2630 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2630 lines
		
	
	
		
			100 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ConstantRangeTest.cpp - ConstantRange tests ------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/Sequence.h"
 | |
| #include "llvm/ADT/SmallBitVector.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class ConstantRangeTest : public ::testing::Test {
 | |
| protected:
 | |
|   static ConstantRange Full;
 | |
|   static ConstantRange Empty;
 | |
|   static ConstantRange One;
 | |
|   static ConstantRange Some;
 | |
|   static ConstantRange Wrap;
 | |
| };
 | |
| 
 | |
| template<typename Fn>
 | |
| static void EnumerateAPInts(unsigned Bits, Fn TestFn) {
 | |
|   APInt N(Bits, 0);
 | |
|   do {
 | |
|     TestFn(N);
 | |
|   } while (++N != 0);
 | |
| }
 | |
| 
 | |
| template<typename Fn>
 | |
| static void EnumerateConstantRanges(unsigned Bits, Fn TestFn) {
 | |
|   unsigned Max = 1 << Bits;
 | |
|   for (unsigned Lo = 0; Lo < Max; Lo++) {
 | |
|     for (unsigned Hi = 0; Hi < Max; Hi++) {
 | |
|       // Enforce ConstantRange invariant.
 | |
|       if (Lo == Hi && Lo != 0 && Lo != Max - 1)
 | |
|         continue;
 | |
| 
 | |
|       ConstantRange CR(APInt(Bits, Lo), APInt(Bits, Hi));
 | |
|       TestFn(CR);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template<typename Fn>
 | |
| static void EnumerateTwoConstantRanges(unsigned Bits, Fn TestFn) {
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR1) {
 | |
|     EnumerateConstantRanges(Bits, [&](const ConstantRange &CR2) {
 | |
|       TestFn(CR1, CR2);
 | |
|     });
 | |
|   });
 | |
| }
 | |
| 
 | |
| template<typename Fn>
 | |
| static void ForeachNumInConstantRange(const ConstantRange &CR, Fn TestFn) {
 | |
|   if (!CR.isEmptySet()) {
 | |
|     APInt N = CR.getLower();
 | |
|     do TestFn(N);
 | |
|     while (++N != CR.getUpper());
 | |
|   }
 | |
| }
 | |
| 
 | |
| using PreferFn = llvm::function_ref<bool(const ConstantRange &,
 | |
|                                          const ConstantRange &)>;
 | |
| 
 | |
| bool PreferSmallest(const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|   return CR1.isSizeStrictlySmallerThan(CR2);
 | |
| }
 | |
| 
 | |
| bool PreferSmallestUnsigned(const ConstantRange &CR1,
 | |
|                             const ConstantRange &CR2) {
 | |
|   if (CR1.isWrappedSet() != CR2.isWrappedSet())
 | |
|     return CR1.isWrappedSet() < CR2.isWrappedSet();
 | |
|   return PreferSmallest(CR1, CR2);
 | |
| }
 | |
| 
 | |
| bool PreferSmallestSigned(const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|   if (CR1.isSignWrappedSet() != CR2.isSignWrappedSet())
 | |
|     return CR1.isSignWrappedSet() < CR2.isSignWrappedSet();
 | |
|   return PreferSmallest(CR1, CR2);
 | |
| }
 | |
| 
 | |
| bool PreferSmallestNonFullUnsigned(const ConstantRange &CR1,
 | |
|                                    const ConstantRange &CR2) {
 | |
|   if (CR1.isFullSet() != CR2.isFullSet())
 | |
|     return CR1.isFullSet() < CR2.isFullSet();
 | |
|   return PreferSmallestUnsigned(CR1, CR2);
 | |
| }
 | |
| 
 | |
| bool PreferSmallestNonFullSigned(const ConstantRange &CR1,
 | |
|                                  const ConstantRange &CR2) {
 | |
|   if (CR1.isFullSet() != CR2.isFullSet())
 | |
|     return CR1.isFullSet() < CR2.isFullSet();
 | |
|   return PreferSmallestSigned(CR1, CR2);
 | |
| }
 | |
| 
 | |
| testing::AssertionResult rangeContains(const ConstantRange &CR, const APInt &N,
 | |
|                                        ArrayRef<ConstantRange> Inputs) {
 | |
|   if (CR.contains(N))
 | |
|     return testing::AssertionSuccess();
 | |
| 
 | |
|   testing::AssertionResult Result = testing::AssertionFailure();
 | |
|   Result << CR << " does not contain " << N << " for inputs: ";
 | |
|   for (const ConstantRange &Input : Inputs)
 | |
|     Result << Input << ", ";
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Check whether constant range CR is an optimal approximation of the set
 | |
| // Elems under the given PreferenceFn. The preference function should return
 | |
| // true if the first range argument is strictly preferred to the second one.
 | |
| static void TestRange(const ConstantRange &CR, const SmallBitVector &Elems,
 | |
|                       PreferFn PreferenceFn, ArrayRef<ConstantRange> Inputs,
 | |
|                       bool CheckOptimality = true) {
 | |
|   unsigned BitWidth = CR.getBitWidth();
 | |
| 
 | |
|   // Check conservative correctness.
 | |
|   for (unsigned Elem : Elems.set_bits()) {
 | |
|     EXPECT_TRUE(rangeContains(CR, APInt(BitWidth, Elem), Inputs));
 | |
|   }
 | |
| 
 | |
|   if (!CheckOptimality)
 | |
|     return;
 | |
| 
 | |
|   // Make sure we have at least one element for the code below.
 | |
|   if (Elems.none()) {
 | |
|     EXPECT_TRUE(CR.isEmptySet());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   auto NotPreferred = [&](const ConstantRange &PossibleCR) {
 | |
|     if (!PreferenceFn(PossibleCR, CR))
 | |
|       return testing::AssertionSuccess();
 | |
| 
 | |
|     testing::AssertionResult Result = testing::AssertionFailure();
 | |
|     Result << "Inputs = ";
 | |
|     for (const ConstantRange &Input : Inputs)
 | |
|       Result << Input << ", ";
 | |
|     Result << "CR = " << CR << ", BetterCR = " << PossibleCR;
 | |
|     return Result;
 | |
|   };
 | |
| 
 | |
|   // Look at all pairs of adjacent elements and the slack-free ranges
 | |
|   // [Elem, PrevElem] they imply. Check that none of the ranges are strictly
 | |
|   // preferred over the computed range (they may have equal preference).
 | |
|   int FirstElem = Elems.find_first();
 | |
|   int PrevElem = FirstElem, Elem;
 | |
|   do {
 | |
|     Elem = Elems.find_next(PrevElem);
 | |
|     if (Elem < 0)
 | |
|       Elem = FirstElem; // Wrap around to first element.
 | |
| 
 | |
|     ConstantRange PossibleCR =
 | |
|         ConstantRange::getNonEmpty(APInt(BitWidth, Elem),
 | |
|                                    APInt(BitWidth, PrevElem) + 1);
 | |
|     // We get a full range any time PrevElem and Elem are adjacent. Avoid
 | |
|     // repeated checks by skipping here, and explicitly checking below instead.
 | |
|     if (!PossibleCR.isFullSet()) {
 | |
|       EXPECT_TRUE(NotPreferred(PossibleCR));
 | |
|     }
 | |
| 
 | |
|     PrevElem = Elem;
 | |
|   } while (Elem != FirstElem);
 | |
| 
 | |
|   EXPECT_TRUE(NotPreferred(ConstantRange::getFull(BitWidth)));
 | |
| }
 | |
| 
 | |
| using UnaryRangeFn = llvm::function_ref<ConstantRange(const ConstantRange &)>;
 | |
| using UnaryIntFn = llvm::function_ref<Optional<APInt>(const APInt &)>;
 | |
| 
 | |
| static void TestUnaryOpExhaustive(UnaryRangeFn RangeFn, UnaryIntFn IntFn,
 | |
|                                   PreferFn PreferenceFn = PreferSmallest) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
 | |
|     SmallBitVector Elems(1 << Bits);
 | |
|     ForeachNumInConstantRange(CR, [&](const APInt &N) {
 | |
|       if (Optional<APInt> ResultN = IntFn(N))
 | |
|         Elems.set(ResultN->getZExtValue());
 | |
|     });
 | |
|     TestRange(RangeFn(CR), Elems, PreferenceFn, {CR});
 | |
|   });
 | |
| }
 | |
| 
 | |
| using BinaryRangeFn = llvm::function_ref<ConstantRange(const ConstantRange &,
 | |
|                                                        const ConstantRange &)>;
 | |
| using BinaryIntFn = llvm::function_ref<Optional<APInt>(const APInt &,
 | |
|                                                        const APInt &)>;
 | |
| using BinaryCheckFn = llvm::function_ref<bool(const ConstantRange &,
 | |
|                                               const ConstantRange &)>;
 | |
| 
 | |
| static bool CheckAll(const ConstantRange &, const ConstantRange &) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool CheckSingleElementsOnly(const ConstantRange &CR1,
 | |
|                                     const ConstantRange &CR2) {
 | |
|   return CR1.isSingleElement() && CR2.isSingleElement();
 | |
| }
 | |
| 
 | |
| // CheckFn determines whether optimality is checked for a given range pair.
 | |
| // Correctness is always checked.
