {
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is the same as if the flags were "fc"
 | 
						|
  if (Flags.empty() || Flags == "all")
 | 
						|
    return Mask | 0x9;
 | 
						|
 | 
						|
  // Inspect the supplied flags string and set the bits in the mask for
 | 
						|
  // the relevant and valid flags allowed for cpsr and spsr.
 | 
						|
  for (char Flag : Flags) {
 | 
						|
    int FlagVal;
 | 
						|
    switch (Flag) {
 | 
						|
      case 'c':
 | 
						|
        FlagVal = 0x1;
 | 
						|
        break;
 | 
						|
      case 'x':
 | 
						|
        FlagVal = 0x2;
 | 
						|
        break;
 | 
						|
      case 's':
 | 
						|
        FlagVal = 0x4;
 | 
						|
        break;
 | 
						|
      case 'f':
 | 
						|
        FlagVal = 0x8;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        FlagVal = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // This avoids allowing strings where the same flag bit appears twice.
 | 
						|
    if (!FlagVal || (Mask & FlagVal))
 | 
						|
      return -1;
 | 
						|
    Mask |= FlagVal;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the register is spsr then we need to set the R bit.
 | 
						|
  if (Reg == "spsr")
 | 
						|
    Mask |= 0x10;
 | 
						|
 | 
						|
  return Mask;
 | 
						|
}
 | 
						|
 | 
						|
// Lower the read_register intrinsic to ARM specific DAG nodes
 | 
						|
// using the supplied metadata string to select the instruction node to use
 | 
						|
// and the registers/masks to construct as operands for the node.
 | 
						|
bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){
 | 
						|
  const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
 | 
						|
  const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
 | 
						|
  bool IsThumb2 = Subtarget->isThumb2();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  std::vector<SDValue> Ops;
 | 
						|
  getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
 | 
						|
 | 
						|
  if (!Ops.empty()) {
 | 
						|
    // If the special register string was constructed of fields (as defined
 | 
						|
    // in the ACLE) then need to lower to MRC node (32 bit) or
 | 
						|
    // MRRC node(64 bit), we can make the distinction based on the number of
 | 
						|
    // operands we have.
 | 
						|
    unsigned Opcode;
 | 
						|
    SmallVector<EVT, 3> ResTypes;
 | 
						|
    if (Ops.size() == 5){
 | 
						|
      Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
 | 
						|
      ResTypes.append({ MVT::i32, MVT::Other });
 | 
						|
    } else {
 | 
						|
      assert(Ops.size() == 3 &&
 | 
						|
              "Invalid number of fields in special register string.");
 | 
						|
      Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
 | 
						|
      ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
 | 
						|
    }
 | 
						|
 | 
						|
    Ops.push_back(getAL(CurDAG, DL));
 | 
						|
    Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
    Ops.push_back(N->getOperand(0));
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  std::string SpecialReg = RegString->getString().lower();
 | 
						|
 | 
						|
  int BankedReg = getBankedRegisterMask(SpecialReg);
 | 
						|
  if (BankedReg != -1) {
 | 
						|
    Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
 | 
						|
            getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
            N->getOperand(0) };
 | 
						|
    ReplaceNode(
 | 
						|
        N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
 | 
						|
                                  DL, MVT::i32, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The VFP registers are read by creating SelectionDAG nodes with opcodes
 | 
						|
  // corresponding to the register that is being read from. So we switch on the
 | 
						|
  // string to find which opcode we need to use.
 | 
						|
  unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
 | 
						|
                    .Case("fpscr", ARM::VMRS)
 | 
						|
                    .Case("fpexc", ARM::VMRS_FPEXC)
 | 
						|
                    .Case("fpsid", ARM::VMRS_FPSID)
 | 
						|
                    .Case("mvfr0", ARM::VMRS_MVFR0)
 | 
						|
                    .Case("mvfr1", ARM::VMRS_MVFR1)
 | 
						|
                    .Case("mvfr2", ARM::VMRS_MVFR2)
 | 
						|
                    .Case("fpinst", ARM::VMRS_FPINST)
 | 
						|
                    .Case("fpinst2", ARM::VMRS_FPINST2)
 | 
						|
                    .Default(0);
 | 
						|
 | 
						|
  // If an opcode was found then we can lower the read to a VFP instruction.
