6150 lines
		
	
	
		
			228 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6150 lines
		
	
	
		
			228 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
 | ||
| //
 | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | ||
| // See https://llvm.org/LICENSE.txt for license information.
 | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | ||
| //
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| //
 | ||
| // This file defines a DAG pattern matching instruction selector for X86,
 | ||
| // converting from a legalized dag to a X86 dag.
 | ||
| //
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| #include "X86.h"
 | ||
| #include "X86MachineFunctionInfo.h"
 | ||
| #include "X86RegisterInfo.h"
 | ||
| #include "X86Subtarget.h"
 | ||
| #include "X86TargetMachine.h"
 | ||
| #include "llvm/ADT/Statistic.h"
 | ||
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | ||
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | ||
| #include "llvm/Config/llvm-config.h"
 | ||
| #include "llvm/IR/ConstantRange.h"
 | ||
| #include "llvm/IR/Function.h"
 | ||
| #include "llvm/IR/Instructions.h"
 | ||
| #include "llvm/IR/Intrinsics.h"
 | ||
| #include "llvm/IR/IntrinsicsX86.h"
 | ||
| #include "llvm/IR/Type.h"
 | ||
| #include "llvm/Support/Debug.h"
 | ||
| #include "llvm/Support/ErrorHandling.h"
 | ||
| #include "llvm/Support/KnownBits.h"
 | ||
| #include "llvm/Support/MathExtras.h"
 | ||
| #include <cstdint>
 | ||
| 
 | ||
| using namespace llvm;
 | ||
| 
 | ||
| #define DEBUG_TYPE "x86-isel"
 | ||
| 
 | ||
| STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
 | ||
| 
 | ||
| static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true),
 | ||
|     cl::desc("Enable setting constant bits to reduce size of mask immediates"),
 | ||
|     cl::Hidden);
 | ||
| 
 | ||
| static cl::opt<bool> EnablePromoteAnyextLoad(
 | ||
|     "x86-promote-anyext-load", cl::init(true),
 | ||
|     cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
 | ||
| 
 | ||
| extern cl::opt<bool> IndirectBranchTracking;
 | ||
| 
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| //                      Pattern Matcher Implementation
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| namespace {
 | ||
|   /// This corresponds to X86AddressMode, but uses SDValue's instead of register
 | ||
|   /// numbers for the leaves of the matched tree.
 | ||
|   struct X86ISelAddressMode {
 | ||
|     enum {
 | ||
|       RegBase,
 | ||
|       FrameIndexBase
 | ||
|     } BaseType;
 | ||
| 
 | ||
|     // This is really a union, discriminated by BaseType!
 | ||
|     SDValue Base_Reg;
 | ||
|     int Base_FrameIndex;
 | ||
| 
 | ||
|     unsigned Scale;
 | ||
|     SDValue IndexReg;
 | ||
|     int32_t Disp;
 | ||
|     SDValue Segment;
 | ||
|     const GlobalValue *GV;
 | ||
|     const Constant *CP;
 | ||
|     const BlockAddress *BlockAddr;
 | ||
|     const char *ES;
 | ||
|     MCSymbol *MCSym;
 | ||
|     int JT;
 | ||
|     Align Alignment;            // CP alignment.
 | ||
|     unsigned char SymbolFlags;  // X86II::MO_*
 | ||
|     bool NegateIndex = false;
 | ||
| 
 | ||
|     X86ISelAddressMode()
 | ||
|         : BaseType(RegBase), Base_FrameIndex(0), Scale(1), Disp(0), GV(nullptr),
 | ||
|           CP(nullptr), BlockAddr(nullptr), ES(nullptr), MCSym(nullptr), JT(-1),
 | ||
|           SymbolFlags(X86II::MO_NO_FLAG) {}
 | ||
| 
 | ||
|     bool hasSymbolicDisplacement() const {
 | ||
|       return GV != nullptr || CP != nullptr || ES != nullptr ||
 | ||
|              MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
 | ||
|     }
 | ||
| 
 | ||
|     bool hasBaseOrIndexReg() const {
 | ||
|       return BaseType == FrameIndexBase ||
 | ||
|              IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
 | ||
|     }
 | ||
| 
 | ||
|     /// Return true if this addressing mode is already RIP-relative.
 | ||
|     bool isRIPRelative() const {
 | ||
|       if (BaseType != RegBase) return false;
 | ||
|       if (RegisterSDNode *RegNode =
 | ||
|             dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
 | ||
|         return RegNode->getReg() == X86::RIP;
 | ||
|       return false;
 | ||
|     }
 | ||
| 
 | ||
|     void setBaseReg(SDValue Reg) {
 | ||
|       BaseType = RegBase;
 | ||
|       Base_Reg = Reg;
 | ||
|     }
 | ||
| 
 | ||
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | ||
|     void dump(SelectionDAG *DAG = nullptr) {
 | ||
|       dbgs() << "X86ISelAddressMode " << this << '\n';
 | ||
|       dbgs() << "Base_Reg ";
 | ||
|       if (Base_Reg.getNode())
 | ||
|         Base_Reg.getNode()->dump(DAG);
 | ||
|       else
 | ||
|         dbgs() << "nul\n";
 | ||
|       if (BaseType == FrameIndexBase)
 | ||
|         dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
 | ||
|       dbgs() << " Scale " << Scale << '\n'
 | ||
|              << "IndexReg ";
 | ||
|       if (NegateIndex)
 | ||
|         dbgs() << "negate ";
 | ||
|       if (IndexReg.getNode())
 | ||
|         IndexReg.getNode()->dump(DAG);
 | ||
|       else
 | ||
|         dbgs() << "nul\n";
 | ||
|       dbgs() << " Disp " << Disp << '\n'
 | ||
|              << "GV ";
 | ||
|       if (GV)
 | ||
|         GV->dump();
 | ||
|       else
 | ||
|         dbgs() << "nul";
 | ||
|       dbgs() << " CP ";
 | ||
|       if (CP)
 | ||
|         CP->dump();
 | ||
|       else
 | ||
|         dbgs() << "nul";
 | ||
|       dbgs() << '\n'
 | ||
|              << "ES ";
 | ||
|       if (ES)
 | ||
|         dbgs() << ES;
 | ||
|       else
 | ||
|         dbgs() << "nul";
 | ||
|       dbgs() << " MCSym ";
 | ||
|       if (MCSym)
 | ||
|         dbgs() << MCSym;
 | ||
|       else
 | ||
|         dbgs() << "nul";
 | ||
|       dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
 | ||
|     }
 | ||
| #endif
 | ||
|   };
 | ||
| }
 | ||
| 
 | ||
| namespace {
 | ||
|   //===--------------------------------------------------------------------===//
 | ||
|   /// ISel - X86-specific code to select X86 machine instructions for
 | ||
|   /// SelectionDAG operations.
 | ||
|   ///
 | ||
|   class X86DAGToDAGISel final : public SelectionDAGISel {
 | ||
|     /// Keep a pointer to the X86Subtarget around so that we can
 | ||
|     /// make the right decision when generating code for different targets.
 | ||
|     const X86Subtarget *Subtarget;
 | ||
| 
 | ||
|     /// If true, selector should try to optimize for minimum code size.
 | ||
|     bool OptForMinSize;
 | ||
| 
 | ||
|     /// Disable direct TLS access through segment registers.
 | ||
|     bool IndirectTlsSegRefs;
 | ||
| 
 | ||
|   public:
 | ||
|     explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
 | ||
|         : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
 | ||
|           OptForMinSize(false), IndirectTlsSegRefs(false) {}
 | ||
| 
 | ||
|     StringRef getPassName() const override {
 | ||
|       return "X86 DAG->DAG Instruction Selection";
 | ||
|     }
 | ||
| 
 | ||
|     bool runOnMachineFunction(MachineFunction &MF) override {
 | ||
|       // Reset the subtarget each time through.
 | ||
|       Subtarget = &MF.getSubtarget<X86Subtarget>();
 | ||
|       IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
 | ||
|                              "indirect-tls-seg-refs");
 | ||
| 
 | ||
|       // OptFor[Min]Size are used in pattern predicates that isel is matching.
 | ||
|       OptForMinSize = MF.getFunction().hasMinSize();
 | ||
|       assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
 | ||
|              "OptForMinSize implies OptForSize");
 | ||
| 
 | ||
|       SelectionDAGISel::runOnMachineFunction(MF);
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|     void emitFunctionEntryCode() override;
 | ||
| 
 | ||
|     bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
 | ||
| 
 | ||
|     void PreprocessISelDAG() override;
 | ||
|     void PostprocessISelDAG() override;
 | ||
| 
 | ||
| // Include the pieces autogenerated from the target description.
 | ||
| #include "X86GenDAGISel.inc"
 | ||
| 
 | ||
|   private:
 | ||
|     void Select(SDNode *N) override;
 | ||
| 
 | ||
|     bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
 | ||
|     bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
 | ||
|                             bool AllowSegmentRegForX32 = false);
 | ||
|     bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
 | ||
|     bool matchAddress(SDValue N, X86ISelAddressMode &AM);
 | ||
|     bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
 | ||
|     bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
 | ||
|     bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
 | ||
|                                  unsigned Depth);
 | ||
|     bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
 | ||
|                                        unsigned Depth);
 | ||
|     bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
 | ||
|     bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
 | ||
|                     SDValue &Scale, SDValue &Index, SDValue &Disp,
 | ||
|                     SDValue &Segment);
 | ||
|     bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
 | ||
|                           SDValue ScaleOp, SDValue &Base, SDValue &Scale,
 | ||
|                           SDValue &Index, SDValue &Disp, SDValue &Segment);
 | ||
|     bool selectMOV64Imm32(SDValue N, SDValue &Imm);
 | ||
|     bool selectLEAAddr(SDValue N, SDValue &Base,
 | ||
|                        SDValue &Scale, SDValue &Index, SDValue &Disp,
 | ||
|                        SDValue &Segment);
 | ||
|     bool selectLEA64_32Addr(SDValue N, SDValue &Base,
 | ||
|                             SDValue &Scale, SDValue &Index, SDValue &Disp,
 | ||
|                             SDValue &Segment);
 | ||
|     bool selectTLSADDRAddr(SDValue N, SDValue &Base,
 | ||
|                            SDValue &Scale, SDValue &Index, SDValue &Disp,
 | ||
|                            SDValue &Segment);
 | ||
|     bool selectRelocImm(SDValue N, SDValue &Op);
 | ||
| 
 | ||
|     bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
 | ||
|                      SDValue &Base, SDValue &Scale,
 | ||
|                      SDValue &Index, SDValue &Disp,
 | ||
|                      SDValue &Segment);
 | ||
| 
 | ||
|     // Convenience method where P is also root.
 | ||
|     bool tryFoldLoad(SDNode *P, SDValue N,
 | ||
|                      SDValue &Base, SDValue &Scale,
 | ||
|                      SDValue &Index, SDValue &Disp,
 | ||
|                      SDValue &Segment) {
 | ||
|       return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
 | ||
|     }
 | ||
| 
 | ||
|     bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
 | ||
|                           SDValue &Base, SDValue &Scale,
 | ||
|                           SDValue &Index, SDValue &Disp,
 | ||
|                           SDValue &Segment);
 | ||
| 
 | ||
|     bool isProfitableToFormMaskedOp(SDNode *N) const;
 | ||
| 
 | ||
|     /// Implement addressing mode selection for inline asm expressions.
 | ||
|     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | ||
|                                       unsigned ConstraintID,
 | ||
|                                       std::vector<SDValue> &OutOps) override;
 | ||
| 
 | ||
|     void emitSpecialCodeForMain();
 | ||
| 
 | ||
|     inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
 | ||
|                                    MVT VT, SDValue &Base, SDValue &Scale,
 | ||
|                                    SDValue &Index, SDValue &Disp,
 | ||
|                                    SDValue &Segment) {
 | ||
|       if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | ||
|         Base = CurDAG->getTargetFrameIndex(
 | ||
|             AM.Base_FrameIndex, TLI->getPointerTy(CurDAG->getDataLayout()));
 | ||
|       else if (AM.Base_Reg.getNode())
 | ||
|         Base = AM.Base_Reg;
 | ||
|       else
 | ||
|         Base = CurDAG->getRegister(0, VT);
 | ||
| 
 | ||
|       Scale = getI8Imm(AM.Scale, DL);
 | ||
| 
 | ||
|       // Negate the index if needed.
 | ||
|       if (AM.NegateIndex) {
 | ||
|         unsigned NegOpc = VT == MVT::i64 ? X86::NEG64r : X86::NEG32r;
 | ||
|         SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
 | ||
|                                                      AM.IndexReg), 0);
 | ||
|         AM.IndexReg = Neg;
 | ||
|       }
 | ||
| 
 | ||
|       if (AM.IndexReg.getNode())
 | ||
|         Index = AM.IndexReg;
 | ||
|       else
 | ||
|         Index = CurDAG->getRegister(0, VT);
 | ||
| 
 | ||
|       // These are 32-bit even in 64-bit mode since RIP-relative offset
 | ||
|       // is 32-bit.
 | ||
|       if (AM.GV)
 | ||
|         Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
 | ||
|                                               MVT::i32, AM.Disp,
 | ||
|                                               AM.SymbolFlags);
 | ||
|       else if (AM.CP)
 | ||
|         Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
 | ||
|                                              AM.Disp, AM.SymbolFlags);
 | ||
|       else if (AM.ES) {
 | ||
|         assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
 | ||
|         Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
 | ||
|       } else if (AM.MCSym) {
 | ||
|         assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
 | ||
|         assert(AM.SymbolFlags == 0 && "oo");
 | ||
|         Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
 | ||
|       } else if (AM.JT != -1) {
 | ||
|         assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
 | ||
|         Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
 | ||
|       } else if (AM.BlockAddr)
 | ||
|         Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
 | ||
|                                              AM.SymbolFlags);
 | ||
|       else
 | ||
|         Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
 | ||
| 
 | ||
|       if (AM.Segment.getNode())
 | ||
|         Segment = AM.Segment;
 | ||
|       else
 | ||
|         Segment = CurDAG->getRegister(0, MVT::i16);
 | ||
|     }
 | ||
| 
 | ||
|     // Utility function to determine whether we should avoid selecting
 | ||
|     // immediate forms of instructions for better code size or not.
 | ||
|     // At a high level, we'd like to avoid such instructions when
 | ||
|     // we have similar constants used within the same basic block
 | ||
|     // that can be kept in a register.
 | ||
|     //
 | ||
|     bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
 | ||
|       uint32_t UseCount = 0;
 | ||
| 
 | ||
|       // Do not want to hoist if we're not optimizing for size.
 | ||
|       // TODO: We'd like to remove this restriction.
 | ||
|       // See the comment in X86InstrInfo.td for more info.
 | ||
|       if (!CurDAG->shouldOptForSize())
 | ||
|         return false;
 | ||
| 
 | ||
|       // Walk all the users of the immediate.
 | ||
|       for (const SDNode *User : N->uses()) {
 | ||
|         if (UseCount >= 2)
 | ||
|           break;
 | ||
| 
 | ||
|         // This user is already selected. Count it as a legitimate use and
 | ||
|         // move on.
 | ||
|         if (User->isMachineOpcode()) {
 | ||
|           UseCount++;
 | ||
|           continue;
 | ||
|         }
 | ||
| 
 | ||
|         // We want to count stores of immediates as real uses.
 | ||
|         if (User->getOpcode() == ISD::STORE &&
 | ||
|             User->getOperand(1).getNode() == N) {
 | ||
|           UseCount++;
 | ||
|           continue;
 | ||
|         }
 | ||
| 
 | ||
|         // We don't currently match users that have > 2 operands (except
 | ||
|         // for stores, which are handled above)
 | ||
|         // Those instruction won't match in ISEL, for now, and would
 | ||
|         // be counted incorrectly.
 | ||
|         // This may change in the future as we add additional instruction
 | ||
|         // types.
 | ||
|         if (User->getNumOperands() != 2)
 | ||
|           continue;
 | ||
| 
 | ||
|         // If this is a sign-extended 8-bit integer immediate used in an ALU
 | ||
|         // instruction, there is probably an opcode encoding to save space.
 | ||
|         auto *C = dyn_cast<ConstantSDNode>(N);
 | ||
|         if (C && isInt<8>(C->getSExtValue()))
 | ||
|           continue;
 | ||
| 
 | ||
|         // Immediates that are used for offsets as part of stack
 | ||
|         // manipulation should be left alone. These are typically
 | ||
|         // used to indicate SP offsets for argument passing and
 | ||
|         // will get pulled into stores/pushes (implicitly).
 | ||
|         if (User->getOpcode() == X86ISD::ADD ||
 | ||
|             User->getOpcode() == ISD::ADD    ||
 | ||
|             User->getOpcode() == X86ISD::SUB ||
 | ||
|             User->getOpcode() == ISD::SUB) {
 | ||
| 
 | ||
|           // Find the other operand of the add/sub.
 | ||
|           SDValue OtherOp = User->getOperand(0);
 | ||
|           if (OtherOp.getNode() == N)
 | ||
|             OtherOp = User->getOperand(1);
 | ||
| 
 | ||
|           // Don't count if the other operand is SP.
 | ||
|           RegisterSDNode *RegNode;
 | ||
|           if (OtherOp->getOpcode() == ISD::CopyFromReg &&
 | ||
|               (RegNode = dyn_cast_or_null<RegisterSDNode>(
 | ||
|                  OtherOp->getOperand(1).getNode())))
 | ||
|             if ((RegNode->getReg() == X86::ESP) ||
 | ||
|                 (RegNode->getReg() == X86::RSP))
 | ||
|               continue;
 | ||
|         }
 | ||
| 
 | ||
|         // ... otherwise, count this and move on.
 | ||
|         UseCount++;
 | ||
|       }
 | ||
| 
 | ||
|       // If we have more than 1 use, then recommend for hoisting.
 | ||
|       return (UseCount > 1);
 | ||
|     }
 | ||
| 
 | ||
|     /// Return a target constant with the specified value of type i8.
 | ||
|     inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
 | ||
|       return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
 | ||
|     }
 | ||
| 
 | ||
|     /// Return a target constant with the specified value, of type i32.
 | ||
|     inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
 | ||
|       return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
 | ||
|     }
 | ||
| 
 | ||
|     /// Return a target constant with the specified value, of type i64.
 | ||
|     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
 | ||
|       return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
 | ||
|                                         const SDLoc &DL) {
 | ||
|       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
 | ||
|       uint64_t Index = N->getConstantOperandVal(1);
 | ||
|       MVT VecVT = N->getOperand(0).getSimpleValueType();
 | ||
|       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
 | ||
|                                       const SDLoc &DL) {
 | ||
|       assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
 | ||
|       uint64_t Index = N->getConstantOperandVal(2);
 | ||
|       MVT VecVT = N->getSimpleValueType(0);
 | ||
|       return getI8Imm((Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
 | ||
|                                                const SDLoc &DL) {
 | ||
|       assert(VecWidth == 128 && "Unexpected vector width");
 | ||
|       uint64_t Index = N->getConstantOperandVal(2);
 | ||
|       MVT VecVT = N->getSimpleValueType(0);
 | ||
|       uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
 | ||
|       assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
 | ||
|       // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
 | ||
|       // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
 | ||
|       return getI8Imm(InsertIdx ? 0x02 : 0x30, DL);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue getSBBZero(SDNode *N) {
 | ||
|       SDLoc dl(N);
 | ||
|       MVT VT = N->getSimpleValueType(0);
 | ||
| 
 | ||
|       // Create zero.
 | ||
|       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
 | ||
|       SDValue Zero =
 | ||
|           SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
 | ||
|       if (VT == MVT::i64) {
 | ||
|         Zero = SDValue(
 | ||
|             CurDAG->getMachineNode(
 | ||
|                 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
 | ||
|                 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
 | ||
|                 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
 | ||
|             0);
 | ||
|       }
 | ||
| 
 | ||
|       // Copy flags to the EFLAGS register and glue it to next node.
 | ||
|       unsigned Opcode = N->getOpcode();
 | ||
|       assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
 | ||
|              "Unexpected opcode for SBB materialization");
 | ||
|       unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
 | ||
|       SDValue EFLAGS =
 | ||
|           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
 | ||
|                                N->getOperand(FlagOpIndex), SDValue());
 | ||
| 
 | ||
|       // Create a 64-bit instruction if the result is 64-bits otherwise use the
 | ||
|       // 32-bit version.
 | ||
|       unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
 | ||
|       MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
 | ||
|       VTs = CurDAG->getVTList(SBBVT, MVT::i32);
 | ||
|       return SDValue(
 | ||
|           CurDAG->getMachineNode(Opc, dl, VTs,
 | ||
|                                  {Zero, Zero, EFLAGS, EFLAGS.getValue(1)}),
 | ||
|           0);
 | ||
|     }
 | ||
| 
 | ||
|     // Helper to detect unneeded and instructions on shift amounts. Called
 | ||
|     // from PatFrags in tablegen.
 | ||
|     bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
 | ||
|       assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
 | ||
|       const APInt &Val = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
 | ||
| 
 | ||
|       if (Val.countTrailingOnes() >= Width)
 | ||
|         return true;
 | ||
| 
 | ||
|       APInt Mask = Val | CurDAG->computeKnownBits(N->getOperand(0)).Zero;
 | ||
|       return Mask.countTrailingOnes() >= Width;
 | ||
|     }
 | ||
| 
 | ||
|     /// Return an SDNode that returns the value of the global base register.
 | ||
|     /// Output instructions required to initialize the global base register,
 | ||
|     /// if necessary.
 | ||
|     SDNode *getGlobalBaseReg();
 | ||
| 
 | ||
|     /// Return a reference to the TargetMachine, casted to the target-specific
 | ||
|     /// type.
 | ||
|     const X86TargetMachine &getTargetMachine() const {
 | ||
|       return static_cast<const X86TargetMachine &>(TM);
 | ||
|     }
 | ||
| 
 | ||
|     /// Return a reference to the TargetInstrInfo, casted to the target-specific
 | ||
|     /// type.
 | ||
|     const X86InstrInfo *getInstrInfo() const {
 | ||
|       return Subtarget->getInstrInfo();
 | ||
|     }
 | ||
| 
 | ||
|     /// Address-mode matching performs shift-of-and to and-of-shift
 | ||
|     /// reassociation in order to expose more scaled addressing
 | ||
|     /// opportunities.
 | ||
|     bool ComplexPatternFuncMutatesDAG() const override {
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|     bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
 | ||
| 
 | ||
|     // Indicates we should prefer to use a non-temporal load for this load.
 | ||
|     bool useNonTemporalLoad(LoadSDNode *N) const {
 | ||
|       if (!N->isNonTemporal())
 | ||
|         return false;
 | ||
| 
 | ||
|       unsigned StoreSize = N->getMemoryVT().getStoreSize();
 | ||
| 
 | ||
|       if (N->getAlignment() < StoreSize)
 | ||
|         return false;
 | ||
| 
 | ||
|       switch (StoreSize) {
 | ||
|       default: llvm_unreachable("Unsupported store size");
 | ||
|       case 4:
 | ||
|       case 8:
 | ||
|         return false;
 | ||
|       case 16:
 | ||
|         return Subtarget->hasSSE41();
 | ||
|       case 32:
 | ||
|         return Subtarget->hasAVX2();
 | ||
|       case 64:
 | ||
|         return Subtarget->hasAVX512();
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     bool foldLoadStoreIntoMemOperand(SDNode *Node);
 | ||
|     MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
 | ||
|     bool matchBitExtract(SDNode *Node);
 | ||
|     bool shrinkAndImmediate(SDNode *N);
 | ||
|     bool isMaskZeroExtended(SDNode *N) const;
 | ||
|     bool tryShiftAmountMod(SDNode *N);
 | ||
|     bool tryShrinkShlLogicImm(SDNode *N);
 | ||
|     bool tryVPTERNLOG(SDNode *N);
 | ||
|     bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
 | ||
|                         SDNode *ParentC, SDValue A, SDValue B, SDValue C,
 | ||
|                         uint8_t Imm);
 | ||
|     bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
 | ||
|     bool tryMatchBitSelect(SDNode *N);
 | ||
| 
 | ||
|     MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
 | ||
|                                 const SDLoc &dl, MVT VT, SDNode *Node);
 | ||
|     MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
 | ||
|                                 const SDLoc &dl, MVT VT, SDNode *Node,
 | ||
|                                 SDValue &InFlag);
 | ||
| 
 | ||
|     bool tryOptimizeRem8Extend(SDNode *N);
 | ||
| 
 | ||
|     bool onlyUsesZeroFlag(SDValue Flags) const;
 | ||
|     bool hasNoSignFlagUses(SDValue Flags) const;
 | ||
|     bool hasNoCarryFlagUses(SDValue Flags) const;
 | ||
|   };
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| // Returns true if this masked compare can be implemented legally with this
 | ||
| // type.
 | ||
| static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
 | ||
|   unsigned Opcode = N->getOpcode();
 | ||
|   if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
 | ||
|       Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
 | ||
|       Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
 | ||
|     // We can get 256-bit 8 element types here without VLX being enabled. When
 | ||
|     // this happens we will use 512-bit operations and the mask will not be
 | ||
|     // zero extended.
 | ||
|     EVT OpVT = N->getOperand(0).getValueType();
 | ||
|     // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
 | ||
|     // second operand.
 | ||
|     if (Opcode == X86ISD::STRICT_CMPM)
 | ||
|       OpVT = N->getOperand(1).getValueType();
 | ||
|     if (OpVT.is256BitVector() || OpVT.is128BitVector())
 | ||
|       return Subtarget->hasVLX();
 | ||
| 
 | ||
|     return true;
 | ||
|   }
 | ||
|   // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
 | ||
|   if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
 | ||
|       Opcode == X86ISD::FSETCCM_SAE)
 | ||
|     return true;
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| // Returns true if we can assume the writer of the mask has zero extended it
 | ||
| // for us.
 | ||
| bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
 | ||
|   // If this is an AND, check if we have a compare on either side. As long as
 | ||
|   // one side guarantees the mask is zero extended, the AND will preserve those
 | ||
|   // zeros.
 | ||
|   if (N->getOpcode() == ISD::AND)
 | ||
|     return isLegalMaskCompare(N->getOperand(0).getNode(), Subtarget) ||
 | ||
|            isLegalMaskCompare(N->getOperand(1).getNode(), Subtarget);
 | ||
| 
 | ||
|   return isLegalMaskCompare(N, Subtarget);
 | ||
| }
 | ||
| 
 | ||
| bool
 | ||
| X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
 | ||
|   if (OptLevel == CodeGenOpt::None) return false;
 | ||
| 
 | ||
|   if (!N.hasOneUse())
 | ||
|     return false;
 | ||
| 
 | ||
|   if (N.getOpcode() != ISD::LOAD)
 | ||
|     return true;
 | ||
| 
 | ||
|   // Don't fold non-temporal loads if we have an instruction for them.
 | ||
|   if (useNonTemporalLoad(cast<LoadSDNode>(N)))
 | ||
|     return false;
 | ||
| 
 | ||
|   // If N is a load, do additional profitability checks.
 | ||
|   if (U == Root) {
 | ||
|     switch (U->getOpcode()) {
 | ||
|     default: break;
 | ||
|     case X86ISD::ADD:
 | ||
|     case X86ISD::ADC:
 | ||
|     case X86ISD::SUB:
 | ||
|     case X86ISD::SBB:
 | ||
|     case X86ISD::AND:
 | ||
|     case X86ISD::XOR:
 | ||
|     case X86ISD::OR:
 | ||
|     case ISD::ADD:
 | ||
|     case ISD::ADDCARRY:
 | ||
|     case ISD::AND:
 | ||
|     case ISD::OR:
 | ||
|     case ISD::XOR: {
 | ||
|       SDValue Op1 = U->getOperand(1);
 | ||
| 
 | ||
|       // If the other operand is a 8-bit immediate we should fold the immediate
 | ||
|       // instead. This reduces code size.
 | ||
|       // e.g.
 | ||
|       // movl 4(%esp), %eax
 | ||
|       // addl $4, %eax
 | ||
|       // vs.
 | ||
|       // movl $4, %eax
 | ||
|       // addl 4(%esp), %eax
 | ||
|       // The former is 2 bytes shorter. In case where the increment is 1, then
 | ||
|       // the saving can be 4 bytes (by using incl %eax).
 | ||
|       if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1)) {
 | ||
|         if (Imm->getAPIntValue().isSignedIntN(8))
 | ||
|           return false;
 | ||
| 
 | ||
|         // If this is a 64-bit AND with an immediate that fits in 32-bits,
 | ||
|         // prefer using the smaller and over folding the load. This is needed to
 | ||
|         // make sure immediates created by shrinkAndImmediate are always folded.
 | ||
|         // Ideally we would narrow the load during DAG combine and get the
 | ||
|         // best of both worlds.
 | ||
|         if (U->getOpcode() == ISD::AND &&
 | ||
|             Imm->getAPIntValue().getBitWidth() == 64 &&
 | ||
|             Imm->getAPIntValue().isIntN(32))
 | ||
|           return false;
 | ||
| 
 | ||
|         // If this really a zext_inreg that can be represented with a movzx
 | ||
|         // instruction, prefer that.
 | ||
|         // TODO: We could shrink the load and fold if it is non-volatile.
 | ||
|         if (U->getOpcode() == ISD::AND &&
 | ||
|             (Imm->getAPIntValue() == UINT8_MAX ||
 | ||
|              Imm->getAPIntValue() == UINT16_MAX ||
 | ||
|              Imm->getAPIntValue() == UINT32_MAX))
 | ||
|           return false;
 | ||
| 
 | ||
|         // ADD/SUB with can negate the immediate and use the opposite operation
 | ||
|         // to fit 128 into a sign extended 8 bit immediate.
 | ||
|         if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
 | ||
|             (-Imm->getAPIntValue()).isSignedIntN(8))
 | ||
|           return false;
 | ||
| 
 | ||
|         if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
 | ||
|             (-Imm->getAPIntValue()).isSignedIntN(8) &&
 | ||
|             hasNoCarryFlagUses(SDValue(U, 1)))
 | ||
|           return false;
 | ||
|       }
 | ||
| 
 | ||
|       // If the other operand is a TLS address, we should fold it instead.
 | ||
|       // This produces
 | ||
|       // movl    %gs:0, %eax
 | ||
|       // leal    i@NTPOFF(%eax), %eax
 | ||
|       // instead of
 | ||
|       // movl    $i@NTPOFF, %eax
 | ||
|       // addl    %gs:0, %eax
 | ||
|       // if the block also has an access to a second TLS address this will save
 | ||
|       // a load.
 | ||
|       // FIXME: This is probably also true for non-TLS addresses.
 | ||
|       if (Op1.getOpcode() == X86ISD::Wrapper) {
 | ||
|         SDValue Val = Op1.getOperand(0);
 | ||
|         if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
 | ||
|           return false;
 | ||
|       }
 | ||
| 
 | ||
|       // Don't fold load if this matches the BTS/BTR/BTC patterns.
 | ||
|       // BTS: (or X, (shl 1, n))
 | ||
|       // BTR: (and X, (rotl -2, n))
 | ||
|       // BTC: (xor X, (shl 1, n))
 | ||
|       if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
 | ||
|         if (U->getOperand(0).getOpcode() == ISD::SHL &&
 | ||
|             isOneConstant(U->getOperand(0).getOperand(0)))
 | ||
|           return false;
 | ||
| 
 | ||
|         if (U->getOperand(1).getOpcode() == ISD::SHL &&
 | ||
|             isOneConstant(U->getOperand(1).getOperand(0)))
 | ||
|           return false;
 | ||
|       }
 | ||
|       if (U->getOpcode() == ISD::AND) {
 | ||
|         SDValue U0 = U->getOperand(0);
 | ||
|         SDValue U1 = U->getOperand(1);
 | ||
|         if (U0.getOpcode() == ISD::ROTL) {
 | ||
|           auto *C = dyn_cast<ConstantSDNode>(U0.getOperand(0));
 | ||
|           if (C && C->getSExtValue() == -2)
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         if (U1.getOpcode() == ISD::ROTL) {
 | ||
|           auto *C = dyn_cast<ConstantSDNode>(U1.getOperand(0));
 | ||
|           if (C && C->getSExtValue() == -2)
 | ||
|             return false;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       break;
 | ||
|     }
 | ||
|     case ISD::SHL:
 | ||
|     case ISD::SRA:
 | ||
|     case ISD::SRL:
 | ||
|       // Don't fold a load into a shift by immediate. The BMI2 instructions
 | ||
|       // support folding a load, but not an immediate. The legacy instructions
 | ||
|       // support folding an immediate, but can't fold a load. Folding an
 | ||
|       // immediate is preferable to folding a load.
 | ||
|       if (isa<ConstantSDNode>(U->getOperand(1)))
 | ||
|         return false;
 | ||
| 
 | ||
|       break;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Prevent folding a load if this can implemented with an insert_subreg or
 | ||
|   // a move that implicitly zeroes.