 | |
| static void TestBinaryOpExhaustive(BinaryRangeFn RangeFn, BinaryIntFn IntFn,
 | |
|                                    PreferFn PreferenceFn = PreferSmallest,
 | |
|                                    BinaryCheckFn CheckFn = CheckAll) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(
 | |
|       Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         SmallBitVector Elems(1 << Bits);
 | |
|         ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|           ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|             if (Optional<APInt> ResultN = IntFn(N1, N2))
 | |
|               Elems.set(ResultN->getZExtValue());
 | |
|           });
 | |
|         });
 | |
|         TestRange(RangeFn(CR1, CR2), Elems, PreferenceFn, {CR1, CR2},
 | |
|                   CheckFn(CR1, CR2));
 | |
|       });
 | |
| }
 | |
| 
 | |
| struct OpRangeGathererBase {
 | |
|   void account(const APInt &N);
 | |
|   ConstantRange getRange();
 | |
| };
 | |
| 
 | |
| struct UnsignedOpRangeGatherer : public OpRangeGathererBase {
 | |
|   APInt Min;
 | |
|   APInt Max;
 | |
| 
 | |
|   UnsignedOpRangeGatherer(unsigned Bits)
 | |
|       : Min(APInt::getMaxValue(Bits)), Max(APInt::getMinValue(Bits)) {}
 | |
| 
 | |
|   void account(const APInt &N) {
 | |
|     if (N.ult(Min))
 | |
|       Min = N;
 | |
|     if (N.ugt(Max))
 | |
|       Max = N;
 | |
|   }
 | |
| 
 | |
|   ConstantRange getRange() {
 | |
|     if (Min.ugt(Max))
 | |
|       return ConstantRange::getEmpty(Min.getBitWidth());
 | |
|     return ConstantRange::getNonEmpty(Min, Max + 1);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct SignedOpRangeGatherer : public OpRangeGathererBase {
 | |
|   APInt Min;
 | |
|   APInt Max;
 | |
| 
 | |
|   SignedOpRangeGatherer(unsigned Bits)
 | |
|       : Min(APInt::getSignedMaxValue(Bits)),
 | |
|         Max(APInt::getSignedMinValue(Bits)) {}
 | |
| 
 | |
|   void account(const APInt &N) {
 | |
|     if (N.slt(Min))
 | |
|       Min = N;
 | |
|     if (N.sgt(Max))
 | |
|       Max = N;
 | |
|   }
 | |
| 
 | |
|   ConstantRange getRange() {
 | |
|     if (Min.sgt(Max))
 | |
|       return ConstantRange::getEmpty(Min.getBitWidth());
 | |
|     return ConstantRange::getNonEmpty(Min, Max + 1);
 | |
|   }
 | |
| };
 | |
| 
 | |
| ConstantRange ConstantRangeTest::Full(16, true);
 | |
| ConstantRange ConstantRangeTest::Empty(16, false);
 | |
| ConstantRange ConstantRangeTest::One(APInt(16, 0xa));
 | |
| ConstantRange ConstantRangeTest::Some(APInt(16, 0xa), APInt(16, 0xaaa));
 | |
| ConstantRange ConstantRangeTest::Wrap(APInt(16, 0xaaa), APInt(16, 0xa));
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Basics) {
 | |
|   EXPECT_TRUE(Full.isFullSet());
 | |
|   EXPECT_FALSE(Full.isEmptySet());
 | |
|   EXPECT_TRUE(Full.inverse().isEmptySet());
 | |
|   EXPECT_FALSE(Full.isWrappedSet());
 | |
|   EXPECT_TRUE(Full.contains(APInt(16, 0x0)));
 | |
|   EXPECT_TRUE(Full.contains(APInt(16, 0x9)));
 | |
|   EXPECT_TRUE(Full.contains(APInt(16, 0xa)));
 | |
|   EXPECT_TRUE(Full.contains(APInt(16, 0xaa9)));
 | |
|   EXPECT_TRUE(Full.contains(APInt(16, 0xaaa)));
 | |
| 
 | |
|   EXPECT_FALSE(Empty.isFullSet());
 | |
|   EXPECT_TRUE(Empty.isEmptySet());
 | |
|   EXPECT_TRUE(Empty.inverse().isFullSet());
 | |
|   EXPECT_FALSE(Empty.isWrappedSet());
 | |
|   EXPECT_FALSE(Empty.contains(APInt(16, 0x0)));
 | |
|   EXPECT_FALSE(Empty.contains(APInt(16, 0x9)));
 | |
|   EXPECT_FALSE(Empty.contains(APInt(16, 0xa)));
 | |
|   EXPECT_FALSE(Empty.contains(APInt(16, 0xaa9)));
 | |
|   EXPECT_FALSE(Empty.contains(APInt(16, 0xaaa)));
 | |
| 
 | |
|   EXPECT_FALSE(One.isFullSet());
 | |
|   EXPECT_FALSE(One.isEmptySet());
 | |
|   EXPECT_FALSE(One.isWrappedSet());
 | |
|   EXPECT_FALSE(One.contains(APInt(16, 0x0)));
 | |
|   EXPECT_FALSE(One.contains(APInt(16, 0x9)));
 | |
|   EXPECT_TRUE(One.contains(APInt(16, 0xa)));
 | |
|   EXPECT_FALSE(One.contains(APInt(16, 0xaa9)));
 | |
|   EXPECT_FALSE(One.contains(APInt(16, 0xaaa)));
 | |
|   EXPECT_FALSE(One.inverse().contains(APInt(16, 0xa)));
 | |
| 
 | |
|   EXPECT_FALSE(Some.isFullSet());
 | |
|   EXPECT_FALSE(Some.isEmptySet());
 | |
|   EXPECT_FALSE(Some.isWrappedSet());
 | |
|   EXPECT_FALSE(Some.contains(APInt(16, 0x0)));
 | |
|   EXPECT_FALSE(Some.contains(APInt(16, 0x9)));
 | |
|   EXPECT_TRUE(Some.contains(APInt(16, 0xa)));
 | |
|   EXPECT_TRUE(Some.contains(APInt(16, 0xaa9)));
 | |
|   EXPECT_FALSE(Some.contains(APInt(16, 0xaaa)));
 | |
| 
 | |
|   EXPECT_FALSE(Wrap.isFullSet());
 | |
|   EXPECT_FALSE(Wrap.isEmptySet());
 | |
|   EXPECT_TRUE(Wrap.isWrappedSet());
 | |
|   EXPECT_TRUE(Wrap.contains(APInt(16, 0x0)));
 | |
|   EXPECT_TRUE(Wrap.contains(APInt(16, 0x9)));
 | |
|   EXPECT_FALSE(Wrap.contains(APInt(16, 0xa)));
 | |
|   EXPECT_FALSE(Wrap.contains(APInt(16, 0xaa9)));
 | |
|   EXPECT_TRUE(Wrap.contains(APInt(16, 0xaaa)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Equality) {
 | |
|   EXPECT_EQ(Full, Full);
 | |
|   EXPECT_EQ(Empty, Empty);
 | |
|   EXPECT_EQ(One, One);
 | |
|   EXPECT_EQ(Some, Some);
 | |
|   EXPECT_EQ(Wrap, Wrap);
 | |
|   EXPECT_NE(Full, Empty);
 | |
|   EXPECT_NE(Full, One);
 | |
|   EXPECT_NE(Full, Some);
 | |
|   EXPECT_NE(Full, Wrap);
 | |
|   EXPECT_NE(Empty, One);
 | |
|   EXPECT_NE(Empty, Some);
 | |
|   EXPECT_NE(Empty, Wrap);
 | |
|   EXPECT_NE(One, Some);
 | |
|   EXPECT_NE(One, Wrap);
 | |
|   EXPECT_NE(Some, Wrap);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SingleElement) {
 | |
|   EXPECT_EQ(Full.getSingleElement(), static_cast<APInt *>(nullptr));
 | |
|   EXPECT_EQ(Empty.getSingleElement(), static_cast<APInt *>(nullptr));
 | |
|   EXPECT_EQ(Full.getSingleMissingElement(), static_cast<APInt *>(nullptr));
 | |
|   EXPECT_EQ(Empty.getSingleMissingElement(), static_cast<APInt *>(nullptr));
 | |
| 
 | |
|   EXPECT_EQ(*One.getSingleElement(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Some.getSingleElement(), static_cast<APInt *>(nullptr));
 | |
|   EXPECT_EQ(Wrap.getSingleElement(), static_cast<APInt *>(nullptr));
 | |
| 
 | |
|   EXPECT_EQ(One.getSingleMissingElement(), static_cast<APInt *>(nullptr));
 | |
|   EXPECT_EQ(Some.getSingleMissingElement(), static_cast<APInt *>(nullptr));
 | |
| 
 | |
|   ConstantRange OneInverse = One.inverse();
 | |
|   EXPECT_EQ(*OneInverse.getSingleMissingElement(), *One.getSingleElement());
 | |
| 
 | |
|   EXPECT_FALSE(Full.isSingleElement());
 | |
|   EXPECT_FALSE(Empty.isSingleElement());
 | |
|   EXPECT_TRUE(One.isSingleElement());
 | |
|   EXPECT_FALSE(Some.isSingleElement());
 | |
|   EXPECT_FALSE(Wrap.isSingleElement());
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, GetMinsAndMaxes) {
 | |
|   EXPECT_EQ(Full.getUnsignedMax(), APInt(16, UINT16_MAX));
 | |
|   EXPECT_EQ(One.getUnsignedMax(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Some.getUnsignedMax(), APInt(16, 0xaa9));
 | |
|   EXPECT_EQ(Wrap.getUnsignedMax(), APInt(16, UINT16_MAX));
 | |
| 
 | |
|   EXPECT_EQ(Full.getUnsignedMin(), APInt(16, 0));
 | |
|   EXPECT_EQ(One.getUnsignedMin(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Some.getUnsignedMin(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Wrap.getUnsignedMin(), APInt(16, 0));
 | |
| 
 | |
|   EXPECT_EQ(Full.getSignedMax(), APInt(16, INT16_MAX));
 | |
|   EXPECT_EQ(One.getSignedMax(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Some.getSignedMax(), APInt(16, 0xaa9));
 | |
|   EXPECT_EQ(Wrap.getSignedMax(), APInt(16, INT16_MAX));
 | |
| 
 | |
|   EXPECT_EQ(Full.getSignedMin(), APInt(16, (uint64_t)INT16_MIN));
 | |
|   EXPECT_EQ(One.getSignedMin(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Some.getSignedMin(), APInt(16, 0xa));
 | |
|   EXPECT_EQ(Wrap.getSignedMin(), APInt(16, (uint64_t)INT16_MIN));
 | |
| 
 | |
|   // Found by Klee
 | |
|   EXPECT_EQ(ConstantRange(APInt(4, 7), APInt(4, 0)).getSignedMax(),
 | |
|             APInt(4, 7));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SignWrapped) {
 | |
|   EXPECT_FALSE(Full.isSignWrappedSet());
 | |
|   EXPECT_FALSE(Empty.isSignWrappedSet());
 | |
|   EXPECT_FALSE(One.isSignWrappedSet());
 | |
|   EXPECT_FALSE(Some.isSignWrappedSet());
 | |
|   EXPECT_TRUE(Wrap.isSignWrappedSet());
 | |
| 
 | |
|   EXPECT_FALSE(ConstantRange(APInt(8, 127), APInt(8, 128)).isSignWrappedSet());
 | |
|   EXPECT_TRUE(ConstantRange(APInt(8, 127), APInt(8, 129)).isSignWrappedSet());
 | |
|   EXPECT_FALSE(ConstantRange(APInt(8, 128), APInt(8, 129)).isSignWrappedSet());
 | |
|   EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 9)).isSignWrappedSet());
 | |
|   EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 250)).isSignWrappedSet());
 | |
|   EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 10)).isSignWrappedSet());
 | |
|   EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 251)).isSignWrappedSet());
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UpperWrapped) {
 | |
|   // The behavior here is the same as for isWrappedSet() / isSignWrappedSet().
