476 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			476 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file defines the pass that looks through the machine instructions
 | |
| /// late in the compilation, and finds byte or word instructions that
 | |
| /// can be profitably replaced with 32 bit instructions that give equivalent
 | |
| /// results for the bits of the results that are used. There are two possible
 | |
| /// reasons to do this.
 | |
| ///
 | |
| /// One reason is to avoid false-dependences on the upper portions
 | |
| /// of the registers.  Only instructions that have a destination register
 | |
| /// which is not in any of the source registers can be affected by this.
 | |
| /// Any instruction where one of the source registers is also the destination
 | |
| /// register is unaffected, because it has a true dependence on the source
 | |
| /// register already.  So, this consideration primarily affects load
 | |
| /// instructions and register-to-register moves.  It would
 | |
| /// seem like cmov(s) would also be affected, but because of the way cmov is
 | |
| /// really implemented by most machines as reading both the destination and
 | |
| /// and source registers, and then "merging" the two based on a condition,
 | |
| /// it really already should be considered as having a true dependence on the
 | |
| /// destination register as well.
 | |
| ///
 | |
| /// The other reason to do this is for potential code size savings.  Word
 | |
| /// operations need an extra override byte compared to their 32 bit
 | |
| /// versions. So this can convert many word operations to their larger
 | |
| /// size, saving a byte in encoding. This could introduce partial register
 | |
| /// dependences where none existed however.  As an example take:
 | |
| ///   orw  ax, $0x1000
 | |
| ///   addw ax, $3
 | |
| /// now if this were to get transformed into
 | |
| ///   orw  ax, $1000
 | |
| ///   addl eax, $3
 | |
| /// because the addl encodes shorter than the addw, this would introduce
 | |
| /// a use of a register that was only partially written earlier.  On older
 | |
| /// Intel processors this can be quite a performance penalty, so this should
 | |
| /// probably only be done when it can be proven that a new partial dependence
 | |
| /// wouldn't be created, or when your know a newer processor is being
 | |
| /// targeted, or when optimizing for minimum code size.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/ProfileSummaryInfo.h"
 | |
| #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/LivePhysRegs.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineSizeOpts.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
 | |
| #define FIXUPBW_NAME "x86-fixup-bw-insts"
 | |
| 
 | |
| #define DEBUG_TYPE FIXUPBW_NAME
 | |
| 
 | |
| // Option to allow this optimization pass to have fine-grained control.
 | |
| static cl::opt<bool>
 | |
|     FixupBWInsts("fixup-byte-word-insts",
 | |
|                  cl::desc("Change byte and word instructions to larger sizes"),
 | |
|                  cl::init(true), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| class FixupBWInstPass : public MachineFunctionPass {
 | |
|   /// Loop over all of the instructions in the basic block replacing applicable
 | |
|   /// byte or word instructions with better alternatives.
 | |
|   void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
| 
 | |
|   /// This sets the \p SuperDestReg to the 32 bit super reg of the original
 | |
|   /// destination register of the MachineInstr passed in. It returns true if
 | |
|   /// that super register is dead just prior to \p OrigMI, and false if not.
 | |
|   bool getSuperRegDestIfDead(MachineInstr *OrigMI,
 | |
|                              Register &SuperDestReg) const;
 | |
| 
 | |
|   /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
 | |
|   /// register if it is safe to do so.  Return the replacement instruction if
 | |
|   /// OK, otherwise return nullptr.
 | |
|   MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
 | |
| 
 | |
|   /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
 | |
|   /// safe to do so.  Return the replacement instruction if OK, otherwise return
 | |
|   /// nullptr.
 | |
|   MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
 | |
| 
 | |
|   /// Change the MachineInstr \p MI into the equivalent extend to 32 bit
 | |
|   /// register if it is safe to do so.  Return the replacement instruction if
 | |
|   /// OK, otherwise return nullptr.
 | |
|   MachineInstr *tryReplaceExtend(unsigned New32BitOpcode,
 | |
|                                  MachineInstr *MI) const;
 | |
| 
 | |
|   // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
 | |
|   // possible.  Return the replacement instruction if OK, return nullptr
 | |
|   // otherwise.
 | |
|   MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   StringRef getPassName() const override { return FIXUPBW_DESC; }
 | |
| 
 | |
|   FixupBWInstPass() : MachineFunctionPass(ID) { }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
 | |
|                                        // guide some heuristics.
 | |
|     AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | |
|     AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   /// Loop over all of the basic blocks, replacing byte and word instructions by
 | |
|   /// equivalent 32 bit instructions where performance or code size can be
 | |
|   /// improved.