 | 
						|
  if (Opcode) {
 | 
						|
    if (!Subtarget->hasVFP2Base())
 | 
						|
      return false;
 | 
						|
    if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8Base())
 | 
						|
      return false;
 | 
						|
 | 
						|
    Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
            N->getOperand(0) };
 | 
						|
    ReplaceNode(N,
 | 
						|
                CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the target is M Class then need to validate that the register string
 | 
						|
  // is an acceptable value, so check that a mask can be constructed from the
 | 
						|
  // string.
 | 
						|
  if (Subtarget->isMClass()) {
 | 
						|
    int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
 | 
						|
    if (SYSmValue == -1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
 | 
						|
                      getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
                      N->getOperand(0) };
 | 
						|
    ReplaceNode(
 | 
						|
        N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Here we know the target is not M Class so we need to check if it is one
 | 
						|
  // of the remaining possible values which are apsr, cpsr or spsr.
 | 
						|
  if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
 | 
						|
    Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
            N->getOperand(0) };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS,
 | 
						|
                                          DL, MVT::i32, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SpecialReg == "spsr") {
 | 
						|
    Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
            N->getOperand(0) };
 | 
						|
    ReplaceNode(
 | 
						|
        N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL,
 | 
						|
                                  MVT::i32, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Lower the write_register intrinsic to ARM specific DAG nodes
 | 
						|
// using the supplied metadata string to select the instruction node to use
 | 
						|
// and the registers/masks to use in the nodes
 | 
						|
bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){
 | 
						|
  const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
 | 
						|
  const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
 | 
						|
  bool IsThumb2 = Subtarget->isThumb2();
 | 
						|
  SDLoc DL(N);
 | 
						|
 | 
						|
  std::vector<SDValue> Ops;
 | 
						|
  getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
 | 
						|
 | 
						|
  if (!Ops.empty()) {
 | 
						|
    // If the special register string was constructed of fields (as defined
 | 
						|
    // in the ACLE) then need to lower to MCR node (32 bit) or
 | 
						|
    // MCRR node(64 bit), we can make the distinction based on the number of
 | 
						|
    // operands we have.
 | 
						|
    unsigned Opcode;
 | 
						|
    if (Ops.size() == 5) {
 | 
						|
      Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
 | 
						|
      Ops.insert(Ops.begin()+2, N->getOperand(2));
 | 
						|
    } else {
 | 
						|
      assert(Ops.size() == 3 &&
 | 
						|
              "Invalid number of fields in special register string.");
 | 
						|
      Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
 | 
						|
      SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
 | 
						|
      Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
 | 
						|
    }
 | 
						|
 | 
						|
    Ops.push_back(getAL(CurDAG, DL));
 | 
						|
    Ops.push_back(CurDAG->getRegister(0, MVT::i32));
 | 
						|
    Ops.push_back(N->getOperand(0));
 | 
						|
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  std::string SpecialReg = RegString->getString().lower();
 | 
						|
  int BankedReg = getBankedRegisterMask(SpecialReg);
 | 
						|
  if (BankedReg != -1) {
 | 
						|
    Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
 | 
						|
            getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
            N->getOperand(0) };
 | 
						|
    ReplaceNode(
 | 
						|
        N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
 | 
						|
                                  DL, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The VFP registers are written to by creating SelectionDAG nodes with
 | 
						|
  // opcodes corresponding to the register that is being written. So we switch
 | 
						|
  // on the string to find which opcode we need to use.
 | 
						|
  unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
 | 
						|
                    .Case("fpscr", ARM::VMSR)
 | 
						|
                    .Case("fpexc", ARM::VMSR_FPEXC)
 | 
						|
                    .Case("fpsid", ARM::VMSR_FPSID)
 | 
						|
                    .Case("fpinst", ARM::VMSR_FPINST)
 | 
						|
                    .Case("fpinst2", ARM::VMSR_FPINST2)
 | 
						|
                    .Default(0);
 | 
						|
 | 
						|
  if (Opcode) {
 | 
						|
    if (!Subtarget->hasVFP2Base())
 | 
						|
      return false;
 | 
						|
    Ops = { N->getOperand(2), getAL(CurDAG, DL),
 | 
						|
            CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  std::pair<StringRef, StringRef> Fields;
 | 
						|
  Fields = StringRef(SpecialReg).rsplit('_');
 | 
						|
  std::string Reg = Fields.first.str();
 | 
						|
  StringRef Flags = Fields.second;
 | 
						|
 | 
						|
  // If the target was M Class then need to validate the special register value
 | 
						|
  // and retrieve the mask for use in the instruction node.