 | |
|   EXPECT_FALSE(Full.isUpperWrapped());
 | |
|   EXPECT_FALSE(Empty.isUpperWrapped());
 | |
|   EXPECT_FALSE(One.isUpperWrapped());
 | |
|   EXPECT_FALSE(Some.isUpperWrapped());
 | |
|   EXPECT_TRUE(Wrap.isUpperWrapped());
 | |
|   EXPECT_FALSE(Full.isUpperSignWrapped());
 | |
|   EXPECT_FALSE(Empty.isUpperSignWrapped());
 | |
|   EXPECT_FALSE(One.isUpperSignWrapped());
 | |
|   EXPECT_FALSE(Some.isUpperSignWrapped());
 | |
|   EXPECT_TRUE(Wrap.isUpperSignWrapped());
 | |
| 
 | |
|   // The behavior differs if Upper is the Min/SignedMin value.
 | |
|   ConstantRange CR1(APInt(8, 42), APInt::getMinValue(8));
 | |
|   EXPECT_FALSE(CR1.isWrappedSet());
 | |
|   EXPECT_TRUE(CR1.isUpperWrapped());
 | |
| 
 | |
|   ConstantRange CR2(APInt(8, 42), APInt::getSignedMinValue(8));
 | |
|   EXPECT_FALSE(CR2.isSignWrappedSet());
 | |
|   EXPECT_TRUE(CR2.isUpperSignWrapped());
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Trunc) {
 | |
|   ConstantRange TFull = Full.truncate(10);
 | |
|   ConstantRange TEmpty = Empty.truncate(10);
 | |
|   ConstantRange TOne = One.truncate(10);
 | |
|   ConstantRange TSome = Some.truncate(10);
 | |
|   ConstantRange TWrap = Wrap.truncate(10);
 | |
|   EXPECT_TRUE(TFull.isFullSet());
 | |
|   EXPECT_TRUE(TEmpty.isEmptySet());
 | |
|   EXPECT_EQ(TOne, ConstantRange(One.getLower().trunc(10),
 | |
|                                 One.getUpper().trunc(10)));
 | |
|   EXPECT_TRUE(TSome.isFullSet());
 | |
|   EXPECT_TRUE(TWrap.isFullSet());
 | |
| 
 | |
|   // trunc([2, 5), 3->2) = [2, 1)
 | |
|   ConstantRange TwoFive(APInt(3, 2), APInt(3, 5));
 | |
|   EXPECT_EQ(TwoFive.truncate(2), ConstantRange(APInt(2, 2), APInt(2, 1)));
 | |
| 
 | |
|   // trunc([2, 6), 3->2) = full
 | |
|   ConstantRange TwoSix(APInt(3, 2), APInt(3, 6));
 | |
|   EXPECT_TRUE(TwoSix.truncate(2).isFullSet());
 | |
| 
 | |
|   // trunc([5, 7), 3->2) = [1, 3)
 | |
|   ConstantRange FiveSeven(APInt(3, 5), APInt(3, 7));
 | |
|   EXPECT_EQ(FiveSeven.truncate(2), ConstantRange(APInt(2, 1), APInt(2, 3)));
 | |
| 
 | |
|   // trunc([7, 1), 3->2) = [3, 1)
 | |
|   ConstantRange SevenOne(APInt(3, 7), APInt(3, 1));
 | |
|   EXPECT_EQ(SevenOne.truncate(2), ConstantRange(APInt(2, 3), APInt(2, 1)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, ZExt) {
 | |
|   ConstantRange ZFull = Full.zeroExtend(20);
 | |
|   ConstantRange ZEmpty = Empty.zeroExtend(20);
 | |
|   ConstantRange ZOne = One.zeroExtend(20);
 | |
|   ConstantRange ZSome = Some.zeroExtend(20);
 | |
|   ConstantRange ZWrap = Wrap.zeroExtend(20);
 | |
|   EXPECT_EQ(ZFull, ConstantRange(APInt(20, 0), APInt(20, 0x10000)));
 | |
|   EXPECT_TRUE(ZEmpty.isEmptySet());
 | |
|   EXPECT_EQ(ZOne, ConstantRange(One.getLower().zext(20),
 | |
|                                 One.getUpper().zext(20)));
 | |
|   EXPECT_EQ(ZSome, ConstantRange(Some.getLower().zext(20),
 | |
|                                  Some.getUpper().zext(20)));
 | |
|   EXPECT_EQ(ZWrap, ConstantRange(APInt(20, 0), APInt(20, 0x10000)));
 | |
| 
 | |
|   // zext([5, 0), 3->7) = [5, 8)
 | |
|   ConstantRange FiveZero(APInt(3, 5), APInt(3, 0));
 | |
|   EXPECT_EQ(FiveZero.zeroExtend(7), ConstantRange(APInt(7, 5), APInt(7, 8)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SExt) {
 | |
|   ConstantRange SFull = Full.signExtend(20);
 | |
|   ConstantRange SEmpty = Empty.signExtend(20);
 | |
|   ConstantRange SOne = One.signExtend(20);
 | |
|   ConstantRange SSome = Some.signExtend(20);
 | |
|   ConstantRange SWrap = Wrap.signExtend(20);
 | |
|   EXPECT_EQ(SFull, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true),
 | |
|                                  APInt(20, INT16_MAX + 1, true)));
 | |
|   EXPECT_TRUE(SEmpty.isEmptySet());
 | |
|   EXPECT_EQ(SOne, ConstantRange(One.getLower().sext(20),
 | |
|                                 One.getUpper().sext(20)));
 | |
|   EXPECT_EQ(SSome, ConstantRange(Some.getLower().sext(20),
 | |
|                                  Some.getUpper().sext(20)));
 | |
|   EXPECT_EQ(SWrap, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true),
 | |
|                                  APInt(20, INT16_MAX + 1, true)));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, 140)).signExtend(16),
 | |
|             ConstantRange(APInt(16, -128), APInt(16, 128)));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 0x0200), APInt(16, 0x8000)).signExtend(19),
 | |
|             ConstantRange(APInt(19, 0x0200), APInt(19, 0x8000)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, IntersectWith) {
 | |
|   EXPECT_EQ(Empty.intersectWith(Full), Empty);
 | |
|   EXPECT_EQ(Empty.intersectWith(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.intersectWith(One), Empty);
 | |
|   EXPECT_EQ(Empty.intersectWith(Some), Empty);
 | |
|   EXPECT_EQ(Empty.intersectWith(Wrap), Empty);
 | |
|   EXPECT_EQ(Full.intersectWith(Full), Full);
 | |
|   EXPECT_EQ(Some.intersectWith(Some), Some);
 | |
|   EXPECT_EQ(Some.intersectWith(One), One);
 | |
|   EXPECT_EQ(Full.intersectWith(One), One);
 | |
|   EXPECT_EQ(Full.intersectWith(Some), Some);
 | |
|   EXPECT_EQ(Some.intersectWith(Wrap), Empty);
 | |
|   EXPECT_EQ(One.intersectWith(Wrap), Empty);
 | |
|   EXPECT_EQ(One.intersectWith(Wrap), Wrap.intersectWith(One));
 | |
| 
 | |
|   // Klee generated testcase from PR4545.