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   MachineFunctionProperties getRequiredProperties() const override {
 | |
|     return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoVRegs);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   MachineFunction *MF = nullptr;
 | |
| 
 | |
|   /// Machine instruction info used throughout the class.
 | |
|   const X86InstrInfo *TII = nullptr;
 | |
| 
 | |
|   const TargetRegisterInfo *TRI = nullptr;
 | |
| 
 | |
|   /// Local member for function's OptForSize attribute.
 | |
|   bool OptForSize = false;
 | |
| 
 | |
|   /// Machine loop info used for guiding some heruistics.
 | |
|   MachineLoopInfo *MLI = nullptr;
 | |
| 
 | |
|   /// Register Liveness information after the current instruction.
 | |
|   LivePhysRegs LiveRegs;
 | |
| 
 | |
|   ProfileSummaryInfo *PSI;
 | |
|   MachineBlockFrequencyInfo *MBFI;
 | |
| };
 | |
| char FixupBWInstPass::ID = 0;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
 | |
| 
 | |
| FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
 | |
| 
 | |
| bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (!FixupBWInsts || skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   this->MF = &MF;
 | |
|   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
 | |
|   TRI = MF.getRegInfo().getTargetRegisterInfo();
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | |
|   MBFI = (PSI && PSI->hasProfileSummary()) ?
 | |
|          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
 | |
|          nullptr;
 | |
|   LiveRegs.init(TII->getRegisterInfo());
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
 | |
| 
 | |
|   // Process all basic blocks.
 | |
|   for (auto &MBB : MF)
 | |
|     processBasicBlock(MF, MBB);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if after \p OrigMI the only portion of super register
 | |
| /// of the destination register of \p OrigMI that is alive is that
 | |
| /// destination register.
 | |
| ///
 | |
| /// If so, return that super register in \p SuperDestReg.
 | |
| bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
 | |
|                                             Register &SuperDestReg) const {
 | |
|   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
 | |
|   Register OrigDestReg = OrigMI->getOperand(0).getReg();
 | |
|   SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
 | |
| 
 | |
|   const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
 | |
| 
 | |
|   // Make sure that the sub-register that this instruction has as its
 | |
|   // destination is the lowest order sub-register of the super-register.
 | |
|   // If it isn't, then the register isn't really dead even if the
 | |
|   // super-register is considered dead.
 | |
|   if (SubRegIdx == X86::sub_8bit_hi)
 | |
|     return false;
 | |
| 
 | |
|   // If neither the destination-super register nor any applicable subregisters
 | |
|   // are live after this instruction, then the super register is safe to use.
 | |
|   if (!LiveRegs.contains(SuperDestReg)) {
 | |
|     // If the original destination register was not the low 8-bit subregister
 | |
|     // then the super register check is sufficient.
 | |
|     if (SubRegIdx != X86::sub_8bit)
 | |
|       return true;
 | |
|     // If the original destination register was the low 8-bit subregister and
 | |
|     // we also need to check the 16-bit subregister and the high 8-bit
 | |
|     // subregister.
 | |
|     if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
 | |
|         !LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
 | |
|                                                   /*High=*/true)))
 | |
|       return true;
 | |
|     // Otherwise, we have a little more checking to do.
 | |
|   }
 | |
| 
 | |
|   // If we get here, the super-register destination (or some part of it) is
 | |
|   // marked as live after the original instruction.
 | |
|   //
 | |
|   // The X86 backend does not have subregister liveness tracking enabled,
 | |
|   // so liveness information might be overly conservative. Specifically, the
 | |
|   // super register might be marked as live because it is implicitly defined
 | |
|   // by the instruction we are examining.
 | |
|   //
 | |
|   // However, for some specific instructions (this pass only cares about MOVs)
 | |
|   // we can produce more precise results by analysing that MOV's operands.
 | |
|   //
 | |
|   // Indeed, if super-register is not live before the mov it means that it
 | |
|   // was originally <read-undef> and so we are free to modify these
 | |
|   // undef upper bits. That may happen in case where the use is in another MBB
 | |
|   // and the vreg/physreg corresponding to the move has higher width than
 | |
|   // necessary (e.g. due to register coalescing with a "truncate" copy).