 | ||
|   if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
 | ||
|       isNullConstant(Root->getOperand(2)) &&
 | ||
|       (Root->getOperand(0).isUndef() ||
 | ||
|        ISD::isBuildVectorAllZeros(Root->getOperand(0).getNode())))
 | ||
|     return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // Indicates it is profitable to form an AVX512 masked operation. Returning
 | ||
| // false will favor a masked register-register masked move or vblendm and the
 | ||
| // operation will be selected separately.
 | ||
| bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
 | ||
|   assert(
 | ||
|       (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
 | ||
|       "Unexpected opcode!");
 | ||
| 
 | ||
|   // If the operation has additional users, the operation will be duplicated.
 | ||
|   // Check the use count to prevent that.
 | ||
|   // FIXME: Are there cheap opcodes we might want to duplicate?
 | ||
|   return N->getOperand(1).hasOneUse();
 | ||
| }
 | ||
| 
 | ||
| /// Replace the original chain operand of the call with
 | ||
| /// load's chain operand and move load below the call's chain operand.
 | ||
| static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
 | ||
|                                SDValue Call, SDValue OrigChain) {
 | ||
|   SmallVector<SDValue, 8> Ops;
 | ||
|   SDValue Chain = OrigChain.getOperand(0);
 | ||
|   if (Chain.getNode() == Load.getNode())
 | ||
|     Ops.push_back(Load.getOperand(0));
 | ||
|   else {
 | ||
|     assert(Chain.getOpcode() == ISD::TokenFactor &&
 | ||
|            "Unexpected chain operand");
 | ||
|     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
 | ||
|       if (Chain.getOperand(i).getNode() == Load.getNode())
 | ||
|         Ops.push_back(Load.getOperand(0));
 | ||
|       else
 | ||
|         Ops.push_back(Chain.getOperand(i));
 | ||
|     SDValue NewChain =
 | ||
|       CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
 | ||
|     Ops.clear();
 | ||
|     Ops.push_back(NewChain);
 | ||
|   }
 | ||
|   Ops.append(OrigChain->op_begin() + 1, OrigChain->op_end());
 | ||
|   CurDAG->UpdateNodeOperands(OrigChain.getNode(), Ops);
 | ||
|   CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
 | ||
|                              Load.getOperand(1), Load.getOperand(2));
 | ||
| 
 | ||
|   Ops.clear();
 | ||
|   Ops.push_back(SDValue(Load.getNode(), 1));
 | ||
|   Ops.append(Call->op_begin() + 1, Call->op_end());
 | ||
|   CurDAG->UpdateNodeOperands(Call.getNode(), Ops);
 | ||
| }
 | ||
| 
 | ||
| /// Return true if call address is a load and it can be
 | ||
| /// moved below CALLSEQ_START and the chains leading up to the call.
 | ||
| /// Return the CALLSEQ_START by reference as a second output.
 | ||
| /// In the case of a tail call, there isn't a callseq node between the call
 | ||
| /// chain and the load.
 | ||
| static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
 | ||
|   // The transformation is somewhat dangerous if the call's chain was glued to
 | ||
|   // the call. After MoveBelowOrigChain the load is moved between the call and
 | ||
|   // the chain, this can create a cycle if the load is not folded. So it is
 | ||
|   // *really* important that we are sure the load will be folded.
 | ||
|   if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
 | ||
|     return false;
 | ||
|   LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
 | ||
|   if (!LD ||
 | ||
|       !LD->isSimple() ||
 | ||
|       LD->getAddressingMode() != ISD::UNINDEXED ||
 | ||
|       LD->getExtensionType() != ISD::NON_EXTLOAD)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Now let's find the callseq_start.
 | ||
|   while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
 | ||
|     if (!Chain.hasOneUse())
 | ||
|       return false;
 | ||
|     Chain = Chain.getOperand(0);
 | ||
|   }
 | ||
| 
 | ||
|   if (!Chain.getNumOperands())
 | ||
|     return false;
 | ||
|   // Since we are not checking for AA here, conservatively abort if the chain
 | ||
|   // writes to memory. It's not safe to move the callee (a load) across a store.
 | ||
|   if (isa<MemSDNode>(Chain.getNode()) &&
 | ||
|       cast<MemSDNode>(Chain.getNode())->writeMem())
 | ||
|     return false;
 | ||
|   if (Chain.getOperand(0).getNode() == Callee.getNode())
 | ||
|     return true;
 | ||
|   if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
 | ||
|       Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
 | ||
|       Callee.getValue(1).hasOneUse())
 | ||
|     return true;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| static bool isEndbrImm64(uint64_t Imm) {
 | ||
| // There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
 | ||
| // i.g: 0xF3660F1EFA, 0xF3670F1EFA
 | ||
|   if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
 | ||
|     return false;
 | ||
| 
 | ||
|   uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
 | ||
|                                     0x65, 0x66, 0x67, 0xf0, 0xf2};
 | ||
|   int i = 24; // 24bit 0x0F1EFA has matched
 | ||
|   while (i < 64) {
 | ||
|     uint8_t Byte = (Imm >> i) & 0xFF;
 | ||
|     if (Byte == 0xF3)
 | ||
|       return true;
 | ||
|     if (!llvm::is_contained(OptionalPrefixBytes, Byte))
 | ||
|       return false;
 | ||
|     i += 8;
 | ||
|   }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| void X86DAGToDAGISel::PreprocessISelDAG() {
 | ||
|   bool MadeChange = false;
 | ||
|   for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | ||
|        E = CurDAG->allnodes_end(); I != E; ) {
 | ||
|     SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
 | ||
| 
 | ||
|     // This is for CET enhancement.
 | ||
|     //
 | ||
|     // ENDBR32 and ENDBR64 have specific opcodes:
 | ||
|     // ENDBR32: F3 0F 1E FB
 | ||
|     // ENDBR64: F3 0F 1E FA
 | ||
|     // And we want that attackers won’t find unintended ENDBR32/64
 | ||
|     // opcode matches in the binary
 | ||
|     // Here’s an example:
 | ||
|     // If the compiler had to generate asm for the following code:
 | ||
|     // a = 0xF30F1EFA
 | ||
|     // it could, for example, generate:
 | ||
|     // mov 0xF30F1EFA, dword ptr[a]
 | ||
|     // In such a case, the binary would include a gadget that starts
 | ||
|     // with a fake ENDBR64 opcode. Therefore, we split such generation
 | ||
|     // into multiple operations, let it not shows in the binary
 | ||
|     if (N->getOpcode() == ISD::Constant) {
 | ||
|       MVT VT = N->getSimpleValueType(0);
 | ||
|       int64_t Imm = cast<ConstantSDNode>(N)->getSExtValue();
 | ||
|       int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
 | ||
|       if (Imm == EndbrImm || isEndbrImm64(Imm)) {
 | ||
|         // Check that the cf-protection-branch is enabled.
 | ||
|         Metadata *CFProtectionBranch =
 | ||
|           MF->getMMI().getModule()->getModuleFlag("cf-protection-branch");
 | ||
|         if (CFProtectionBranch || IndirectBranchTracking) {
 | ||
|           SDLoc dl(N);
 | ||
|           SDValue Complement = CurDAG->getConstant(~Imm, dl, VT, false, true);
 | ||
|           Complement = CurDAG->getNOT(dl, Complement, VT);
 | ||
|           --I;
 | ||
|           CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Complement);
 | ||
|           ++I;
 | ||
|           MadeChange = true;
 | ||
|           continue;
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // If this is a target specific AND node with no flag usages, turn it back
 | ||
|     // into ISD::AND to enable test instruction matching.
 | ||
|     if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(1)) {
 | ||
|       SDValue Res = CurDAG->getNode(ISD::AND, SDLoc(N), N->getValueType(0),
 | ||
|                                     N->getOperand(0), N->getOperand(1));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
| 
 | ||
|     // Convert vector increment or decrement to sub/add with an all-ones
 | ||
|     // constant:
 | ||
|     // add X, <1, 1...> --> sub X, <-1, -1...>
 | ||
|     // sub X, <1, 1...> --> add X, <-1, -1...>
 | ||
|     // The all-ones vector constant can be materialized using a pcmpeq
 | ||
|     // instruction that is commonly recognized as an idiom (has no register
 | ||
|     // dependency), so that's better/smaller than loading a splat 1 constant.
 | ||
|     //
 | ||
|     // But don't do this if it would inhibit a potentially profitable load
 | ||
|     // folding opportunity for the other operand. That only occurs with the
 | ||
|     // intersection of:
 | ||
|     // (1) The other operand (op0) is load foldable.
 | ||
|     // (2) The op is an add (otherwise, we are *creating* an add and can still
 | ||
|     //     load fold the other op).
 | ||
|     // (3) The target has AVX (otherwise, we have a destructive add and can't
 | ||
|     //     load fold the other op without killing the constant op).
 | ||
|     // (4) The constant 1 vector has multiple uses (so it is profitable to load
 | ||
|     //     into a register anyway).
 | ||
|     auto mayPreventLoadFold = [&]() {
 | ||
|       return X86::mayFoldLoad(N->getOperand(0), *Subtarget) &&
 | ||
|              N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
 | ||
|              !N->getOperand(1).hasOneUse();
 | ||
|     };
 | ||
|     if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
 | ||
|         N->getSimpleValueType(0).isVector() && !mayPreventLoadFold()) {
 | ||
|       APInt SplatVal;
 | ||
|       if (X86::isConstantSplat(N->getOperand(1), SplatVal) &&
 | ||
|           SplatVal.isOne()) {
 | ||
|         SDLoc DL(N);
 | ||
| 
 | ||
|         MVT VT = N->getSimpleValueType(0);
 | ||
|         unsigned NumElts = VT.getSizeInBits() / 32;
 | ||
|         SDValue AllOnes =
 | ||
|             CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts));
 | ||
|         AllOnes = CurDAG->getBitcast(VT, AllOnes);
 | ||
| 
 | ||
|         unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
 | ||
|         SDValue Res =
 | ||
|             CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes);
 | ||
|         --I;
 | ||
|         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
 | ||
|         ++I;
 | ||
|         MadeChange = true;
 | ||
|         continue;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     switch (N->getOpcode()) {
 | ||
|     case X86ISD::VBROADCAST: {
 | ||
|       MVT VT = N->getSimpleValueType(0);
 | ||
|       // Emulate v32i16/v64i8 broadcast without BWI.
 | ||
|       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
 | ||
|         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
 | ||
|         SDLoc dl(N);
 | ||
|         SDValue NarrowBCast =
 | ||
|             CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0));
 | ||
|         SDValue Res =
 | ||
|             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
 | ||
|                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
 | ||
|         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
 | ||
|         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
 | ||
|                               CurDAG->getIntPtrConstant(Index, dl));
 | ||
| 
 | ||
|         --I;
 | ||
|         CurDAG->ReplaceAllUsesWith(N, Res.getNode());
 | ||
|         ++I;
 | ||
|         MadeChange = true;
 | ||
|         continue;
 | ||
|       }
 | ||
| 
 | ||
|       break;
 | ||
|     }
 | ||
|     case X86ISD::VBROADCAST_LOAD: {
 | ||
|       MVT VT = N->getSimpleValueType(0);
 | ||
|       // Emulate v32i16/v64i8 broadcast without BWI.
 | ||
|       if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) {
 | ||
|         MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8;
 | ||
|         auto *MemNode = cast<MemSDNode>(N);
 | ||
|         SDLoc dl(N);
 | ||
|         SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
 | ||
|         SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
 | ||
|         SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
 | ||
|             X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(),
 | ||
|             MemNode->getMemOperand());
 | ||
|         SDValue Res =
 | ||
|             CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT),
 | ||
|                             NarrowBCast, CurDAG->getIntPtrConstant(0, dl));
 | ||
|         unsigned Index = VT == MVT::v32i16 ? 16 : 32;
 | ||
|         Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast,
 | ||
|                               CurDAG->getIntPtrConstant(Index, dl));
 | ||
| 
 | ||
|         --I;
 | ||
|         SDValue To[] = {Res, NarrowBCast.getValue(1)};
 | ||
|         CurDAG->ReplaceAllUsesWith(N, To);
 | ||
|         ++I;
 | ||
|         MadeChange = true;
 | ||
|         continue;
 | ||
|       }
 | ||
| 
 | ||
|       break;
 | ||
|     }
 | ||
|     case ISD::VSELECT: {
 | ||
|       // Replace VSELECT with non-mask conditions with with BLENDV.
 | ||
|       if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1)
 | ||
|         break;
 | ||
| 
 | ||
|       assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
 | ||
|       SDValue Blendv =
 | ||
|           CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
 | ||
|                           N->getOperand(0), N->getOperand(1), N->getOperand(2));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesWith(N, Blendv.getNode());
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
|     case ISD::FP_ROUND:
 | ||
|     case ISD::STRICT_FP_ROUND:
 | ||
|     case ISD::FP_TO_SINT:
 | ||
|     case ISD::FP_TO_UINT:
 | ||
|     case ISD::STRICT_FP_TO_SINT:
 | ||
|     case ISD::STRICT_FP_TO_UINT: {
 | ||
|       // Replace vector fp_to_s/uint with their X86 specific equivalent so we
 | ||
|       // don't need 2 sets of patterns.
 | ||
|       if (!N->getSimpleValueType(0).isVector())
 | ||
|         break;
 | ||
| 
 | ||
|       unsigned NewOpc;
 | ||
|       switch (N->getOpcode()) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::FP_ROUND:          NewOpc = X86ISD::VFPROUND;        break;
 | ||
|       case ISD::STRICT_FP_ROUND:   NewOpc = X86ISD::STRICT_VFPROUND; break;
 | ||
|       case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
 | ||
|       case ISD::FP_TO_SINT:        NewOpc = X86ISD::CVTTP2SI;        break;
 | ||
|       case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
 | ||
|       case ISD::FP_TO_UINT:        NewOpc = X86ISD::CVTTP2UI;        break;
 | ||
|       }
 | ||
|       SDValue Res;
 | ||
|       if (N->isStrictFPOpcode())
 | ||
|         Res =
 | ||
|             CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
 | ||
|                             {N->getOperand(0), N->getOperand(1)});
 | ||
|       else
 | ||
|         Res =
 | ||
|             CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
 | ||
|                             N->getOperand(0));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
|     case ISD::SHL:
 | ||
|     case ISD::SRA:
 | ||
|     case ISD::SRL: {
 | ||
|       // Replace vector shifts with their X86 specific equivalent so we don't
 | ||
|       // need 2 sets of patterns.
 | ||
|       if (!N->getValueType(0).isVector())
 | ||
|         break;
 | ||
| 
 | ||
|       unsigned NewOpc;
 | ||
|       switch (N->getOpcode()) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
 | ||
|       case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
 | ||
|       case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
 | ||
|       }
 | ||
|       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
 | ||
|                                     N->getOperand(0), N->getOperand(1));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
|     case ISD::ANY_EXTEND:
 | ||
|     case ISD::ANY_EXTEND_VECTOR_INREG: {
 | ||
|       // Replace vector any extend with the zero extend equivalents so we don't
 | ||
|       // need 2 sets of patterns. Ignore vXi1 extensions.
 | ||
|       if (!N->getValueType(0).isVector())
 | ||
|         break;
 | ||
| 
 | ||
|       unsigned NewOpc;
 | ||
|       if (N->getOperand(0).getScalarValueSizeInBits() == 1) {
 | ||
|         assert(N->getOpcode() == ISD::ANY_EXTEND &&
 | ||
|                "Unexpected opcode for mask vector!");
 | ||
|         NewOpc = ISD::SIGN_EXTEND;
 | ||
|       } else {
 | ||
|         NewOpc = N->getOpcode() == ISD::ANY_EXTEND
 | ||
|                               ? ISD::ZERO_EXTEND
 | ||
|                               : ISD::ZERO_EXTEND_VECTOR_INREG;
 | ||
|       }
 | ||
| 
 | ||
|       SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0),
 | ||
|                                     N->getOperand(0));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
|     case ISD::FCEIL:
 | ||
|     case ISD::STRICT_FCEIL:
 | ||
|     case ISD::FFLOOR:
 | ||
|     case ISD::STRICT_FFLOOR:
 | ||
|     case ISD::FTRUNC:
 | ||
|     case ISD::STRICT_FTRUNC:
 | ||
|     case ISD::FROUNDEVEN:
 | ||
|     case ISD::STRICT_FROUNDEVEN:
 | ||
|     case ISD::FNEARBYINT:
 | ||
|     case ISD::STRICT_FNEARBYINT:
 | ||
|     case ISD::FRINT:
 | ||
|     case ISD::STRICT_FRINT: {
 | ||
|       // Replace fp rounding with their X86 specific equivalent so we don't
 | ||
|       // need 2 sets of patterns.
 | ||
|       unsigned Imm;
 | ||
|       switch (N->getOpcode()) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::STRICT_FCEIL:
 | ||
|       case ISD::FCEIL:      Imm = 0xA; break;
 | ||
|       case ISD::STRICT_FFLOOR:
 | ||
|       case ISD::FFLOOR:     Imm = 0x9; break;
 | ||
|       case ISD::STRICT_FTRUNC:
 | ||
|       case ISD::FTRUNC:     Imm = 0xB; break;
 | ||
|       case ISD::STRICT_FROUNDEVEN:
 | ||
|       case ISD::FROUNDEVEN: Imm = 0x8; break;
 | ||
|       case ISD::STRICT_FNEARBYINT:
 | ||
|       case ISD::FNEARBYINT: Imm = 0xC; break;
 | ||
|       case ISD::STRICT_FRINT:
 | ||
|       case ISD::FRINT:      Imm = 0x4; break;
 | ||
|       }
 | ||
|       SDLoc dl(N);
 | ||
|       bool IsStrict = N->isStrictFPOpcode();
 | ||
|       SDValue Res;
 | ||
|       if (IsStrict)
 | ||
|         Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
 | ||
|                               {N->getValueType(0), MVT::Other},
 | ||
|                               {N->getOperand(0), N->getOperand(1),
 | ||
|                                CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
 | ||
|       else
 | ||
|         Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(0),
 | ||
|                               N->getOperand(0),
 | ||
|                               CurDAG->getTargetConstant(Imm, dl, MVT::i32));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesWith(N, Res.getNode());
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
|     case X86ISD::FANDN:
 | ||
|     case X86ISD::FAND:
 | ||
|     case X86ISD::FOR:
 | ||
|     case X86ISD::FXOR: {
 | ||
|       // Widen scalar fp logic ops to vector to reduce isel patterns.
 | ||
|       // FIXME: Can we do this during lowering/combine.
 | ||
|       MVT VT = N->getSimpleValueType(0);
 | ||
|       if (VT.isVector() || VT == MVT::f128)
 | ||
|         break;
 | ||
| 
 | ||
|       MVT VecVT = VT == MVT::f64   ? MVT::v2f64
 | ||
|                   : VT == MVT::f32 ? MVT::v4f32
 | ||
|                                    : MVT::v8f16;
 | ||
| 
 | ||
|       SDLoc dl(N);
 | ||
|       SDValue Op0 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
 | ||
|                                     N->getOperand(0));
 | ||
|       SDValue Op1 = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT,
 | ||
|                                     N->getOperand(1));
 | ||
| 
 | ||
|       SDValue Res;
 | ||
|       if (Subtarget->hasSSE2()) {
 | ||
|         EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
 | ||
|         Op0 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op0);
 | ||
|         Op1 = CurDAG->getNode(ISD::BITCAST, dl, IntVT, Op1);
 | ||
|         unsigned Opc;
 | ||
|         switch (N->getOpcode()) {
 | ||
|         default: llvm_unreachable("Unexpected opcode!");
 | ||
|         case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
 | ||
|         case X86ISD::FAND:  Opc = ISD::AND;      break;
 | ||
|         case X86ISD::FOR:   Opc = ISD::OR;       break;
 | ||
|         case X86ISD::FXOR:  Opc = ISD::XOR;      break;
 | ||
|         }
 | ||
|         Res = CurDAG->getNode(Opc, dl, IntVT, Op0, Op1);
 | ||
|         Res = CurDAG->getNode(ISD::BITCAST, dl, VecVT, Res);
 | ||
|       } else {
 | ||
|         Res = CurDAG->getNode(N->getOpcode(), dl, VecVT, Op0, Op1);
 | ||
|       }
 | ||
|       Res = CurDAG->getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res,
 | ||
|                             CurDAG->getIntPtrConstant(0, dl));
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
 | ||
|       ++I;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
|     }
 | ||
| 
 | ||
|     if (OptLevel != CodeGenOpt::None &&
 | ||
|         // Only do this when the target can fold the load into the call or
 | ||
|         // jmp.
 | ||
|         !Subtarget->useIndirectThunkCalls() &&
 | ||
|         ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
 | ||
|          (N->getOpcode() == X86ISD::TC_RETURN &&
 | ||
|           (Subtarget->is64Bit() ||
 | ||
|            !getTargetMachine().isPositionIndependent())))) {
 | ||
|       /// Also try moving call address load from outside callseq_start to just
 | ||
|       /// before the call to allow it to be folded.
 | ||
|       ///
 | ||
|       ///     [Load chain]
 | ||
|       ///         ^
 | ||
|       ///         |
 | ||
|       ///       [Load]
 | ||
|       ///       ^    ^
 | ||
|       ///       |    |
 | ||
|       ///      /      \--
 | ||
|       ///     /          |
 | ||
|       ///[CALLSEQ_START] |
 | ||
|       ///     ^          |
 | ||
|       ///     |          |
 | ||
|       /// [LOAD/C2Reg]   |
 | ||
|       ///     |          |
 | ||
|       ///      \        /
 | ||
|       ///       \      /
 | ||
|       ///       [CALL]
 | ||
|       bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
 | ||
|       SDValue Chain = N->getOperand(0);
 | ||
|       SDValue Load  = N->getOperand(1);
 | ||
|       if (!isCalleeLoad(Load, Chain, HasCallSeq))
 | ||
|         continue;
 | ||
|       moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
 | ||
|       ++NumLoadMoved;
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
| 
 | ||
|     // Lower fpround and fpextend nodes that target the FP stack to be store and
 | ||
|     // load to the stack.  This is a gross hack.  We would like to simply mark
 | ||
|     // these as being illegal, but when we do that, legalize produces these when
 | ||
|     // it expands calls, then expands these in the same legalize pass.  We would
 | ||
|     // like dag combine to be able to hack on these between the call expansion
 | ||
|     // and the node legalization.  As such this pass basically does "really
 | ||
|     // late" legalization of these inline with the X86 isel pass.
 | ||
|     // FIXME: This should only happen when not compiled with -O0.
 | ||
|     switch (N->getOpcode()) {
 | ||
|     default: continue;
 | ||
|     case ISD::FP_ROUND:
 | ||
|     case ISD::FP_EXTEND:
 | ||
|     {
 | ||
|       MVT SrcVT = N->getOperand(0).getSimpleValueType();
 | ||
|       MVT DstVT = N->getSimpleValueType(0);
 | ||
| 
 | ||
|       // If any of the sources are vectors, no fp stack involved.
 | ||
|       if (SrcVT.isVector() || DstVT.isVector())
 | ||
|         continue;
 | ||
| 
 | ||
|       // If the source and destination are SSE registers, then this is a legal
 | ||
|       // conversion that should not be lowered.
 | ||
|       const X86TargetLowering *X86Lowering =
 | ||
|           static_cast<const X86TargetLowering *>(TLI);
 | ||
|       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
 | ||
|       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
 | ||
|       if (SrcIsSSE && DstIsSSE)
 | ||
|         continue;
 | ||
| 
 | ||
|       if (!SrcIsSSE && !DstIsSSE) {
 | ||
|         // If this is an FPStack extension, it is a noop.
 | ||
|         if (N->getOpcode() == ISD::FP_EXTEND)
 | ||
|           continue;
 | ||
|         // If this is a value-preserving FPStack truncation, it is a noop.
 | ||
|         if (N->getConstantOperandVal(1))
 | ||
|           continue;
 | ||
|       }
 | ||
| 
 | ||
|       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
 | ||
|       // FPStack has extload and truncstore.  SSE can fold direct loads into other
 | ||
|       // operations.  Based on this, decide what we want to do.
 | ||
|       MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
 | ||
|       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
 | ||
|       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
 | ||
|       MachinePointerInfo MPI =
 | ||
|           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
 | ||
|       SDLoc dl(N);
 | ||
| 
 | ||
|       // FIXME: optimize the case where the src/dest is a load or store?
 | ||
| 
 | ||
|       SDValue Store = CurDAG->getTruncStore(
 | ||
|           CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT);
 | ||
|       SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store,
 | ||
|                                           MemTmp, MPI, MemVT);
 | ||
| 
 | ||
|       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
 | ||
|       // extload we created.  This will cause general havok on the dag because
 | ||
|       // anything below the conversion could be folded into other existing nodes.
 | ||
|       // To avoid invalidating 'I', back it up to the convert node.
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     //The sequence of events for lowering STRICT_FP versions of these nodes requires
 | ||
|     //dealing with the chain differently, as there is already a preexisting chain.
 | ||
|     case ISD::STRICT_FP_ROUND:
 | ||
|     case ISD::STRICT_FP_EXTEND:
 | ||
|     {
 | ||
|       MVT SrcVT = N->getOperand(1).getSimpleValueType();
 | ||
|       MVT DstVT = N->getSimpleValueType(0);
 | ||
| 
 | ||
|       // If any of the sources are vectors, no fp stack involved.
 | ||
|       if (SrcVT.isVector() || DstVT.isVector())
 | ||
|         continue;
 | ||
| 
 | ||
|       // If the source and destination are SSE registers, then this is a legal
 | ||
|       // conversion that should not be lowered.
 | ||
|       const X86TargetLowering *X86Lowering =
 | ||
|           static_cast<const X86TargetLowering *>(TLI);
 | ||
|       bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
 | ||
|       bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
 | ||
|       if (SrcIsSSE && DstIsSSE)
 | ||
|         continue;
 | ||
| 
 | ||
|       if (!SrcIsSSE && !DstIsSSE) {
 | ||
|         // If this is an FPStack extension, it is a noop.
 | ||
|         if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
 | ||
|           continue;
 | ||
|         // If this is a value-preserving FPStack truncation, it is a noop.
 | ||
|         if (N->getConstantOperandVal(2))
 | ||
|           continue;
 | ||
|       }
 | ||
| 
 | ||
|       // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
 | ||
|       // FPStack has extload and truncstore.  SSE can fold direct loads into other
 | ||
|       // operations.  Based on this, decide what we want to do.
 | ||
|       MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
 | ||
|       SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
 | ||
|       int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex();
 | ||
|       MachinePointerInfo MPI =
 | ||
|           MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI);
 | ||
|       SDLoc dl(N);
 | ||
| 
 | ||
|       // FIXME: optimize the case where the src/dest is a load or store?
 | ||
| 
 | ||
|       //Since the operation is StrictFP, use the preexisting chain.
 | ||
|       SDValue Store, Result;
 | ||
|       if (!SrcIsSSE) {
 | ||
|         SDVTList VTs = CurDAG->getVTList(MVT::Other);
 | ||
|         SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp};
 | ||
|         Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT,
 | ||
|                                             MPI, /*Align*/ None,
 | ||
|                                             MachineMemOperand::MOStore);
 | ||
|         if (N->getFlags().hasNoFPExcept()) {
 | ||
|           SDNodeFlags Flags = Store->getFlags();
 | ||
|           Flags.setNoFPExcept(true);
 | ||
|           Store->setFlags(Flags);
 | ||
|         }
 | ||
|       } else {
 | ||
|         assert(SrcVT == MemVT && "Unexpected VT!");
 | ||
|         Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp,
 | ||
|                                  MPI);
 | ||
|       }
 | ||
| 
 | ||
|       if (!DstIsSSE) {
 | ||
|         SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
 | ||
|         SDValue Ops[] = {Store, MemTmp};
 | ||
|         Result = CurDAG->getMemIntrinsicNode(
 | ||
|             X86ISD::FLD, dl, VTs, Ops, MemVT, MPI,
 | ||
|             /*Align*/ None, MachineMemOperand::MOLoad);
 | ||
|         if (N->getFlags().hasNoFPExcept()) {
 | ||
|           SDNodeFlags Flags = Result->getFlags();
 | ||
|           Flags.setNoFPExcept(true);
 | ||
|           Result->setFlags(Flags);
 | ||
|         }
 | ||
|       } else {
 | ||
|         assert(DstVT == MemVT && "Unexpected VT!");
 | ||
|         Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI);
 | ||
|       }
 | ||
| 
 | ||
|       // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
 | ||
|       // extload we created.  This will cause general havok on the dag because
 | ||
|       // anything below the conversion could be folded into other existing nodes.
 | ||
|       // To avoid invalidating 'I', back it up to the convert node.
 | ||
|       --I;
 | ||
|       CurDAG->ReplaceAllUsesWith(N, Result.getNode());
 | ||
|       break;
 | ||
|     }
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
|     // Now that we did that, the node is dead.  Increment the iterator to the
 | ||
|     // next node to process, then delete N.
 | ||
|     ++I;
 | ||
|     MadeChange = true;
 | ||
|   }
 | ||
| 
 | ||
|   // Remove any dead nodes that may have been left behind.
 | ||
|   if (MadeChange)
 | ||
|     CurDAG->RemoveDeadNodes();
 | ||
| }
 | ||
| 
 | ||
| // Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
 | ||
| bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
 | ||
|   unsigned Opc = N->getMachineOpcode();
 | ||
|   if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
 | ||
|       Opc != X86::MOVSX64rr8)
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue N0 = N->getOperand(0);
 | ||
| 
 | ||
|   // We need to be extracting the lower bit of an extend.
 | ||
|   if (!N0.isMachineOpcode() ||
 | ||
|       N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
 | ||
|       N0.getConstantOperandVal(1) != X86::sub_8bit)
 | ||
|     return false;
 | ||
| 
 | ||
|   // We're looking for either a movsx or movzx to match the original opcode.
 | ||
|   unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
 | ||
|                                                 : X86::MOVSX32rr8_NOREX;
 | ||
|   SDValue N00 = N0.getOperand(0);
 | ||
|   if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
 | ||
|     return false;
 | ||
| 
 | ||
|   if (Opc == X86::MOVSX64rr8) {
 | ||
|     // If we had a sign extend from 8 to 64 bits. We still need to go from 32
 | ||
|     // to 64.
 | ||
|     MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
 | ||
|                                                    MVT::i64, N00);
 | ||
|     ReplaceUses(N, Extend);
 | ||
|   } else {
 | ||
|     // Ok we can drop this extend and just use the original extend.
 | ||
|     ReplaceUses(N, N00.getNode());
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void X86DAGToDAGISel::PostprocessISelDAG() {
 | ||
|   // Skip peepholes at -O0.
 | ||
|   if (TM.getOptLevel() == CodeGenOpt::None)
 | ||
|     return;
 | ||
| 
 | ||
|   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
 | ||
| 
 | ||
|   bool MadeChange = false;
 | ||
|   while (Position != CurDAG->allnodes_begin()) {
 | ||
|     SDNode *N = &*--Position;
 | ||
|     // Skip dead nodes and any non-machine opcodes.
 | ||
|     if (N->use_empty() || !N->isMachineOpcode())
 | ||
|       continue;
 | ||
| 
 | ||
|     if (tryOptimizeRem8Extend(N)) {
 | ||
|       MadeChange = true;
 | ||
|       continue;
 | ||
|     }
 | ||
| 
 | ||
|     // Look for a TESTrr+ANDrr pattern where both operands of the test are
 | ||
|     // the same. Rewrite to remove the AND.
 | ||
|     unsigned Opc = N->getMachineOpcode();
 | ||
|     if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
 | ||
|          Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
 | ||
|         N->getOperand(0) == N->getOperand(1) &&
 | ||
|         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
 | ||
|         N->getOperand(0).isMachineOpcode()) {
 | ||
|       SDValue And = N->getOperand(0);
 | ||
|       unsigned N0Opc = And.getMachineOpcode();
 | ||
|       if (N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
 | ||
|           N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) {
 | ||
|         MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
 | ||
|                                                      MVT::i32,
 | ||
|                                                      And.getOperand(0),
 | ||
|                                                      And.getOperand(1));
 | ||
|         ReplaceUses(N, Test);
 | ||
|         MadeChange = true;
 | ||
|         continue;
 | ||
|       }
 | ||
|       if (N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
 | ||
|           N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) {
 | ||
|         unsigned NewOpc;
 | ||
|         switch (N0Opc) {
 | ||
|         case X86::AND8rm:  NewOpc = X86::TEST8mr; break;
 | ||
|         case X86::AND16rm: NewOpc = X86::TEST16mr; break;
 | ||
|         case X86::AND32rm: NewOpc = X86::TEST32mr; break;
 | ||
|         case X86::AND64rm: NewOpc = X86::TEST64mr; break;
 | ||
|         }
 | ||
| 
 | ||
|         // Need to swap the memory and register operand.
 | ||
|         SDValue Ops[] = { And.getOperand(1),
 | ||
|                           And.getOperand(2),
 | ||
|                           And.getOperand(3),
 | ||
|                           And.getOperand(4),
 | ||
|                           And.getOperand(5),
 | ||
|                           And.getOperand(0),
 | ||
|                           And.getOperand(6)  /* Chain */ };
 | ||
|         MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
 | ||
|                                                      MVT::i32, MVT::Other, Ops);
 | ||
|         CurDAG->setNodeMemRefs(
 | ||
|             Test, cast<MachineSDNode>(And.getNode())->memoperands());
 | ||
|         ReplaceUses(N, Test);
 | ||
|         MadeChange = true;
 | ||
|         continue;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
 | ||
|     // used. We're doing this late so we can prefer to fold the AND into masked
 | ||
|     // comparisons. Doing that can be better for the live range of the mask
 | ||
|     // register.