 | 
						|
  if (Subtarget->isMClass()) {
 | 
						|
    int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
 | 
						|
    if (SYSmValue == -1)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
 | 
						|
                      N->getOperand(2), getAL(CurDAG, DL),
 | 
						|
                      CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We then check to see if a valid mask can be constructed for one of the
 | 
						|
  // register string values permitted for the A and R class cores. These values
 | 
						|
  // are apsr, spsr and cpsr; these are also valid on older cores.
 | 
						|
  int Mask = getARClassRegisterMask(Reg, Flags);
 | 
						|
  if (Mask != -1) {
 | 
						|
    Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
 | 
						|
            getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
 | 
						|
            N->getOperand(0) };
 | 
						|
    ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
 | 
						|
                                          DL, MVT::Other, Ops));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){
 | 
						|
  std::vector<SDValue> AsmNodeOperands;
 | 
						|
  unsigned Flag, Kind;
 | 
						|
  bool Changed = false;
 | 
						|
  unsigned NumOps = N->getNumOperands();
 | 
						|
 | 
						|
  // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
 | 
						|
  // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
 | 
						|
  // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
 | 
						|
  // respectively. Since there is no constraint to explicitly specify a
 | 
						|
  // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
 | 
						|
  // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
 | 
						|
  // them into a GPRPair.
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps - 1) : SDValue();
 | 
						|
 | 
						|
  SmallVector<bool, 8> OpChanged;
 | 
						|
  // Glue node will be appended late.
 | 
						|
  for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
 | 
						|
    SDValue op = N->getOperand(i);
 | 
						|
    AsmNodeOperands.push_back(op);
 | 
						|
 | 
						|
    if (i < InlineAsm::Op_FirstOperand)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
 | 
						|
      Flag = C->getZExtValue();
 | 
						|
      Kind = InlineAsm::getKind(Flag);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Immediate operands to inline asm in the SelectionDAG are modeled with
 | 
						|
    // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
 | 
						|
    // the second is a constant with the value of the immediate. If we get here
 | 
						|
    // and we have a Kind_Imm, skip the next operand, and continue.
 | 
						|
    if (Kind == InlineAsm::Kind_Imm) {
 | 
						|
      SDValue op = N->getOperand(++i);
 | 
						|
      AsmNodeOperands.push_back(op);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
 | 
						|
    if (NumRegs)
 | 
						|
      OpChanged.push_back(false);
 | 
						|
 | 
						|
    unsigned DefIdx = 0;
 | 
						|
    bool IsTiedToChangedOp = false;
 | 
						|
    // If it's a use that is tied with a previous def, it has no
 | 
						|
    // reg class constraint.
 | 
						|
    if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
 | 
						|
      IsTiedToChangedOp = OpChanged[DefIdx];
 | 
						|
 | 
						|
    // Memory operands to inline asm in the SelectionDAG are modeled with two
 | 
						|
    // operands: a constant of value InlineAsm::Kind_Mem followed by the input
 | 
						|
    // operand. If we get here and we have a Kind_Mem, skip the next operand (so
 | 
						|
    // it doesn't get misinterpreted), and continue. We do this here because
 | 
						|
    // it's important to update the OpChanged array correctly before moving on.
 | 
						|
    if (Kind == InlineAsm::Kind_Mem) {
 | 
						|
      SDValue op = N->getOperand(++i);
 | 
						|
      AsmNodeOperands.push_back(op);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
 | 
						|
        && Kind != InlineAsm::Kind_RegDefEarlyClobber)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned RC;
 | 
						|
    bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
 | 
						|
    if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
 | 
						|
        || NumRegs != 2)
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
 | 
						|
    SDValue V0 = N->getOperand(i+1);
 | 
						|
    SDValue V1 = N->getOperand(i+2);
 | 
						|
    Register Reg0 = cast<RegisterSDNode>(V0)->getReg();
 | 
						|
    Register Reg1 = cast<RegisterSDNode>(V1)->getReg();
 | 
						|
    SDValue PairedReg;
 | 
						|
    MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
 | 
						|
    if (Kind == InlineAsm::Kind_RegDef ||
 | 
						|
        Kind == InlineAsm::Kind_RegDefEarlyClobber) {
 | 
						|
      // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
 | 
						|
      // the original GPRs.