 | |
|   // So, we would like to handle patterns like this:
 | |
|   //
 | |
|   //   %bb.2: derived from LLVM BB %if.then
 | |
|   //   Live Ins: %rdi
 | |
|   //   Predecessors according to CFG: %bb.0
 | |
|   //   %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
 | |
|   //                                 ; No implicit %eax
 | |
|   //   Successors according to CFG: %bb.3(?%)
 | |
|   //
 | |
|   //   %bb.3: derived from LLVM BB %if.end
 | |
|   //   Live Ins: %eax                            Only %ax is actually live
 | |
|   //   Predecessors according to CFG: %bb.2 %bb.1
 | |
|   //   %ax = KILL %ax, implicit killed %eax
 | |
|   //   RET 0, %ax
 | |
|   unsigned Opc = OrigMI->getOpcode(); (void)Opc;
 | |
|   // These are the opcodes currently known to work with the code below, if
 | |
|   // something // else will be added we need to ensure that new opcode has the
 | |
|   // same properties.
 | |
|   if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr &&
 | |
|       Opc != X86::MOV16rr)
 | |
|     return false;
 | |
| 
 | |
|   bool IsDefined = false;
 | |
|   for (auto &MO: OrigMI->implicit_operands()) {
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
| 
 | |
|     assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
 | |
| 
 | |
|     if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
 | |
|       IsDefined = true;
 | |
| 
 | |
|     // If MO is a use of any part of the destination register but is not equal
 | |
|     // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
 | |
|     // For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
 | |
|     // %eax, or %rax will prevent us from using the %eax register.
 | |
|     if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
 | |
|         TRI->regsOverlap(SuperDestReg, MO.getReg()))
 | |
|       return false;
 | |
|   }
 | |
|   // Reg is not Imp-def'ed -> it's live both before/after the instruction.
 | |
|   if (!IsDefined)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, the Reg is not live before the MI and the MOV can't
 | |
|   // make it really live, so it's in fact dead even after the MI.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
 | |
|                                               MachineInstr *MI) const {
 | |
|   Register NewDestReg;
 | |
| 
 | |
|   // We are going to try to rewrite this load to a larger zero-extending
 | |
|   // load.  This is safe if all portions of the 32 bit super-register
 | |
|   // of the original destination register, except for the original destination
 | |
|   // register are dead. getSuperRegDestIfDead checks that.
 | |
|   if (!getSuperRegDestIfDead(MI, NewDestReg))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Safe to change the instruction.
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
 | |
| 
 | |
|   unsigned NumArgs = MI->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumArgs; ++i)
 | |
|     MIB.add(MI->getOperand(i));
 | |
| 
 | |
|   MIB.setMemRefs(MI->memoperands());
 | |
| 
 | |
|   // If it was debug tracked, record a substitution.
 | |
|   if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
 | |
|     unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
 | |
|                                           MI->getOperand(0).getReg());
 | |
|     unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
 | |
|     MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
 | |
|   }
 | |
| 
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
 | |
|   assert(MI->getNumExplicitOperands() == 2);
 | |
|   auto &OldDest = MI->getOperand(0);
 | |
|   auto &OldSrc = MI->getOperand(1);
 | |
| 
 | |
|   Register NewDestReg;
 | |
|   if (!getSuperRegDestIfDead(MI, NewDestReg))
 | |
|     return nullptr;
 | |
| 
 | |
|   Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
 | |
| 
 | |
|   // This is only correct if we access the same subregister index: otherwise,
 | |
|   // we could try to replace "movb %ah, %al" with "movl %eax, %eax".
 | |
|   const X86RegisterInfo *TRI = &TII->getRegisterInfo();
 | |
|   if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
 | |
|       TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Safe to change the instruction.
 | |
|   // Don't set src flags, as we don't know if we're also killing the superreg.
 | |
|   // However, the superregister might not be defined; make it explicit that
 | |
|   // we don't care about the higher bits by reading it as Undef, and adding
 | |
|   // an imp-use on the original subregister.
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
 | |
|           .addReg(NewSrcReg, RegState::Undef)
 | |
|           .addReg(OldSrc.getReg(), RegState::Implicit);
 | |
| 
 | |
|   // Drop imp-defs/uses that would be redundant with the new def/use.
 | |
|   for (auto &Op : MI->implicit_operands())
 | |
|     if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
 | |
|       MIB.add(Op);
 | |
| 
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode,
 | |
|                                                 MachineInstr *MI) const {
 | |
|   Register NewDestReg;
 | |
|   if (!getSuperRegDestIfDead(MI, NewDestReg))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Don't interfere with formation of CBW instructions which should be a
 | |
|   // shorter encoding than even the MOVSX32rr8. It's also immune to partial
 | |
|   // merge issues on Intel CPUs.
 | |
|   if (MI->getOpcode() == X86::MOVSX16rr8 &&
 | |
|       MI->getOperand(0).getReg() == X86::AX &&
 | |
|       MI->getOperand(1).getReg() == X86::AL)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Safe to change the instruction.