 | |
|   // The intersection of i16 [4, 2) and [6, 5) is disjoint, looking like
 | |
|   // 01..4.6789ABCDEF where the dots represent values not in the intersection.
 | |
|   ConstantRange LHS(APInt(16, 4), APInt(16, 2));
 | |
|   ConstantRange RHS(APInt(16, 6), APInt(16, 5));
 | |
|   EXPECT_TRUE(LHS.intersectWith(RHS) == LHS);
 | |
| 
 | |
|   // previous bug: intersection of [min, 3) and [2, max) should be 2
 | |
|   LHS = ConstantRange(APInt(32, -2147483646), APInt(32, 3));
 | |
|   RHS = ConstantRange(APInt(32, 2), APInt(32, 2147483646));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2)));
 | |
| 
 | |
|   // [2, 0) /\ [4, 3) = [2, 0)
 | |
|   LHS = ConstantRange(APInt(32, 2), APInt(32, 0));
 | |
|   RHS = ConstantRange(APInt(32, 4), APInt(32, 3));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2), APInt(32, 0)));
 | |
| 
 | |
|   // [2, 0) /\ [4, 2) = [4, 0)
 | |
|   LHS = ConstantRange(APInt(32, 2), APInt(32, 0));
 | |
|   RHS = ConstantRange(APInt(32, 4), APInt(32, 2));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 0)));
 | |
| 
 | |
|   // [4, 2) /\ [5, 1) = [5, 1)
 | |
|   LHS = ConstantRange(APInt(32, 4), APInt(32, 2));
 | |
|   RHS = ConstantRange(APInt(32, 5), APInt(32, 1));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 5), APInt(32, 1)));
 | |
| 
 | |
|   // [2, 0) /\ [7, 4) = [7, 4)
 | |
|   LHS = ConstantRange(APInt(32, 2), APInt(32, 0));
 | |
|   RHS = ConstantRange(APInt(32, 7), APInt(32, 4));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 7), APInt(32, 4)));
 | |
| 
 | |
|   // [4, 2) /\ [1, 0) = [1, 0)
 | |
|   LHS = ConstantRange(APInt(32, 4), APInt(32, 2));
 | |
|   RHS = ConstantRange(APInt(32, 1), APInt(32, 0));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 2)));
 | |
| 
 | |
|   // [15, 0) /\ [7, 6) = [15, 0)
 | |
|   LHS = ConstantRange(APInt(32, 15), APInt(32, 0));
 | |
|   RHS = ConstantRange(APInt(32, 7), APInt(32, 6));
 | |
|   EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 15), APInt(32, 0)));
 | |
| }
 | |
| 
 | |
| template<typename Fn1, typename Fn2, typename Fn3>
 | |
| void testBinarySetOperationExhaustive(Fn1 OpFn, Fn2 ExactOpFn, Fn3 InResultFn) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(Bits,
 | |
|       [=](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         SmallBitVector Elems(1 << Bits);
 | |
|         APInt Num(Bits, 0);
 | |
|         for (unsigned I = 0, Limit = 1 << Bits; I < Limit; ++I, ++Num)
 | |
|           if (InResultFn(CR1, CR2, Num))
 | |
|             Elems.set(Num.getZExtValue());
 | |
| 
 | |
|         ConstantRange SmallestCR = OpFn(CR1, CR2, ConstantRange::Smallest);
 | |
|         TestRange(SmallestCR, Elems, PreferSmallest, {CR1, CR2});
 | |
| 
 | |
|         ConstantRange UnsignedCR = OpFn(CR1, CR2, ConstantRange::Unsigned);
 | |
|         TestRange(UnsignedCR, Elems, PreferSmallestNonFullUnsigned, {CR1, CR2});
 | |
| 
 | |
|         ConstantRange SignedCR = OpFn(CR1, CR2, ConstantRange::Signed);
 | |
|         TestRange(SignedCR, Elems, PreferSmallestNonFullSigned, {CR1, CR2});
 | |
| 
 | |
|         Optional<ConstantRange> ExactCR = ExactOpFn(CR1, CR2);
 | |
|         if (SmallestCR.isSizeLargerThan(Elems.count())) {
 | |
|           EXPECT_TRUE(!ExactCR.hasValue());
 | |
|         } else {
 | |
|           EXPECT_EQ(SmallestCR, *ExactCR);
 | |
|         }
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, IntersectWithExhaustive) {
 | |
|   testBinarySetOperationExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2,
 | |
|          ConstantRange::PreferredRangeType Type) {
 | |
|         return CR1.intersectWith(CR2, Type);
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.exactIntersectWith(CR2);
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) {
 | |
|         return CR1.contains(N) && CR2.contains(N);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnionWithExhaustive) {
 | |
|   testBinarySetOperationExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2,
 | |
|          ConstantRange::PreferredRangeType Type) {
 | |
|         return CR1.unionWith(CR2, Type);
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.exactUnionWith(CR2);
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) {
 | |
|         return CR1.contains(N) || CR2.contains(N);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnionWith) {
 | |
|   EXPECT_EQ(Wrap.unionWith(One),
 | |
|             ConstantRange(APInt(16, 0xaaa), APInt(16, 0xb)));
 | |
|   EXPECT_EQ(One.unionWith(Wrap), Wrap.unionWith(One));
 | |
|   EXPECT_EQ(Empty.unionWith(Empty), Empty);
 | |
|   EXPECT_EQ(Full.unionWith(Full), Full);
 | |
|   EXPECT_EQ(Some.unionWith(Wrap), Full);
 | |
| 
 | |
|   // PR4545
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 14), APInt(16, 1)).unionWith(
 | |
|                                     ConstantRange(APInt(16, 0), APInt(16, 8))),
 | |
|             ConstantRange(APInt(16, 14), APInt(16, 8)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 6), APInt(16, 4)).unionWith(
 | |
|                                     ConstantRange(APInt(16, 4), APInt(16, 0))),
 | |
|             ConstantRange::getFull(16));
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 0)).unionWith(
 | |
|                                     ConstantRange(APInt(16, 2), APInt(16, 1))),
 | |
|             ConstantRange::getFull(16));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SetDifference) {
 | |
|   EXPECT_EQ(Full.difference(Empty), Full);
 | |
|   EXPECT_EQ(Full.difference(Full), Empty);
 | |
|   EXPECT_EQ(Empty.difference(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.difference(Full), Empty);
 | |
| 
 | |
|   ConstantRange A(APInt(16, 3), APInt(16, 7));
 | |
|   ConstantRange B(APInt(16, 5), APInt(16, 9));
 | |
|   ConstantRange C(APInt(16, 3), APInt(16, 5));
 | |
|   ConstantRange D(APInt(16, 7), APInt(16, 9));
 | |
|   ConstantRange E(APInt(16, 5), APInt(16, 4));
 | |
|   ConstantRange F(APInt(16, 7), APInt(16, 3));
 | |
|   EXPECT_EQ(A.difference(B), C);
 | |
|   EXPECT_EQ(B.difference(A), D);
 | |
|   EXPECT_EQ(E.difference(A), F);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, getActiveBits) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
 | |
|     unsigned Exact = 0;
 | |
|     ForeachNumInConstantRange(CR, [&](const APInt &N) {
 | |
|       Exact = std::max(Exact, N.getActiveBits());
 | |
|     });
 | |
| 
 | |
|     unsigned ResultCR = CR.getActiveBits();
 | |
|     EXPECT_EQ(Exact, ResultCR);
 | |
|   });
 | |
| }
 | |
| TEST_F(ConstantRangeTest, losslessUnsignedTruncationZeroext) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
 | |
|     unsigned MinBitWidth = CR.getActiveBits();
 | |
|     if (MinBitWidth == 0) {
 | |
|       EXPECT_TRUE(CR.isEmptySet() ||
 | |
|                   (CR.isSingleElement() && CR.getSingleElement()->isZero()));
 | |
|       return;
 | |
|     }
 | |
|     if (MinBitWidth == Bits)
 | |
|       return;
 | |
|     EXPECT_EQ(CR, CR.truncate(MinBitWidth).zeroExtend(Bits));
 | |
|   });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, getMinSignedBits) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
 | |
|     unsigned Exact = 0;
 | |
|     ForeachNumInConstantRange(CR, [&](const APInt &N) {
 | |
|       Exact = std::max(Exact, N.getMinSignedBits());
 | |
|     });
 | |
| 
 | |
|     unsigned ResultCR = CR.getMinSignedBits();
 | |
|     EXPECT_EQ(Exact, ResultCR);
 | |
|   });
 | |
| }
 | |
| TEST_F(ConstantRangeTest, losslessSignedTruncationSignext) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
 | |
|     unsigned MinBitWidth = CR.getMinSignedBits();
 | |
|     if (MinBitWidth == 0) {
 | |
|       EXPECT_TRUE(CR.isEmptySet());
 | |
|       return;
 | |
|     }
 | |
|     if (MinBitWidth == Bits)
 | |
|       return;
 | |
|     EXPECT_EQ(CR, CR.truncate(MinBitWidth).signExtend(Bits));
 | |
|   });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SubtractAPInt) {
 | |
|   EXPECT_EQ(Full.subtract(APInt(16, 4)), Full);
 | |
|   EXPECT_EQ(Empty.subtract(APInt(16, 4)), Empty);
 | |
|   EXPECT_EQ(Some.subtract(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6)));
 | |
|   EXPECT_EQ(Wrap.subtract(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6)));
 | |
|   EXPECT_EQ(One.subtract(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0x6)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Add) {
 | |
|   EXPECT_EQ(Full.add(APInt(16, 4)), Full);
 | |
|   EXPECT_EQ(Full.add(Full), Full);
 | |
|   EXPECT_EQ(Full.add(Empty), Empty);
 | |
|   EXPECT_EQ(Full.add(One), Full);
 | |
|   EXPECT_EQ(Full.add(Some), Full);
 | |
|   EXPECT_EQ(Full.add(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.add(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.add(One), Empty);
 | |
|   EXPECT_EQ(Empty.add(Some), Empty);
 | |
|   EXPECT_EQ(Empty.add(Wrap), Empty);
 | |
|   EXPECT_EQ(Empty.add(APInt(16, 4)), Empty);
 | |
|   EXPECT_EQ(Some.add(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0xe), APInt(16, 0xaae)));
 | |
|   EXPECT_EQ(Wrap.add(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0xaae), APInt(16, 0xe)));
 | |
|   EXPECT_EQ(One.add(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0xe)));
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.add(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1 + N2;
 | |
|       });
 | |
| }
 | |
| 
 | |
| template <typename Fn1, typename Fn2>
 | |
| static void TestAddWithNoSignedWrapExhaustive(Fn1 RangeFn, Fn2 IntFn) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(Bits, [&](const ConstantRange &CR1,
 | |
|                                        const ConstantRange &CR2) {
 | |
|     ConstantRange CR = RangeFn(CR1, CR2);
 | |
|     SignedOpRangeGatherer R(CR.getBitWidth());
 | |
|     bool AllOverflow = true;
 | |
|     ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|       ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|         bool IsOverflow = false;