 | ||
|     if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
 | ||
|          Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
 | ||
|         N->getOperand(0) == N->getOperand(1) &&
 | ||
|         N->isOnlyUserOf(N->getOperand(0).getNode()) &&
 | ||
|         N->getOperand(0).isMachineOpcode() &&
 | ||
|         onlyUsesZeroFlag(SDValue(N, 0))) {
 | ||
|       SDValue And = N->getOperand(0);
 | ||
|       unsigned N0Opc = And.getMachineOpcode();
 | ||
|       // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
 | ||
|       // KAND instructions and KTEST use the same ISA feature.
 | ||
|       if (N0Opc == X86::KANDBrr ||
 | ||
|           (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
 | ||
|           N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
 | ||
|         unsigned NewOpc;
 | ||
|         switch (Opc) {
 | ||
|         default: llvm_unreachable("Unexpected opcode!");
 | ||
|         case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
 | ||
|         case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
 | ||
|         case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
 | ||
|         case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
 | ||
|         }
 | ||
|         MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
 | ||
|                                                       MVT::i32,
 | ||
|                                                       And.getOperand(0),
 | ||
|                                                       And.getOperand(1));
 | ||
|         ReplaceUses(N, KTest);
 | ||
|         MadeChange = true;
 | ||
|         continue;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Attempt to remove vectors moves that were inserted to zero upper bits.
 | ||
|     if (Opc != TargetOpcode::SUBREG_TO_REG)
 | ||
|       continue;
 | ||
| 
 | ||
|     unsigned SubRegIdx = N->getConstantOperandVal(2);
 | ||
|     if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
 | ||
|       continue;
 | ||
| 
 | ||
|     SDValue Move = N->getOperand(1);
 | ||
|     if (!Move.isMachineOpcode())
 | ||
|       continue;
 | ||
| 
 | ||
|     // Make sure its one of the move opcodes we recognize.
 | ||
|     switch (Move.getMachineOpcode()) {
 | ||
|     default:
 | ||
|       continue;
 | ||
|     case X86::VMOVAPDrr:       case X86::VMOVUPDrr:
 | ||
|     case X86::VMOVAPSrr:       case X86::VMOVUPSrr:
 | ||
|     case X86::VMOVDQArr:       case X86::VMOVDQUrr:
 | ||
|     case X86::VMOVAPDYrr:      case X86::VMOVUPDYrr:
 | ||
|     case X86::VMOVAPSYrr:      case X86::VMOVUPSYrr:
 | ||
|     case X86::VMOVDQAYrr:      case X86::VMOVDQUYrr:
 | ||
|     case X86::VMOVAPDZ128rr:   case X86::VMOVUPDZ128rr:
 | ||
|     case X86::VMOVAPSZ128rr:   case X86::VMOVUPSZ128rr:
 | ||
|     case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
 | ||
|     case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
 | ||
|     case X86::VMOVAPDZ256rr:   case X86::VMOVUPDZ256rr:
 | ||
|     case X86::VMOVAPSZ256rr:   case X86::VMOVUPSZ256rr:
 | ||
|     case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
 | ||
|     case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     SDValue In = Move.getOperand(0);
 | ||
|     if (!In.isMachineOpcode() ||
 | ||
|         In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
 | ||
|       continue;
 | ||
| 
 | ||
|     // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
 | ||
|     // the SHA instructions which use a legacy encoding.
 | ||
|     uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
 | ||
|     if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
 | ||
|         (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
 | ||
|         (TSFlags & X86II::EncodingMask) != X86II::XOP)
 | ||
|       continue;
 | ||
| 
 | ||
|     // Producing instruction is another vector instruction. We can drop the
 | ||
|     // move.
 | ||
|     CurDAG->UpdateNodeOperands(N, N->getOperand(0), In, N->getOperand(2));
 | ||
|     MadeChange = true;
 | ||
|   }
 | ||
| 
 | ||
|   if (MadeChange)
 | ||
|     CurDAG->RemoveDeadNodes();
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /// Emit any code that needs to be executed only in the main function.
 | ||
| void X86DAGToDAGISel::emitSpecialCodeForMain() {
 | ||
|   if (Subtarget->isTargetCygMing()) {
 | ||
|     TargetLowering::ArgListTy Args;
 | ||
|     auto &DL = CurDAG->getDataLayout();
 | ||
| 
 | ||
|     TargetLowering::CallLoweringInfo CLI(*CurDAG);
 | ||
|     CLI.setChain(CurDAG->getRoot())
 | ||
|         .setCallee(CallingConv::C, Type::getVoidTy(*CurDAG->getContext()),
 | ||
|                    CurDAG->getExternalSymbol("__main", TLI->getPointerTy(DL)),
 | ||
|                    std::move(Args));
 | ||
|     const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
 | ||
|     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
 | ||
|     CurDAG->setRoot(Result.second);
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| void X86DAGToDAGISel::emitFunctionEntryCode() {
 | ||
|   // If this is main, emit special code for main.
 | ||
|   const Function &F = MF->getFunction();
 | ||
|   if (F.hasExternalLinkage() && F.getName() == "main")
 | ||
|     emitSpecialCodeForMain();
 | ||
| }
 | ||
| 
 | ||
| static bool isDispSafeForFrameIndex(int64_t Val) {
 | ||
|   // On 64-bit platforms, we can run into an issue where a frame index
 | ||
|   // includes a displacement that, when added to the explicit displacement,
 | ||
|   // will overflow the displacement field. Assuming that the frame index
 | ||
|   // displacement fits into a 31-bit integer  (which is only slightly more
 | ||
|   // aggressive than the current fundamental assumption that it fits into
 | ||
|   // a 32-bit integer), a 31-bit disp should always be safe.
 | ||
|   return isInt<31>(Val);
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
 | ||
|                                             X86ISelAddressMode &AM) {
 | ||
|   // We may have already matched a displacement and the caller just added the
 | ||
|   // symbolic displacement. So we still need to do the checks even if Offset
 | ||
|   // is zero.
 | ||
| 
 | ||
|   int64_t Val = AM.Disp + Offset;
 | ||
| 
 | ||
|   // Cannot combine ExternalSymbol displacements with integer offsets.
 | ||
|   if (Val != 0 && (AM.ES || AM.MCSym))
 | ||
|     return true;
 | ||
| 
 | ||
|   CodeModel::Model M = TM.getCodeModel();
 | ||
|   if (Subtarget->is64Bit()) {
 | ||
|     if (Val != 0 &&
 | ||
|         !X86::isOffsetSuitableForCodeModel(Val, M,
 | ||
|                                            AM.hasSymbolicDisplacement()))
 | ||
|       return true;
 | ||
|     // In addition to the checks required for a register base, check that
 | ||
|     // we do not try to use an unsafe Disp with a frame index.
 | ||
|     if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
 | ||
|         !isDispSafeForFrameIndex(Val))
 | ||
|       return true;
 | ||
|   }
 | ||
|   AM.Disp = Val;
 | ||
|   return false;
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
 | ||
|                                          bool AllowSegmentRegForX32) {
 | ||
|   SDValue Address = N->getOperand(1);
 | ||
| 
 | ||
|   // load gs:0 -> GS segment register.
 | ||
|   // load fs:0 -> FS segment register.
 | ||
|   //
 | ||
|   // This optimization is generally valid because the GNU TLS model defines that
 | ||
|   // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
 | ||
|   // with 32-bit registers, as we get in ILP32 mode, those registers are first
 | ||
|   // zero-extended to 64 bits and then added it to the base address, which gives
 | ||
|   // unwanted results when the register holds a negative value.
 | ||
|   // For more information see http://people.redhat.com/drepper/tls.pdf
 | ||
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address)) {
 | ||
|     if (C->getSExtValue() == 0 && AM.Segment.getNode() == nullptr &&
 | ||
|         !IndirectTlsSegRefs &&
 | ||
|         (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
 | ||
|          Subtarget->isTargetFuchsia())) {
 | ||
|       if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
 | ||
|         return true;
 | ||
|       switch (N->getPointerInfo().getAddrSpace()) {
 | ||
|       case X86AS::GS:
 | ||
|         AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
 | ||
|         return false;
 | ||
|       case X86AS::FS:
 | ||
|         AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
 | ||
|         return false;
 | ||
|       // Address space X86AS::SS is not handled here, because it is not used to
 | ||
|       // address TLS areas.
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
 | ||
| /// mode. These wrap things that will resolve down into a symbol reference.
 | ||
| /// If no match is possible, this returns true, otherwise it returns false.
 | ||
| bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
 | ||
|   // If the addressing mode already has a symbol as the displacement, we can
 | ||
|   // never match another symbol.
 | ||
|   if (AM.hasSymbolicDisplacement())
 | ||
|     return true;
 | ||
| 
 | ||
|   bool IsRIPRelTLS = false;
 | ||
|   bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
 | ||
|   if (IsRIPRel) {
 | ||
|     SDValue Val = N.getOperand(0);
 | ||
|     if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
 | ||
|       IsRIPRelTLS = true;
 | ||
|   }
 | ||
| 
 | ||
|   // We can't use an addressing mode in the 64-bit large code model.
 | ||
|   // Global TLS addressing is an exception. In the medium code model,
 | ||
|   // we use can use a mode when RIP wrappers are present.
 | ||
|   // That signifies access to globals that are known to be "near",
 | ||
|   // such as the GOT itself.
 | ||
|   CodeModel::Model M = TM.getCodeModel();
 | ||
|   if (Subtarget->is64Bit() &&
 | ||
|       ((M == CodeModel::Large && !IsRIPRelTLS) ||
 | ||
|        (M == CodeModel::Medium && !IsRIPRel)))
 | ||
|     return true;
 | ||
| 
 | ||
|   // Base and index reg must be 0 in order to use %rip as base.
 | ||
|   if (IsRIPRel && AM.hasBaseOrIndexReg())
 | ||
|     return true;
 | ||
| 
 | ||
|   // Make a local copy in case we can't do this fold.
 | ||
|   X86ISelAddressMode Backup = AM;
 | ||
| 
 | ||
|   int64_t Offset = 0;
 | ||
|   SDValue N0 = N.getOperand(0);
 | ||
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
 | ||
|     AM.GV = G->getGlobal();
 | ||
|     AM.SymbolFlags = G->getTargetFlags();
 | ||
|     Offset = G->getOffset();
 | ||
|   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
 | ||
|     AM.CP = CP->getConstVal();
 | ||
|     AM.Alignment = CP->getAlign();
 | ||
|     AM.SymbolFlags = CP->getTargetFlags();
 | ||
|     Offset = CP->getOffset();
 | ||
|   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
 | ||
|     AM.ES = S->getSymbol();
 | ||
|     AM.SymbolFlags = S->getTargetFlags();
 | ||
|   } else if (auto *S = dyn_cast<MCSymbolSDNode>(N0)) {
 | ||
|     AM.MCSym = S->getMCSymbol();
 | ||
|   } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
 | ||
|     AM.JT = J->getIndex();
 | ||
|     AM.SymbolFlags = J->getTargetFlags();
 | ||
|   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
 | ||
|     AM.BlockAddr = BA->getBlockAddress();
 | ||
|     AM.SymbolFlags = BA->getTargetFlags();
 | ||
|     Offset = BA->getOffset();
 | ||
|   } else
 | ||
|     llvm_unreachable("Unhandled symbol reference node.");
 | ||
| 
 | ||
|   if (foldOffsetIntoAddress(Offset, AM)) {
 | ||
|     AM = Backup;
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   if (IsRIPRel)
 | ||
|     AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
 | ||
| 
 | ||
|   // Commit the changes now that we know this fold is safe.
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /// Add the specified node to the specified addressing mode, returning true if
 | ||
| /// it cannot be done. This just pattern matches for the addressing mode.
 | ||
| bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
 | ||
|   if (matchAddressRecursively(N, AM, 0))
 | ||
|     return true;
 | ||
| 
 | ||
|   // Post-processing: Make a second attempt to fold a load, if we now know
 | ||
|   // that there will not be any other register. This is only performed for
 | ||
|   // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
 | ||
|   // any foldable load the first time.
 | ||
|   if (Subtarget->isTarget64BitILP32() &&
 | ||
|       AM.BaseType == X86ISelAddressMode::RegBase &&
 | ||
|       AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
 | ||
|     SDValue Save_Base_Reg = AM.Base_Reg;
 | ||
|     if (auto *LoadN = dyn_cast<LoadSDNode>(Save_Base_Reg)) {
 | ||
|       AM.Base_Reg = SDValue();
 | ||
|       if (matchLoadInAddress(LoadN, AM, /*AllowSegmentRegForX32=*/true))
 | ||
|         AM.Base_Reg = Save_Base_Reg;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
 | ||
|   // a smaller encoding and avoids a scaled-index.
 | ||
|   if (AM.Scale == 2 &&
 | ||
|       AM.BaseType == X86ISelAddressMode::RegBase &&
 | ||
|       AM.Base_Reg.getNode() == nullptr) {
 | ||
|     AM.Base_Reg = AM.IndexReg;
 | ||
|     AM.Scale = 1;
 | ||
|   }
 | ||
| 
 | ||
|   // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
 | ||
|   // because it has a smaller encoding.
 | ||
|   // TODO: Which other code models can use this?
 | ||
|   switch (TM.getCodeModel()) {
 | ||
|     default: break;
 | ||
|     case CodeModel::Small:
 | ||
|     case CodeModel::Kernel:
 | ||
|       if (Subtarget->is64Bit() &&
 | ||
|           AM.Scale == 1 &&
 | ||
|           AM.BaseType == X86ISelAddressMode::RegBase &&
 | ||
|           AM.Base_Reg.getNode() == nullptr &&
 | ||
|           AM.IndexReg.getNode() == nullptr &&
 | ||
|           AM.SymbolFlags == X86II::MO_NO_FLAG &&
 | ||
|           AM.hasSymbolicDisplacement())
 | ||
|         AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
 | ||
|       break;
 | ||
|   }
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
 | ||
|                                unsigned Depth) {
 | ||
|   // Add an artificial use to this node so that we can keep track of
 | ||
|   // it if it gets CSE'd with a different node.
 | ||
|   HandleSDNode Handle(N);
 | ||
| 
 | ||
|   X86ISelAddressMode Backup = AM;
 | ||
|   if (!matchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
 | ||
|       !matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
 | ||
|     return false;
 | ||
|   AM = Backup;
 | ||
| 
 | ||
|   // Try again after commutating the operands.
 | ||
|   if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM,
 | ||
|                                Depth + 1) &&
 | ||
|       !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1))
 | ||
|     return false;
 | ||
|   AM = Backup;
 | ||
| 
 | ||
|   // If we couldn't fold both operands into the address at the same time,
 | ||
|   // see if we can just put each operand into a register and fold at least
 | ||
|   // the add.
 | ||
|   if (AM.BaseType == X86ISelAddressMode::RegBase &&
 | ||
|       !AM.Base_Reg.getNode() &&
 | ||
|       !AM.IndexReg.getNode()) {
 | ||
|     N = Handle.getValue();
 | ||
|     AM.Base_Reg = N.getOperand(0);
 | ||
|     AM.IndexReg = N.getOperand(1);
 | ||
|     AM.Scale = 1;
 | ||
|     return false;
 | ||
|   }
 | ||
|   N = Handle.getValue();
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // Insert a node into the DAG at least before the Pos node's position. This
 | ||
| // will reposition the node as needed, and will assign it a node ID that is <=
 | ||
| // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
 | ||
| // IDs! The selection DAG must no longer depend on their uniqueness when this
 | ||
| // is used.
 | ||
| static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
 | ||
|   if (N->getNodeId() == -1 ||
 | ||
|       (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
 | ||
|        SelectionDAGISel::getUninvalidatedNodeId(Pos.getNode()))) {
 | ||
|     DAG.RepositionNode(Pos->getIterator(), N.getNode());
 | ||
|     // Mark Node as invalid for pruning as after this it may be a successor to a
 | ||
|     // selected node but otherwise be in the same position of Pos.
 | ||
|     // Conservatively mark it with the same -abs(Id) to assure node id
 | ||
|     // invariant is preserved.
 | ||
|     N->setNodeId(Pos->getNodeId());
 | ||
|     SelectionDAGISel::InvalidateNodeId(N.getNode());
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| // Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
 | ||
| // safe. This allows us to convert the shift and and into an h-register
 | ||
| // extract and a scaled index. Returns false if the simplification is
 | ||
| // performed.
 | ||
| static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
 | ||
|                                       uint64_t Mask,
 | ||
|                                       SDValue Shift, SDValue X,
 | ||
|                                       X86ISelAddressMode &AM) {
 | ||
|   if (Shift.getOpcode() != ISD::SRL ||
 | ||
|       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
 | ||
|       !Shift.hasOneUse())
 | ||
|     return true;
 | ||
| 
 | ||
|   int ScaleLog = 8 - Shift.getConstantOperandVal(1);
 | ||
|   if (ScaleLog <= 0 || ScaleLog >= 4 ||
 | ||
|       Mask != (0xffu << ScaleLog))
 | ||
|     return true;
 | ||
| 
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
|   SDLoc DL(N);
 | ||
|   SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
 | ||
|   SDValue NewMask = DAG.getConstant(0xff, DL, VT);
 | ||
|   SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
 | ||
|   SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
 | ||
|   SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
 | ||
|   SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
 | ||
| 
 | ||
|   // Insert the new nodes into the topological ordering. We must do this in
 | ||
|   // a valid topological ordering as nothing is going to go back and re-sort
 | ||
|   // these nodes. We continually insert before 'N' in sequence as this is
 | ||
|   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
 | ||
|   // hierarchy left to express.
 | ||
|   insertDAGNode(DAG, N, Eight);
 | ||
|   insertDAGNode(DAG, N, Srl);
 | ||
|   insertDAGNode(DAG, N, NewMask);
 | ||
|   insertDAGNode(DAG, N, And);
 | ||
|   insertDAGNode(DAG, N, ShlCount);
 | ||
|   insertDAGNode(DAG, N, Shl);
 | ||
|   DAG.ReplaceAllUsesWith(N, Shl);
 | ||
|   DAG.RemoveDeadNode(N.getNode());
 | ||
|   AM.IndexReg = And;
 | ||
|   AM.Scale = (1 << ScaleLog);
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
 | ||
| // allows us to fold the shift into this addressing mode. Returns false if the
 | ||
| // transform succeeded.
 | ||
| static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
 | ||
|                                         X86ISelAddressMode &AM) {
 | ||
|   SDValue Shift = N.getOperand(0);
 | ||
| 
 | ||
|   // Use a signed mask so that shifting right will insert sign bits. These
 | ||
|   // bits will be removed when we shift the result left so it doesn't matter
 | ||
|   // what we use. This might allow a smaller immediate encoding.
 | ||
|   int64_t Mask = cast<ConstantSDNode>(N->getOperand(1))->getSExtValue();
 | ||
| 
 | ||
|   // If we have an any_extend feeding the AND, look through it to see if there
 | ||
|   // is a shift behind it. But only if the AND doesn't use the extended bits.
 | ||
|   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
 | ||
|   bool FoundAnyExtend = false;
 | ||
|   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
 | ||
|       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
 | ||
|       isUInt<32>(Mask)) {
 | ||
|     FoundAnyExtend = true;
 | ||
|     Shift = Shift.getOperand(0);
 | ||
|   }
 | ||
| 
 | ||
|   if (Shift.getOpcode() != ISD::SHL ||
 | ||
|       !isa<ConstantSDNode>(Shift.getOperand(1)))
 | ||
|     return true;
 | ||
| 
 | ||
|   SDValue X = Shift.getOperand(0);
 | ||
| 
 | ||
|   // Not likely to be profitable if either the AND or SHIFT node has more
 | ||
|   // than one use (unless all uses are for address computation). Besides,
 | ||
|   // isel mechanism requires their node ids to be reused.
 | ||
|   if (!N.hasOneUse() || !Shift.hasOneUse())
 | ||
|     return true;
 | ||
| 
 | ||
|   // Verify that the shift amount is something we can fold.
 | ||
|   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
 | ||
|   if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
 | ||
|     return true;
 | ||
| 
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
|   SDLoc DL(N);
 | ||
|   if (FoundAnyExtend) {
 | ||
|     SDValue NewX = DAG.getNode(ISD::ANY_EXTEND, DL, VT, X);
 | ||
|     insertDAGNode(DAG, N, NewX);
 | ||
|     X = NewX;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, DL, VT);
 | ||
|   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
 | ||
|   SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
 | ||
| 
 | ||
|   // Insert the new nodes into the topological ordering. We must do this in
 | ||
|   // a valid topological ordering as nothing is going to go back and re-sort
 | ||
|   // these nodes. We continually insert before 'N' in sequence as this is
 | ||
|   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
 | ||
|   // hierarchy left to express.
 | ||
|   insertDAGNode(DAG, N, NewMask);
 | ||
|   insertDAGNode(DAG, N, NewAnd);
 | ||
|   insertDAGNode(DAG, N, NewShift);
 | ||
|   DAG.ReplaceAllUsesWith(N, NewShift);
 | ||
|   DAG.RemoveDeadNode(N.getNode());
 | ||
| 
 | ||
|   AM.Scale = 1 << ShiftAmt;
 | ||
|   AM.IndexReg = NewAnd;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| // Implement some heroics to detect shifts of masked values where the mask can
 | ||
| // be replaced by extending the shift and undoing that in the addressing mode
 | ||
| // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
 | ||
| // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
 | ||
| // the addressing mode. This results in code such as:
 | ||
| //
 | ||
| //   int f(short *y, int *lookup_table) {
 | ||
| //     ...
 | ||
| //     return *y + lookup_table[*y >> 11];
 | ||
| //   }
 | ||
| //
 | ||
| // Turning into:
 | ||
| //   movzwl (%rdi), %eax
 | ||
| //   movl %eax, %ecx
 | ||
| //   shrl $11, %ecx
 | ||
| //   addl (%rsi,%rcx,4), %eax
 | ||
| //
 | ||
| // Instead of:
 | ||
| //   movzwl (%rdi), %eax
 | ||
| //   movl %eax, %ecx
 | ||
| //   shrl $9, %ecx
 | ||
| //   andl $124, %rcx
 | ||
| //   addl (%rsi,%rcx), %eax
 | ||
| //
 | ||
| // Note that this function assumes the mask is provided as a mask *after* the
 | ||
| // value is shifted. The input chain may or may not match that, but computing
 | ||
| // such a mask is trivial.
 | ||
| static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
 | ||
|                                     uint64_t Mask,
 | ||
|                                     SDValue Shift, SDValue X,
 | ||
|                                     X86ISelAddressMode &AM) {
 | ||
|   if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
 | ||
|       !isa<ConstantSDNode>(Shift.getOperand(1)))
 | ||
|     return true;
 | ||
| 
 | ||
|   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
 | ||
|   unsigned MaskLZ = countLeadingZeros(Mask);
 | ||
|   unsigned MaskTZ = countTrailingZeros(Mask);
 | ||
| 
 | ||
|   // The amount of shift we're trying to fit into the addressing mode is taken
 | ||
|   // from the trailing zeros of the mask.
 | ||
|   unsigned AMShiftAmt = MaskTZ;
 | ||
| 
 | ||
|   // There is nothing we can do here unless the mask is removing some bits.
 | ||
|   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
 | ||
|   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
 | ||
| 
 | ||
|   // We also need to ensure that mask is a continuous run of bits.
 | ||
|   if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
 | ||
| 
 | ||
|   // Scale the leading zero count down based on the actual size of the value.
 | ||
|   // Also scale it down based on the size of the shift.
 | ||
|   unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
 | ||
|   if (MaskLZ < ScaleDown)
 | ||
|     return true;
 | ||
|   MaskLZ -= ScaleDown;
 | ||
| 
 | ||
|   // The final check is to ensure that any masked out high bits of X are
 | ||
|   // already known to be zero. Otherwise, the mask has a semantic impact
 | ||
|   // other than masking out a couple of low bits. Unfortunately, because of
 | ||
|   // the mask, zero extensions will be removed from operands in some cases.
 | ||
|   // This code works extra hard to look through extensions because we can
 | ||
|   // replace them with zero extensions cheaply if necessary.
 | ||
|   bool ReplacingAnyExtend = false;
 | ||
|   if (X.getOpcode() == ISD::ANY_EXTEND) {
 | ||
|     unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
 | ||
|                           X.getOperand(0).getSimpleValueType().getSizeInBits();
 | ||
|     // Assume that we'll replace the any-extend with a zero-extend, and
 | ||
|     // narrow the search to the extended value.
 | ||
|     X = X.getOperand(0);
 | ||
|     MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
 | ||
|     ReplacingAnyExtend = true;
 | ||
|   }
 | ||
|   APInt MaskedHighBits =
 | ||
|     APInt::getHighBitsSet(X.getSimpleValueType().getSizeInBits(), MaskLZ);
 | ||
|   KnownBits Known = DAG.computeKnownBits(X);
 | ||
|   if (MaskedHighBits != Known.Zero) return true;
 | ||
| 
 | ||
|   // We've identified a pattern that can be transformed into a single shift
 | ||
|   // and an addressing mode. Make it so.
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
|   if (ReplacingAnyExtend) {
 | ||
|     assert(X.getValueType() != VT);
 | ||
|     // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
 | ||
|     SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
 | ||
|     insertDAGNode(DAG, N, NewX);
 | ||
|     X = NewX;
 | ||
|   }
 | ||
|   SDLoc DL(N);
 | ||
|   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
 | ||
|   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
 | ||
|   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
 | ||
|   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
 | ||
| 
 | ||
|   // Insert the new nodes into the topological ordering. We must do this in
 | ||
|   // a valid topological ordering as nothing is going to go back and re-sort
 | ||
|   // these nodes. We continually insert before 'N' in sequence as this is
 | ||
|   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
 | ||
|   // hierarchy left to express.
 | ||
|   insertDAGNode(DAG, N, NewSRLAmt);
 | ||
|   insertDAGNode(DAG, N, NewSRL);
 | ||
|   insertDAGNode(DAG, N, NewSHLAmt);
 | ||
|   insertDAGNode(DAG, N, NewSHL);
 | ||
|   DAG.ReplaceAllUsesWith(N, NewSHL);
 | ||
|   DAG.RemoveDeadNode(N.getNode());
 | ||
| 
 | ||
|   AM.Scale = 1 << AMShiftAmt;
 | ||
|   AM.IndexReg = NewSRL;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| // Transform "(X >> SHIFT) & (MASK << C1)" to
 | ||
| // "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
 | ||
| // matched to a BEXTR later. Returns false if the simplification is performed.
 | ||
| static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
 | ||
|                                    uint64_t Mask,
 | ||
|                                    SDValue Shift, SDValue X,
 | ||
|                                    X86ISelAddressMode &AM,
 | ||
|                                    const X86Subtarget &Subtarget) {
 | ||
|   if (Shift.getOpcode() != ISD::SRL ||
 | ||
|       !isa<ConstantSDNode>(Shift.getOperand(1)) ||
 | ||
|       !Shift.hasOneUse() || !N.hasOneUse())
 | ||
|     return true;
 | ||
| 
 | ||
|   // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
 | ||
|   if (!Subtarget.hasTBM() &&
 | ||
|       !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
 | ||
|     return true;
 | ||
| 
 | ||
|   // We need to ensure that mask is a continuous run of bits.
 | ||
|   if (!isShiftedMask_64(Mask)) return true;
 | ||
| 
 | ||
|   unsigned ShiftAmt = Shift.getConstantOperandVal(1);
 | ||
| 
 | ||
|   // The amount of shift we're trying to fit into the addressing mode is taken
 | ||
|   // from the trailing zeros of the mask.
 | ||
|   unsigned AMShiftAmt = countTrailingZeros(Mask);
 | ||
| 
 | ||
|   // There is nothing we can do here unless the mask is removing some bits.
 | ||
|   // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
 | ||
|   if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
 | ||
| 
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
|   SDLoc DL(N);
 | ||
|   SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
 | ||
|   SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
 | ||
|   SDValue NewMask = DAG.getConstant(Mask >> AMShiftAmt, DL, VT);
 | ||
|   SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, NewSRL, NewMask);
 | ||
|   SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
 | ||
|   SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewAnd, NewSHLAmt);
 | ||
| 
 | ||
|   // Insert the new nodes into the topological ordering. We must do this in
 | ||
|   // a valid topological ordering as nothing is going to go back and re-sort
 | ||
|   // these nodes. We continually insert before 'N' in sequence as this is
 | ||
|   // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
 | ||
|   // hierarchy left to express.
 | ||
|   insertDAGNode(DAG, N, NewSRLAmt);
 | ||
|   insertDAGNode(DAG, N, NewSRL);
 | ||
|   insertDAGNode(DAG, N, NewMask);
 | ||
|   insertDAGNode(DAG, N, NewAnd);
 | ||
|   insertDAGNode(DAG, N, NewSHLAmt);
 | ||
|   insertDAGNode(DAG, N, NewSHL);
 | ||
|   DAG.ReplaceAllUsesWith(N, NewSHL);
 | ||
|   DAG.RemoveDeadNode(N.getNode());
 | ||
| 
 | ||
|   AM.Scale = 1 << AMShiftAmt;
 | ||
|   AM.IndexReg = NewAnd;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
 | ||
|                                               unsigned Depth) {
 | ||
|   SDLoc dl(N);
 | ||
|   LLVM_DEBUG({
 | ||
|     dbgs() << "MatchAddress: ";
 | ||
|     AM.dump(CurDAG);
 | ||
|   });
 | ||
|   // Limit recursion.
 | ||
|   if (Depth > 5)
 | ||
|     return matchAddressBase(N, AM);
 | ||
| 
 | ||
|   // If this is already a %rip relative address, we can only merge immediates
 | ||
|   // into it.  Instead of handling this in every case, we handle it here.
 | ||
|   // RIP relative addressing: %rip + 32-bit displacement!
 | ||
|   if (AM.isRIPRelative()) {
 | ||
|     // FIXME: JumpTable and ExternalSymbol address currently don't like
 | ||
|     // displacements.  It isn't very important, but this should be fixed for
 | ||
|     // consistency.
 | ||
|     if (!(AM.ES || AM.MCSym) && AM.JT != -1)
 | ||
|       return true;
 | ||
| 
 | ||
|     if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
 | ||
|       if (!foldOffsetIntoAddress(Cst->getSExtValue(), AM))
 | ||
|         return false;
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   switch (N.getOpcode()) {
 | ||
|   default: break;
 | ||
|   case ISD::LOCAL_RECOVER: {
 | ||
|     if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
 | ||
|       if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(N.getOperand(0))) {
 | ||
|         // Use the symbol and don't prefix it.
 | ||
|         AM.MCSym = ESNode->getMCSymbol();
 | ||
|         return false;
 | ||
|       }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::Constant: {
 | ||
|     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
 | ||
|     if (!foldOffsetIntoAddress(Val, AM))
 | ||
|       return false;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   case X86ISD::Wrapper:
 | ||
|   case X86ISD::WrapperRIP:
 | ||
|     if (!matchWrapper(N, AM))
 | ||
|       return false;
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::LOAD:
 | ||
|     if (!matchLoadInAddress(cast<LoadSDNode>(N), AM))
 | ||
|       return false;
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::FrameIndex:
 | ||
|     if (AM.BaseType == X86ISelAddressMode::RegBase &&
 | ||
|         AM.Base_Reg.getNode() == nullptr &&
 | ||
|         (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
 | ||
|       AM.BaseType = X86ISelAddressMode::FrameIndexBase;
 | ||
|       AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
 | ||
|       return false;
 | ||
|     }
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::SHL:
 | ||
|     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
 | ||
|       break;
 | ||
| 
 | ||
|     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | ||
|       unsigned Val = CN->getZExtValue();
 | ||
|       // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
 | ||
|       // that the base operand remains free for further matching. If
 | ||
|       // the base doesn't end up getting used, a post-processing step
 | ||
|       // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
 | ||
|       if (Val == 1 || Val == 2 || Val == 3) {
 | ||
|         AM.Scale = 1 << Val;
 | ||
|         SDValue ShVal = N.getOperand(0);
 | ||
| 
 | ||
|         // Okay, we know that we have a scale by now.  However, if the scaled
 | ||
|         // value is an add of something and a constant, we can fold the
 | ||
|         // constant into the disp field here.
 | ||
|         if (CurDAG->isBaseWithConstantOffset(ShVal)) {
 | ||
|           AM.IndexReg = ShVal.getOperand(0);
 | ||
|           ConstantSDNode *AddVal = cast<ConstantSDNode>(ShVal.getOperand(1));
 | ||
|           uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
 | ||
|           if (!foldOffsetIntoAddress(Disp, AM))
 | ||
|             return false;
 | ||
|         }
 | ||
| 
 | ||
|         AM.IndexReg = ShVal;
 | ||
|         return false;
 | ||
|       }
 | ||
|     }
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::SRL: {
 | ||
|     // Scale must not be used already.