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
 | |
| 
 | |
|   unsigned NumArgs = MI->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumArgs; ++i)
 | |
|     MIB.add(MI->getOperand(i));
 | |
| 
 | |
|   MIB.setMemRefs(MI->memoperands());
 | |
| 
 | |
|   if (unsigned OldInstrNum = MI->peekDebugInstrNum()) {
 | |
|     unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(),
 | |
|                                           MI->getOperand(0).getReg());
 | |
|     unsigned NewInstrNum = MIB->getDebugInstrNum(*MF);
 | |
|     MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg);
 | |
|   }
 | |
| 
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
 | |
|                                                MachineBasicBlock &MBB) const {
 | |
|   // See if this is an instruction of the type we are currently looking for.
 | |
|   switch (MI->getOpcode()) {
 | |
| 
 | |
|   case X86::MOV8rm:
 | |
|     // Only replace 8 bit loads with the zero extending versions if
 | |
|     // in an inner most loop and not optimizing for size. This takes
 | |
|     // an extra byte to encode, and provides limited performance upside.
 | |
|     if (MachineLoop *ML = MLI->getLoopFor(&MBB))
 | |
|       if (ML->begin() == ML->end() && !OptForSize)
 | |
|         return tryReplaceLoad(X86::MOVZX32rm8, MI);
 | |
|     break;
 | |
| 
 | |
|   case X86::MOV16rm:
 | |
|     // Always try to replace 16 bit load with 32 bit zero extending.
 | |
|     // Code size is the same, and there is sometimes a perf advantage
 | |
|     // from eliminating a false dependence on the upper portion of
 | |
|     // the register.
 | |
|     return tryReplaceLoad(X86::MOVZX32rm16, MI);
 | |
| 
 | |
|   case X86::MOV8rr:
 | |
|   case X86::MOV16rr:
 | |
|     // Always try to replace 8/16 bit copies with a 32 bit copy.
 | |
|     // Code size is either less (16) or equal (8), and there is sometimes a
 | |
|     // perf advantage from eliminating a false dependence on the upper portion
 | |
|     // of the register.
 | |
|     return tryReplaceCopy(MI);
 | |
| 
 | |
|   case X86::MOVSX16rr8:
 | |
|     return tryReplaceExtend(X86::MOVSX32rr8, MI);
 | |
|   case X86::MOVSX16rm8:
 | |
|     return tryReplaceExtend(X86::MOVSX32rm8, MI);
 | |
|   case X86::MOVZX16rr8:
 | |
|     return tryReplaceExtend(X86::MOVZX32rr8, MI);
 | |
|   case X86::MOVZX16rm8:
 | |
|     return tryReplaceExtend(X86::MOVZX32rm8, MI);
 | |
| 
 | |
|   default:
 | |
|     // nothing to do here.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
 | |
|                                         MachineBasicBlock &MBB) {
 | |
| 
 | |
|   // This algorithm doesn't delete the instructions it is replacing
 | |
|   // right away.  By leaving the existing instructions in place, the
 | |
|   // register liveness information doesn't change, and this makes the
 | |
|   // analysis that goes on be better than if the replaced instructions
 | |
|   // were immediately removed.
 | |
|   //
 | |
|   // This algorithm always creates a replacement instruction
 | |
|   // and notes that and the original in a data structure, until the
 | |
|   // whole BB has been analyzed.  This keeps the replacement instructions
 | |
|   // from making it seem as if the larger register might be live.
 | |
|   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
 | |
| 
 | |
|   // Start computing liveness for this block. We iterate from the end to be able
 | |
|   // to update this for each instruction.
 | |
|   LiveRegs.clear();
 | |
|   // We run after PEI, so we need to AddPristinesAndCSRs.
 | |
|   LiveRegs.addLiveOuts(MBB);
 | |
| 
 | |
|   OptForSize = MF.getFunction().hasOptSize() ||
 | |
|                llvm::shouldOptimizeForSize(&MBB, PSI, MBFI);
 | |
| 
 | |
|   for (MachineInstr &MI : llvm::reverse(MBB)) {
 | |
|     if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB))
 | |
|       MIReplacements.push_back(std::make_pair(&MI, NewMI));
 | |
| 
 | |
|     // We're done with this instruction, update liveness for the next one.
 | |
|     LiveRegs.stepBackward(MI);
 | |
|   }
 | |
| 
 | |
|   while (!MIReplacements.empty()) {
 | |
|     MachineInstr *MI = MIReplacements.back().first;
 | |
|     MachineInstr *NewMI = MIReplacements.back().second;
 | |
|     MIReplacements.pop_back();
 | |
|     MBB.insert(MI, NewMI);
 | |
|     MBB.erase(MI);
 | |
|   }
 | |
| }
 |