 | |
|         APInt N = IntFn(IsOverflow, N1, N2);
 | |
|         if (!IsOverflow) {
 | |
|           AllOverflow = false;
 | |
|           R.account(N);
 | |
|           EXPECT_TRUE(CR.contains(N));
 | |
|         }
 | |
|       });
 | |
|     });
 | |
| 
 | |
|     EXPECT_EQ(CR.isEmptySet(), AllOverflow);
 | |
| 
 | |
|     if (CR1.isSignWrappedSet() || CR2.isSignWrappedSet())
 | |
|       return;
 | |
| 
 | |
|     ConstantRange Exact = R.getRange();
 | |
|     EXPECT_EQ(Exact, CR);
 | |
|   });
 | |
| }
 | |
| 
 | |
| template <typename Fn1, typename Fn2>
 | |
| static void TestAddWithNoUnsignedWrapExhaustive(Fn1 RangeFn, Fn2 IntFn) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(Bits, [&](const ConstantRange &CR1,
 | |
|                                        const ConstantRange &CR2) {
 | |
|     ConstantRange CR = RangeFn(CR1, CR2);
 | |
|     UnsignedOpRangeGatherer R(CR.getBitWidth());
 | |
|     bool AllOverflow = true;
 | |
|     ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|       ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|         bool IsOverflow = false;
 | |
|         APInt N = IntFn(IsOverflow, N1, N2);
 | |
|         if (!IsOverflow) {
 | |
|           AllOverflow = false;
 | |
|           R.account(N);
 | |
|           EXPECT_TRUE(CR.contains(N));
 | |
|         }
 | |
|       });
 | |
|     });
 | |
| 
 | |
|     EXPECT_EQ(CR.isEmptySet(), AllOverflow);
 | |
| 
 | |
|     if (CR1.isWrappedSet() || CR2.isWrappedSet())
 | |
|       return;
 | |
| 
 | |
|     ConstantRange Exact = R.getRange();
 | |
|     EXPECT_EQ(Exact, CR);
 | |
|   });
 | |
| }
 | |
| 
 | |
| template <typename Fn1, typename Fn2, typename Fn3>
 | |
| static void TestAddWithNoSignedUnsignedWrapExhaustive(Fn1 RangeFn,
 | |
|                                                       Fn2 IntFnSigned,
 | |
|                                                       Fn3 IntFnUnsigned) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(
 | |
|       Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         ConstantRange CR = RangeFn(CR1, CR2);
 | |
|         UnsignedOpRangeGatherer UR(CR.getBitWidth());
 | |
|         SignedOpRangeGatherer SR(CR.getBitWidth());
 | |
|         bool AllOverflow = true;
 | |
|         ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|           ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|             bool IsOverflow = false, IsSignedOverflow = false;
 | |
|             APInt N = IntFnSigned(IsSignedOverflow, N1, N2);
 | |
|             (void) IntFnUnsigned(IsOverflow, N1, N2);
 | |
|             if (!IsSignedOverflow && !IsOverflow) {
 | |
|               AllOverflow = false;
 | |
|               UR.account(N);
 | |
|               SR.account(N);
 | |
|               EXPECT_TRUE(CR.contains(N));
 | |
|             }
 | |
|           });
 | |
|         });
 | |
| 
 | |
|         EXPECT_EQ(CR.isEmptySet(), AllOverflow);
 | |
| 
 | |
|         if (CR1.isWrappedSet() || CR2.isWrappedSet() ||
 | |
|             CR1.isSignWrappedSet() || CR2.isSignWrappedSet())
 | |
|           return;
 | |
| 
 | |
|         ConstantRange ExactUnsignedCR = UR.getRange();
 | |
|         ConstantRange ExactSignedCR = SR.getRange();
 | |
| 
 | |
|         if (ExactUnsignedCR.isEmptySet() || ExactSignedCR.isEmptySet()) {
 | |
|           EXPECT_TRUE(CR.isEmptySet());
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         ConstantRange Exact = ExactSignedCR.intersectWith(ExactUnsignedCR);
 | |
|         EXPECT_EQ(Exact, CR);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, AddWithNoWrap) {
 | |
|   typedef OverflowingBinaryOperator OBO;
 | |
|   EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoSignedWrap), Empty);
 | |
|   EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoSignedWrap), Empty);
 | |
|   EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoSignedWrap), Full);
 | |
|   EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoSignedWrap), Full);
 | |
|   EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoSignedWrap), Full);
 | |
|   EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2))
 | |
|                 .addWithNoWrap(Full, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN)));
 | |
|   EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, -1), APInt(16, 0)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(16, INT16_MIN), APInt(16, INT16_MAX)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 100), APInt(8, 120))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, 123)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(8, false));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, -120), APInt(8, -100))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, -110), APInt(8, -100)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(8, false));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, -128), APInt(8, 28)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(8, true));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, -120), APInt(8, 29)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, -120), APInt(8, -128)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, -50), APInt(8, 50))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 20)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, -40), APInt(8, 69)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, -50), APInt(8, 50)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, -40), APInt(8, 69)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, -10))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, 125), APInt(8, 9)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, -10)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, 125), APInt(8, 9)));
 | |
| 
 | |
|   TestAddWithNoSignedWrapExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.addWithNoWrap(CR2, OBO::NoSignedWrap);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.sadd_ov(N2, IsOverflow);
 | |
|       });
 | |
| 
 | |
|   EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoUnsignedWrap), Empty);
 | |
|   EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoUnsignedWrap), Empty);
 | |
|   EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full);
 | |
|   EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoUnsignedWrap), Full);
 | |
|   EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full);
 | |
|   EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(16, 1), APInt(16, 0)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2))
 | |
|                 .addWithNoWrap(Full, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(16, 1), APInt(16, 0)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 200), APInt(8, 220))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 100), APInt(8, 123)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(8, false));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 0), APInt(8, 156)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(8, true));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 29)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 10), APInt(8, 129)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, 10))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 50), APInt(8, 0)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 60), APInt(8, -37)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, -30))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 25), APInt(8, -11)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, -30)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 25), APInt(8, -11)));
 | |
| 
 | |
|   TestAddWithNoUnsignedWrapExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.uadd_ov(N2, IsOverflow);
 | |
|       });
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, 70), APInt(8, -128)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 70), APInt(8, 169)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)),
 | |
|                                OBO::NoUnsignedWrap | OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, 70), APInt(8, -128)));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)),
 | |
|                                OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, -80), APInt(8, -21)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)),
 | |
|                                OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(8, 176), APInt(8, 235)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50))
 | |
|                 .addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)),
 | |
|                                OBO::NoUnsignedWrap | OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(8, 176), APInt(8, 235)));
 | |
| 
 | |
|   TestAddWithNoSignedUnsignedWrapExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.sadd_ov(N2, IsOverflow);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.uadd_ov(N2, IsOverflow);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Sub) {
 | |
|   EXPECT_EQ(Full.sub(APInt(16, 4)), Full);
 | |
|   EXPECT_EQ(Full.sub(Full), Full);
 | |
|   EXPECT_EQ(Full.sub(Empty), Empty);
 | |
|   EXPECT_EQ(Full.sub(One), Full);
 | |
|   EXPECT_EQ(Full.sub(Some), Full);
 | |
|   EXPECT_EQ(Full.sub(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.sub(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.sub(One), Empty);
 | |
|   EXPECT_EQ(Empty.sub(Some), Empty);
 | |
|   EXPECT_EQ(Empty.sub(Wrap), Empty);
 | |
|   EXPECT_EQ(Empty.sub(APInt(16, 4)), Empty);
 | |
|   EXPECT_EQ(Some.sub(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6)));
 | |
|   EXPECT_EQ(Some.sub(Some),
 | |
|             ConstantRange(APInt(16, 0xf561), APInt(16, 0xaa0)));
 | |
|   EXPECT_EQ(Wrap.sub(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6)));
 | |
|   EXPECT_EQ(One.sub(APInt(16, 4)),
 | |
|             ConstantRange(APInt(16, 0x6)));