 | ||
|     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
 | ||
| 
 | ||
|     // We only handle up to 64-bit values here as those are what matter for
 | ||
|     // addressing mode optimizations.
 | ||
|     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
 | ||
|            "Unexpected value size!");
 | ||
| 
 | ||
|     SDValue And = N.getOperand(0);
 | ||
|     if (And.getOpcode() != ISD::AND) break;
 | ||
|     SDValue X = And.getOperand(0);
 | ||
| 
 | ||
|     // The mask used for the transform is expected to be post-shift, but we
 | ||
|     // found the shift first so just apply the shift to the mask before passing
 | ||
|     // it down.
 | ||
|     if (!isa<ConstantSDNode>(N.getOperand(1)) ||
 | ||
|         !isa<ConstantSDNode>(And.getOperand(1)))
 | ||
|       break;
 | ||
|     uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
 | ||
| 
 | ||
|     // Try to fold the mask and shift into the scale, and return false if we
 | ||
|     // succeed.
 | ||
|     if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
 | ||
|       return false;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::SMUL_LOHI:
 | ||
|   case ISD::UMUL_LOHI:
 | ||
|     // A mul_lohi where we need the low part can be folded as a plain multiply.
 | ||
|     if (N.getResNo() != 0) break;
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::MUL:
 | ||
|   case X86ISD::MUL_IMM:
 | ||
|     // X*[3,5,9] -> X+X*[2,4,8]
 | ||
|     if (AM.BaseType == X86ISelAddressMode::RegBase &&
 | ||
|         AM.Base_Reg.getNode() == nullptr &&
 | ||
|         AM.IndexReg.getNode() == nullptr) {
 | ||
|       if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
 | ||
|         if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
 | ||
|             CN->getZExtValue() == 9) {
 | ||
|           AM.Scale = unsigned(CN->getZExtValue())-1;
 | ||
| 
 | ||
|           SDValue MulVal = N.getOperand(0);
 | ||
|           SDValue Reg;
 | ||
| 
 | ||
|           // Okay, we know that we have a scale by now.  However, if the scaled
 | ||
|           // value is an add of something and a constant, we can fold the
 | ||
|           // constant into the disp field here.
 | ||
|           if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
 | ||
|               isa<ConstantSDNode>(MulVal.getOperand(1))) {
 | ||
|             Reg = MulVal.getOperand(0);
 | ||
|             ConstantSDNode *AddVal =
 | ||
|               cast<ConstantSDNode>(MulVal.getOperand(1));
 | ||
|             uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
 | ||
|             if (foldOffsetIntoAddress(Disp, AM))
 | ||
|               Reg = N.getOperand(0);
 | ||
|           } else {
 | ||
|             Reg = N.getOperand(0);
 | ||
|           }
 | ||
| 
 | ||
|           AM.IndexReg = AM.Base_Reg = Reg;
 | ||
|           return false;
 | ||
|         }
 | ||
|     }
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::SUB: {
 | ||
|     // Given A-B, if A can be completely folded into the address and
 | ||
|     // the index field with the index field unused, use -B as the index.
 | ||
|     // This is a win if a has multiple parts that can be folded into
 | ||
|     // the address. Also, this saves a mov if the base register has
 | ||
|     // other uses, since it avoids a two-address sub instruction, however
 | ||
|     // it costs an additional mov if the index register has other uses.
 | ||
| 
 | ||
|     // Add an artificial use to this node so that we can keep track of
 | ||
|     // it if it gets CSE'd with a different node.
 | ||
|     HandleSDNode Handle(N);
 | ||
| 
 | ||
|     // Test if the LHS of the sub can be folded.
 | ||
|     X86ISelAddressMode Backup = AM;
 | ||
|     if (matchAddressRecursively(N.getOperand(0), AM, Depth+1)) {
 | ||
|       N = Handle.getValue();
 | ||
|       AM = Backup;
 | ||
|       break;
 | ||
|     }
 | ||
|     N = Handle.getValue();
 | ||
|     // Test if the index field is free for use.
 | ||
|     if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
 | ||
|       AM = Backup;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     int Cost = 0;
 | ||
|     SDValue RHS = N.getOperand(1);
 | ||
|     // If the RHS involves a register with multiple uses, this
 | ||
|     // transformation incurs an extra mov, due to the neg instruction
 | ||
|     // clobbering its operand.
 | ||
|     if (!RHS.getNode()->hasOneUse() ||
 | ||
|         RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
 | ||
|         RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
 | ||
|         RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
 | ||
|         (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
 | ||
|          RHS.getOperand(0).getValueType() == MVT::i32))
 | ||
|       ++Cost;
 | ||
|     // If the base is a register with multiple uses, this
 | ||
|     // transformation may save a mov.
 | ||
|     if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
 | ||
|          !AM.Base_Reg.getNode()->hasOneUse()) ||
 | ||
|         AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | ||
|       --Cost;
 | ||
|     // If the folded LHS was interesting, this transformation saves
 | ||
|     // address arithmetic.
 | ||
|     if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
 | ||
|         ((AM.Disp != 0) && (Backup.Disp == 0)) +
 | ||
|         (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
 | ||
|       --Cost;
 | ||
|     // If it doesn't look like it may be an overall win, don't do it.
 | ||
|     if (Cost >= 0) {
 | ||
|       AM = Backup;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     // Ok, the transformation is legal and appears profitable. Go for it.
 | ||
|     // Negation will be emitted later to avoid creating dangling nodes if this
 | ||
|     // was an unprofitable LEA.
 | ||
|     AM.IndexReg = RHS;
 | ||
|     AM.NegateIndex = true;
 | ||
|     AM.Scale = 1;
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::ADD:
 | ||
|     if (!matchAdd(N, AM, Depth))
 | ||
|       return false;
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::OR:
 | ||
|     // We want to look through a transform in InstCombine and DAGCombiner that
 | ||
|     // turns 'add' into 'or', so we can treat this 'or' exactly like an 'add'.
 | ||
|     // Example: (or (and x, 1), (shl y, 3)) --> (add (and x, 1), (shl y, 3))
 | ||
|     // An 'lea' can then be used to match the shift (multiply) and add:
 | ||
|     // and $1, %esi
 | ||
|     // lea (%rsi, %rdi, 8), %rax
 | ||
|     if (CurDAG->haveNoCommonBitsSet(N.getOperand(0), N.getOperand(1)) &&
 | ||
|         !matchAdd(N, AM, Depth))
 | ||
|       return false;
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::AND: {
 | ||
|     // Perform some heroic transforms on an and of a constant-count shift
 | ||
|     // with a constant to enable use of the scaled offset field.
 | ||
| 
 | ||
|     // Scale must not be used already.
 | ||
|     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
 | ||
| 
 | ||
|     // We only handle up to 64-bit values here as those are what matter for
 | ||
|     // addressing mode optimizations.
 | ||
|     assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
 | ||
|            "Unexpected value size!");
 | ||
| 
 | ||
|     if (!isa<ConstantSDNode>(N.getOperand(1)))
 | ||
|       break;
 | ||
| 
 | ||
|     if (N.getOperand(0).getOpcode() == ISD::SRL) {
 | ||
|       SDValue Shift = N.getOperand(0);
 | ||
|       SDValue X = Shift.getOperand(0);
 | ||
| 
 | ||
|       uint64_t Mask = N.getConstantOperandVal(1);
 | ||
| 
 | ||
|       // Try to fold the mask and shift into an extract and scale.
 | ||
|       if (!foldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
 | ||
|         return false;
 | ||
| 
 | ||
|       // Try to fold the mask and shift directly into the scale.
 | ||
|       if (!foldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
 | ||
|         return false;
 | ||
| 
 | ||
|       // Try to fold the mask and shift into BEXTR and scale.
 | ||
|       if (!foldMaskedShiftToBEXTR(*CurDAG, N, Mask, Shift, X, AM, *Subtarget))
 | ||
|         return false;
 | ||
|     }
 | ||
| 
 | ||
|     // Try to swap the mask and shift to place shifts which can be done as
 | ||
|     // a scale on the outside of the mask.
 | ||
|     if (!foldMaskedShiftToScaledMask(*CurDAG, N, AM))
 | ||
|       return false;
 | ||
| 
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::ZERO_EXTEND: {
 | ||
|     // Try to widen a zexted shift left to the same size as its use, so we can
 | ||
|     // match the shift as a scale factor.
 | ||
|     if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
 | ||
|       break;
 | ||
|     if (N.getOperand(0).getOpcode() != ISD::SHL || !N.getOperand(0).hasOneUse())
 | ||
|       break;
 | ||
| 
 | ||
|     // Give up if the shift is not a valid scale factor [1,2,3].
 | ||
|     SDValue Shl = N.getOperand(0);
 | ||
|     auto *ShAmtC = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
 | ||
|     if (!ShAmtC || ShAmtC->getZExtValue() > 3)
 | ||
|       break;
 | ||
| 
 | ||
|     // The narrow shift must only shift out zero bits (it must be 'nuw').
 | ||
|     // That makes it safe to widen to the destination type.
 | ||
|     APInt HighZeros = APInt::getHighBitsSet(Shl.getValueSizeInBits(),
 | ||
|                                             ShAmtC->getZExtValue());
 | ||
|     if (!CurDAG->MaskedValueIsZero(Shl.getOperand(0), HighZeros))
 | ||
|       break;
 | ||
| 
 | ||
|     // zext (shl nuw i8 %x, C) to i32 --> shl (zext i8 %x to i32), (zext C)
 | ||
|     MVT VT = N.getSimpleValueType();
 | ||
|     SDLoc DL(N);
 | ||
|     SDValue Zext = CurDAG->getNode(ISD::ZERO_EXTEND, DL, VT, Shl.getOperand(0));
 | ||
|     SDValue NewShl = CurDAG->getNode(ISD::SHL, DL, VT, Zext, Shl.getOperand(1));
 | ||
| 
 | ||
|     // Convert the shift to scale factor.
 | ||
|     AM.Scale = 1 << ShAmtC->getZExtValue();
 | ||
|     AM.IndexReg = Zext;
 | ||
| 
 | ||
|     insertDAGNode(*CurDAG, N, Zext);
 | ||
|     insertDAGNode(*CurDAG, N, NewShl);
 | ||
|     CurDAG->ReplaceAllUsesWith(N, NewShl);
 | ||
|     CurDAG->RemoveDeadNode(N.getNode());
 | ||
|     return false;
 | ||
|   }
 | ||
|   }
 | ||
| 
 | ||
|   return matchAddressBase(N, AM);
 | ||
| }
 | ||
| 
 | ||
| /// Helper for MatchAddress. Add the specified node to the
 | ||
| /// specified addressing mode without any further recursion.
 | ||
| bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
 | ||
|   // Is the base register already occupied?
 | ||
|   if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
 | ||
|     // If so, check to see if the scale index register is set.
 | ||
|     if (!AM.IndexReg.getNode()) {
 | ||
|       AM.IndexReg = N;
 | ||
|       AM.Scale = 1;
 | ||
|       return false;
 | ||
|     }
 | ||
| 
 | ||
|     // Otherwise, we cannot select it.
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // Default, generate it as a register.
 | ||
|   AM.BaseType = X86ISelAddressMode::RegBase;
 | ||
|   AM.Base_Reg = N;
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
 | ||
|                                                     X86ISelAddressMode &AM,
 | ||
|                                                     unsigned Depth) {
 | ||
|   SDLoc dl(N);
 | ||
|   LLVM_DEBUG({
 | ||
|     dbgs() << "MatchVectorAddress: ";
 | ||
|     AM.dump(CurDAG);
 | ||
|   });
 | ||
|   // Limit recursion.
 | ||
|   if (Depth > 5)
 | ||
|     return matchAddressBase(N, AM);
 | ||
| 
 | ||
|   // TODO: Support other operations.
 | ||
|   switch (N.getOpcode()) {
 | ||
|   case ISD::Constant: {
 | ||
|     uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
 | ||
|     if (!foldOffsetIntoAddress(Val, AM))
 | ||
|       return false;
 | ||
|     break;
 | ||
|   }
 | ||
|   case X86ISD::Wrapper:
 | ||
|     if (!matchWrapper(N, AM))
 | ||
|       return false;
 | ||
|     break;
 | ||
|   case ISD::ADD: {
 | ||
|     // Add an artificial use to this node so that we can keep track of
 | ||
|     // it if it gets CSE'd with a different node.
 | ||
|     HandleSDNode Handle(N);
 | ||
| 
 | ||
|     X86ISelAddressMode Backup = AM;
 | ||
|     if (!matchVectorAddressRecursively(N.getOperand(0), AM, Depth + 1) &&
 | ||
|         !matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
 | ||
|                                        Depth + 1))
 | ||
|       return false;
 | ||
|     AM = Backup;
 | ||
| 
 | ||
|     // Try again after commuting the operands.
 | ||
|     if (!matchVectorAddressRecursively(Handle.getValue().getOperand(1), AM,
 | ||
|                                        Depth + 1) &&
 | ||
|         !matchVectorAddressRecursively(Handle.getValue().getOperand(0), AM,
 | ||
|                                        Depth + 1))
 | ||
|       return false;
 | ||
|     AM = Backup;
 | ||
| 
 | ||
|     N = Handle.getValue();
 | ||
|     break;
 | ||
|   }
 | ||
|   }
 | ||
| 
 | ||
|   return matchAddressBase(N, AM);
 | ||
| }
 | ||
| 
 | ||
| /// Helper for selectVectorAddr. Handles things that can be folded into a
 | ||
| /// gather/scatter address. The index register and scale should have already
 | ||
| /// been handled.
 | ||
| bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
 | ||
|   return matchVectorAddressRecursively(N, AM, 0);
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
 | ||
|                                        SDValue IndexOp, SDValue ScaleOp,
 | ||
|                                        SDValue &Base, SDValue &Scale,
 | ||
|                                        SDValue &Index, SDValue &Disp,
 | ||
|                                        SDValue &Segment) {
 | ||
|   X86ISelAddressMode AM;
 | ||
|   AM.IndexReg = IndexOp;
 | ||
|   AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
 | ||
| 
 | ||
|   unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
 | ||
|   if (AddrSpace == X86AS::GS)
 | ||
|     AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
 | ||
|   if (AddrSpace == X86AS::FS)
 | ||
|     AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
 | ||
|   if (AddrSpace == X86AS::SS)
 | ||
|     AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
 | ||
| 
 | ||
|   SDLoc DL(BasePtr);
 | ||
|   MVT VT = BasePtr.getSimpleValueType();
 | ||
| 
 | ||
|   // Try to match into the base and displacement fields.
 | ||
|   if (matchVectorAddress(BasePtr, AM))
 | ||
|     return false;
 | ||
| 
 | ||
|   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Returns true if it is able to pattern match an addressing mode.
 | ||
| /// It returns the operands which make up the maximal addressing mode it can
 | ||
| /// match by reference.
 | ||
| ///
 | ||
| /// Parent is the parent node of the addr operand that is being matched.  It
 | ||
| /// is always a load, store, atomic node, or null.  It is only null when
 | ||
| /// checking memory operands for inline asm nodes.
 | ||
| bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
 | ||
|                                  SDValue &Scale, SDValue &Index,
 | ||
|                                  SDValue &Disp, SDValue &Segment) {
 | ||
|   X86ISelAddressMode AM;
 | ||
| 
 | ||
|   if (Parent &&
 | ||
|       // This list of opcodes are all the nodes that have an "addr:$ptr" operand
 | ||
|       // that are not a MemSDNode, and thus don't have proper addrspace info.
 | ||
|       Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
 | ||
|       Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
 | ||
|       Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
 | ||
|       Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
 | ||
|       Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
 | ||
|       Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
 | ||
|       Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
 | ||
|     unsigned AddrSpace =
 | ||
|       cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
 | ||
|     if (AddrSpace == X86AS::GS)
 | ||
|       AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
 | ||
|     if (AddrSpace == X86AS::FS)
 | ||
|       AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
 | ||
|     if (AddrSpace == X86AS::SS)
 | ||
|       AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
 | ||
|   }
 | ||
| 
 | ||
|   // Save the DL and VT before calling matchAddress, it can invalidate N.
 | ||
|   SDLoc DL(N);
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
| 
 | ||
|   if (matchAddress(N, AM))
 | ||
|     return false;
 | ||
| 
 | ||
|   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
 | ||
|   // In static codegen with small code model, we can get the address of a label
 | ||
|   // into a register with 'movl'
 | ||
|   if (N->getOpcode() != X86ISD::Wrapper)
 | ||
|     return false;
 | ||
| 
 | ||
|   N = N.getOperand(0);
 | ||
| 
 | ||
|   // At least GNU as does not accept 'movl' for TPOFF relocations.
 | ||
|   // FIXME: We could use 'movl' when we know we are targeting MC.
 | ||
|   if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
 | ||
|     return false;
 | ||
| 
 | ||
|   Imm = N;
 | ||
|   if (N->getOpcode() != ISD::TargetGlobalAddress)
 | ||
|     return TM.getCodeModel() == CodeModel::Small;
 | ||
| 
 | ||
|   Optional<ConstantRange> CR =
 | ||
|       cast<GlobalAddressSDNode>(N)->getGlobal()->getAbsoluteSymbolRange();
 | ||
|   if (!CR)
 | ||
|     return TM.getCodeModel() == CodeModel::Small;
 | ||
| 
 | ||
|   return CR->getUnsignedMax().ult(1ull << 32);
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
 | ||
|                                          SDValue &Scale, SDValue &Index,
 | ||
|                                          SDValue &Disp, SDValue &Segment) {
 | ||
|   // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
 | ||
|   SDLoc DL(N);
 | ||
| 
 | ||
|   if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
 | ||
|     return false;
 | ||
| 
 | ||
|   RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
 | ||
|   if (RN && RN->getReg() == 0)
 | ||
|     Base = CurDAG->getRegister(0, MVT::i64);
 | ||
|   else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
 | ||
|     // Base could already be %rip, particularly in the x32 ABI.
 | ||
|     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
 | ||
|                                                      MVT::i64), 0);
 | ||
|     Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
 | ||
|                                          Base);
 | ||
|   }
 | ||
| 
 | ||
|   RN = dyn_cast<RegisterSDNode>(Index);
 | ||
|   if (RN && RN->getReg() == 0)
 | ||
|     Index = CurDAG->getRegister(0, MVT::i64);
 | ||
|   else {
 | ||
|     assert(Index.getValueType() == MVT::i32 &&
 | ||
|            "Expect to be extending 32-bit registers for use in LEA");
 | ||
|     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
 | ||
|                                                      MVT::i64), 0);
 | ||
|     Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
 | ||
|                                           Index);
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Calls SelectAddr and determines if the maximal addressing
 | ||
| /// mode it matches can be cost effectively emitted as an LEA instruction.
 | ||
| bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
 | ||
|                                     SDValue &Base, SDValue &Scale,
 | ||
|                                     SDValue &Index, SDValue &Disp,
 | ||
|                                     SDValue &Segment) {
 | ||
|   X86ISelAddressMode AM;
 | ||
| 
 | ||
|   // Save the DL and VT before calling matchAddress, it can invalidate N.
 | ||
|   SDLoc DL(N);
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
| 
 | ||
|   // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
 | ||
|   // segments.
 | ||
|   SDValue Copy = AM.Segment;
 | ||
|   SDValue T = CurDAG->getRegister(0, MVT::i32);
 | ||
|   AM.Segment = T;
 | ||
|   if (matchAddress(N, AM))
 | ||
|     return false;
 | ||
|   assert (T == AM.Segment);
 | ||
|   AM.Segment = Copy;
 | ||
| 
 | ||
|   unsigned Complexity = 0;
 | ||
|   if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
 | ||
|     Complexity = 1;
 | ||
|   else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | ||
|     Complexity = 4;
 | ||
| 
 | ||
|   if (AM.IndexReg.getNode())
 | ||
|     Complexity++;
 | ||
| 
 | ||
|   // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
 | ||
|   // a simple shift.
 | ||
|   if (AM.Scale > 1)
 | ||
|     Complexity++;
 | ||
| 
 | ||
|   // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
 | ||
|   // to a LEA. This is determined with some experimentation but is by no means
 | ||
|   // optimal (especially for code size consideration). LEA is nice because of
 | ||
|   // its three-address nature. Tweak the cost function again when we can run
 | ||
|   // convertToThreeAddress() at register allocation time.
 | ||
|   if (AM.hasSymbolicDisplacement()) {
 | ||
|     // For X86-64, always use LEA to materialize RIP-relative addresses.
 | ||
|     if (Subtarget->is64Bit())
 | ||
|       Complexity = 4;
 | ||
|     else
 | ||
|       Complexity += 2;
 | ||
|   }
 | ||
| 
 | ||
|   // Heuristic: try harder to form an LEA from ADD if the operands set flags.
 | ||
|   // Unlike ADD, LEA does not affect flags, so we will be less likely to require
 | ||
|   // duplicating flag-producing instructions later in the pipeline.
 | ||
|   if (N.getOpcode() == ISD::ADD) {
 | ||
|     auto isMathWithFlags = [](SDValue V) {
 | ||
|       switch (V.getOpcode()) {
 | ||
|       case X86ISD::ADD:
 | ||
|       case X86ISD::SUB:
 | ||
|       case X86ISD::ADC:
 | ||
|       case X86ISD::SBB:
 | ||
|       /* TODO: These opcodes can be added safely, but we may want to justify
 | ||
|                their inclusion for different reasons (better for reg-alloc).
 | ||
|       case X86ISD::SMUL:
 | ||
|       case X86ISD::UMUL:
 | ||
|       case X86ISD::OR:
 | ||
|       case X86ISD::XOR:
 | ||
|       case X86ISD::AND:
 | ||
|       */
 | ||
|         // Value 1 is the flag output of the node - verify it's not dead.
 | ||
|         return !SDValue(V.getNode(), 1).use_empty();
 | ||
|       default:
 | ||
|         return false;
 | ||
|       }
 | ||
|     };
 | ||
|     // TODO: We might want to factor in whether there's a load folding
 | ||
|     // opportunity for the math op that disappears with LEA.
 | ||
|     if (isMathWithFlags(N.getOperand(0)) || isMathWithFlags(N.getOperand(1)))
 | ||
|       Complexity++;
 | ||
|   }
 | ||
| 
 | ||
|   if (AM.Disp)
 | ||
|     Complexity++;
 | ||
| 
 | ||
|   // If it isn't worth using an LEA, reject it.
 | ||
|   if (Complexity <= 2)
 | ||
|     return false;
 | ||
| 
 | ||
|   getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// This is only run on TargetGlobalTLSAddress nodes.
 | ||
| bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
 | ||
|                                         SDValue &Scale, SDValue &Index,
 | ||
|                                         SDValue &Disp, SDValue &Segment) {
 | ||
|   assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
 | ||
|   const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
 | ||
| 
 | ||
|   X86ISelAddressMode AM;
 | ||
|   AM.GV = GA->getGlobal();
 | ||
|   AM.Disp += GA->getOffset();
 | ||
|   AM.SymbolFlags = GA->getTargetFlags();
 | ||
| 
 | ||
|   if (Subtarget->is32Bit()) {
 | ||
|     AM.Scale = 1;
 | ||
|     AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
 | ||
|   }
 | ||
| 
 | ||
|   MVT VT = N.getSimpleValueType();
 | ||
|   getAddressOperands(AM, SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
 | ||
|   // Keep track of the original value type and whether this value was
 | ||
|   // truncated. If we see a truncation from pointer type to VT that truncates
 | ||
|   // bits that are known to be zero, we can use a narrow reference.
 | ||
|   EVT VT = N.getValueType();
 | ||
|   bool WasTruncated = false;
 | ||
|   if (N.getOpcode() == ISD::TRUNCATE) {
 | ||
|     WasTruncated = true;
 | ||
|     N = N.getOperand(0);
 | ||
|   }
 | ||
| 
 | ||
|   if (N.getOpcode() != X86ISD::Wrapper)
 | ||
|     return false;
 | ||
| 
 | ||
|   // We can only use non-GlobalValues as immediates if they were not truncated,
 | ||
|   // as we do not have any range information. If we have a GlobalValue and the
 | ||
|   // address was not truncated, we can select it as an operand directly.
 | ||
|   unsigned Opc = N.getOperand(0)->getOpcode();
 | ||
|   if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
 | ||
|     Op = N.getOperand(0);
 | ||
|     // We can only select the operand directly if we didn't have to look past a
 | ||
|     // truncate.
 | ||
|     return !WasTruncated;
 | ||
|   }
 | ||
| 
 | ||
|   // Check that the global's range fits into VT.
 | ||
|   auto *GA = cast<GlobalAddressSDNode>(N.getOperand(0));
 | ||
|   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
 | ||
|   if (!CR || CR->getUnsignedMax().uge(1ull << VT.getSizeInBits()))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Okay, we can use a narrow reference.
 | ||
|   Op = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(N), VT,
 | ||
|                                       GA->getOffset(), GA->getTargetFlags());
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
 | ||
|                                   SDValue &Base, SDValue &Scale,
 | ||
|                                   SDValue &Index, SDValue &Disp,
 | ||
|                                   SDValue &Segment) {
 | ||
|   assert(Root && P && "Unknown root/parent nodes");
 | ||
|   if (!ISD::isNON_EXTLoad(N.getNode()) ||
 | ||
|       !IsProfitableToFold(N, P, Root) ||
 | ||
|       !IsLegalToFold(N, P, Root, OptLevel))
 | ||
|     return false;
 | ||
| 
 | ||
|   return selectAddr(N.getNode(),
 | ||
|                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
 | ||
|                                        SDValue &Base, SDValue &Scale,
 | ||
|                                        SDValue &Index, SDValue &Disp,
 | ||
|                                        SDValue &Segment) {
 | ||
|   assert(Root && P && "Unknown root/parent nodes");
 | ||
|   if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
 | ||
|       !IsProfitableToFold(N, P, Root) ||
 | ||
|       !IsLegalToFold(N, P, Root, OptLevel))
 | ||
|     return false;
 | ||
| 
 | ||
|   return selectAddr(N.getNode(),
 | ||
|                     N.getOperand(1), Base, Scale, Index, Disp, Segment);
 | ||
| }
 | ||
| 
 | ||
| /// Return an SDNode that returns the value of the global base register.
 | ||
| /// Output instructions required to initialize the global base register,
 | ||
| /// if necessary.
 | ||
| SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
 | ||
|   unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
 | ||
|   auto &DL = MF->getDataLayout();
 | ||
|   return CurDAG->getRegister(GlobalBaseReg, TLI->getPointerTy(DL)).getNode();
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
 | ||
|   if (N->getOpcode() == ISD::TRUNCATE)
 | ||
|     N = N->getOperand(0).getNode();
 | ||
|   if (N->getOpcode() != X86ISD::Wrapper)
 | ||
|     return false;
 | ||
| 
 | ||
|   auto *GA = dyn_cast<GlobalAddressSDNode>(N->getOperand(0));
 | ||
|   if (!GA)
 | ||
|     return false;
 | ||
| 
 | ||
|   Optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
 | ||
|   if (!CR)
 | ||
|     return Width == 32 && TM.getCodeModel() == CodeModel::Small;
 | ||
| 
 | ||
|   return CR->getSignedMin().sge(-1ull << Width) &&
 | ||
|          CR->getSignedMax().slt(1ull << Width);
 | ||
| }
 | ||
| 
 | ||
| static X86::CondCode getCondFromNode(SDNode *N) {
 | ||
|   assert(N->isMachineOpcode() && "Unexpected node");
 | ||
|   X86::CondCode CC = X86::COND_INVALID;
 | ||
|   unsigned Opc = N->getMachineOpcode();
 | ||
|   if (Opc == X86::JCC_1)
 | ||
|     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(1));
 | ||
|   else if (Opc == X86::SETCCr)
 | ||
|     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(0));
 | ||
|   else if (Opc == X86::SETCCm)
 | ||
|     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(5));
 | ||
|   else if (Opc == X86::CMOV16rr || Opc == X86::CMOV32rr ||
 | ||
|            Opc == X86::CMOV64rr)
 | ||
|     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(2));
 | ||
|   else if (Opc == X86::CMOV16rm || Opc == X86::CMOV32rm ||
 | ||
|            Opc == X86::CMOV64rm)
 | ||
|     CC = static_cast<X86::CondCode>(N->getConstantOperandVal(6));
 | ||
| 
 | ||
|   return CC;
 | ||
| }
 | ||
| 
 | ||
| /// Test whether the given X86ISD::CMP node has any users that use a flag
 | ||
| /// other than ZF.
 | ||
| bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
 | ||
|   // Examine each user of the node.
 | ||
|   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
 | ||
|          UI != UE; ++UI) {
 | ||
|     // Only check things that use the flags.
 | ||
|     if (UI.getUse().getResNo() != Flags.getResNo())
 | ||
|       continue;
 | ||
|     // Only examine CopyToReg uses that copy to EFLAGS.
 | ||
|     if (UI->getOpcode() != ISD::CopyToReg ||
 | ||
|         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
 | ||
|       return false;
 | ||
|     // Examine each user of the CopyToReg use.
 | ||
|     for (SDNode::use_iterator FlagUI = UI->use_begin(),
 | ||
|            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
 | ||
|       // Only examine the Flag result.
 | ||
|       if (FlagUI.getUse().getResNo() != 1) continue;
 | ||
|       // Anything unusual: assume conservatively.
 | ||
|       if (!FlagUI->isMachineOpcode()) return false;
 | ||
|       // Examine the condition code of the user.
 | ||
|       X86::CondCode CC = getCondFromNode(*FlagUI);
 | ||
| 
 | ||
|       switch (CC) {
 | ||
|       // Comparisons which only use the zero flag.
 | ||
|       case X86::COND_E: case X86::COND_NE:
 | ||
|         continue;
 | ||
|       // Anything else: assume conservatively.
 | ||
|       default:
 | ||
|         return false;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Test whether the given X86ISD::CMP node has any uses which require the SF
 | ||
| /// flag to be accurate.
 | ||
| bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
 | ||
|   // Examine each user of the node.
 | ||
|   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
 | ||
|          UI != UE; ++UI) {
 | ||
|     // Only check things that use the flags.
 | ||
|     if (UI.getUse().getResNo() != Flags.getResNo())
 | ||
|       continue;
 | ||
|     // Only examine CopyToReg uses that copy to EFLAGS.
 | ||
|     if (UI->getOpcode() != ISD::CopyToReg ||
 | ||
|         cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
 | ||
|       return false;
 | ||
|     // Examine each user of the CopyToReg use.
 | ||
|     for (SDNode::use_iterator FlagUI = UI->use_begin(),
 | ||
|            FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
 | ||
|       // Only examine the Flag result.
 | ||
|       if (FlagUI.getUse().getResNo() != 1) continue;
 | ||
|       // Anything unusual: assume conservatively.
 | ||
|       if (!FlagUI->isMachineOpcode()) return false;
 | ||
|       // Examine the condition code of the user.
 | ||
|       X86::CondCode CC = getCondFromNode(*FlagUI);
 | ||
| 
 | ||
|       switch (CC) {
 | ||
|       // Comparisons which don't examine the SF flag.
 | ||
|       case X86::COND_A: case X86::COND_AE:
 | ||
|       case X86::COND_B: case X86::COND_BE:
 | ||
|       case X86::COND_E: case X86::COND_NE:
 | ||
|       case X86::COND_O: case X86::COND_NO:
 | ||
|       case X86::COND_P: case X86::COND_NP:
 | ||
|         continue;
 | ||
|       // Anything else: assume conservatively.
 | ||
|       default:
 | ||
|         return false;
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| static bool mayUseCarryFlag(X86::CondCode CC) {
 | ||
|   switch (CC) {
 | ||
|   // Comparisons which don't examine the CF flag.
 | ||
|   case X86::COND_O: case X86::COND_NO:
 | ||
|   case X86::COND_E: case X86::COND_NE:
 | ||
|   case X86::COND_S: case X86::COND_NS:
 | ||
|   case X86::COND_P: case X86::COND_NP:
 | ||
|   case X86::COND_L: case X86::COND_GE:
 | ||
|   case X86::COND_G: case X86::COND_LE:
 | ||
|     return false;
 | ||
|   // Anything else: assume conservatively.
 | ||
|   default:
 | ||
|     return true;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| /// Test whether the given node which sets flags has any uses which require the
 | ||
| /// CF flag to be accurate.
 | ||
|  bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
 | ||
|   // Examine each user of the node.
 | ||
|   for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
 | ||
|          UI != UE; ++UI) {
 | ||
|     // Only check things that use the flags.
 | ||
|     if (UI.getUse().getResNo() != Flags.getResNo())
 | ||
|       continue;
 | ||
| 
 | ||
|     unsigned UIOpc = UI->getOpcode();
 | ||
| 
 | ||
|     if (UIOpc == ISD::CopyToReg) {
 | ||
|       // Only examine CopyToReg uses that copy to EFLAGS.
 | ||
|       if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
 | ||
|         return false;
 | ||
|       // Examine each user of the CopyToReg use.
 | ||
|       for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
 | ||
|            FlagUI != FlagUE; ++FlagUI) {
 | ||
|         // Only examine the Flag result.