 | 
						|
 | 
						|
      Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
 | 
						|
      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
 | 
						|
      SDValue Chain = SDValue(N,0);
 | 
						|
 | 
						|
      SDNode *GU = N->getGluedUser();
 | 
						|
      SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
 | 
						|
                                               Chain.getValue(1));
 | 
						|
 | 
						|
      // Extract values from a GPRPair reg and copy to the original GPR reg.
 | 
						|
      SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
 | 
						|
                                                    RegCopy);
 | 
						|
      SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
 | 
						|
                                                    RegCopy);
 | 
						|
      SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
 | 
						|
                                        RegCopy.getValue(1));
 | 
						|
      SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
 | 
						|
 | 
						|
      // Update the original glue user.
 | 
						|
      std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
 | 
						|
      Ops.push_back(T1.getValue(1));
 | 
						|
      CurDAG->UpdateNodeOperands(GU, Ops);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
 | 
						|
      // GPRPair and then pass the GPRPair to the inline asm.
 | 
						|
      SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
 | 
						|
 | 
						|
      // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
 | 
						|
      SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
 | 
						|
                                          Chain.getValue(1));
 | 
						|
      SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
 | 
						|
                                          T0.getValue(1));
 | 
						|
      SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
 | 
						|
 | 
						|
      // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
 | 
						|
      // i32 VRs of inline asm with it.
 | 
						|
      Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
 | 
						|
      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
 | 
						|
      Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
 | 
						|
 | 
						|
      AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
 | 
						|
      Glue = Chain.getValue(1);
 | 
						|
    }
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    if(PairedReg.getNode()) {
 | 
						|
      OpChanged[OpChanged.size() -1 ] = true;
 | 
						|
      Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
 | 
						|
      if (IsTiedToChangedOp)
 | 
						|
        Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
 | 
						|
      else
 | 
						|
        Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
 | 
						|
      // Replace the current flag.
 | 
						|
      AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
 | 
						|
          Flag, dl, MVT::i32);
 | 
						|
      // Add the new register node and skip the original two GPRs.
 | 
						|
      AsmNodeOperands.push_back(PairedReg);
 | 
						|
      // Skip the next two GPRs.
 | 
						|
      i += 2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Glue.getNode())
 | 
						|
    AsmNodeOperands.push_back(Glue);
 | 
						|
  if (!Changed)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SDValue New = CurDAG->getNode(N->getOpcode(), SDLoc(N),
 | 
						|
      CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
 | 
						|
  New->setNodeId(-1);
 | 
						|
  ReplaceNode(N, New.getNode());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool ARMDAGToDAGISel::
 | 
						|
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | 
						|
                             std::vector<SDValue> &OutOps) {
 | 
						|
  switch(ConstraintID) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected asm memory constraint");
 | 
						|
  case InlineAsm::Constraint_m:
 | 
						|
  case InlineAsm::Constraint_o:
 | 
						|
  case InlineAsm::Constraint_Q:
 | 
						|
  case InlineAsm::Constraint_Um:
 | 
						|
  case InlineAsm::Constraint_Un:
 | 
						|
  case InlineAsm::Constraint_Uq:
 | 
						|
  case InlineAsm::Constraint_Us:
 | 
						|
  case InlineAsm::Constraint_Ut:
 | 
						|
  case InlineAsm::Constraint_Uv:
 | 
						|
  case InlineAsm::Constraint_Uy:
 | 
						|
    // Require the address to be in a register.  That is safe for all ARM
 | 
						|
    // variants and it is hard to do anything much smarter without knowing
 | 
						|
    // how the operand is used.
 | 
						|
    OutOps.push_back(Op);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// createARMISelDag - This pass converts a legalized DAG into a
 | 
						|
/// ARM-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
 | 
						|
                                     CodeGenOpt::Level OptLevel) {
 | 
						|
  return new ARMDAGToDAGISel(TM, OptLevel);
 | 
						|
}
 |