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.sub(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1 - N2;
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SubWithNoWrap) {
 | |
|   typedef OverflowingBinaryOperator OBO;
 | |
|   TestAddWithNoSignedWrapExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.subWithNoWrap(CR2, OBO::NoSignedWrap);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.ssub_ov(N2, IsOverflow);
 | |
|       });
 | |
|   TestAddWithNoUnsignedWrapExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.usub_ov(N2, IsOverflow);
 | |
|       });
 | |
|   TestAddWithNoSignedUnsignedWrapExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.ssub_ov(N2, IsOverflow);
 | |
|       },
 | |
|       [](bool &IsOverflow, const APInt &N1, const APInt &N2) {
 | |
|         return N1.usub_ov(N2, IsOverflow);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Multiply) {
 | |
|   EXPECT_EQ(Full.multiply(Full), Full);
 | |
|   EXPECT_EQ(Full.multiply(Empty), Empty);
 | |
|   EXPECT_EQ(Full.multiply(One), Full);
 | |
|   EXPECT_EQ(Full.multiply(Some), Full);
 | |
|   EXPECT_EQ(Full.multiply(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.multiply(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.multiply(One), Empty);
 | |
|   EXPECT_EQ(Empty.multiply(Some), Empty);
 | |
|   EXPECT_EQ(Empty.multiply(Wrap), Empty);
 | |
|   EXPECT_EQ(One.multiply(One), ConstantRange(APInt(16, 0xa*0xa),
 | |
|                                              APInt(16, 0xa*0xa + 1)));
 | |
|   EXPECT_EQ(One.multiply(Some), ConstantRange(APInt(16, 0xa*0xa),
 | |
|                                               APInt(16, 0xa*0xaa9 + 1)));
 | |
|   EXPECT_EQ(One.multiply(Wrap), Full);
 | |
|   EXPECT_EQ(Some.multiply(Some), Full);
 | |
|   EXPECT_EQ(Some.multiply(Wrap), Full);
 | |
|   EXPECT_EQ(Wrap.multiply(Wrap), Full);
 | |
| 
 | |
|   ConstantRange Zero(APInt(16, 0));
 | |
|   EXPECT_EQ(Zero.multiply(Full), Zero);
 | |
|   EXPECT_EQ(Zero.multiply(Some), Zero);
 | |
|   EXPECT_EQ(Zero.multiply(Wrap), Zero);
 | |
|   EXPECT_EQ(Full.multiply(Zero), Zero);
 | |
|   EXPECT_EQ(Some.multiply(Zero), Zero);
 | |
|   EXPECT_EQ(Wrap.multiply(Zero), Zero);
 | |
| 
 | |
|   // http://llvm.org/PR4545
 | |
|   EXPECT_EQ(ConstantRange(APInt(4, 1), APInt(4, 6)).multiply(
 | |
|                 ConstantRange(APInt(4, 6), APInt(4, 2))),
 | |
|             ConstantRange(4, /*isFullSet=*/true));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 0)).multiply(
 | |
|               ConstantRange(APInt(8, 252), APInt(8, 4))),
 | |
|             ConstantRange(APInt(8, 250), APInt(8, 9)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 255)).multiply(
 | |
|               ConstantRange(APInt(8, 2), APInt(8, 4))),
 | |
|             ConstantRange(APInt(8, 250), APInt(8, 253)));
 | |
| 
 | |
|   // TODO: This should be return [-2, 0]
 | |
|   EXPECT_EQ(ConstantRange(APInt(8, -2)).multiply(
 | |
|               ConstantRange(APInt(8, 0), APInt(8, 2))),
 | |
|             ConstantRange(APInt(8, -2), APInt(8, 1)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, smul_fast) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.smul_fast(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1 * N2;
 | |
|       },
 | |
|       PreferSmallest,
 | |
|       [](const ConstantRange &, const ConstantRange &) {
 | |
|         return false; // Check correctness only.
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UMax) {
 | |
|   EXPECT_EQ(Full.umax(Full), Full);
 | |
|   EXPECT_EQ(Full.umax(Empty), Empty);
 | |
|   EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
 | |
|   EXPECT_EQ(Full.umax(Wrap), Full);
 | |
|   EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
 | |
|   EXPECT_EQ(Empty.umax(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.umax(Some), Empty);
 | |
|   EXPECT_EQ(Empty.umax(Wrap), Empty);
 | |
|   EXPECT_EQ(Empty.umax(One), Empty);
 | |
|   EXPECT_EQ(Some.umax(Some), Some);
 | |
|   EXPECT_EQ(Some.umax(Wrap), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
 | |
|   EXPECT_EQ(Some.umax(One), Some);
 | |
|   EXPECT_EQ(Wrap.umax(Wrap), Wrap);
 | |
|   EXPECT_EQ(Wrap.umax(One), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
 | |
|   EXPECT_EQ(One.umax(One), One);
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.umax(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return APIntOps::umax(N1, N2);
 | |
|       },
 | |
|       PreferSmallestNonFullUnsigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SMax) {
 | |
|   EXPECT_EQ(Full.smax(Full), Full);
 | |
|   EXPECT_EQ(Full.smax(Empty), Empty);
 | |
|   EXPECT_EQ(Full.smax(Some), ConstantRange(APInt(16, 0xa),
 | |
|                                            APInt::getSignedMinValue(16)));
 | |
|   EXPECT_EQ(Full.smax(Wrap), Full);
 | |
|   EXPECT_EQ(Full.smax(One), ConstantRange(APInt(16, 0xa),
 | |
|                                           APInt::getSignedMinValue(16)));
 | |
|   EXPECT_EQ(Empty.smax(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.smax(Some), Empty);
 | |
|   EXPECT_EQ(Empty.smax(Wrap), Empty);
 | |
|   EXPECT_EQ(Empty.smax(One), Empty);
 | |
|   EXPECT_EQ(Some.smax(Some), Some);
 | |
|   EXPECT_EQ(Some.smax(Wrap), ConstantRange(APInt(16, 0xa),
 | |
|                                            APInt(16, (uint64_t)INT16_MIN)));
 | |
|   EXPECT_EQ(Some.smax(One), Some);
 | |
|   EXPECT_EQ(Wrap.smax(One), ConstantRange(APInt(16, 0xa),
 | |
|                                           APInt(16, (uint64_t)INT16_MIN)));
 | |
|   EXPECT_EQ(One.smax(One), One);
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.smax(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return APIntOps::smax(N1, N2);
 | |
|       },
 | |
|       PreferSmallestNonFullSigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UMin) {
 | |
|   EXPECT_EQ(Full.umin(Full), Full);
 | |
|   EXPECT_EQ(Full.umin(Empty), Empty);
 | |
|   EXPECT_EQ(Full.umin(Some), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Full.umin(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.umin(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.umin(Some), Empty);
 | |
|   EXPECT_EQ(Empty.umin(Wrap), Empty);
 | |
|   EXPECT_EQ(Empty.umin(One), Empty);
 | |
|   EXPECT_EQ(Some.umin(Some), Some);
 | |
|   EXPECT_EQ(Some.umin(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Some.umin(One), One);
 | |
|   EXPECT_EQ(Wrap.umin(Wrap), Wrap);
 | |
|   EXPECT_EQ(Wrap.umin(One), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
 | |
|   EXPECT_EQ(One.umin(One), One);
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.umin(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return APIntOps::umin(N1, N2);
 | |
|       },
 | |
|       PreferSmallestNonFullUnsigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SMin) {
 | |
|   EXPECT_EQ(Full.smin(Full), Full);
 | |
|   EXPECT_EQ(Full.smin(Empty), Empty);
 | |
|   EXPECT_EQ(Full.smin(Some), ConstantRange(APInt(16, (uint64_t)INT16_MIN),
 | |
|                                            APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Full.smin(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.smin(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.smin(Some), Empty);
 | |
|   EXPECT_EQ(Empty.smin(Wrap), Empty);
 | |
|   EXPECT_EQ(Empty.smin(One), Empty);
 | |
|   EXPECT_EQ(Some.smin(Some), Some);
 | |
|   EXPECT_EQ(Some.smin(Wrap), ConstantRange(APInt(16, (uint64_t)INT16_MIN),
 | |
|                                            APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Some.smin(One), One);
 | |
|   EXPECT_EQ(Wrap.smin(Wrap), Wrap);
 | |
|   EXPECT_EQ(Wrap.smin(One), ConstantRange(APInt(16, (uint64_t)INT16_MIN),
 | |
|                                           APInt(16, 0xb)));
 | |
|   EXPECT_EQ(One.smin(One), One);
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.smin(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return APIntOps::smin(N1, N2);
 | |
|       },
 | |
|       PreferSmallestNonFullSigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UDiv) {
 | |
|   EXPECT_EQ(Full.udiv(Full), Full);
 | |
|   EXPECT_EQ(Full.udiv(Empty), Empty);
 | |
|   EXPECT_EQ(Full.udiv(One), ConstantRange(APInt(16, 0),
 | |
|                                           APInt(16, 0xffff / 0xa + 1)));
 | |
|   EXPECT_EQ(Full.udiv(Some), ConstantRange(APInt(16, 0),
 | |
|                                            APInt(16, 0xffff / 0xa + 1)));
 | |
|   EXPECT_EQ(Full.udiv(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.udiv(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.udiv(One), Empty);
 | |
|   EXPECT_EQ(Empty.udiv(Some), Empty);
 | |
|   EXPECT_EQ(Empty.udiv(Wrap), Empty);
 | |
|   EXPECT_EQ(One.udiv(One), ConstantRange(APInt(16, 1)));
 | |
|   EXPECT_EQ(One.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 2)));
 | |
|   EXPECT_EQ(One.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
 | |
|   EXPECT_EQ(Some.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 0x111)));
 | |
|   EXPECT_EQ(Some.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Wrap.udiv(Wrap), Full);
 | |
| 
 | |
| 
 | |
|   ConstantRange Zero(APInt(16, 0));
 | |
|   EXPECT_EQ(Zero.udiv(One), Zero);
 | |
|   EXPECT_EQ(Zero.udiv(Full), Zero);
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 99)).udiv(Full),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 99)));
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 99)).udiv(Full),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 99)));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SDiv) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(Bits, [&](const ConstantRange &CR1,
 | |
|                                        const ConstantRange &CR2) {
 | |
|     // Collect possible results in a bit vector. We store the signed value plus
 | |
|     // a bias to make it unsigned.