 | ||
|         if (FlagUI.getUse().getResNo() != 1)
 | ||
|           continue;
 | ||
|         // Anything unusual: assume conservatively.
 | ||
|         if (!FlagUI->isMachineOpcode())
 | ||
|           return false;
 | ||
|         // Examine the condition code of the user.
 | ||
|         X86::CondCode CC = getCondFromNode(*FlagUI);
 | ||
| 
 | ||
|         if (mayUseCarryFlag(CC))
 | ||
|           return false;
 | ||
|       }
 | ||
| 
 | ||
|       // This CopyToReg is ok. Move on to the next user.
 | ||
|       continue;
 | ||
|     }
 | ||
| 
 | ||
|     // This might be an unselected node. So look for the pre-isel opcodes that
 | ||
|     // use flags.
 | ||
|     unsigned CCOpNo;
 | ||
|     switch (UIOpc) {
 | ||
|     default:
 | ||
|       // Something unusual. Be conservative.
 | ||
|       return false;
 | ||
|     case X86ISD::SETCC:       CCOpNo = 0; break;
 | ||
|     case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
 | ||
|     case X86ISD::CMOV:        CCOpNo = 2; break;
 | ||
|     case X86ISD::BRCOND:      CCOpNo = 2; break;
 | ||
|     }
 | ||
| 
 | ||
|     X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(CCOpNo);
 | ||
|     if (mayUseCarryFlag(CC))
 | ||
|       return false;
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| /// Check whether or not the chain ending in StoreNode is suitable for doing
 | ||
| /// the {load; op; store} to modify transformation.
 | ||
| static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
 | ||
|                                         SDValue StoredVal, SelectionDAG *CurDAG,
 | ||
|                                         unsigned LoadOpNo,
 | ||
|                                         LoadSDNode *&LoadNode,
 | ||
|                                         SDValue &InputChain) {
 | ||
|   // Is the stored value result 0 of the operation?
 | ||
|   if (StoredVal.getResNo() != 0) return false;
 | ||
| 
 | ||
|   // Are there other uses of the operation other than the store?
 | ||
|   if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
 | ||
| 
 | ||
|   // Is the store non-extending and non-indexed?
 | ||
|   if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue Load = StoredVal->getOperand(LoadOpNo);
 | ||
|   // Is the stored value a non-extending and non-indexed load?
 | ||
|   if (!ISD::isNormalLoad(Load.getNode())) return false;
 | ||
| 
 | ||
|   // Return LoadNode by reference.
 | ||
|   LoadNode = cast<LoadSDNode>(Load);
 | ||
| 
 | ||
|   // Is store the only read of the loaded value?
 | ||
|   if (!Load.hasOneUse())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Is the address of the store the same as the load?
 | ||
|   if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
 | ||
|       LoadNode->getOffset() != StoreNode->getOffset())
 | ||
|     return false;
 | ||
| 
 | ||
|   bool FoundLoad = false;
 | ||
|   SmallVector<SDValue, 4> ChainOps;
 | ||
|   SmallVector<const SDNode *, 4> LoopWorklist;
 | ||
|   SmallPtrSet<const SDNode *, 16> Visited;
 | ||
|   const unsigned int Max = 1024;
 | ||
| 
 | ||
|   //  Visualization of Load-Op-Store fusion:
 | ||
|   // -------------------------
 | ||
|   // Legend:
 | ||
|   //    *-lines = Chain operand dependencies.
 | ||
|   //    |-lines = Normal operand dependencies.
 | ||
|   //    Dependencies flow down and right. n-suffix references multiple nodes.
 | ||
|   //
 | ||
|   //        C                        Xn  C
 | ||
|   //        *                         *  *
 | ||
|   //        *                          * *
 | ||
|   //  Xn  A-LD    Yn                    TF         Yn
 | ||
|   //   *    * \   |                       *        |
 | ||
|   //    *   *  \  |                        *       |
 | ||
|   //     *  *   \ |             =>       A--LD_OP_ST
 | ||
|   //      * *    \|                                 \
 | ||
|   //       TF    OP                                  \
 | ||
|   //         *   | \                                  Zn
 | ||
|   //          *  |  \
 | ||
|   //         A-ST    Zn
 | ||
|   //
 | ||
| 
 | ||
|   // This merge induced dependences from: #1: Xn -> LD, OP, Zn
 | ||
|   //                                      #2: Yn -> LD
 | ||
|   //                                      #3: ST -> Zn
 | ||
| 
 | ||
|   // Ensure the transform is safe by checking for the dual
 | ||
|   // dependencies to make sure we do not induce a loop.
 | ||
| 
 | ||
|   // As LD is a predecessor to both OP and ST we can do this by checking:
 | ||
|   //  a). if LD is a predecessor to a member of Xn or Yn.
 | ||
|   //  b). if a Zn is a predecessor to ST.
 | ||
| 
 | ||
|   // However, (b) can only occur through being a chain predecessor to
 | ||
|   // ST, which is the same as Zn being a member or predecessor of Xn,
 | ||
|   // which is a subset of LD being a predecessor of Xn. So it's
 | ||
|   // subsumed by check (a).
 | ||
| 
 | ||
|   SDValue Chain = StoreNode->getChain();
 | ||
| 
 | ||
|   // Gather X elements in ChainOps.
 | ||
|   if (Chain == Load.getValue(1)) {
 | ||
|     FoundLoad = true;
 | ||
|     ChainOps.push_back(Load.getOperand(0));
 | ||
|   } else if (Chain.getOpcode() == ISD::TokenFactor) {
 | ||
|     for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
 | ||
|       SDValue Op = Chain.getOperand(i);
 | ||
|       if (Op == Load.getValue(1)) {
 | ||
|         FoundLoad = true;
 | ||
|         // Drop Load, but keep its chain. No cycle check necessary.
 | ||
|         ChainOps.push_back(Load.getOperand(0));
 | ||
|         continue;
 | ||
|       }
 | ||
|       LoopWorklist.push_back(Op.getNode());
 | ||
|       ChainOps.push_back(Op);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!FoundLoad)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Worklist is currently Xn. Add Yn to worklist.
 | ||
|   for (SDValue Op : StoredVal->ops())
 | ||
|     if (Op.getNode() != LoadNode)
 | ||
|       LoopWorklist.push_back(Op.getNode());
 | ||
| 
 | ||
|   // Check (a) if Load is a predecessor to Xn + Yn
 | ||
|   if (SDNode::hasPredecessorHelper(Load.getNode(), Visited, LoopWorklist, Max,
 | ||
|                                    true))
 | ||
|     return false;
 | ||
| 
 | ||
|   InputChain =
 | ||
|       CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // Change a chain of {load; op; store} of the same value into a simple op
 | ||
| // through memory of that value, if the uses of the modified value and its
 | ||
| // address are suitable.
 | ||
| //
 | ||
| // The tablegen pattern memory operand pattern is currently not able to match
 | ||
| // the case where the EFLAGS on the original operation are used.
 | ||
| //
 | ||
| // To move this to tablegen, we'll need to improve tablegen to allow flags to
 | ||
| // be transferred from a node in the pattern to the result node, probably with
 | ||
| // a new keyword. For example, we have this
 | ||
| // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
 | ||
| //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
 | ||
| //   (implicit EFLAGS)]>;
 | ||
| // but maybe need something like this
 | ||
| // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
 | ||
| //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
 | ||
| //   (transferrable EFLAGS)]>;
 | ||
| //
 | ||
| // Until then, we manually fold these and instruction select the operation
 | ||
| // here.
 | ||
| bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
 | ||
|   StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
 | ||
|   SDValue StoredVal = StoreNode->getOperand(1);
 | ||
|   unsigned Opc = StoredVal->getOpcode();
 | ||
| 
 | ||
|   // Before we try to select anything, make sure this is memory operand size
 | ||
|   // and opcode we can handle. Note that this must match the code below that
 | ||
|   // actually lowers the opcodes.
 | ||
|   EVT MemVT = StoreNode->getMemoryVT();
 | ||
|   if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
 | ||
|       MemVT != MVT::i8)
 | ||
|     return false;
 | ||
| 
 | ||
|   bool IsCommutable = false;
 | ||
|   bool IsNegate = false;
 | ||
|   switch (Opc) {
 | ||
|   default:
 | ||
|     return false;
 | ||
|   case X86ISD::SUB:
 | ||
|     IsNegate = isNullConstant(StoredVal.getOperand(0));
 | ||
|     break;
 | ||
|   case X86ISD::SBB:
 | ||
|     break;
 | ||
|   case X86ISD::ADD:
 | ||
|   case X86ISD::ADC:
 | ||
|   case X86ISD::AND:
 | ||
|   case X86ISD::OR:
 | ||
|   case X86ISD::XOR:
 | ||
|     IsCommutable = true;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   unsigned LoadOpNo = IsNegate ? 1 : 0;
 | ||
|   LoadSDNode *LoadNode = nullptr;
 | ||
|   SDValue InputChain;
 | ||
|   if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
 | ||
|                                    LoadNode, InputChain)) {
 | ||
|     if (!IsCommutable)
 | ||
|       return false;
 | ||
| 
 | ||
|     // This operation is commutable, try the other operand.
 | ||
|     LoadOpNo = 1;
 | ||
|     if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
 | ||
|                                      LoadNode, InputChain))
 | ||
|       return false;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Base, Scale, Index, Disp, Segment;
 | ||
|   if (!selectAddr(LoadNode, LoadNode->getBasePtr(), Base, Scale, Index, Disp,
 | ||
|                   Segment))
 | ||
|     return false;
 | ||
| 
 | ||
|   auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
 | ||
|                           unsigned Opc8) {
 | ||
|     switch (MemVT.getSimpleVT().SimpleTy) {
 | ||
|     case MVT::i64:
 | ||
|       return Opc64;
 | ||
|     case MVT::i32:
 | ||
|       return Opc32;
 | ||
|     case MVT::i16:
 | ||
|       return Opc16;
 | ||
|     case MVT::i8:
 | ||
|       return Opc8;
 | ||
|     default:
 | ||
|       llvm_unreachable("Invalid size!");
 | ||
|     }
 | ||
|   };
 | ||
| 
 | ||
|   MachineSDNode *Result;
 | ||
|   switch (Opc) {
 | ||
|   case X86ISD::SUB:
 | ||
|     // Handle negate.
 | ||
|     if (IsNegate) {
 | ||
|       unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
 | ||
|                                      X86::NEG8m);
 | ||
|       const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
 | ||
|       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
 | ||
|                                       MVT::Other, Ops);
 | ||
|       break;
 | ||
|     }
 | ||
|    LLVM_FALLTHROUGH;
 | ||
|   case X86ISD::ADD:
 | ||
|     // Try to match inc/dec.
 | ||
|     if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
 | ||
|       bool IsOne = isOneConstant(StoredVal.getOperand(1));
 | ||
|       bool IsNegOne = isAllOnesConstant(StoredVal.getOperand(1));
 | ||
|       // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
 | ||
|       if ((IsOne || IsNegOne) && hasNoCarryFlagUses(StoredVal.getValue(1))) {
 | ||
|         unsigned NewOpc =
 | ||
|           ((Opc == X86ISD::ADD) == IsOne)
 | ||
|               ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
 | ||
|               : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
 | ||
|         const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
 | ||
|         Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
 | ||
|                                         MVT::Other, Ops);
 | ||
|         break;
 | ||
|       }
 | ||
|     }
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case X86ISD::ADC:
 | ||
|   case X86ISD::SBB:
 | ||
|   case X86ISD::AND:
 | ||
|   case X86ISD::OR:
 | ||
|   case X86ISD::XOR: {
 | ||
|     auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
 | ||
|       switch (Opc) {
 | ||
|       case X86ISD::ADD:
 | ||
|         return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
 | ||
|                             X86::ADD8mr);
 | ||
|       case X86ISD::ADC:
 | ||
|         return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
 | ||
|                             X86::ADC8mr);
 | ||
|       case X86ISD::SUB:
 | ||
|         return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
 | ||
|                             X86::SUB8mr);
 | ||
|       case X86ISD::SBB:
 | ||
|         return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
 | ||
|                             X86::SBB8mr);
 | ||
|       case X86ISD::AND:
 | ||
|         return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
 | ||
|                             X86::AND8mr);
 | ||
|       case X86ISD::OR:
 | ||
|         return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
 | ||
|       case X86ISD::XOR:
 | ||
|         return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
 | ||
|                             X86::XOR8mr);
 | ||
|       default:
 | ||
|         llvm_unreachable("Invalid opcode!");
 | ||
|       }
 | ||
|     };
 | ||
|     auto SelectImm8Opcode = [SelectOpcode](unsigned Opc) {
 | ||
|       switch (Opc) {
 | ||
|       case X86ISD::ADD:
 | ||
|         return SelectOpcode(X86::ADD64mi8, X86::ADD32mi8, X86::ADD16mi8, 0);
 | ||
|       case X86ISD::ADC:
 | ||
|         return SelectOpcode(X86::ADC64mi8, X86::ADC32mi8, X86::ADC16mi8, 0);
 | ||
|       case X86ISD::SUB:
 | ||
|         return SelectOpcode(X86::SUB64mi8, X86::SUB32mi8, X86::SUB16mi8, 0);
 | ||
|       case X86ISD::SBB:
 | ||
|         return SelectOpcode(X86::SBB64mi8, X86::SBB32mi8, X86::SBB16mi8, 0);
 | ||
|       case X86ISD::AND:
 | ||
|         return SelectOpcode(X86::AND64mi8, X86::AND32mi8, X86::AND16mi8, 0);
 | ||
|       case X86ISD::OR:
 | ||
|         return SelectOpcode(X86::OR64mi8, X86::OR32mi8, X86::OR16mi8, 0);
 | ||
|       case X86ISD::XOR:
 | ||
|         return SelectOpcode(X86::XOR64mi8, X86::XOR32mi8, X86::XOR16mi8, 0);
 | ||
|       default:
 | ||
|         llvm_unreachable("Invalid opcode!");
 | ||
|       }
 | ||
|     };
 | ||
|     auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
 | ||
|       switch (Opc) {
 | ||
|       case X86ISD::ADD:
 | ||
|         return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
 | ||
|                             X86::ADD8mi);
 | ||
|       case X86ISD::ADC:
 | ||
|         return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
 | ||
|                             X86::ADC8mi);
 | ||
|       case X86ISD::SUB:
 | ||
|         return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
 | ||
|                             X86::SUB8mi);
 | ||
|       case X86ISD::SBB:
 | ||
|         return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
 | ||
|                             X86::SBB8mi);
 | ||
|       case X86ISD::AND:
 | ||
|         return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
 | ||
|                             X86::AND8mi);
 | ||
|       case X86ISD::OR:
 | ||
|         return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
 | ||
|                             X86::OR8mi);
 | ||
|       case X86ISD::XOR:
 | ||
|         return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
 | ||
|                             X86::XOR8mi);
 | ||
|       default:
 | ||
|         llvm_unreachable("Invalid opcode!");
 | ||
|       }
 | ||
|     };
 | ||
| 
 | ||
|     unsigned NewOpc = SelectRegOpcode(Opc);
 | ||
|     SDValue Operand = StoredVal->getOperand(1-LoadOpNo);
 | ||
| 
 | ||
|     // See if the operand is a constant that we can fold into an immediate
 | ||
|     // operand.
 | ||
|     if (auto *OperandC = dyn_cast<ConstantSDNode>(Operand)) {
 | ||
|       int64_t OperandV = OperandC->getSExtValue();
 | ||
| 
 | ||
|       // Check if we can shrink the operand enough to fit in an immediate (or
 | ||
|       // fit into a smaller immediate) by negating it and switching the
 | ||
|       // operation.
 | ||
|       if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
 | ||
|           ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
 | ||
|            (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
 | ||
|             isInt<32>(-OperandV))) &&
 | ||
|           hasNoCarryFlagUses(StoredVal.getValue(1))) {
 | ||
|         OperandV = -OperandV;
 | ||
|         Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
 | ||
|       }
 | ||
| 
 | ||
|       // First try to fit this into an Imm8 operand. If it doesn't fit, then try
 | ||
|       // the larger immediate operand.
 | ||
|       if (MemVT != MVT::i8 && isInt<8>(OperandV)) {
 | ||
|         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
 | ||
|         NewOpc = SelectImm8Opcode(Opc);
 | ||
|       } else if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
 | ||
|         Operand = CurDAG->getTargetConstant(OperandV, SDLoc(Node), MemVT);
 | ||
|         NewOpc = SelectImmOpcode(Opc);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
 | ||
|       SDValue CopyTo =
 | ||
|           CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
 | ||
|                                StoredVal.getOperand(2), SDValue());
 | ||
| 
 | ||
|       const SDValue Ops[] = {Base,    Scale,   Index,  Disp,
 | ||
|                              Segment, Operand, CopyTo, CopyTo.getValue(1)};
 | ||
|       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
 | ||
|                                       Ops);
 | ||
|     } else {
 | ||
|       const SDValue Ops[] = {Base,    Scale,   Index,     Disp,
 | ||
|                              Segment, Operand, InputChain};
 | ||
|       Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
 | ||
|                                       Ops);
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   default:
 | ||
|     llvm_unreachable("Invalid opcode!");
 | ||
|   }
 | ||
| 
 | ||
|   MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
 | ||
|                                  LoadNode->getMemOperand()};
 | ||
|   CurDAG->setNodeMemRefs(Result, MemOps);
 | ||
| 
 | ||
|   // Update Load Chain uses as well.
 | ||
|   ReplaceUses(SDValue(LoadNode, 1), SDValue(Result, 1));
 | ||
|   ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
 | ||
|   ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
 | ||
|   CurDAG->RemoveDeadNode(Node);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // See if this is an  X & Mask  that we can match to BEXTR/BZHI.
 | ||
| // Where Mask is one of the following patterns:
 | ||
| //   a) x &  (1 << nbits) - 1
 | ||
| //   b) x & ~(-1 << nbits)
 | ||
| //   c) x &  (-1 >> (32 - y))
 | ||
| //   d) x << (32 - y) >> (32 - y)
 | ||
| bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
 | ||
|   assert(
 | ||
|       (Node->getOpcode() == ISD::AND || Node->getOpcode() == ISD::SRL) &&
 | ||
|       "Should be either an and-mask, or right-shift after clearing high bits.");
 | ||
| 
 | ||
|   // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
 | ||
|   if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
 | ||
|     return false;
 | ||
| 
 | ||
|   MVT NVT = Node->getSimpleValueType(0);
 | ||
| 
 | ||
|   // Only supported for 32 and 64 bits.
 | ||
|   if (NVT != MVT::i32 && NVT != MVT::i64)
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue NBits;
 | ||
|   bool NegateNBits;
 | ||
| 
 | ||
|   // If we have BMI2's BZHI, we are ok with muti-use patterns.
 | ||
|   // Else, if we only have BMI1's BEXTR, we require one-use.
 | ||
|   const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
 | ||
|   auto checkUses = [AllowExtraUsesByDefault](SDValue Op, unsigned NUses,
 | ||
|                                              Optional<bool> AllowExtraUses) {
 | ||
|     return AllowExtraUses.getValueOr(AllowExtraUsesByDefault) ||
 | ||
|            Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
 | ||
|   };
 | ||
|   auto checkOneUse = [checkUses](SDValue Op,
 | ||
|                                  Optional<bool> AllowExtraUses = None) {
 | ||
|     return checkUses(Op, 1, AllowExtraUses);
 | ||
|   };
 | ||
|   auto checkTwoUse = [checkUses](SDValue Op,
 | ||
|                                  Optional<bool> AllowExtraUses = None) {
 | ||
|     return checkUses(Op, 2, AllowExtraUses);
 | ||
|   };
 | ||
| 
 | ||
|   auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
 | ||
|     if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
 | ||
|       assert(V.getSimpleValueType() == MVT::i32 &&
 | ||
|              V.getOperand(0).getSimpleValueType() == MVT::i64 &&
 | ||
|              "Expected i64 -> i32 truncation");
 | ||
|       V = V.getOperand(0);
 | ||
|     }
 | ||
|     return V;
 | ||
|   };
 | ||
| 
 | ||
|   // a) x & ((1 << nbits) + (-1))
 | ||
|   auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
 | ||
|                         &NegateNBits](SDValue Mask) -> bool {
 | ||
|     // Match `add`. Must only have one use!
 | ||
|     if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
 | ||
|       return false;
 | ||
|     // We should be adding all-ones constant (i.e. subtracting one.)
 | ||
|     if (!isAllOnesConstant(Mask->getOperand(1)))
 | ||
|       return false;
 | ||
|     // Match `1 << nbits`. Might be truncated. Must only have one use!
 | ||
|     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
 | ||
|     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
 | ||
|       return false;
 | ||
|     if (!isOneConstant(M0->getOperand(0)))
 | ||
|       return false;
 | ||
|     NBits = M0->getOperand(1);
 | ||
|     NegateNBits = false;
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
 | ||
|     V = peekThroughOneUseTruncation(V);
 | ||
|     return CurDAG->MaskedValueIsAllOnes(
 | ||
|         V, APInt::getLowBitsSet(V.getSimpleValueType().getSizeInBits(),
 | ||
|                                 NVT.getSizeInBits()));
 | ||
|   };
 | ||
| 
 | ||
|   // b) x & ~(-1 << nbits)
 | ||
|   auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
 | ||
|                         &NBits, &NegateNBits](SDValue Mask) -> bool {
 | ||
|     // Match `~()`. Must only have one use!
 | ||
|     if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
 | ||
|       return false;
 | ||
|     // The -1 only has to be all-ones for the final Node's NVT.
 | ||
|     if (!isAllOnes(Mask->getOperand(1)))
 | ||
|       return false;
 | ||
|     // Match `-1 << nbits`. Might be truncated. Must only have one use!
 | ||
|     SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(0));
 | ||
|     if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
 | ||
|       return false;
 | ||
|     // The -1 only has to be all-ones for the final Node's NVT.
 | ||
|     if (!isAllOnes(M0->getOperand(0)))
 | ||
|       return false;
 | ||
|     NBits = M0->getOperand(1);
 | ||
|     NegateNBits = false;
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
 | ||
|   // or leave the shift amount as-is, but then we'll have to negate it.
 | ||
|   auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
 | ||
|                                                      unsigned Bitwidth) {
 | ||
|     NBits = ShiftAmt;
 | ||
|     NegateNBits = true;
 | ||
|     // Skip over a truncate of the shift amount, if any.
 | ||
|     if (NBits.getOpcode() == ISD::TRUNCATE)
 | ||
|       NBits = NBits.getOperand(0);
 | ||
|     // Try to match the shift amount as (bitwidth - y). It should go away, too.
 | ||
|     // If it doesn't match, that's fine, we'll just negate it ourselves.
 | ||
|     if (NBits.getOpcode() != ISD::SUB)
 | ||
|       return;
 | ||
|     auto *V0 = dyn_cast<ConstantSDNode>(NBits.getOperand(0));
 | ||
|     if (!V0 || V0->getZExtValue() != Bitwidth)
 | ||
|       return;
 | ||
|     NBits = NBits.getOperand(1);
 | ||
|     NegateNBits = false;
 | ||
|   };
 | ||
| 
 | ||
|   // c) x &  (-1 >> z)  but then we'll have to subtract z from bitwidth
 | ||
|   //   or
 | ||
|   // c) x &  (-1 >> (32 - y))
 | ||
|   auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
 | ||
|                         canonicalizeShiftAmt](SDValue Mask) -> bool {
 | ||
|     // The mask itself may be truncated.
 | ||
|     Mask = peekThroughOneUseTruncation(Mask);
 | ||
|     unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
 | ||
|     // Match `l>>`. Must only have one use!
 | ||
|     if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
 | ||
|       return false;
 | ||
|     // We should be shifting truly all-ones constant.
 | ||
|     if (!isAllOnesConstant(Mask.getOperand(0)))
 | ||
|       return false;
 | ||
|     SDValue M1 = Mask.getOperand(1);
 | ||
|     // The shift amount should not be used externally.
 | ||
|     if (!checkOneUse(M1))
 | ||
|       return false;
 | ||
|     canonicalizeShiftAmt(M1, Bitwidth);
 | ||
|     // Pattern c. is non-canonical, and is expanded into pattern d. iff there
 | ||
|     // is no extra use of the mask. Clearly, there was one since we are here.
 | ||
|     // But at the same time, if we need to negate the shift amount,
 | ||
|     // then we don't want the mask to stick around, else it's unprofitable.
 | ||
|     return !NegateNBits;
 | ||
|   };
 | ||
| 
 | ||
|   SDValue X;
 | ||
| 
 | ||
|   // d) x << z >> z  but then we'll have to subtract z from bitwidth
 | ||
|   //   or
 | ||
|   // d) x << (32 - y) >> (32 - y)
 | ||
|   auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
 | ||
|                         AllowExtraUsesByDefault, &NegateNBits,
 | ||
|                         &X](SDNode *Node) -> bool {
 | ||
|     if (Node->getOpcode() != ISD::SRL)
 | ||
|       return false;
 | ||
|     SDValue N0 = Node->getOperand(0);
 | ||
|     if (N0->getOpcode() != ISD::SHL)
 | ||
|       return false;
 | ||
|     unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
 | ||
|     SDValue N1 = Node->getOperand(1);
 | ||
|     SDValue N01 = N0->getOperand(1);
 | ||
|     // Both of the shifts must be by the exact same value.
 | ||
|     if (N1 != N01)
 | ||
|       return false;
 | ||
|     canonicalizeShiftAmt(N1, Bitwidth);
 | ||
|     // There should not be any external uses of the inner shift / shift amount.
 | ||
|     // Note that while we are generally okay with external uses given BMI2,
 | ||
|     // iff we need to negate the shift amount, we are not okay with extra uses.
 | ||
|     const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
 | ||
|     if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
 | ||
|       return false;
 | ||
|     X = N0->getOperand(0);
 | ||
|     return true;
 | ||
|   };
 | ||
| 
 | ||
|   auto matchLowBitMask = [matchPatternA, matchPatternB,
 | ||
|                           matchPatternC](SDValue Mask) -> bool {
 | ||
|     return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
 | ||
|   };
 | ||
| 
 | ||
|   if (Node->getOpcode() == ISD::AND) {
 | ||
|     X = Node->getOperand(0);
 | ||
|     SDValue Mask = Node->getOperand(1);
 | ||
| 
 | ||
|     if (matchLowBitMask(Mask)) {
 | ||
|       // Great.
 | ||
|     } else {
 | ||
|       std::swap(X, Mask);
 | ||
|       if (!matchLowBitMask(Mask))
 | ||
|         return false;
 | ||
|     }
 | ||
|   } else if (!matchPatternD(Node))
 | ||
|     return false;
 | ||
| 
 | ||
|   // If we need to negate the shift amount, require BMI2 BZHI support.
 | ||
|   // It's just too unprofitable for BMI1 BEXTR.
 | ||
|   if (NegateNBits && !Subtarget->hasBMI2())
 | ||
|     return false;
 | ||
| 
 | ||
|   SDLoc DL(Node);
 | ||
| 
 | ||
|   // Truncate the shift amount.
 | ||
|   NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
 | ||
|   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
 | ||
| 
 | ||
|   // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
 | ||
|   // All the other bits are undefined, we do not care about them.
 | ||
|   SDValue ImplDef = SDValue(
 | ||
|       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
 | ||
|   insertDAGNode(*CurDAG, SDValue(Node, 0), ImplDef);
 | ||
| 
 | ||
|   SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
 | ||
|   insertDAGNode(*CurDAG, SDValue(Node, 0), SRIdxVal);
 | ||
|   NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
 | ||
|                                          MVT::i32, ImplDef, NBits, SRIdxVal),
 | ||
|                   0);
 | ||
|   insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
 | ||
| 
 | ||
|   // We might have matched the amount of high bits to be cleared,
 | ||
|   // but we want the amount of low bits to be kept, so negate it then.
 | ||
|   if (NegateNBits) {
 | ||
|     SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
 | ||
|     insertDAGNode(*CurDAG, SDValue(Node, 0), BitWidthC);
 | ||
| 
 | ||
|     NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
 | ||
|     insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
 | ||
|   }
 | ||
| 
 | ||
|   if (Subtarget->hasBMI2()) {
 | ||
|     // Great, just emit the the BZHI..
 | ||
|     if (NVT != MVT::i32) {
 | ||
|       // But have to place the bit count into the wide-enough register first.
 | ||
|       NBits = CurDAG->getNode(ISD::ANY_EXTEND, DL, NVT, NBits);
 | ||
|       insertDAGNode(*CurDAG, SDValue(Node, 0), NBits);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Extract = CurDAG->getNode(X86ISD::BZHI, DL, NVT, X, NBits);
 | ||
|     ReplaceNode(Node, Extract.getNode());
 | ||
|     SelectCode(Extract.getNode());
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
 | ||
|   // *logically* shifted (potentially with one-use trunc inbetween),
 | ||
|   // and the truncation was the only use of the shift,
 | ||
|   // and if so look past one-use truncation.
 | ||
|   {
 | ||
|     SDValue RealX = peekThroughOneUseTruncation(X);
 | ||
|     // FIXME: only if the shift is one-use?
 | ||
|     if (RealX != X && RealX.getOpcode() == ISD::SRL)
 | ||
|       X = RealX;
 | ||
|   }
 | ||
| 
 | ||
|   MVT XVT = X.getSimpleValueType();
 | ||
| 
 | ||
|   // Else, emitting BEXTR requires one more step.
 | ||
|   // The 'control' of BEXTR has the pattern of:
 | ||
|   // [15...8 bit][ 7...0 bit] location
 | ||
|   // [ bit count][     shift] name
 | ||
|   // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
 | ||
| 
 | ||
|   // Shift NBits left by 8 bits, thus producing 'control'.
 | ||
|   // This makes the low 8 bits to be zero.
 | ||
|   SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
 | ||
|   insertDAGNode(*CurDAG, SDValue(Node, 0), C8);
 | ||
|   SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
 | ||
|   insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
 | ||
| 
 | ||
|   // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
 | ||
|   // FIXME: only if the shift is one-use?
 | ||
|   if (X.getOpcode() == ISD::SRL) {
 | ||
|     SDValue ShiftAmt = X.getOperand(1);
 | ||
|     X = X.getOperand(0);
 | ||
| 
 | ||
|     assert(ShiftAmt.getValueType() == MVT::i8 &&
 | ||
|            "Expected shift amount to be i8");
 | ||
| 
 | ||
|     // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
 | ||
|     // We could zext to i16 in some form, but we intentionally don't do that.
 | ||
|     SDValue OrigShiftAmt = ShiftAmt;
 | ||
|     ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
 | ||
|     insertDAGNode(*CurDAG, OrigShiftAmt, ShiftAmt);
 | ||
| 
 | ||
|     // And now 'or' these low 8 bits of shift amount into the 'control'.
 | ||
|     Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
 | ||
|     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
 | ||
|   }
 | ||
| 
 | ||
|   // But have to place the 'control' into the wide-enough register first.
 | ||
|   if (XVT != MVT::i32) {
 | ||
|     Control = CurDAG->getNode(ISD::ANY_EXTEND, DL, XVT, Control);
 | ||
|     insertDAGNode(*CurDAG, SDValue(Node, 0), Control);
 | ||
|   }
 | ||
| 
 | ||
|   // And finally, form the BEXTR itself.
 | ||
|   SDValue Extract = CurDAG->getNode(X86ISD::BEXTR, DL, XVT, X, Control);
 | ||
| 
 | ||
|   // The 'X' was originally truncated. Do that now.
 | ||
|   if (XVT != NVT) {
 | ||
|     insertDAGNode(*CurDAG, SDValue(Node, 0), Extract);
 | ||
|     Extract = CurDAG->getNode(ISD::TRUNCATE, DL, NVT, Extract);
 | ||
|   }
 | ||
| 
 | ||
|   ReplaceNode(Node, Extract.getNode());
 | ||
|   SelectCode(Extract.getNode());
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
 | ||
| MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
 | ||
|   MVT NVT = Node->getSimpleValueType(0);
 | ||
|   SDLoc dl(Node);
 | ||
| 
 | ||
|   SDValue N0 = Node->getOperand(0);
 | ||
|   SDValue N1 = Node->getOperand(1);
 | ||
| 
 | ||
|   // If we have TBM we can use an immediate for the control. If we have BMI
 | ||
|   // we should only do this if the BEXTR instruction is implemented well.
 | ||
|   // Otherwise moving the control into a register makes this more costly.
 | ||
|   // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
 | ||
|   // hoisting the move immediate would make it worthwhile with a less optimal
 | ||
|   // BEXTR?
 | ||
|   bool PreferBEXTR =
 | ||
|       Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
 | ||
|   if (!PreferBEXTR && !Subtarget->hasBMI2())
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // Must have a shift right.
 | ||
|   if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // Shift can't have additional users.
 | ||
|   if (!N0->hasOneUse())
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // Only supported for 32 and 64 bits.
 | ||
|   if (NVT != MVT::i32 && NVT != MVT::i64)
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // Shift amount and RHS of and must be constant.
 | ||
|   ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(N1);
 | ||
|   ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
 | ||
|   if (!MaskCst || !ShiftCst)
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // And RHS must be a mask.