 | |
|     int Bias = 1 << (Bits - 1);
 | |
|     BitVector Results(1 << Bits);
 | |
|     ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|       ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|         // Division by zero is UB.
 | |
|         if (N2 == 0)
 | |
|           return;
 | |
| 
 | |
|         // SignedMin / -1 is UB.
 | |
|         if (N1.isMinSignedValue() && N2.isAllOnes())
 | |
|           return;
 | |
| 
 | |
|         APInt N = N1.sdiv(N2);
 | |
|         Results.set(N.getSExtValue() + Bias);
 | |
|       });
 | |
|     });
 | |
| 
 | |
|     ConstantRange CR = CR1.sdiv(CR2);
 | |
|     if (Results.none()) {
 | |
|       EXPECT_TRUE(CR.isEmptySet());
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If there is a non-full signed envelope, that should be the result.
 | |
|     APInt SMin(Bits, Results.find_first() - Bias);
 | |
|     APInt SMax(Bits, Results.find_last() - Bias);
 | |
|     ConstantRange Envelope = ConstantRange::getNonEmpty(SMin, SMax + 1);
 | |
|     if (!Envelope.isFullSet()) {
 | |
|       EXPECT_EQ(Envelope, CR);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the signed envelope is a full set, try to find a smaller sign wrapped
 | |
|     // set that is separated in negative and positive components (or one which
 | |
|     // can also additionally contain zero).
 | |
|     int LastNeg = Results.find_last_in(0, Bias) - Bias;
 | |
|     int LastPos = Results.find_next(Bias) - Bias;
 | |
|     if (Results[Bias]) {
 | |
|       if (LastNeg == -1)
 | |
|         ++LastNeg;
 | |
|       else if (LastPos == 1)
 | |
|         --LastPos;
 | |
|     }
 | |
| 
 | |
|     APInt WMax(Bits, LastNeg);
 | |
|     APInt WMin(Bits, LastPos);
 | |
|     ConstantRange Wrapped = ConstantRange::getNonEmpty(WMin, WMax + 1);
 | |
|     EXPECT_EQ(Wrapped, CR);
 | |
|   });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, URem) {
 | |
|   EXPECT_EQ(Full.urem(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.urem(Full), Empty);
 | |
|   // urem by zero is poison.
 | |
|   EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0))), Empty);
 | |
|   // urem by full range doesn't contain MaxValue.
 | |
|   EXPECT_EQ(Full.urem(Full), ConstantRange(APInt(16, 0), APInt(16, 0xffff)));
 | |
|   // urem is upper bounded by maximum RHS minus one.
 | |
|   EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0), APInt(16, 123))),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 122)));
 | |
|   // urem is upper bounded by maximum LHS.
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 123)).urem(Full),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 123)));
 | |
|   // If the LHS is always lower than the RHS, the result is the LHS.
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20))
 | |
|                 .urem(ConstantRange(APInt(16, 20), APInt(16, 30))),
 | |
|             ConstantRange(APInt(16, 10), APInt(16, 20)));
 | |
|   // It has to be strictly lower, otherwise the top value may wrap to zero.
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20))
 | |
|                 .urem(ConstantRange(APInt(16, 19), APInt(16, 30))),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 20)));
 | |
|   // [12, 14] % 10 is [2, 4], but we conservatively compute [0, 9].
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15))
 | |
|                 .urem(ConstantRange(APInt(16, 10))),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 10)));
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.urem(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) -> Optional<APInt> {
 | |
|         if (N2.isZero())
 | |
|           return None;
 | |
|         return N1.urem(N2);
 | |
|       },
 | |
|       PreferSmallest,
 | |
|       CheckSingleElementsOnly);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SRem) {
 | |
|   EXPECT_EQ(Full.srem(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.srem(Full), Empty);
 | |
|   // srem by zero is UB.
 | |
|   EXPECT_EQ(Full.srem(ConstantRange(APInt(16, 0))), Empty);
 | |
|   // srem by full range doesn't contain SignedMinValue.
 | |
|   EXPECT_EQ(Full.srem(Full), ConstantRange(APInt::getSignedMinValue(16) + 1,
 | |
|                                            APInt::getSignedMinValue(16)));
 | |
| 
 | |
|   ConstantRange PosMod(APInt(16, 10), APInt(16, 21));  // [10, 20]
 | |
|   ConstantRange NegMod(APInt(16, -20), APInt(16, -9)); // [-20, -10]
 | |
|   ConstantRange IntMinMod(APInt::getSignedMinValue(16));
 | |
| 
 | |
|   ConstantRange Expected(16, true);
 | |
| 
 | |
|   // srem is bounded by abs(RHS) minus one.
 | |
|   ConstantRange PosLargeLHS(APInt(16, 0), APInt(16, 41));
 | |
|   Expected = ConstantRange(APInt(16, 0), APInt(16, 20));
 | |
|   EXPECT_EQ(PosLargeLHS.srem(PosMod), Expected);
 | |
|   EXPECT_EQ(PosLargeLHS.srem(NegMod), Expected);
 | |
|   ConstantRange NegLargeLHS(APInt(16, -40), APInt(16, 1));
 | |
|   Expected = ConstantRange(APInt(16, -19), APInt(16, 1));
 | |
|   EXPECT_EQ(NegLargeLHS.srem(PosMod), Expected);
 | |
|   EXPECT_EQ(NegLargeLHS.srem(NegMod), Expected);
 | |
|   ConstantRange PosNegLargeLHS(APInt(16, -32), APInt(16, 38));
 | |
|   Expected = ConstantRange(APInt(16, -19), APInt(16, 20));
 | |
|   EXPECT_EQ(PosNegLargeLHS.srem(PosMod), Expected);
 | |
|   EXPECT_EQ(PosNegLargeLHS.srem(NegMod), Expected);
 | |
| 
 | |
|   // srem is bounded by LHS.
 | |
|   ConstantRange PosLHS(APInt(16, 0), APInt(16, 16));
 | |
|   EXPECT_EQ(PosLHS.srem(PosMod), PosLHS);
 | |
|   EXPECT_EQ(PosLHS.srem(NegMod), PosLHS);
 | |
|   EXPECT_EQ(PosLHS.srem(IntMinMod), PosLHS);
 | |
|   ConstantRange NegLHS(APInt(16, -15), APInt(16, 1));
 | |
|   EXPECT_EQ(NegLHS.srem(PosMod), NegLHS);
 | |
|   EXPECT_EQ(NegLHS.srem(NegMod), NegLHS);
 | |
|   EXPECT_EQ(NegLHS.srem(IntMinMod), NegLHS);
 | |
|   ConstantRange PosNegLHS(APInt(16, -12), APInt(16, 18));
 | |
|   EXPECT_EQ(PosNegLHS.srem(PosMod), PosNegLHS);
 | |
|   EXPECT_EQ(PosNegLHS.srem(NegMod), PosNegLHS);
 | |
|   EXPECT_EQ(PosNegLHS.srem(IntMinMod), PosNegLHS);
 | |
| 
 | |
|   // srem is LHS if it is smaller than RHS.
 | |
|   ConstantRange PosSmallLHS(APInt(16, 3), APInt(16, 8));
 | |
|   EXPECT_EQ(PosSmallLHS.srem(PosMod), PosSmallLHS);
 | |
|   EXPECT_EQ(PosSmallLHS.srem(NegMod), PosSmallLHS);
 | |
|   EXPECT_EQ(PosSmallLHS.srem(IntMinMod), PosSmallLHS);
 | |
|   ConstantRange NegSmallLHS(APInt(16, -7), APInt(16, -2));
 | |
|   EXPECT_EQ(NegSmallLHS.srem(PosMod), NegSmallLHS);
 | |
|   EXPECT_EQ(NegSmallLHS.srem(NegMod), NegSmallLHS);
 | |
|   EXPECT_EQ(NegSmallLHS.srem(IntMinMod), NegSmallLHS);
 | |
|   ConstantRange PosNegSmallLHS(APInt(16, -3), APInt(16, 8));
 | |
|   EXPECT_EQ(PosNegSmallLHS.srem(PosMod), PosNegSmallLHS);
 | |
|   EXPECT_EQ(PosNegSmallLHS.srem(NegMod), PosNegSmallLHS);
 | |
|   EXPECT_EQ(PosNegSmallLHS.srem(IntMinMod), PosNegSmallLHS);
 | |
| 
 | |
|   // Example of a suboptimal result:
 | |
|   // [12, 14] srem 10 is [2, 4], but we conservatively compute [0, 9].