 | ||
|   uint64_t Mask = MaskCst->getZExtValue();
 | ||
|   if (!isMask_64(Mask))
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   uint64_t Shift = ShiftCst->getZExtValue();
 | ||
|   uint64_t MaskSize = countPopulation(Mask);
 | ||
| 
 | ||
|   // Don't interfere with something that can be handled by extracting AH.
 | ||
|   // TODO: If we are able to fold a load, BEXTR might still be better than AH.
 | ||
|   if (Shift == 8 && MaskSize == 8)
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // Make sure we are only using bits that were in the original value, not
 | ||
|   // shifted in.
 | ||
|   if (Shift + MaskSize > NVT.getSizeInBits())
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
 | ||
|   // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
 | ||
|   // does not fit into 32 bits. Load folding is not a sufficient reason.
 | ||
|   if (!PreferBEXTR && MaskSize <= 32)
 | ||
|     return nullptr;
 | ||
| 
 | ||
|   SDValue Control;
 | ||
|   unsigned ROpc, MOpc;
 | ||
| 
 | ||
|   if (!PreferBEXTR) {
 | ||
|     assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
 | ||
|     // If we can't make use of BEXTR then we can't fuse shift+mask stages.
 | ||
|     // Let's perform the mask first, and apply shift later. Note that we need to
 | ||
|     // widen the mask to account for the fact that we'll apply shift afterwards!
 | ||
|     Control = CurDAG->getTargetConstant(Shift + MaskSize, dl, NVT);
 | ||
|     ROpc = NVT == MVT::i64 ? X86::BZHI64rr : X86::BZHI32rr;
 | ||
|     MOpc = NVT == MVT::i64 ? X86::BZHI64rm : X86::BZHI32rm;
 | ||
|     unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
 | ||
|     Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
 | ||
|   } else {
 | ||
|     // The 'control' of BEXTR has the pattern of:
 | ||
|     // [15...8 bit][ 7...0 bit] location
 | ||
|     // [ bit count][     shift] name
 | ||
|     // I.e. 0b000000011'00000001 means  (x >> 0b1) & 0b11
 | ||
|     Control = CurDAG->getTargetConstant(Shift | (MaskSize << 8), dl, NVT);
 | ||
|     if (Subtarget->hasTBM()) {
 | ||
|       ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
 | ||
|       MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
 | ||
|     } else {
 | ||
|       assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
 | ||
|       // BMI requires the immediate to placed in a register.
 | ||
|       ROpc = NVT == MVT::i64 ? X86::BEXTR64rr : X86::BEXTR32rr;
 | ||
|       MOpc = NVT == MVT::i64 ? X86::BEXTR64rm : X86::BEXTR32rm;
 | ||
|       unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
 | ||
|       Control = SDValue(CurDAG->getMachineNode(NewOpc, dl, NVT, Control), 0);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   MachineSDNode *NewNode;
 | ||
|   SDValue Input = N0->getOperand(0);
 | ||
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|   if (tryFoldLoad(Node, N0.getNode(), Input, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|     SDValue Ops[] = {
 | ||
|         Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(0)};
 | ||
|     SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
 | ||
|     NewNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|     // Update the chain.
 | ||
|     ReplaceUses(Input.getValue(1), SDValue(NewNode, 2));
 | ||
|     // Record the mem-refs
 | ||
|     CurDAG->setNodeMemRefs(NewNode, {cast<LoadSDNode>(Input)->getMemOperand()});
 | ||
|   } else {
 | ||
|     NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
 | ||
|   }
 | ||
| 
 | ||
|   if (!PreferBEXTR) {
 | ||
|     // We still need to apply the shift.
 | ||
|     SDValue ShAmt = CurDAG->getTargetConstant(Shift, dl, NVT);
 | ||
|     unsigned NewOpc = NVT == MVT::i64 ? X86::SHR64ri : X86::SHR32ri;
 | ||
|     NewNode =
 | ||
|         CurDAG->getMachineNode(NewOpc, dl, NVT, SDValue(NewNode, 0), ShAmt);
 | ||
|   }
 | ||
| 
 | ||
|   return NewNode;
 | ||
| }
 | ||
| 
 | ||
| // Emit a PCMISTR(I/M) instruction.
 | ||
| MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
 | ||
|                                              bool MayFoldLoad, const SDLoc &dl,
 | ||
|                                              MVT VT, SDNode *Node) {
 | ||
|   SDValue N0 = Node->getOperand(0);
 | ||
|   SDValue N1 = Node->getOperand(1);
 | ||
|   SDValue Imm = Node->getOperand(2);
 | ||
|   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
 | ||
|   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
 | ||
| 
 | ||
|   // Try to fold a load. No need to check alignment.
 | ||
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|   if (MayFoldLoad && tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
 | ||
|                       N1.getOperand(0) };
 | ||
|     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
 | ||
|     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|     // Update the chain.
 | ||
|     ReplaceUses(N1.getValue(1), SDValue(CNode, 2));
 | ||
|     // Record the mem-refs
 | ||
|     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
 | ||
|     return CNode;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Ops[] = { N0, N1, Imm };
 | ||
|   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
 | ||
|   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
 | ||
|   return CNode;
 | ||
| }
 | ||
| 
 | ||
| // Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
 | ||
| // to emit a second instruction after this one. This is needed since we have two
 | ||
| // copyToReg nodes glued before this and we need to continue that glue through.
 | ||
| MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
 | ||
|                                              bool MayFoldLoad, const SDLoc &dl,
 | ||
|                                              MVT VT, SDNode *Node,
 | ||
|                                              SDValue &InFlag) {
 | ||
|   SDValue N0 = Node->getOperand(0);
 | ||
|   SDValue N2 = Node->getOperand(2);
 | ||
|   SDValue Imm = Node->getOperand(4);
 | ||
|   const ConstantInt *Val = cast<ConstantSDNode>(Imm)->getConstantIntValue();
 | ||
|   Imm = CurDAG->getTargetConstant(*Val, SDLoc(Node), Imm.getValueType());
 | ||
| 
 | ||
|   // Try to fold a load. No need to check alignment.
 | ||
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|   if (MayFoldLoad && tryFoldLoad(Node, N2, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|     SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
 | ||
|                       N2.getOperand(0), InFlag };
 | ||
|     SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
 | ||
|     MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|     InFlag = SDValue(CNode, 3);
 | ||
|     // Update the chain.
 | ||
|     ReplaceUses(N2.getValue(1), SDValue(CNode, 2));
 | ||
|     // Record the mem-refs
 | ||
|     CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N2)->getMemOperand()});
 | ||
|     return CNode;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue Ops[] = { N0, N2, Imm, InFlag };
 | ||
|   SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
 | ||
|   MachineSDNode *CNode = CurDAG->getMachineNode(ROpc, dl, VTs, Ops);
 | ||
|   InFlag = SDValue(CNode, 2);
 | ||
|   return CNode;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
 | ||
|   EVT VT = N->getValueType(0);
 | ||
| 
 | ||
|   // Only handle scalar shifts.
 | ||
|   if (VT.isVector())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Narrower shifts only mask to 5 bits in hardware.
 | ||
|   unsigned Size = VT == MVT::i64 ? 64 : 32;
 | ||
| 
 | ||
|   SDValue OrigShiftAmt = N->getOperand(1);
 | ||
|   SDValue ShiftAmt = OrigShiftAmt;
 | ||
|   SDLoc DL(N);
 | ||
| 
 | ||
|   // Skip over a truncate of the shift amount.
 | ||
|   if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
 | ||
|     ShiftAmt = ShiftAmt->getOperand(0);
 | ||
| 
 | ||
|   // This function is called after X86DAGToDAGISel::matchBitExtract(),
 | ||
|   // so we are not afraid that we might mess up BZHI/BEXTR pattern.
 | ||
| 
 | ||
|   SDValue NewShiftAmt;
 | ||
|   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
 | ||
|     SDValue Add0 = ShiftAmt->getOperand(0);
 | ||
|     SDValue Add1 = ShiftAmt->getOperand(1);
 | ||
|     auto *Add0C = dyn_cast<ConstantSDNode>(Add0);
 | ||
|     auto *Add1C = dyn_cast<ConstantSDNode>(Add1);
 | ||
|     // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
 | ||
|     // to avoid the ADD/SUB.
 | ||
|     if (Add1C && Add1C->getAPIntValue().urem(Size) == 0) {
 | ||
|       NewShiftAmt = Add0;
 | ||
|       // If we are shifting by N-X where N == 0 mod Size, then just shift by -X
 | ||
|       // to generate a NEG instead of a SUB of a constant.
 | ||
|     } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
 | ||
|                Add0C->getZExtValue() != 0) {
 | ||
|       EVT SubVT = ShiftAmt.getValueType();
 | ||
|       SDValue X;
 | ||
|       if (Add0C->getZExtValue() % Size == 0)
 | ||
|         X = Add1;
 | ||
|       else if (ShiftAmt.hasOneUse() && Size == 64 &&
 | ||
|                Add0C->getZExtValue() % 32 == 0) {
 | ||
|         // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
 | ||
|         // This is mainly beneficial if we already compute (x+n*32).
 | ||
|         if (Add1.getOpcode() == ISD::TRUNCATE) {
 | ||
|           Add1 = Add1.getOperand(0);
 | ||
|           SubVT = Add1.getValueType();
 | ||
|         }
 | ||
|         if (Add0.getValueType() != SubVT) {
 | ||
|           Add0 = CurDAG->getZExtOrTrunc(Add0, DL, SubVT);
 | ||
|           insertDAGNode(*CurDAG, OrigShiftAmt, Add0);
 | ||
|         }
 | ||
| 
 | ||
|         X = CurDAG->getNode(ISD::ADD, DL, SubVT, Add1, Add0);
 | ||
|         insertDAGNode(*CurDAG, OrigShiftAmt, X);
 | ||
|       } else
 | ||
|         return false;
 | ||
|       // Insert a negate op.
 | ||
|       // TODO: This isn't guaranteed to replace the sub if there is a logic cone
 | ||
|       // that uses it that's not a shift.
 | ||
|       SDValue Zero = CurDAG->getConstant(0, DL, SubVT);
 | ||
|       SDValue Neg = CurDAG->getNode(ISD::SUB, DL, SubVT, Zero, X);
 | ||
|       NewShiftAmt = Neg;
 | ||
| 
 | ||
|       // Insert these operands into a valid topological order so they can
 | ||
|       // get selected independently.
 | ||
|       insertDAGNode(*CurDAG, OrigShiftAmt, Zero);
 | ||
|       insertDAGNode(*CurDAG, OrigShiftAmt, Neg);
 | ||
|     } else
 | ||
|       return false;
 | ||
|   } else
 | ||
|     return false;
 | ||
| 
 | ||
|   if (NewShiftAmt.getValueType() != MVT::i8) {
 | ||
|     // Need to truncate the shift amount.
 | ||
|     NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
 | ||
|     // Add to a correct topological ordering.
 | ||
|     insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
 | ||
|   }
 | ||
| 
 | ||
|   // Insert a new mask to keep the shift amount legal. This should be removed
 | ||
|   // by isel patterns.
 | ||
|   NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
 | ||
|                                 CurDAG->getConstant(Size - 1, DL, MVT::i8));
 | ||
|   // Place in a correct topological ordering.
 | ||
|   insertDAGNode(*CurDAG, OrigShiftAmt, NewShiftAmt);
 | ||
| 
 | ||
|   SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
 | ||
|                                                    NewShiftAmt);
 | ||
|   if (UpdatedNode != N) {
 | ||
|     // If we found an existing node, we should replace ourselves with that node
 | ||
|     // and wait for it to be selected after its other users.
 | ||
|     ReplaceNode(N, UpdatedNode);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // If the original shift amount is now dead, delete it so that we don't run
 | ||
|   // it through isel.
 | ||
|   if (OrigShiftAmt.getNode()->use_empty())
 | ||
|     CurDAG->RemoveDeadNode(OrigShiftAmt.getNode());
 | ||
| 
 | ||
|   // Now that we've optimized the shift amount, defer to normal isel to get
 | ||
|   // load folding and legacy vs BMI2 selection without repeating it here.
 | ||
|   SelectCode(N);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
 | ||
|   MVT NVT = N->getSimpleValueType(0);
 | ||
|   unsigned Opcode = N->getOpcode();
 | ||
|   SDLoc dl(N);
 | ||
| 
 | ||
|   // For operations of the form (x << C1) op C2, check if we can use a smaller
 | ||
|   // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
 | ||
|   SDValue Shift = N->getOperand(0);
 | ||
|   SDValue N1 = N->getOperand(1);
 | ||
| 
 | ||
|   ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
 | ||
|   if (!Cst)
 | ||
|     return false;
 | ||
| 
 | ||
|   int64_t Val = Cst->getSExtValue();
 | ||
| 
 | ||
|   // If we have an any_extend feeding the AND, look through it to see if there
 | ||
|   // is a shift behind it. But only if the AND doesn't use the extended bits.
 | ||
|   // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
 | ||
|   bool FoundAnyExtend = false;
 | ||
|   if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
 | ||
|       Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
 | ||
|       isUInt<32>(Val)) {
 | ||
|     FoundAnyExtend = true;
 | ||
|     Shift = Shift.getOperand(0);
 | ||
|   }
 | ||
| 
 | ||
|   if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
 | ||
|     return false;
 | ||
| 
 | ||
|   // i8 is unshrinkable, i16 should be promoted to i32.
 | ||
|   if (NVT != MVT::i32 && NVT != MVT::i64)
 | ||
|     return false;
 | ||
| 
 | ||
|   ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | ||
|   if (!ShlCst)
 | ||
|     return false;
 | ||
| 
 | ||
|   uint64_t ShAmt = ShlCst->getZExtValue();
 | ||
| 
 | ||
|   // Make sure that we don't change the operation by removing bits.
 | ||
|   // This only matters for OR and XOR, AND is unaffected.
 | ||
|   uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
 | ||
|   if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Check the minimum bitwidth for the new constant.
 | ||
|   // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
 | ||
|   auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
 | ||
|     if (Opcode == ISD::AND) {
 | ||
|       // AND32ri is the same as AND64ri32 with zext imm.
 | ||
|       // Try this before sign extended immediates below.
 | ||
|       ShiftedVal = (uint64_t)Val >> ShAmt;
 | ||
|       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
 | ||
|         return true;
 | ||
|       // Also swap order when the AND can become MOVZX.
 | ||
|       if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
 | ||
|         return true;
 | ||
|     }
 | ||
|     ShiftedVal = Val >> ShAmt;
 | ||
|     if ((!isInt<8>(Val) && isInt<8>(ShiftedVal)) ||
 | ||
|         (!isInt<32>(Val) && isInt<32>(ShiftedVal)))
 | ||
|       return true;
 | ||
|     if (Opcode != ISD::AND) {
 | ||
|       // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
 | ||
|       ShiftedVal = (uint64_t)Val >> ShAmt;
 | ||
|       if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
 | ||
|         return true;
 | ||
|     }
 | ||
|     return false;
 | ||
|   };
 | ||
| 
 | ||
|   int64_t ShiftedVal;
 | ||
|   if (!CanShrinkImmediate(ShiftedVal))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Ok, we can reorder to get a smaller immediate.
 | ||
| 
 | ||
|   // But, its possible the original immediate allowed an AND to become MOVZX.
 | ||
|   // Doing this late due to avoid the MakedValueIsZero call as late as
 | ||
|   // possible.
 | ||
|   if (Opcode == ISD::AND) {
 | ||
|     // Find the smallest zext this could possibly be.
 | ||
|     unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
 | ||
|     ZExtWidth = PowerOf2Ceil(std::max(ZExtWidth, 8U));
 | ||
| 
 | ||
|     // Figure out which bits need to be zero to achieve that mask.
 | ||
|     APInt NeededMask = APInt::getLowBitsSet(NVT.getSizeInBits(),
 | ||
|                                             ZExtWidth);
 | ||
|     NeededMask &= ~Cst->getAPIntValue();
 | ||
| 
 | ||
|     if (CurDAG->MaskedValueIsZero(N->getOperand(0), NeededMask))
 | ||
|       return false;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue X = Shift.getOperand(0);
 | ||
|   if (FoundAnyExtend) {
 | ||
|     SDValue NewX = CurDAG->getNode(ISD::ANY_EXTEND, dl, NVT, X);
 | ||
|     insertDAGNode(*CurDAG, SDValue(N, 0), NewX);
 | ||
|     X = NewX;
 | ||
|   }
 | ||
| 
 | ||
|   SDValue NewCst = CurDAG->getConstant(ShiftedVal, dl, NVT);
 | ||
|   insertDAGNode(*CurDAG, SDValue(N, 0), NewCst);
 | ||
|   SDValue NewBinOp = CurDAG->getNode(Opcode, dl, NVT, X, NewCst);
 | ||
|   insertDAGNode(*CurDAG, SDValue(N, 0), NewBinOp);
 | ||
|   SDValue NewSHL = CurDAG->getNode(ISD::SHL, dl, NVT, NewBinOp,
 | ||
|                                    Shift.getOperand(1));
 | ||
|   ReplaceNode(N, NewSHL.getNode());
 | ||
|   SelectCode(NewSHL.getNode());
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
 | ||
|                                      SDNode *ParentB, SDNode *ParentC,
 | ||
|                                      SDValue A, SDValue B, SDValue C,
 | ||
|                                      uint8_t Imm) {
 | ||
|   assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
 | ||
|          C.isOperandOf(ParentC) && "Incorrect parent node");
 | ||
| 
 | ||
|   auto tryFoldLoadOrBCast =
 | ||
|       [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
 | ||
|              SDValue &Index, SDValue &Disp, SDValue &Segment) {
 | ||
|         if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
 | ||
|           return true;
 | ||
| 
 | ||
|         // Not a load, check for broadcast which may be behind a bitcast.
 | ||
|         if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
 | ||
|           P = L.getNode();
 | ||
|           L = L.getOperand(0);
 | ||
|         }
 | ||
| 
 | ||
|         if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
 | ||
|           return false;
 | ||
| 
 | ||
|         // Only 32 and 64 bit broadcasts are supported.
 | ||
|         auto *MemIntr = cast<MemIntrinsicSDNode>(L);
 | ||
|         unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
 | ||
|         if (Size != 32 && Size != 64)
 | ||
|           return false;
 | ||
| 
 | ||
|         return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
 | ||
|       };
 | ||
| 
 | ||
|   bool FoldedLoad = false;
 | ||
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|   if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|     FoldedLoad = true;
 | ||
|   } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
 | ||
|                                 Tmp4)) {
 | ||
|     FoldedLoad = true;
 | ||
|     std::swap(A, C);
 | ||
|     // Swap bits 1/4 and 3/6.
 | ||
|     uint8_t OldImm = Imm;
 | ||
|     Imm = OldImm & 0xa5;
 | ||
|     if (OldImm & 0x02) Imm |= 0x10;
 | ||
|     if (OldImm & 0x10) Imm |= 0x02;
 | ||
|     if (OldImm & 0x08) Imm |= 0x40;
 | ||
|     if (OldImm & 0x40) Imm |= 0x08;
 | ||
|   } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
 | ||
|                                 Tmp4)) {
 | ||
|     FoldedLoad = true;
 | ||
|     std::swap(B, C);
 | ||
|     // Swap bits 1/2 and 5/6.
 | ||
|     uint8_t OldImm = Imm;
 | ||
|     Imm = OldImm & 0x99;
 | ||
|     if (OldImm & 0x02) Imm |= 0x04;
 | ||
|     if (OldImm & 0x04) Imm |= 0x02;
 | ||
|     if (OldImm & 0x20) Imm |= 0x40;
 | ||
|     if (OldImm & 0x40) Imm |= 0x20;
 | ||
|   }
 | ||
| 
 | ||
|   SDLoc DL(Root);
 | ||
| 
 | ||
|   SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
 | ||
| 
 | ||
|   MVT NVT = Root->getSimpleValueType(0);
 | ||
| 
 | ||
|   MachineSDNode *MNode;
 | ||
|   if (FoldedLoad) {
 | ||
|     SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
 | ||
| 
 | ||
|     unsigned Opc;
 | ||
|     if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
 | ||
|       auto *MemIntr = cast<MemIntrinsicSDNode>(C);
 | ||
|       unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
 | ||
|       assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
 | ||
| 
 | ||
|       bool UseD = EltSize == 32;
 | ||
|       if (NVT.is128BitVector())
 | ||
|         Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
 | ||
|       else if (NVT.is256BitVector())
 | ||
|         Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
 | ||
|       else if (NVT.is512BitVector())
 | ||
|         Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
 | ||
|       else
 | ||
|         llvm_unreachable("Unexpected vector size!");
 | ||
|     } else {
 | ||
|       bool UseD = NVT.getVectorElementType() == MVT::i32;
 | ||
|       if (NVT.is128BitVector())
 | ||
|         Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
 | ||
|       else if (NVT.is256BitVector())
 | ||
|         Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
 | ||
|       else if (NVT.is512BitVector())
 | ||
|         Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
 | ||
|       else
 | ||
|         llvm_unreachable("Unexpected vector size!");
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(0)};
 | ||
|     MNode = CurDAG->getMachineNode(Opc, DL, VTs, Ops);
 | ||
| 
 | ||
|     // Update the chain.
 | ||
|     ReplaceUses(C.getValue(1), SDValue(MNode, 1));
 | ||
|     // Record the mem-refs
 | ||
|     CurDAG->setNodeMemRefs(MNode, {cast<MemSDNode>(C)->getMemOperand()});
 | ||
|   } else {
 | ||
|     bool UseD = NVT.getVectorElementType() == MVT::i32;
 | ||
|     unsigned Opc;
 | ||
|     if (NVT.is128BitVector())
 | ||
|       Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
 | ||
|     else if (NVT.is256BitVector())
 | ||
|       Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
 | ||
|     else if (NVT.is512BitVector())
 | ||
|       Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
 | ||
|     else
 | ||
|       llvm_unreachable("Unexpected vector size!");
 | ||
| 
 | ||
|     MNode = CurDAG->getMachineNode(Opc, DL, NVT, {A, B, C, TImm});
 | ||
|   }
 | ||
| 
 | ||
|   ReplaceUses(SDValue(Root, 0), SDValue(MNode, 0));
 | ||
|   CurDAG->RemoveDeadNode(Root);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // Try to match two logic ops to a VPTERNLOG.
 | ||
| // FIXME: Handle more complex patterns that use an operand more than once?
 | ||
| bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
 | ||
|   MVT NVT = N->getSimpleValueType(0);
 | ||
| 
 | ||
|   // Make sure we support VPTERNLOG.
 | ||
|   if (!NVT.isVector() || !Subtarget->hasAVX512() ||
 | ||
|       NVT.getVectorElementType() == MVT::i1)
 | ||
|     return false;
 | ||
| 
 | ||
|   // We need VLX for 128/256-bit.
 | ||
|   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue N0 = N->getOperand(0);
 | ||
|   SDValue N1 = N->getOperand(1);
 | ||
| 
 | ||
|   auto getFoldableLogicOp = [](SDValue Op) {
 | ||
|     // Peek through single use bitcast.
 | ||
|     if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
 | ||
|       Op = Op.getOperand(0);
 | ||
| 
 | ||
|     if (!Op.hasOneUse())
 | ||
|       return SDValue();
 | ||
| 
 | ||
|     unsigned Opc = Op.getOpcode();
 | ||
|     if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
 | ||
|         Opc == X86ISD::ANDNP)
 | ||
|       return Op;
 | ||
| 
 | ||
|     return SDValue();
 | ||
|   };
 | ||
| 
 | ||
|   SDValue A, FoldableOp;
 | ||
|   if ((FoldableOp = getFoldableLogicOp(N1))) {
 | ||
|     A = N0;
 | ||
|   } else if ((FoldableOp = getFoldableLogicOp(N0))) {
 | ||
|     A = N1;
 | ||
|   } else
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue B = FoldableOp.getOperand(0);
 | ||
|   SDValue C = FoldableOp.getOperand(1);
 | ||
|   SDNode *ParentA = N;
 | ||
|   SDNode *ParentB = FoldableOp.getNode();
 | ||
|   SDNode *ParentC = FoldableOp.getNode();
 | ||
| 
 | ||
|   // We can build the appropriate control immediate by performing the logic
 | ||
|   // operation we're matching using these constants for A, B, and C.
 | ||
|   uint8_t TernlogMagicA = 0xf0;
 | ||
|   uint8_t TernlogMagicB = 0xcc;
 | ||
|   uint8_t TernlogMagicC = 0xaa;
 | ||
| 
 | ||
|   // Some of the inputs may be inverted, peek through them and invert the
 | ||
|   // magic values accordingly.
 | ||
|   // TODO: There may be a bitcast before the xor that we should peek through.
 | ||
|   auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
 | ||
|     if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
 | ||
|         ISD::isBuildVectorAllOnes(Op.getOperand(1).getNode())) {
 | ||
|       Magic = ~Magic;
 | ||
|       Parent = Op.getNode();
 | ||
|       Op = Op.getOperand(0);
 | ||
|     }
 | ||
|   };
 | ||
| 
 | ||
|   PeekThroughNot(A, ParentA, TernlogMagicA);
 | ||
|   PeekThroughNot(B, ParentB, TernlogMagicB);
 | ||
|   PeekThroughNot(C, ParentC, TernlogMagicC);
 | ||
| 
 | ||
|   uint8_t Imm;
 | ||
|   switch (FoldableOp.getOpcode()) {
 | ||
|   default: llvm_unreachable("Unexpected opcode!");
 | ||
|   case ISD::AND:      Imm = TernlogMagicB & TernlogMagicC; break;
 | ||
|   case ISD::OR:       Imm = TernlogMagicB | TernlogMagicC; break;
 | ||
|   case ISD::XOR:      Imm = TernlogMagicB ^ TernlogMagicC; break;
 | ||
|   case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
 | ||
|   }
 | ||
| 
 | ||
|   switch (N->getOpcode()) {
 | ||
|   default: llvm_unreachable("Unexpected opcode!");
 | ||
|   case X86ISD::ANDNP:
 | ||
|     if (A == N0)
 | ||
|       Imm &= ~TernlogMagicA;
 | ||
|     else
 | ||
|       Imm = ~(Imm) & TernlogMagicA;
 | ||
|     break;
 | ||
|   case ISD::AND: Imm &= TernlogMagicA; break;
 | ||
|   case ISD::OR:  Imm |= TernlogMagicA; break;
 | ||
|   case ISD::XOR: Imm ^= TernlogMagicA; break;
 | ||
|   }
 | ||
| 
 | ||
|   return matchVPTERNLOG(N, ParentA, ParentB, ParentC, A, B, C, Imm);
 | ||
| }
 | ||
| 
 | ||
| /// If the high bits of an 'and' operand are known zero, try setting the
 | ||
| /// high bits of an 'and' constant operand to produce a smaller encoding by
 | ||
| /// creating a small, sign-extended negative immediate rather than a large
 | ||
| /// positive one. This reverses a transform in SimplifyDemandedBits that
 | ||
| /// shrinks mask constants by clearing bits. There is also a possibility that
 | ||
| /// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
 | ||
| /// case, just replace the 'and'. Return 'true' if the node is replaced.
 | ||
| bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
 | ||
|   // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
 | ||
|   // have immediate operands.
 | ||
|   MVT VT = And->getSimpleValueType(0);
 | ||
|   if (VT != MVT::i32 && VT != MVT::i64)
 | ||
|     return false;
 | ||
| 
 | ||
|   auto *And1C = dyn_cast<ConstantSDNode>(And->getOperand(1));
 | ||
|   if (!And1C)
 | ||
|     return false;
 | ||
| 
 | ||
|   // Bail out if the mask constant is already negative. It's can't shrink more.
 | ||
|   // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
 | ||
|   // patterns to use a 32-bit and instead of a 64-bit and by relying on the
 | ||
|   // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
 | ||
|   // are negative too.
 | ||
|   APInt MaskVal = And1C->getAPIntValue();
 | ||
|   unsigned MaskLZ = MaskVal.countLeadingZeros();
 | ||
|   if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Don't extend into the upper 32 bits of a 64 bit mask.
 | ||
|   if (VT == MVT::i64 && MaskLZ >= 32) {
 | ||
|     MaskLZ -= 32;
 | ||
|     MaskVal = MaskVal.trunc(32);
 | ||
|   }
 | ||
| 
 | ||
|   SDValue And0 = And->getOperand(0);
 | ||
|   APInt HighZeros = APInt::getHighBitsSet(MaskVal.getBitWidth(), MaskLZ);
 | ||
|   APInt NegMaskVal = MaskVal | HighZeros;
 | ||
| 
 | ||
|   // If a negative constant would not allow a smaller encoding, there's no need
 | ||
|   // to continue. Only change the constant when we know it's a win.
 | ||
|   unsigned MinWidth = NegMaskVal.getMinSignedBits();
 | ||
|   if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getMinSignedBits() <= 32))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Extend masks if we truncated above.
 | ||
|   if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
 | ||
|     NegMaskVal = NegMaskVal.zext(64);
 | ||
|     HighZeros = HighZeros.zext(64);
 | ||
|   }
 | ||
| 
 | ||
|   // The variable operand must be all zeros in the top bits to allow using the
 | ||
|   // new, negative constant as the mask.
 | ||
|   if (!CurDAG->MaskedValueIsZero(And0, HighZeros))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Check if the mask is -1. In that case, this is an unnecessary instruction
 | ||
|   // that escaped earlier analysis.
 | ||
|   if (NegMaskVal.isAllOnes()) {
 | ||
|     ReplaceNode(And, And0.getNode());
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // A negative mask allows a smaller encoding. Create a new 'and' node.
 | ||
|   SDValue NewMask = CurDAG->getConstant(NegMaskVal, SDLoc(And), VT);
 | ||
|   insertDAGNode(*CurDAG, SDValue(And, 0), NewMask);
 | ||
|   SDValue NewAnd = CurDAG->getNode(ISD::AND, SDLoc(And), VT, And0, NewMask);
 | ||
|   ReplaceNode(And, NewAnd.getNode());
 | ||
|   SelectCode(NewAnd.getNode());
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
 | ||
|                               bool FoldedBCast, bool Masked) {
 | ||
| #define VPTESTM_CASE(VT, SUFFIX) \
 | ||
| case MVT::VT: \
 | ||
|   if (Masked) \
 | ||
|     return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
 | ||
|   return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
 | ||
| 
 | ||
| 
 | ||
| #define VPTESTM_BROADCAST_CASES(SUFFIX) \
 | ||
| default: llvm_unreachable("Unexpected VT!"); \
 | ||
| VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
 | ||
| VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
 | ||
| VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
 | ||
| VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
 | ||
| VPTESTM_CASE(v16i32, DZ##SUFFIX) \
 | ||
| VPTESTM_CASE(v8i64, QZ##SUFFIX)
 | ||
| 
 | ||
| #define VPTESTM_FULL_CASES(SUFFIX) \
 | ||
| VPTESTM_BROADCAST_CASES(SUFFIX) \
 | ||
| VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
 | ||
| VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
 | ||
| VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
 | ||
| VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
 | ||
| VPTESTM_CASE(v64i8, BZ##SUFFIX) \
 | ||
| VPTESTM_CASE(v32i16, WZ##SUFFIX)
 | ||
| 
 | ||
|   if (FoldedBCast) {
 | ||
|     switch (TestVT.SimpleTy) {
 | ||
|     VPTESTM_BROADCAST_CASES(rmb)
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (FoldedLoad) {
 | ||
|     switch (TestVT.SimpleTy) {
 | ||
|     VPTESTM_FULL_CASES(rm)
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   switch (TestVT.SimpleTy) {
 | ||
|   VPTESTM_FULL_CASES(rr)
 | ||
|   }
 | ||
| 
 | ||
| #undef VPTESTM_FULL_CASES
 | ||
| #undef VPTESTM_BROADCAST_CASES
 | ||
| #undef VPTESTM_CASE
 | ||
| }
 | ||
| 
 | ||
| // Try to create VPTESTM instruction. If InMask is not null, it will be used
 | ||
| // to form a masked operation.
 | ||
| bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
 | ||
|                                  SDValue InMask) {
 | ||
|   assert(Subtarget->hasAVX512() && "Expected AVX512!");
 | ||
|   assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
 | ||
|          "Unexpected VT!");
 | ||
| 
 | ||
|   // Look for equal and not equal compares.
 | ||
|   ISD::CondCode CC = cast<CondCodeSDNode>(Setcc.getOperand(2))->get();
 | ||
|   if (CC != ISD::SETEQ && CC != ISD::SETNE)
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue SetccOp0 = Setcc.getOperand(0);
 | ||
|   SDValue SetccOp1 = Setcc.getOperand(1);
 | ||
| 
 | ||
|   // Canonicalize the all zero vector to the RHS.
 | ||
|   if (ISD::isBuildVectorAllZeros(SetccOp0.getNode()))
 | ||
|     std::swap(SetccOp0, SetccOp1);
 | ||
| 
 | ||
|   // See if we're comparing against zero.
 | ||
|   if (!ISD::isBuildVectorAllZeros(SetccOp1.getNode()))
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue N0 = SetccOp0;
 | ||
| 
 | ||
|   MVT CmpVT = N0.getSimpleValueType();
 | ||
|   MVT CmpSVT = CmpVT.getVectorElementType();
 | ||
| 
 | ||
|   // Start with both operands the same. We'll try to refine this.
 | ||
|   SDValue Src0 = N0;
 | ||
|   SDValue Src1 = N0;
 | ||
| 
 | ||
|   {
 | ||
|     // Look through single use bitcasts.
 | ||
|     SDValue N0Temp = N0;
 | ||
|     if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
 | ||
|       N0Temp = N0.getOperand(0);
 | ||
| 
 | ||
|      // Look for single use AND.
 | ||
|     if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
 | ||
|       Src0 = N0Temp.getOperand(0);
 | ||
|       Src1 = N0Temp.getOperand(1);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   // Without VLX we need to widen the operation.
 | ||
|   bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
 | ||
| 
 | ||
|   auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
 | ||
|                                 SDValue &Base, SDValue &Scale, SDValue &Index,
 | ||
|                                 SDValue &Disp, SDValue &Segment) {
 | ||
|     // If we need to widen, we can't fold the load.
 | ||
|     if (!Widen)
 | ||
|       if (tryFoldLoad(Root, P, L, Base, Scale, Index, Disp, Segment))
 | ||
|         return true;
 | ||
| 
 | ||
|     // If we didn't fold a load, try to match broadcast. No widening limitation
 | ||
|     // for this. But only 32 and 64 bit types are supported.
 | ||
|     if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
 | ||
|       return false;
 | ||
| 
 | ||
|     // Look through single use bitcasts.
 | ||
|     if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
 | ||
|       P = L.getNode();
 | ||
|       L = L.getOperand(0);
 | ||
|     }
 | ||
| 
 | ||
|     if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
 | ||
|       return false;
 | ||
| 
 | ||
|     auto *MemIntr = cast<MemIntrinsicSDNode>(L);
 | ||
|     if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
 | ||
|       return false;
 | ||
| 
 | ||
|     return tryFoldBroadcast(Root, P, L, Base, Scale, Index, Disp, Segment);
 | ||
|   };
 | ||
| 
 | ||
|   // We can only fold loads if the sources are unique.
 | ||
|   bool CanFoldLoads = Src0 != Src1;
 | ||
| 
 | ||
|   bool FoldedLoad = false;
 | ||
|   SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|   if (CanFoldLoads) {
 | ||
|     FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
 | ||
|                                     Tmp3, Tmp4);
 | ||
|     if (!FoldedLoad) {
 | ||
|       // And is commutative.
 | ||
|       FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
 | ||
|                                       Tmp2, Tmp3, Tmp4);
 | ||
|       if (FoldedLoad)
 | ||
|         std::swap(Src0, Src1);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
 | ||
| 
 | ||
|   bool IsMasked = InMask.getNode() != nullptr;
 | ||
| 
 | ||
|   SDLoc dl(Root);
 | ||
| 
 | ||
|   MVT ResVT = Setcc.getSimpleValueType();
 | ||
|   MVT MaskVT = ResVT;
 | ||
|   if (Widen) {
 | ||
|     // Widen the inputs using insert_subreg or copy_to_regclass.
 | ||
|     unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
 | ||
|     unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
 | ||
|     unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
 | ||
|     CmpVT = MVT::getVectorVT(CmpSVT, NumElts);
 | ||
|     MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
 | ||
|     SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
 | ||
|                                                      CmpVT), 0);
 | ||
|     Src0 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src0);
 | ||
| 
 | ||
|     if (!FoldedBCast)
 | ||
|       Src1 = CurDAG->getTargetInsertSubreg(SubReg, dl, CmpVT, ImplDef, Src1);
 | ||
| 
 | ||
|     if (IsMasked) {
 | ||
|       // Widen the mask.
 | ||
|       unsigned RegClass = TLI->getRegClassFor(MaskVT)->getID();
 | ||
|       SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
 | ||
|       InMask = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
 | ||
|                                               dl, MaskVT, InMask, RC), 0);
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   bool IsTestN = CC == ISD::SETEQ;
 | ||
|   unsigned Opc = getVPTESTMOpc(CmpVT, IsTestN, FoldedLoad, FoldedBCast,
 | ||
|                                IsMasked);
 | ||
| 
 | ||
|   MachineSDNode *CNode;
 | ||
|   if (FoldedLoad) {
 | ||
|     SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
 | ||
| 
 | ||
|     if (IsMasked) {
 | ||
|       SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
 | ||
|                         Src1.getOperand(0) };
 | ||
|       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
 | ||
|     } else {
 | ||
|       SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
 | ||
|                         Src1.getOperand(0) };
 | ||
|       CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
 | ||
|     }
 | ||
| 
 | ||
|     // Update the chain.
 | ||
|     ReplaceUses(Src1.getValue(1), SDValue(CNode, 1));
 | ||
|     // Record the mem-refs
 | ||
|     CurDAG->setNodeMemRefs(CNode, {cast<MemSDNode>(Src1)->getMemOperand()});
 | ||
|   } else {
 | ||
|     if (IsMasked)
 | ||
|       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, InMask, Src0, Src1);
 | ||
|     else
 | ||
|       CNode = CurDAG->getMachineNode(Opc, dl, MaskVT, Src0, Src1);
 | ||
|   }
 | ||
| 
 | ||
|   // If we widened, we need to shrink the mask VT.
 | ||
|   if (Widen) {
 | ||
|     unsigned RegClass = TLI->getRegClassFor(ResVT)->getID();
 | ||
|     SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
 | ||
|     CNode = CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
 | ||
|                                    dl, ResVT, SDValue(CNode, 0), RC);
 | ||
|   }
 | ||
| 
 | ||
|   ReplaceUses(SDValue(Root, 0), SDValue(CNode, 0));
 | ||
|   CurDAG->RemoveDeadNode(Root);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| // Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
 | ||
| // into vpternlog.
 | ||
| bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
 | ||
|   assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
 | ||
| 
 | ||
|   MVT NVT = N->getSimpleValueType(0);
 | ||
| 
 | ||
|   // Make sure we support VPTERNLOG.
 | ||
|   if (!NVT.isVector() || !Subtarget->hasAVX512())
 | ||
|     return false;
 | ||
| 
 | ||
|   // We need VLX for 128/256-bit.
 | ||
|   if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
 | ||
|     return false;
 | ||
| 
 | ||
|   SDValue N0 = N->getOperand(0);
 | ||
|   SDValue N1 = N->getOperand(1);
 | ||
| 
 | ||
|   // Canonicalize AND to LHS.
 | ||
|   if (N1.getOpcode() == ISD::AND)
 | ||
|     std::swap(N0, N1);
 | ||
| 
 | ||
|   if (N0.getOpcode() != ISD::AND ||
 | ||
|       N1.getOpcode() != X86ISD::ANDNP ||
 | ||
|       !N0.hasOneUse() || !N1.hasOneUse())
 | ||
|     return false;
 | ||
| 
 | ||
|   // ANDN is not commutable, use it to pick down A and C.
 | ||
|   SDValue A = N1.getOperand(0);
 | ||
|   SDValue C = N1.getOperand(1);
 | ||
| 
 | ||
|   // AND is commutable, if one operand matches A, the other operand is B.
 | ||
|   // Otherwise this isn't a match.
 | ||
|   SDValue B;
 | ||
|   if (N0.getOperand(0) == A)
 | ||
|     B = N0.getOperand(1);
 | ||
|   else if (N0.getOperand(1) == A)
 | ||
|     B = N0.getOperand(0);
 | ||
|   else
 | ||
|     return false;
 | ||
| 
 | ||
|   SDLoc dl(N);
 | ||
|   SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
 | ||
|   SDValue Ternlog = CurDAG->getNode(X86ISD::VPTERNLOG, dl, NVT, A, B, C, Imm);
 | ||
|   ReplaceNode(N, Ternlog.getNode());
 | ||
| 
 | ||
|   return matchVPTERNLOG(Ternlog.getNode(), Ternlog.getNode(), Ternlog.getNode(),
 | ||
|                         Ternlog.getNode(), A, B, C, 0xCA);
 | ||
| }
 | ||
| 
 | ||
| void X86DAGToDAGISel::Select(SDNode *Node) {
 | ||
|   MVT NVT = Node->getSimpleValueType(0);
 | ||
|   unsigned Opcode = Node->getOpcode();
 | ||
|   SDLoc dl(Node);
 | ||
| 
 | ||
|   if (Node->isMachineOpcode()) {
 | ||
|     LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
 | ||
|     Node->setNodeId(-1);
 | ||
|     return;   // Already selected.
 | ||
|   }
 | ||
| 
 | ||
|   switch (Opcode) {
 | ||
|   default: break;
 | ||
|   case ISD::INTRINSIC_W_CHAIN: {
 | ||
|     unsigned IntNo = Node->getConstantOperandVal(1);
 | ||
|     switch (IntNo) {
 | ||
|     default: break;
 | ||
|     case Intrinsic::x86_encodekey128:
 | ||
|     case Intrinsic::x86_encodekey256: {
 | ||
|       if (!Subtarget->hasKL())
 | ||
|         break;
 | ||
| 
 | ||
|       unsigned Opcode;
 | ||
|       switch (IntNo) {
 | ||
|       default: llvm_unreachable("Impossible intrinsic");
 | ||
|       case Intrinsic::x86_encodekey128: Opcode = X86::ENCODEKEY128; break;
 | ||
|       case Intrinsic::x86_encodekey256: Opcode = X86::ENCODEKEY256; break;
 | ||
|       }
 | ||
| 
 | ||
|       SDValue Chain = Node->getOperand(0);
 | ||
|       Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
 | ||
|                                    SDValue());
 | ||
|       if (Opcode == X86::ENCODEKEY256)
 | ||
|         Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
 | ||
|                                      Chain.getValue(1));
 | ||
| 
 | ||
|       MachineSDNode *Res = CurDAG->getMachineNode(
 | ||
|           Opcode, dl, Node->getVTList(),
 | ||
|           {Node->getOperand(2), Chain, Chain.getValue(1)});
 | ||
|       ReplaceNode(Node, Res);
 | ||
|       return;
 | ||
|     }
 | ||
|     case Intrinsic::x86_tileloadd64_internal:
 | ||
|     case Intrinsic::x86_tileloaddt164_internal: {
 | ||
|       if (!Subtarget->hasAMXTILE())
 | ||
|         break;
 | ||
|       unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
 | ||
|                          ? X86::PTILELOADDV
 | ||
|                          : X86::PTILELOADDT1V;
 | ||
|       // _tile_loadd_internal(row, col, buf, STRIDE)
 | ||
|       SDValue Base = Node->getOperand(4);
 | ||
|       SDValue Scale = getI8Imm(1, dl);
 | ||
|       SDValue Index = Node->getOperand(5);
 | ||
|       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
 | ||
|       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
 | ||
|       SDValue Chain = Node->getOperand(0);
 | ||
|       MachineSDNode *CNode;
 | ||
|       SDValue Ops[] = {Node->getOperand(2),
 | ||
|                        Node->getOperand(3),
 | ||
|                        Base,
 | ||
|                        Scale,
 | ||
|                        Index,
 | ||
|                        Disp,
 | ||
|                        Segment,
 | ||
|                        Chain};
 | ||
|       CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
 | ||
|       ReplaceNode(Node, CNode);
 | ||
|       return;
 | ||
|     }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::INTRINSIC_VOID: {
 | ||
|     unsigned IntNo = Node->getConstantOperandVal(1);
 | ||
|     switch (IntNo) {
 | ||
|     default: break;
 | ||
|     case Intrinsic::x86_sse3_monitor:
 | ||
|     case Intrinsic::x86_monitorx:
 | ||
|     case Intrinsic::x86_clzero: {
 | ||
|       bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
 | ||
| 
 | ||
|       unsigned Opc = 0;
 | ||
|       switch (IntNo) {
 | ||
|       default: llvm_unreachable("Unexpected intrinsic!");
 | ||
|       case Intrinsic::x86_sse3_monitor:
 | ||
|         if (!Subtarget->hasSSE3())
 | ||
|           break;
 | ||
|         Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
 | ||
|         break;
 | ||
|       case Intrinsic::x86_monitorx:
 | ||
|         if (!Subtarget->hasMWAITX())
 | ||
|           break;
 | ||
|         Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
 | ||
|         break;
 | ||
|       case Intrinsic::x86_clzero:
 | ||
|         if (!Subtarget->hasCLZERO())
 | ||
|           break;
 | ||
|         Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       if (Opc) {
 | ||
|         unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
 | ||
|         SDValue Chain = CurDAG->getCopyToReg(Node->getOperand(0), dl, PtrReg,
 | ||
|                                              Node->getOperand(2), SDValue());
 | ||
|         SDValue InFlag = Chain.getValue(1);
 | ||
| 
 | ||
|         if (IntNo == Intrinsic::x86_sse3_monitor ||
 | ||
|             IntNo == Intrinsic::x86_monitorx) {
 | ||
|           // Copy the other two operands to ECX and EDX.
 | ||
|           Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
 | ||
|                                        InFlag);
 | ||
|           InFlag = Chain.getValue(1);
 | ||
|           Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
 | ||
|                                        InFlag);
 | ||
|           InFlag = Chain.getValue(1);
 | ||
|         }
 | ||
| 
 | ||
|         MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
 | ||
|                                                       { Chain, InFlag});
 | ||
|         ReplaceNode(Node, CNode);
 | ||
|         return;
 | ||
|       }
 | ||
| 
 | ||
|       break;
 | ||
|     }
 | ||
|     case Intrinsic::x86_tilestored64_internal: {
 | ||
|       unsigned Opc = X86::PTILESTOREDV;
 | ||
|       // _tile_stored_internal(row, col, buf, STRIDE, c)
 | ||
|       SDValue Base = Node->getOperand(4);
 | ||
|       SDValue Scale = getI8Imm(1, dl);
 | ||
|       SDValue Index = Node->getOperand(5);
 | ||
|       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
 | ||
|       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
 | ||
|       SDValue Chain = Node->getOperand(0);
 | ||
|       MachineSDNode *CNode;
 | ||
|       SDValue Ops[] = {Node->getOperand(2),
 | ||
|                        Node->getOperand(3),
 | ||
|                        Base,
 | ||
|                        Scale,
 | ||
|                        Index,
 | ||
|                        Disp,
 | ||
|                        Segment,
 | ||
|                        Node->getOperand(6),
 | ||
|                        Chain};
 | ||
|       CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
 | ||
|       ReplaceNode(Node, CNode);
 | ||
|       return;
 | ||
|     }
 | ||
|     case Intrinsic::x86_tileloadd64:
 | ||
|     case Intrinsic::x86_tileloaddt164:
 | ||
|     case Intrinsic::x86_tilestored64: {
 | ||
|       if (!Subtarget->hasAMXTILE())
 | ||
|         break;
 | ||
|       unsigned Opc;
 | ||
|       switch (IntNo) {
 | ||
|       default: llvm_unreachable("Unexpected intrinsic!");
 | ||
|       case Intrinsic::x86_tileloadd64:   Opc = X86::PTILELOADD; break;
 | ||
|       case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
 | ||
|       case Intrinsic::x86_tilestored64:  Opc = X86::PTILESTORED; break;
 | ||
|       }
 | ||
|       // FIXME: Match displacement and scale.
 | ||
|       unsigned TIndex = Node->getConstantOperandVal(2);
 | ||
|       SDValue TReg = getI8Imm(TIndex, dl);
 | ||
|       SDValue Base = Node->getOperand(3);
 | ||
|       SDValue Scale = getI8Imm(1, dl);
 | ||
|       SDValue Index = Node->getOperand(4);
 | ||
|       SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
 | ||
|       SDValue Segment = CurDAG->getRegister(0, MVT::i16);
 | ||
|       SDValue Chain = Node->getOperand(0);
 | ||
|       MachineSDNode *CNode;
 | ||
|       if (Opc == X86::PTILESTORED) {
 | ||
|         SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
 | ||
|         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
 | ||
|       } else {
 | ||
|         SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
 | ||
|         CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
 | ||
|       }
 | ||
|       ReplaceNode(Node, CNode);
 | ||
|       return;
 | ||
|     }
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case ISD::BRIND:
 | ||
|   case X86ISD::NT_BRIND: {
 | ||
|     if (Subtarget->isTargetNaCl())
 | ||
|       // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
 | ||
|       // leave the instruction alone.
 | ||
|       break;
 | ||
|     if (Subtarget->isTarget64BitILP32()) {
 | ||
|       // Converts a 32-bit register to a 64-bit, zero-extended version of
 | ||
|       // it. This is needed because x86-64 can do many things, but jmp %r32
 | ||
|       // ain't one of them.
 | ||
|       SDValue Target = Node->getOperand(1);
 | ||
|       assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
 | ||
|       SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
 | ||
|       SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
 | ||
|                                       Node->getOperand(0), ZextTarget);
 | ||
|       ReplaceNode(Node, Brind.getNode());
 | ||
|       SelectCode(ZextTarget.getNode());
 | ||
|       SelectCode(Brind.getNode());
 | ||
|       return;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case X86ISD::GlobalBaseReg:
 | ||
|     ReplaceNode(Node, getGlobalBaseReg());
 | ||
|     return;
 | ||
| 
 | ||
|   case ISD::BITCAST:
 | ||
|     // Just drop all 128/256/512-bit bitcasts.
 | ||
|     if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
 | ||
|         NVT == MVT::f128) {
 | ||
|       ReplaceUses(SDValue(Node, 0), Node->getOperand(0));
 | ||
|       CurDAG->RemoveDeadNode(Node);
 | ||
|       return;
 | ||
|     }
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::SRL:
 | ||
|     if (matchBitExtract(Node))
 | ||
|       return;
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::SRA:
 | ||
|   case ISD::SHL:
 | ||
|     if (tryShiftAmountMod(Node))
 | ||
|       return;
 | ||
|     break;
 | ||
| 
 | ||
|   case X86ISD::VPTERNLOG: {
 | ||
|     uint8_t Imm = cast<ConstantSDNode>(Node->getOperand(3))->getZExtValue();
 | ||
|     if (matchVPTERNLOG(Node, Node, Node, Node, Node->getOperand(0),
 | ||
|                        Node->getOperand(1), Node->getOperand(2), Imm))
 | ||
|       return;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   case X86ISD::ANDNP:
 | ||
|     if (tryVPTERNLOG(Node))
 | ||
|       return;
 | ||
|     break;
 | ||
| 
 | ||
|   case ISD::AND:
 | ||
|     if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
 | ||
|       // Try to form a masked VPTESTM. Operands can be in either order.
 | ||
|       SDValue N0 = Node->getOperand(0);
 | ||
|       SDValue N1 = Node->getOperand(1);
 | ||
|       if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
 | ||
|           tryVPTESTM(Node, N0, N1))
 | ||
|         return;
 | ||
|       if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
 | ||
|           tryVPTESTM(Node, N1, N0))
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
 | ||
|       ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
 | ||
|       CurDAG->RemoveDeadNode(Node);
 | ||
|       return;
 | ||
|     }
 | ||
|     if (matchBitExtract(Node))
 | ||
|       return;
 | ||
|     if (AndImmShrink && shrinkAndImmediate(Node))
 | ||
|       return;
 | ||
| 
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::OR:
 | ||
|   case ISD::XOR:
 | ||
|     if (tryShrinkShlLogicImm(Node))
 | ||
|       return;
 | ||
|     if (Opcode == ISD::OR && tryMatchBitSelect(Node))
 | ||
|       return;
 | ||
|     if (tryVPTERNLOG(Node))
 | ||
|       return;
 | ||
| 
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case ISD::ADD:
 | ||
|   case ISD::SUB: {
 | ||
|     // Try to avoid folding immediates with multiple uses for optsize.
 | ||
|     // This code tries to select to register form directly to avoid going
 | ||
|     // through the isel table which might fold the immediate. We can't change
 | ||
|     // the patterns on the add/sub/and/or/xor with immediate paterns in the
 | ||
|     // tablegen files to check immediate use count without making the patterns
 | ||
|     // unavailable to the fast-isel table.
 | ||
|     if (!CurDAG->shouldOptForSize())
 | ||
|       break;
 | ||
| 
 | ||
|     // Only handle i8/i16/i32/i64.
 | ||
|     if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue N0 = Node->getOperand(0);
 | ||
|     SDValue N1 = Node->getOperand(1);
 | ||
| 
 | ||
|     ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
 | ||
|     if (!Cst)
 | ||
|       break;
 | ||
| 
 | ||
|     int64_t Val = Cst->getSExtValue();
 | ||
| 
 | ||
|     // Make sure its an immediate that is considered foldable.
 | ||
|     // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
 | ||
|     if (!isInt<8>(Val) && !isInt<32>(Val))
 | ||
|       break;
 | ||
| 
 | ||
|     // If this can match to INC/DEC, let it go.
 | ||
|     if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
 | ||
|       break;
 | ||
| 
 | ||
|     // Check if we should avoid folding this immediate.
 | ||
|     if (!shouldAvoidImmediateInstFormsForSize(N1.getNode()))
 | ||
|       break;
 | ||
| 
 | ||
|     // We should not fold the immediate. So we need a register form instead.
 | ||
|     unsigned ROpc, MOpc;
 | ||
|     switch (NVT.SimpleTy) {
 | ||
|     default: llvm_unreachable("Unexpected VT!");
 | ||
|     case MVT::i8:
 | ||
|       switch (Opcode) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::ADD: ROpc = X86::ADD8rr; MOpc = X86::ADD8rm; break;
 | ||
|       case ISD::SUB: ROpc = X86::SUB8rr; MOpc = X86::SUB8rm; break;
 | ||
|       case ISD::AND: ROpc = X86::AND8rr; MOpc = X86::AND8rm; break;
 | ||
|       case ISD::OR:  ROpc = X86::OR8rr;  MOpc = X86::OR8rm;  break;
 | ||
|       case ISD::XOR: ROpc = X86::XOR8rr; MOpc = X86::XOR8rm; break;
 | ||
|       }
 | ||
|       break;
 | ||
|     case MVT::i16:
 | ||
|       switch (Opcode) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::ADD: ROpc = X86::ADD16rr; MOpc = X86::ADD16rm; break;
 | ||
|       case ISD::SUB: ROpc = X86::SUB16rr; MOpc = X86::SUB16rm; break;
 | ||
|       case ISD::AND: ROpc = X86::AND16rr; MOpc = X86::AND16rm; break;
 | ||
|       case ISD::OR:  ROpc = X86::OR16rr;  MOpc = X86::OR16rm;  break;
 | ||
|       case ISD::XOR: ROpc = X86::XOR16rr; MOpc = X86::XOR16rm; break;
 | ||
|       }
 | ||
|       break;
 | ||
|     case MVT::i32:
 | ||
|       switch (Opcode) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::ADD: ROpc = X86::ADD32rr; MOpc = X86::ADD32rm; break;
 | ||
|       case ISD::SUB: ROpc = X86::SUB32rr; MOpc = X86::SUB32rm; break;
 | ||
|       case ISD::AND: ROpc = X86::AND32rr; MOpc = X86::AND32rm; break;
 | ||
|       case ISD::OR:  ROpc = X86::OR32rr;  MOpc = X86::OR32rm;  break;
 | ||
|       case ISD::XOR: ROpc = X86::XOR32rr; MOpc = X86::XOR32rm; break;
 | ||
|       }
 | ||
|       break;
 | ||
|     case MVT::i64:
 | ||
|       switch (Opcode) {
 | ||
|       default: llvm_unreachable("Unexpected opcode!");
 | ||
|       case ISD::ADD: ROpc = X86::ADD64rr; MOpc = X86::ADD64rm; break;
 | ||
|       case ISD::SUB: ROpc = X86::SUB64rr; MOpc = X86::SUB64rm; break;
 | ||
|       case ISD::AND: ROpc = X86::AND64rr; MOpc = X86::AND64rm; break;
 | ||
|       case ISD::OR:  ROpc = X86::OR64rr;  MOpc = X86::OR64rm;  break;
 | ||
|       case ISD::XOR: ROpc = X86::XOR64rr; MOpc = X86::XOR64rm; break;
 | ||
|       }
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     // Ok this is a AND/OR/XOR/ADD/SUB with constant.
 | ||
| 
 | ||
|     // If this is a not a subtract, we can still try to fold a load.
 | ||
|     if (Opcode != ISD::SUB) {
 | ||
|       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|         SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
 | ||
|         SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
 | ||
|         MachineSDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|         // Update the chain.
 | ||
|         ReplaceUses(N0.getValue(1), SDValue(CNode, 2));
 | ||
|         // Record the mem-refs
 | ||
|         CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N0)->getMemOperand()});
 | ||
|         ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
 | ||
|         CurDAG->RemoveDeadNode(Node);
 | ||
|         return;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   case X86ISD::SMUL:
 | ||
|     // i16/i32/i64 are handled with isel patterns.
 | ||
|     if (NVT != MVT::i8)
 | ||
|       break;
 | ||
|     LLVM_FALLTHROUGH;
 | ||
|   case X86ISD::UMUL: {
 | ||
|     SDValue N0 = Node->getOperand(0);
 | ||
|     SDValue N1 = Node->getOperand(1);
 | ||
| 
 | ||
|     unsigned LoReg, ROpc, MOpc;
 | ||
|     switch (NVT.SimpleTy) {
 | ||
|     default: llvm_unreachable("Unsupported VT!");
 | ||
|     case MVT::i8:
 | ||
|       LoReg = X86::AL;
 | ||
|       ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
 | ||
|       MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
 | ||
|       break;
 | ||
|     case MVT::i16:
 | ||
|       LoReg = X86::AX;
 | ||
|       ROpc = X86::MUL16r;
 | ||
|       MOpc = X86::MUL16m;
 | ||
|       break;
 | ||
|     case MVT::i32:
 | ||
|       LoReg = X86::EAX;
 | ||
|       ROpc = X86::MUL32r;
 | ||
|       MOpc = X86::MUL32m;
 | ||
|       break;
 | ||
|     case MVT::i64:
 | ||
|       LoReg = X86::RAX;
 | ||
|       ROpc = X86::MUL64r;
 | ||
|       MOpc = X86::MUL64m;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|     bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | ||
|     // Multiply is commutative.
 | ||
|     if (!FoldedLoad) {
 | ||
|       FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | ||
|       if (FoldedLoad)
 | ||
|         std::swap(N0, N1);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
 | ||
|                                           N0, SDValue()).getValue(1);
 | ||
| 
 | ||
|     MachineSDNode *CNode;
 | ||
|     if (FoldedLoad) {
 | ||
|       // i16/i32/i64 use an instruction that produces a low and high result even
 | ||
|       // though only the low result is used.
 | ||
|       SDVTList VTs;
 | ||
|       if (NVT == MVT::i8)
 | ||
|         VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
 | ||
|       else
 | ||
|         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
 | ||
| 
 | ||
|       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
 | ||
|                         InFlag };
 | ||
|       CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
| 
 | ||
|       // Update the chain.
 | ||
|       ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
 | ||
|       // Record the mem-refs
 | ||
|       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
 | ||
|     } else {
 | ||
|       // i16/i32/i64 use an instruction that produces a low and high result even
 | ||
|       // though only the low result is used.
 | ||
|       SDVTList VTs;
 | ||
|       if (NVT == MVT::i8)
 | ||
|         VTs = CurDAG->getVTList(NVT, MVT::i32);
 | ||
|       else
 | ||
|         VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
 | ||
| 
 | ||
|       CNode = CurDAG->getMachineNode(ROpc, dl, VTs, {N1, InFlag});
 | ||
|     }
 | ||
| 
 | ||
|     ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
 | ||
|     ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::SMUL_LOHI:
 | ||
|   case ISD::UMUL_LOHI: {
 | ||
|     SDValue N0 = Node->getOperand(0);
 | ||
|     SDValue N1 = Node->getOperand(1);
 | ||
| 
 | ||
|     unsigned Opc, MOpc;
 | ||
|     unsigned LoReg, HiReg;
 | ||
|     bool IsSigned = Opcode == ISD::SMUL_LOHI;
 | ||
|     bool UseMULX = !IsSigned && Subtarget->hasBMI2();
 | ||
|     bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
 | ||
|     switch (NVT.SimpleTy) {
 | ||
|     default: llvm_unreachable("Unsupported VT!");
 | ||
|     case MVT::i32:
 | ||
|       Opc  = UseMULXHi ? X86::MULX32Hrr :
 | ||
|              UseMULX ? X86::MULX32rr :
 | ||
|              IsSigned ? X86::IMUL32r : X86::MUL32r;
 | ||
|       MOpc = UseMULXHi ? X86::MULX32Hrm :
 | ||
|              UseMULX ? X86::MULX32rm :
 | ||
|              IsSigned ? X86::IMUL32m : X86::MUL32m;
 | ||
|       LoReg = UseMULX ? X86::EDX : X86::EAX;
 | ||
|       HiReg = X86::EDX;
 | ||
|       break;
 | ||
|     case MVT::i64:
 | ||
|       Opc  = UseMULXHi ? X86::MULX64Hrr :
 | ||
|              UseMULX ? X86::MULX64rr :
 | ||
|              IsSigned ? X86::IMUL64r : X86::MUL64r;
 | ||
|       MOpc = UseMULXHi ? X86::MULX64Hrm :
 | ||
|              UseMULX ? X86::MULX64rm :
 | ||
|              IsSigned ? X86::IMUL64m : X86::MUL64m;
 | ||
|       LoReg = UseMULX ? X86::RDX : X86::RAX;
 | ||
|       HiReg = X86::RDX;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | ||
|     // Multiply is commmutative.
 | ||
|     if (!foldedLoad) {
 | ||
|       foldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | ||
|       if (foldedLoad)
 | ||
|         std::swap(N0, N1);
 | ||
|     }
 | ||
| 
 | ||
|     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
 | ||
|                                           N0, SDValue()).getValue(1);
 | ||
|     SDValue ResHi, ResLo;
 | ||
|     if (foldedLoad) {
 | ||
|       SDValue Chain;
 | ||
|       MachineSDNode *CNode = nullptr;
 | ||
|       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
 | ||
|                         InFlag };
 | ||
|       if (UseMULXHi) {
 | ||
|         SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
 | ||
|         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|         ResHi = SDValue(CNode, 0);
 | ||
|         Chain = SDValue(CNode, 1);
 | ||
|       } else if (UseMULX) {
 | ||
|         SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
 | ||
|         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|         ResHi = SDValue(CNode, 0);
 | ||
|         ResLo = SDValue(CNode, 1);
 | ||
|         Chain = SDValue(CNode, 2);
 | ||
|       } else {
 | ||
|         SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
 | ||
|         CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
 | ||
|         Chain = SDValue(CNode, 0);
 | ||
|         InFlag = SDValue(CNode, 1);
 | ||
|       }
 | ||
| 
 | ||
|       // Update the chain.
 | ||
|       ReplaceUses(N1.getValue(1), Chain);
 | ||
|       // Record the mem-refs
 | ||
|       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
 | ||
|     } else {
 | ||
|       SDValue Ops[] = { N1, InFlag };
 | ||
|       if (UseMULXHi) {
 | ||
|         SDVTList VTs = CurDAG->getVTList(NVT);
 | ||
|         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
 | ||
|         ResHi = SDValue(CNode, 0);
 | ||
|       } else if (UseMULX) {
 | ||
|         SDVTList VTs = CurDAG->getVTList(NVT, NVT);
 | ||
|         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
 | ||
|         ResHi = SDValue(CNode, 0);
 | ||
|         ResLo = SDValue(CNode, 1);
 | ||
|       } else {
 | ||
|         SDVTList VTs = CurDAG->getVTList(MVT::Glue);
 | ||
|         SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
 | ||
|         InFlag = SDValue(CNode, 0);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // Copy the low half of the result, if it is needed.
 | ||
|     if (!SDValue(Node, 0).use_empty()) {
 | ||
|       if (!ResLo) {
 | ||
|         assert(LoReg && "Register for low half is not defined!");
 | ||
|         ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg,
 | ||
|                                        NVT, InFlag);
 | ||
|         InFlag = ResLo.getValue(2);
 | ||
|       }
 | ||
|       ReplaceUses(SDValue(Node, 0), ResLo);
 | ||
|       LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
 | ||
|                  dbgs() << '\n');
 | ||
|     }
 | ||
|     // Copy the high half of the result, if it is needed.
 | ||
|     if (!SDValue(Node, 1).use_empty()) {
 | ||
|       if (!ResHi) {
 | ||
|         assert(HiReg && "Register for high half is not defined!");
 | ||
|         ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg,
 | ||
|                                        NVT, InFlag);
 | ||
|         InFlag = ResHi.getValue(2);
 | ||
|       }
 | ||
|       ReplaceUses(SDValue(Node, 1), ResHi);
 | ||
|       LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
 | ||
|                  dbgs() << '\n');
 | ||
|     }
 | ||
| 
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::SDIVREM:
 | ||
|   case ISD::UDIVREM: {
 | ||
|     SDValue N0 = Node->getOperand(0);
 | ||
|     SDValue N1 = Node->getOperand(1);
 | ||
| 
 | ||
|     unsigned ROpc, MOpc;
 | ||
|     bool isSigned = Opcode == ISD::SDIVREM;
 | ||
|     if (!isSigned) {
 | ||
|       switch (NVT.SimpleTy) {
 | ||
|       default: llvm_unreachable("Unsupported VT!");
 | ||
|       case MVT::i8:  ROpc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
 | ||
|       case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
 | ||
|       case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
 | ||
|       case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
 | ||
|       }
 | ||
|     } else {
 | ||
|       switch (NVT.SimpleTy) {
 | ||
|       default: llvm_unreachable("Unsupported VT!");
 | ||
|       case MVT::i8:  ROpc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
 | ||
|       case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
 | ||
|       case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
 | ||
|       case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     unsigned LoReg, HiReg, ClrReg;
 | ||
|     unsigned SExtOpcode;
 | ||
|     switch (NVT.SimpleTy) {
 | ||
|     default: llvm_unreachable("Unsupported VT!");
 | ||
|     case MVT::i8:
 | ||
|       LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
 | ||
|       SExtOpcode = 0; // Not used.
 | ||
|       break;
 | ||
|     case MVT::i16:
 | ||
|       LoReg = X86::AX;  HiReg = X86::DX;
 | ||
|       ClrReg = X86::DX;
 | ||
|       SExtOpcode = X86::CWD;
 | ||
|       break;
 | ||
|     case MVT::i32:
 | ||
|       LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
 | ||
|       SExtOpcode = X86::CDQ;
 | ||
|       break;
 | ||
|     case MVT::i64:
 | ||
|       LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
 | ||
|       SExtOpcode = X86::CQO;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|     bool foldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
 | ||
|     bool signBitIsZero = CurDAG->SignBitIsZero(N0);
 | ||
| 
 | ||
|     SDValue InFlag;
 | ||
|     if (NVT == MVT::i8) {
 | ||
|       // Special case for div8, just use a move with zero extension to AX to
 | ||
|       // clear the upper 8 bits (AH).
 | ||
|       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
 | ||
|       MachineSDNode *Move;
 | ||
|       if (tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
 | ||
|         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
 | ||
|                                                     : X86::MOVZX16rm8;
 | ||
|         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
 | ||
|         Chain = SDValue(Move, 1);
 | ||
|         ReplaceUses(N0.getValue(1), Chain);
 | ||
|         // Record the mem-refs
 | ||
|         CurDAG->setNodeMemRefs(Move, {cast<LoadSDNode>(N0)->getMemOperand()});
 | ||
|       } else {
 | ||
|         unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
 | ||
|                                                     : X86::MOVZX16rr8;
 | ||
|         Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
 | ||
|         Chain = CurDAG->getEntryNode();
 | ||
|       }
 | ||
|       Chain  = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
 | ||
|                                     SDValue());
 | ||
|       InFlag = Chain.getValue(1);
 | ||
|     } else {
 | ||
|       InFlag =
 | ||
|         CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
 | ||
|                              LoReg, N0, SDValue()).getValue(1);
 | ||
|       if (isSigned && !signBitIsZero) {
 | ||
|         // Sign extend the low part into the high part.
 | ||
|         InFlag =
 | ||
|           SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
 | ||
|       } else {
 | ||
|         // Zero out the high part, effectively zero extending the input.
 | ||
|         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
 | ||
|         SDValue ClrNode =
 | ||
|             SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0);
 | ||
|         switch (NVT.SimpleTy) {
 | ||
|         case MVT::i16:
 | ||
|           ClrNode =
 | ||
|               SDValue(CurDAG->getMachineNode(
 | ||
|                           TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
 | ||
|                           CurDAG->getTargetConstant(X86::sub_16bit, dl,
 | ||
|                                                     MVT::i32)),
 | ||
|                       0);
 | ||
|           break;
 | ||
|         case MVT::i32:
 | ||
|           break;
 | ||
|         case MVT::i64:
 | ||
|           ClrNode =
 | ||
|               SDValue(CurDAG->getMachineNode(
 | ||
|                           TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
 | ||
|                           CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
 | ||
|                           CurDAG->getTargetConstant(X86::sub_32bit, dl,
 | ||
|                                                     MVT::i32)),
 | ||
|                       0);
 | ||
|           break;
 | ||
|         default:
 | ||
|           llvm_unreachable("Unexpected division source");
 | ||
|         }
 | ||
| 
 | ||
|         InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
 | ||
|                                       ClrNode, InFlag).getValue(1);
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     if (foldedLoad) {
 | ||
|       SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
 | ||
|                         InFlag };
 | ||
|       MachineSDNode *CNode =
 | ||
|         CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
 | ||
|       InFlag = SDValue(CNode, 1);
 | ||
|       // Update the chain.
 | ||
|       ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | ||
|       // Record the mem-refs
 | ||
|       CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()});
 | ||
|     } else {
 | ||
|       InFlag =
 | ||
|         SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0);
 | ||
|     }
 | ||
| 
 | ||
|     // Prevent use of AH in a REX instruction by explicitly copying it to
 | ||
|     // an ABCD_L register.
 | ||
|     //
 | ||
|     // The current assumption of the register allocator is that isel
 | ||
|     // won't generate explicit references to the GR8_ABCD_H registers. If
 | ||
|     // the allocator and/or the backend get enhanced to be more robust in
 | ||
|     // that regard, this can be, and should be, removed.
 | ||
|     if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
 | ||
|       SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
 | ||
|       unsigned AHExtOpcode =
 | ||
|           isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
 | ||
| 
 | ||
|       SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
 | ||
|                                              MVT::Glue, AHCopy, InFlag);
 | ||
|       SDValue Result(RNode, 0);
 | ||
|       InFlag = SDValue(RNode, 1);
 | ||
| 
 | ||
|       Result =
 | ||
|           CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
 | ||
| 
 | ||
|       ReplaceUses(SDValue(Node, 1), Result);
 | ||
|       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
 | ||
|                  dbgs() << '\n');
 | ||
|     }
 | ||
|     // Copy the division (low) result, if it is needed.
 | ||
|     if (!SDValue(Node, 0).use_empty()) {
 | ||
|       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | ||
|                                                 LoReg, NVT, InFlag);
 | ||
|       InFlag = Result.getValue(2);
 | ||
|       ReplaceUses(SDValue(Node, 0), Result);
 | ||
|       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
 | ||
|                  dbgs() << '\n');
 | ||
|     }
 | ||
|     // Copy the remainder (high) result, if it is needed.
 | ||
|     if (!SDValue(Node, 1).use_empty()) {
 | ||
|       SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
 | ||
|                                               HiReg, NVT, InFlag);
 | ||
|       InFlag = Result.getValue(2);
 | ||
|       ReplaceUses(SDValue(Node, 1), Result);
 | ||
|       LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
 | ||
|                  dbgs() << '\n');
 | ||
|     }
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   case X86ISD::FCMP:
 | ||
|   case X86ISD::STRICT_FCMP:
 | ||
|   case X86ISD::STRICT_FCMPS: {
 | ||
|     bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
 | ||
|                        Node->getOpcode() == X86ISD::STRICT_FCMPS;
 | ||
|     SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0);
 | ||
|     SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1);
 | ||
| 
 | ||
|     // Save the original VT of the compare.
 | ||
|     MVT CmpVT = N0.getSimpleValueType();
 | ||
| 
 | ||
|     // Floating point needs special handling if we don't have FCOMI.
 | ||
|     if (Subtarget->hasCMov())
 | ||
|       break;
 | ||
| 
 | ||
|     bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
 | ||
| 
 | ||
|     unsigned Opc;
 | ||
|     switch (CmpVT.SimpleTy) {
 | ||
|     default: llvm_unreachable("Unexpected type!");
 | ||
|     case MVT::f32:
 | ||
|       Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
 | ||
|       break;
 | ||
|     case MVT::f64:
 | ||
|       Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
 | ||
|       break;
 | ||
|     case MVT::f80:
 | ||
|       Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Chain =
 | ||
|         IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode();
 | ||
|     SDValue Glue;
 | ||
|     if (IsStrictCmp) {
 | ||
|       SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
 | ||
|       Chain = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0);
 | ||
|       Glue = Chain.getValue(1);
 | ||
|     } else {
 | ||
|       Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
 | ||
|     }
 | ||
| 
 | ||
|     // Move FPSW to AX.
 | ||
|     SDValue FNSTSW =
 | ||
|         SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
 | ||
| 
 | ||
|     // Extract upper 8-bits of AX.
 | ||
|     SDValue Extract =
 | ||
|         CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
 | ||
| 
 | ||
|     // Move AH into flags.
 | ||
|     // Some 64-bit targets lack SAHF support, but they do support FCOMI.
 | ||
|     assert(Subtarget->hasLAHFSAHF() &&
 | ||
|            "Target doesn't support SAHF or FCOMI?");
 | ||
|     SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
 | ||
|     Chain = AH;
 | ||
|     SDValue SAHF = SDValue(
 | ||
|         CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
 | ||
| 
 | ||
|     if (IsStrictCmp)
 | ||
|       ReplaceUses(SDValue(Node, 1), Chain);
 | ||
| 
 | ||
|     ReplaceUses(SDValue(Node, 0), SAHF);
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   case X86ISD::CMP: {
 | ||
|     SDValue N0 = Node->getOperand(0);
 | ||
|     SDValue N1 = Node->getOperand(1);
 | ||
| 
 | ||
|     // Optimizations for TEST compares.
 | ||
|     if (!isNullConstant(N1))
 | ||
|       break;
 | ||
| 
 | ||
|     // Save the original VT of the compare.
 | ||
|     MVT CmpVT = N0.getSimpleValueType();
 | ||
| 
 | ||
|     // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
 | ||
|     // by a test instruction. The test should be removed later by
 | ||
|     // analyzeCompare if we are using only the zero flag.
 | ||
|     // TODO: Should we check the users and use the BEXTR flags directly?
 | ||
|     if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
 | ||
|       if (MachineSDNode *NewNode = matchBEXTRFromAndImm(N0.getNode())) {
 | ||
|         unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
 | ||
|                                              : X86::TEST32rr;
 | ||
|         SDValue BEXTR = SDValue(NewNode, 0);
 | ||
|         NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
 | ||
|         ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
 | ||
|         CurDAG->RemoveDeadNode(Node);
 | ||
|         return;
 | ||
|       }
 | ||
|     }
 | ||
| 
 | ||
|     // We can peek through truncates, but we need to be careful below.
 | ||
|     if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
 | ||
|       N0 = N0.getOperand(0);
 | ||
| 
 | ||
|     // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
 | ||
|     // use a smaller encoding.
 | ||
|     // Look past the truncate if CMP is the only use of it.
 | ||
|     if (N0.getOpcode() == ISD::AND &&
 | ||
|         N0.getNode()->hasOneUse() &&
 | ||
|         N0.getValueType() != MVT::i8) {
 | ||
|       ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | ||
|       if (!C) break;
 | ||
|       uint64_t Mask = C->getZExtValue();
 | ||
|       // We may have looked through a truncate so mask off any bits that
 | ||
|       // shouldn't be part of the compare.
 | ||
|       Mask &= maskTrailingOnes<uint64_t>(CmpVT.getScalarSizeInBits());
 | ||
| 
 | ||
|       // Check if we can replace AND+IMM64 with a shift. This is possible for
 | ||
|       // masks/ like 0xFF000000 or 0x00FFFFFF and if we care only about the zero
 | ||
|       // flag.
 | ||
|       if (CmpVT == MVT::i64 && !isInt<32>(Mask) &&
 | ||
|           onlyUsesZeroFlag(SDValue(Node, 0))) {
 | ||
|         if (isMask_64(~Mask)) {
 | ||
|           unsigned TrailingZeros = countTrailingZeros(Mask);
 | ||
|           SDValue Imm = CurDAG->getTargetConstant(TrailingZeros, dl, MVT::i64);
 | ||
|           SDValue Shift =
 | ||
|             SDValue(CurDAG->getMachineNode(X86::SHR64ri, dl, MVT::i64, MVT::i32,
 | ||
|                                            N0.getOperand(0), Imm), 0);
 | ||
|           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
 | ||
|                                                        MVT::i32, Shift, Shift);
 | ||
|           ReplaceNode(Node, Test);
 | ||
|           return;
 | ||
|         }
 | ||
|         if (isMask_64(Mask)) {
 | ||
|           unsigned LeadingZeros = countLeadingZeros(Mask);
 | ||
|           SDValue Imm = CurDAG->getTargetConstant(LeadingZeros, dl, MVT::i64);
 | ||
|           SDValue Shift =
 | ||
|             SDValue(CurDAG->getMachineNode(X86::SHL64ri, dl, MVT::i64, MVT::i32,
 | ||
|                                            N0.getOperand(0), Imm), 0);
 | ||
|           MachineSDNode *Test = CurDAG->getMachineNode(X86::TEST64rr, dl,
 | ||
|                                                        MVT::i32, Shift, Shift);
 | ||
|           ReplaceNode(Node, Test);
 | ||
|           return;
 | ||
|         }
 | ||
|       }
 | ||
| 
 | ||
|       MVT VT;
 | ||
|       int SubRegOp;
 | ||
|       unsigned ROpc, MOpc;
 | ||
| 
 | ||
|       // For each of these checks we need to be careful if the sign flag is
 | ||
|       // being used. It is only safe to use the sign flag in two conditions,
 | ||
|       // either the sign bit in the shrunken mask is zero or the final test
 | ||
|       // size is equal to the original compare size.
 | ||
| 
 | ||
|       if (isUInt<8>(Mask) &&
 | ||
|           (!(Mask & 0x80) || CmpVT == MVT::i8 ||
 | ||
|            hasNoSignFlagUses(SDValue(Node, 0)))) {
 | ||
|         // For example, convert "testl %eax, $8" to "testb %al, $8"
 | ||
|         VT = MVT::i8;
 | ||
|         SubRegOp = X86::sub_8bit;
 | ||
|         ROpc = X86::TEST8ri;
 | ||
|         MOpc = X86::TEST8mi;
 | ||
|       } else if (OptForMinSize && isUInt<16>(Mask) &&
 | ||
|                  (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
 | ||
|                   hasNoSignFlagUses(SDValue(Node, 0)))) {
 | ||
|         // For example, "testl %eax, $32776" to "testw %ax, $32776".
 | ||
|         // NOTE: We only want to form TESTW instructions if optimizing for
 | ||
|         // min size. Otherwise we only save one byte and possibly get a length
 | ||
|         // changing prefix penalty in the decoders.
 | ||
|         VT = MVT::i16;
 | ||
|         SubRegOp = X86::sub_16bit;
 | ||
|         ROpc = X86::TEST16ri;
 | ||
|         MOpc = X86::TEST16mi;
 | ||
|       } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
 | ||
|                  ((!(Mask & 0x80000000) &&
 | ||
|                    // Without minsize 16-bit Cmps can get here so we need to
 | ||
|                    // be sure we calculate the correct sign flag if needed.
 | ||
|                    (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
 | ||
|                   CmpVT == MVT::i32 ||
 | ||
|                   hasNoSignFlagUses(SDValue(Node, 0)))) {
 | ||
|         // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
 | ||
|         // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
 | ||
|         // Otherwize, we find ourselves in a position where we have to do
 | ||
|         // promotion. If previous passes did not promote the and, we assume
 | ||
|         // they had a good reason not to and do not promote here.
 | ||
|         VT = MVT::i32;
 | ||
|         SubRegOp = X86::sub_32bit;
 | ||
|         ROpc = X86::TEST32ri;
 | ||
|         MOpc = X86::TEST32mi;
 | ||
|       } else {
 | ||
|         // No eligible transformation was found.
 | ||
|         break;
 | ||
|       }
 | ||
| 
 | ||
|       SDValue Imm = CurDAG->getTargetConstant(Mask, dl, VT);
 | ||
|       SDValue Reg = N0.getOperand(0);
 | ||
| 
 | ||
|       // Emit a testl or testw.
 | ||
|       MachineSDNode *NewNode;
 | ||
|       SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
 | ||
|       if (tryFoldLoad(Node, N0.getNode(), Reg, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
 | ||
|         if (auto *LoadN = dyn_cast<LoadSDNode>(N0.getOperand(0).getNode())) {
 | ||
|           if (!LoadN->isSimple()) {
 | ||
|             unsigned NumVolBits = LoadN->getValueType(0).getSizeInBits();
 | ||
|             if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
 | ||
|                 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
 | ||
|                 (MOpc == X86::TEST32mi && NumVolBits != 32))
 | ||
|               break;
 | ||
|           }
 | ||
|         }
 | ||
|         SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
 | ||
|                           Reg.getOperand(0) };
 | ||
|         NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
 | ||
|         // Update the chain.
 | ||
|         ReplaceUses(Reg.getValue(1), SDValue(NewNode, 1));
 | ||
|         // Record the mem-refs
 | ||
|         CurDAG->setNodeMemRefs(NewNode,
 | ||
|                                {cast<LoadSDNode>(Reg)->getMemOperand()});
 | ||
|       } else {
 | ||
|         // Extract the subregister if necessary.
 | ||
|         if (N0.getValueType() != VT)
 | ||
|           Reg = CurDAG->getTargetExtractSubreg(SubRegOp, dl, VT, Reg);
 | ||
| 
 | ||
|         NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
 | ||
|       }
 | ||
|       // Replace CMP with TEST.
 | ||
|       ReplaceNode(Node, NewNode);
 | ||
|       return;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case X86ISD::PCMPISTR: {
 | ||
|     if (!Subtarget->hasSSE42())
 | ||
|       break;
 | ||
| 
 | ||
|     bool NeedIndex = !SDValue(Node, 0).use_empty();
 | ||
|     bool NeedMask = !SDValue(Node, 1).use_empty();
 | ||
|     // We can't fold a load if we are going to make two instructions.
 | ||
|     bool MayFoldLoad = !NeedIndex || !NeedMask;
 | ||
| 
 | ||
|     MachineSDNode *CNode;
 | ||
|     if (NeedMask) {
 | ||
|       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrr : X86::PCMPISTRMrr;
 | ||
|       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRMrm : X86::PCMPISTRMrm;
 | ||
|       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
 | ||
|       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
 | ||
|     }
 | ||
|     if (NeedIndex || !NeedMask) {
 | ||
|       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrr : X86::PCMPISTRIrr;
 | ||
|       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPISTRIrm : X86::PCMPISTRIrm;
 | ||
|       CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
 | ||
|       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
 | ||
|     }
 | ||
| 
 | ||
|     // Connect the flag usage to the last instruction created.
 | ||
|     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
|   case X86ISD::PCMPESTR: {
 | ||
|     if (!Subtarget->hasSSE42())
 | ||
|       break;
 | ||
| 
 | ||
|     // Copy the two implicit register inputs.
 | ||
|     SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
 | ||
|                                           Node->getOperand(1),
 | ||
|                                           SDValue()).getValue(1);
 | ||
|     InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
 | ||
|                                   Node->getOperand(3), InFlag).getValue(1);
 | ||
| 
 | ||
|     bool NeedIndex = !SDValue(Node, 0).use_empty();
 | ||
|     bool NeedMask = !SDValue(Node, 1).use_empty();
 | ||
|     // We can't fold a load if we are going to make two instructions.
 | ||
|     bool MayFoldLoad = !NeedIndex || !NeedMask;
 | ||
| 
 | ||
|     MachineSDNode *CNode;
 | ||
|     if (NeedMask) {
 | ||
|       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrr : X86::PCMPESTRMrr;
 | ||
|       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRMrm : X86::PCMPESTRMrm;
 | ||
|       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node,
 | ||
|                            InFlag);
 | ||
|       ReplaceUses(SDValue(Node, 1), SDValue(CNode, 0));
 | ||
|     }
 | ||
|     if (NeedIndex || !NeedMask) {
 | ||
|       unsigned ROpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrr : X86::PCMPESTRIrr;
 | ||
|       unsigned MOpc = Subtarget->hasAVX() ? X86::VPCMPESTRIrm : X86::PCMPESTRIrm;
 | ||
|       CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InFlag);
 | ||
|       ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
 | ||
|     }
 | ||
|     // Connect the flag usage to the last instruction created.
 | ||
|     ReplaceUses(SDValue(Node, 2), SDValue(CNode, 1));
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::SETCC: {
 | ||
|     if (NVT.isVector() && tryVPTESTM(Node, SDValue(Node, 0), SDValue()))
 | ||
|       return;
 | ||
| 
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   case ISD::STORE:
 | ||
|     if (foldLoadStoreIntoMemOperand(Node))
 | ||
|       return;
 | ||
|     break;
 | ||
| 
 | ||
|   case X86ISD::SETCC_CARRY: {
 | ||
|     MVT VT = Node->getSimpleValueType(0);
 | ||
|     SDValue Result;
 | ||
|     if (Subtarget->hasSBBDepBreaking()) {
 | ||
|       // We have to do this manually because tblgen will put the eflags copy in
 | ||
|       // the wrong place if we use an extract_subreg in the pattern.
 | ||
|       // Copy flags to the EFLAGS register and glue it to next node.
 | ||
|       SDValue EFLAGS =
 | ||
|           CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
 | ||
|                                Node->getOperand(1), SDValue());
 | ||
| 
 | ||
|       // Create a 64-bit instruction if the result is 64-bits otherwise use the
 | ||
|       // 32-bit version.
 | ||
|       unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
 | ||
|       MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
 | ||
|       Result = SDValue(
 | ||
|           CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)),
 | ||
|           0);
 | ||
|     } else {
 | ||
|       // The target does not recognize sbb with the same reg operand as a
 | ||
|       // no-source idiom, so we explicitly zero the input values.
 | ||
|       Result = getSBBZero(Node);
 | ||
|     }
 | ||
| 
 | ||
|     // For less than 32-bits we need to extract from the 32-bit node.
 | ||
|     if (VT == MVT::i8 || VT == MVT::i16) {
 | ||
|       int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
 | ||
|       Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
 | ||
|     }
 | ||
| 
 | ||
|     ReplaceUses(SDValue(Node, 0), Result);
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
|   case X86ISD::SBB: {
 | ||
|     if (isNullConstant(Node->getOperand(0)) &&
 | ||
|         isNullConstant(Node->getOperand(1))) {
 | ||
|       SDValue Result = getSBBZero(Node);
 | ||
| 
 | ||
|       // Replace the flag use.
 | ||
|       ReplaceUses(SDValue(Node, 1), Result.getValue(1));
 | ||
| 
 | ||
|       // Replace the result use.
 | ||
|       if (!SDValue(Node, 0).use_empty()) {
 | ||
|         // For less than 32-bits we need to extract from the 32-bit node.
 | ||
|         MVT VT = Node->getSimpleValueType(0);
 | ||
|         if (VT == MVT::i8 || VT == MVT::i16) {
 | ||
|           int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
 | ||
|           Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result);
 | ||
|         }
 | ||
|         ReplaceUses(SDValue(Node, 0), Result);
 | ||
|       }
 | ||
| 
 | ||
|       CurDAG->RemoveDeadNode(Node);
 | ||
|       return;
 | ||
|     }
 | ||
|     break;
 | ||
|   }
 | ||
|   case X86ISD::MGATHER: {
 | ||
|     auto *Mgt = cast<X86MaskedGatherSDNode>(Node);
 | ||
|     SDValue IndexOp = Mgt->getIndex();
 | ||
|     SDValue Mask = Mgt->getMask();
 | ||
|     MVT IndexVT = IndexOp.getSimpleValueType();
 | ||
|     MVT ValueVT = Node->getSimpleValueType(0);
 | ||
|     MVT MaskVT = Mask.getSimpleValueType();
 | ||
| 
 | ||
|     // This is just to prevent crashes if the nodes are malformed somehow. We're
 | ||
|     // otherwise only doing loose type checking in here based on type what
 | ||
|     // a type constraint would say just like table based isel.
 | ||
|     if (!ValueVT.isVector() || !MaskVT.isVector())
 | ||
|       break;
 | ||
| 
 | ||
|     unsigned NumElts = ValueVT.getVectorNumElements();
 | ||
|     MVT ValueSVT = ValueVT.getVectorElementType();
 | ||
| 
 | ||
|     bool IsFP = ValueSVT.isFloatingPoint();
 | ||
|     unsigned EltSize = ValueSVT.getSizeInBits();
 | ||
| 
 | ||
|     unsigned Opc = 0;
 | ||
|     bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
 | ||
|     if (AVX512Gather) {
 | ||
|       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
 | ||
|       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
 | ||
|       else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
 | ||
|       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
 | ||
|       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
 | ||
|       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
 | ||
|       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
 | ||
|       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
 | ||
|       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
 | ||
|       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
 | ||
|       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
 | ||
|       else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
 | ||
|     } else {
 | ||
|       assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
 | ||
|              "Unexpected mask VT!");
 | ||
|       if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
 | ||
|       else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
 | ||
|       else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
 | ||
|       else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
 | ||
|       else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
 | ||
|       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
 | ||
|         Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
 | ||
|       else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
 | ||
|       else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
 | ||
|         Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
 | ||
|     }
 | ||
| 
 | ||
|     if (!Opc)
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue Base, Scale, Index, Disp, Segment;
 | ||
|     if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(),
 | ||
|                           Base, Scale, Index, Disp, Segment))
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue PassThru = Mgt->getPassThru();
 | ||
|     SDValue Chain = Mgt->getChain();
 | ||
|     // Gather instructions have a mask output not in the ISD node.
 | ||
|     SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
 | ||
| 
 | ||
|     MachineSDNode *NewNode;
 | ||
|     if (AVX512Gather) {
 | ||
|       SDValue Ops[] = {PassThru, Mask, Base,    Scale,
 | ||
|                        Index,    Disp, Segment, Chain};
 | ||
|       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
 | ||
|     } else {
 | ||
|       SDValue Ops[] = {PassThru, Base,    Scale, Index,
 | ||
|                        Disp,     Segment, Mask,  Chain};
 | ||
|       NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
 | ||
|     }
 | ||
|     CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()});
 | ||
|     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0));
 | ||
|     ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2));
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
|   case X86ISD::MSCATTER: {
 | ||
|     auto *Sc = cast<X86MaskedScatterSDNode>(Node);
 | ||
|     SDValue Value = Sc->getValue();
 | ||
|     SDValue IndexOp = Sc->getIndex();
 | ||
|     MVT IndexVT = IndexOp.getSimpleValueType();
 | ||
|     MVT ValueVT = Value.getSimpleValueType();
 | ||
| 
 | ||
|     // This is just to prevent crashes if the nodes are malformed somehow. We're
 | ||
|     // otherwise only doing loose type checking in here based on type what
 | ||
|     // a type constraint would say just like table based isel.
 | ||
|     if (!ValueVT.isVector())
 | ||
|       break;
 | ||
| 
 | ||
|     unsigned NumElts = ValueVT.getVectorNumElements();
 | ||
|     MVT ValueSVT = ValueVT.getVectorElementType();
 | ||
| 
 | ||
|     bool IsFP = ValueSVT.isFloatingPoint();
 | ||
|     unsigned EltSize = ValueSVT.getSizeInBits();
 | ||
| 
 | ||
|     unsigned Opc;
 | ||
|     if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
 | ||
|       Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
 | ||
|     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
 | ||
|       Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
 | ||
|     else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
 | ||
|       Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
 | ||
|     else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
 | ||
|       Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
 | ||
|     else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
 | ||
|       Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
 | ||
|     else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
 | ||
|       Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
 | ||
|     else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
 | ||
|       Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
 | ||
|     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
 | ||
|       Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
 | ||
|     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
 | ||
|       Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
 | ||
|     else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
 | ||
|       Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
 | ||
|     else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
 | ||
|       Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
 | ||
|     else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
 | ||
|       Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
 | ||
|     else
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue Base, Scale, Index, Disp, Segment;
 | ||
|     if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(),
 | ||
|                           Base, Scale, Index, Disp, Segment))
 | ||
|       break;
 | ||
| 
 | ||
|     SDValue Mask = Sc->getMask();
 | ||
|     SDValue Chain = Sc->getChain();
 | ||
|     // Scatter instructions have a mask output not in the ISD node.
 | ||
|     SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
 | ||
|     SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
 | ||
| 
 | ||
|     MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops);
 | ||
|     CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()});
 | ||
|     ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1));
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
|   case ISD::PREALLOCATED_SETUP: {
 | ||
|     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
 | ||
|     auto CallId = MFI->getPreallocatedIdForCallSite(
 | ||
|         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
 | ||
|     SDValue Chain = Node->getOperand(0);
 | ||
|     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
 | ||
|     MachineSDNode *New = CurDAG->getMachineNode(
 | ||
|         TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
 | ||
|     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
|   case ISD::PREALLOCATED_ARG: {
 | ||
|     auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
 | ||
|     auto CallId = MFI->getPreallocatedIdForCallSite(
 | ||
|         cast<SrcValueSDNode>(Node->getOperand(1))->getValue());
 | ||
|     SDValue Chain = Node->getOperand(0);
 | ||
|     SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
 | ||
|     SDValue ArgIndex = Node->getOperand(2);
 | ||
|     SDValue Ops[3];
 | ||
|     Ops[0] = CallIdValue;
 | ||
|     Ops[1] = ArgIndex;
 | ||
|     Ops[2] = Chain;
 | ||
|     MachineSDNode *New = CurDAG->getMachineNode(
 | ||
|         TargetOpcode::PREALLOCATED_ARG, dl,
 | ||
|         CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
 | ||
|                           MVT::Other),
 | ||
|         Ops);
 | ||
|     ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer
 | ||
|     ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain
 | ||
|     CurDAG->RemoveDeadNode(Node);
 | ||
|     return;
 | ||
|   }
 | ||
|   case X86ISD::AESENCWIDE128KL:
 | ||
|   case X86ISD::AESDECWIDE128KL:
 | ||
|   case X86ISD::AESENCWIDE256KL:
 | ||
|   case X86ISD::AESDECWIDE256KL: {
 | ||
|     if (!Subtarget->hasWIDEKL())
 | ||
|       break;
 | ||
| 
 | ||
|     unsigned Opcode;
 | ||
|     switch (Node->getOpcode()) {
 | ||
|     default:
 | ||
|       llvm_unreachable("Unexpected opcode!");
 | ||
|     case X86ISD::AESENCWIDE128KL:
 | ||
|       Opcode = X86::AESENCWIDE128KL;
 | ||
|       break;
 | ||
|     case X86ISD::AESDECWIDE128KL:
 | ||
|       Opcode = X86::AESDECWIDE128KL;
 | ||
|       break;
 | ||
|     case X86ISD::AESENCWIDE256KL:
 | ||
|       Opcode = X86::AESENCWIDE256KL;
 | ||
|       break;
 | ||
|     case X86ISD::AESDECWIDE256KL:
 | ||
|       Opcode = X86::AESDECWIDE256KL;
 | ||
|       break;
 | ||
|     }
 | ||
| 
 | ||
|     SDValue Chain = Node->getOperand(0);
 | ||
|     SDValue Addr = Node->getOperand(1);
 | ||
| 
 | ||
|     SDValue Base, Scale, Index, Disp, Segment;
 | ||
|     if (!selectAddr(Node, Addr, Base, Scale, Index, Disp, Segment))
 | ||
|       break;
 | ||
| 
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
 | ||
|                                  SDValue());
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
 | ||
|                                  Chain.getValue(1));
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
 | ||
|                                  Chain.getValue(1));
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
 | ||
|                                  Chain.getValue(1));
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
 | ||
|                                  Chain.getValue(1));
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
 | ||
|                                  Chain.getValue(1));
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
 | ||
|                                  Chain.getValue(1));
 | ||
|     Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
 | ||
|                                  Chain.getValue(1));
 | ||
| 
 | ||
|     MachineSDNode *Res = CurDAG->getMachineNode(
 | ||
|         Opcode, dl, Node->getVTList(),
 | ||
|         {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(1)});
 | ||
|     CurDAG->setNodeMemRefs(Res, cast<MemSDNode>(Node)->getMemOperand());
 | ||
|     ReplaceNode(Node, Res);
 | ||
|     return;
 | ||
|   }
 | ||
|   }
 | ||
| 
 | ||
|   SelectCode(Node);
 | ||
| }
 | ||
| 
 | ||
| bool X86DAGToDAGISel::
 | ||
| SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | ||
|                              std::vector<SDValue> &OutOps) {
 | ||
|   SDValue Op0, Op1, Op2, Op3, Op4;
 | ||
|   switch (ConstraintID) {
 | ||
|   default:
 | ||
|     llvm_unreachable("Unexpected asm memory constraint");
 | ||
|   case InlineAsm::Constraint_o: // offsetable        ??
 | ||
|   case InlineAsm::Constraint_v: // not offsetable    ??
 | ||
|   case InlineAsm::Constraint_m: // memory
 | ||
|   case InlineAsm::Constraint_X:
 | ||
|     if (!selectAddr(nullptr, Op, Op0, Op1, Op2, Op3, Op4))
 | ||
|       return true;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   OutOps.push_back(Op0);
 | ||
|   OutOps.push_back(Op1);
 | ||
|   OutOps.push_back(Op2);
 | ||
|   OutOps.push_back(Op3);
 | ||
|   OutOps.push_back(Op4);
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| /// This pass converts a legalized DAG into a X86-specific DAG,
 | ||
| /// ready for instruction scheduling.
 | ||
| FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
 | ||
|                                      CodeGenOpt::Level OptLevel) {
 | ||
|   return new X86DAGToDAGISel(TM, OptLevel);
 | ||
| }
 |