 | |
|   EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15))
 | |
|                 .srem(ConstantRange(APInt(16, 10))),
 | |
|             ConstantRange(APInt(16, 0), APInt(16, 10)));
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.srem(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) -> Optional<APInt> {
 | |
|         if (N2.isZero())
 | |
|           return None;
 | |
|         return N1.srem(N2);
 | |
|       },
 | |
|       PreferSmallest,
 | |
|       CheckSingleElementsOnly);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Shl) {
 | |
|   ConstantRange Some2(APInt(16, 0xfff), APInt(16, 0x8000));
 | |
|   ConstantRange WrapNullMax(APInt(16, 0x1), APInt(16, 0x0));
 | |
|   EXPECT_EQ(Full.shl(Full), Full);
 | |
|   EXPECT_EQ(Full.shl(Empty), Empty);
 | |
|   EXPECT_EQ(Full.shl(One), ConstantRange(APInt(16, 0),
 | |
|                                          APInt(16, 0xfc00) + 1));
 | |
|   EXPECT_EQ(Full.shl(Some), Full);   // TODO: [0, (-1 << 0xa) + 1)
 | |
|   EXPECT_EQ(Full.shl(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.shl(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.shl(One), Empty);
 | |
|   EXPECT_EQ(Empty.shl(Some), Empty);
 | |
|   EXPECT_EQ(Empty.shl(Wrap), Empty);
 | |
|   EXPECT_EQ(One.shl(One), ConstantRange(APInt(16, 0xa << 0xa),
 | |
|                                         APInt(16, (0xa << 0xa) + 1)));
 | |
|   EXPECT_EQ(One.shl(Some), Full);    // TODO: [0xa << 0xa, 0)
 | |
|   EXPECT_EQ(One.shl(Wrap), Full);    // TODO: [0xa, 0xa << 14 + 1)
 | |
|   EXPECT_EQ(Some.shl(Some), Full);   // TODO: [0xa << 0xa, 0xfc01)
 | |
|   EXPECT_EQ(Some.shl(Wrap), Full);   // TODO: [0xa, 0x7ff << 0x5 + 1)
 | |
|   EXPECT_EQ(Wrap.shl(Wrap), Full);
 | |
|   EXPECT_EQ(
 | |
|       Some2.shl(ConstantRange(APInt(16, 0x1))),
 | |
|       ConstantRange(APInt(16, 0xfff << 0x1), APInt(16, 0x7fff << 0x1) + 1));
 | |
|   EXPECT_EQ(One.shl(WrapNullMax), Full);
 | |
| 
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.shl(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) -> Optional<APInt> {
 | |
|         if (N2.uge(N2.getBitWidth()))
 | |
|           return None;
 | |
|         return N1.shl(N2);
 | |
|       },
 | |
|       PreferSmallestUnsigned,
 | |
|       [](const ConstantRange &, const ConstantRange &CR2) {
 | |
|         // We currently only produce precise results for single element RHS.
 | |
|         return CR2.isSingleElement();
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Lshr) {
 | |
|   EXPECT_EQ(Full.lshr(Full), Full);
 | |
|   EXPECT_EQ(Full.lshr(Empty), Empty);
 | |
|   EXPECT_EQ(Full.lshr(One), ConstantRange(APInt(16, 0),
 | |
|                                           APInt(16, (0xffff >> 0xa) + 1)));
 | |
|   EXPECT_EQ(Full.lshr(Some), ConstantRange(APInt(16, 0),
 | |
|                                            APInt(16, (0xffff >> 0xa) + 1)));
 | |
|   EXPECT_EQ(Full.lshr(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.lshr(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.lshr(One), Empty);
 | |
|   EXPECT_EQ(Empty.lshr(Some), Empty);
 | |
|   EXPECT_EQ(Empty.lshr(Wrap), Empty);
 | |
|   EXPECT_EQ(One.lshr(One), ConstantRange(APInt(16, 0)));
 | |
|   EXPECT_EQ(One.lshr(Some), ConstantRange(APInt(16, 0)));
 | |
|   EXPECT_EQ(One.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
 | |
|   EXPECT_EQ(Some.lshr(Some), ConstantRange(APInt(16, 0),
 | |
|                                            APInt(16, (0xaaa >> 0xa) + 1)));
 | |
|   EXPECT_EQ(Some.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Wrap.lshr(Wrap), Full);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Ashr) {
 | |
|   EXPECT_EQ(Full.ashr(Full), Full);
 | |
|   EXPECT_EQ(Full.ashr(Empty), Empty);
 | |
|   EXPECT_EQ(Full.ashr(One), ConstantRange(APInt(16, 0xffe0),
 | |
|                                           APInt(16, (0x7fff >> 0xa) + 1 )));
 | |
|   ConstantRange Small(APInt(16, 0xa), APInt(16, 0xb));
 | |
|   EXPECT_EQ(Full.ashr(Small), ConstantRange(APInt(16, 0xffe0),
 | |
|                                            APInt(16, (0x7fff >> 0xa) + 1 )));
 | |
|   EXPECT_EQ(Full.ashr(Some), ConstantRange(APInt(16, 0xffe0),
 | |
|                                            APInt(16, (0x7fff >> 0xa) + 1 )));
 | |
|   EXPECT_EQ(Full.ashr(Wrap), Full);
 | |
|   EXPECT_EQ(Empty.ashr(Empty), Empty);
 | |
|   EXPECT_EQ(Empty.ashr(One), Empty);
 | |
|   EXPECT_EQ(Empty.ashr(Some), Empty);
 | |
|   EXPECT_EQ(Empty.ashr(Wrap), Empty);
 | |
|   EXPECT_EQ(One.ashr(One), ConstantRange(APInt(16, 0)));
 | |
|   EXPECT_EQ(One.ashr(Some), ConstantRange(APInt(16, 0)));
 | |
|   EXPECT_EQ(One.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
 | |
|   EXPECT_EQ(Some.ashr(Some), ConstantRange(APInt(16, 0),
 | |
|                                            APInt(16, (0xaaa >> 0xa) + 1)));
 | |
|   EXPECT_EQ(Some.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
 | |
|   EXPECT_EQ(Wrap.ashr(Wrap), Full);
 | |
|   ConstantRange Neg(APInt(16, 0xf3f0, true), APInt(16, 0xf7f8, true));
 | |
|   EXPECT_EQ(Neg.ashr(Small), ConstantRange(APInt(16, 0xfffc, true),
 | |
|                                            APInt(16, 0xfffe, true)));
 | |
| }
 | |
| 
 | |
| TEST(ConstantRange, MakeAllowedICmpRegion) {
 | |
|   // PR8250
 | |
|   ConstantRange SMax = ConstantRange(APInt::getSignedMaxValue(32));
 | |
|   EXPECT_TRUE(ConstantRange::makeAllowedICmpRegion(ICmpInst::ICMP_SGT, SMax)
 | |
|                   .isEmptySet());
 | |
| }
 | |
| 
 | |
| TEST(ConstantRange, MakeSatisfyingICmpRegion) {
 | |
|   ConstantRange LowHalf(APInt(8, 0), APInt(8, 128));
 | |
|   ConstantRange HighHalf(APInt(8, 128), APInt(8, 0));
 | |
|   ConstantRange EmptySet(8, /* isFullSet = */ false);
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, LowHalf),
 | |
|             HighHalf);
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, HighHalf),
 | |
|       LowHalf);
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_EQ,
 | |
|                                                       HighHalf).isEmptySet());
 | |
| 
 | |
|   ConstantRange UnsignedSample(APInt(8, 5), APInt(8, 200));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULT,
 | |
|                                                     UnsignedSample),
 | |
|             ConstantRange(APInt(8, 0), APInt(8, 5)));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULE,
 | |
|                                                     UnsignedSample),
 | |
|             ConstantRange(APInt(8, 0), APInt(8, 6)));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGT,
 | |
|                                                     UnsignedSample),
 | |
|             ConstantRange(APInt(8, 200), APInt(8, 0)));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGE,
 | |
|                                                     UnsignedSample),
 | |
|             ConstantRange(APInt(8, 199), APInt(8, 0)));
 | |
| 
 | |
|   ConstantRange SignedSample(APInt(8, -5), APInt(8, 5));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLT, SignedSample),
 | |
|       ConstantRange(APInt(8, -128), APInt(8, -5)));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLE, SignedSample),
 | |
|       ConstantRange(APInt(8, -128), APInt(8, -4)));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGT, SignedSample),
 | |
|       ConstantRange(APInt(8, 5), APInt(8, -128)));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGE, SignedSample),
 | |
|       ConstantRange(APInt(8, 4), APInt(8, -128)));
 | |
| }
 | |
| 
 | |
| void ICmpTestImpl(CmpInst::Predicate Pred) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(
 | |
|       Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         bool Exhaustive = true;
 | |
|         ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|           ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|             Exhaustive &= ICmpInst::compare(N1, N2, Pred);
 | |
|           });
 | |
|         });
 | |
|         EXPECT_EQ(CR1.icmp(Pred, CR2), Exhaustive);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST(ConstantRange, ICmp) {
 | |
|   for (auto Pred : ICmpInst::predicates())
 | |
|     ICmpTestImpl(Pred);
 | |
| }
 | |
| 
 | |
| TEST(ConstantRange, MakeGuaranteedNoWrapRegion) {
 | |
|   const int IntMin4Bits = 8;
 | |
|   const int IntMax4Bits = 7;
 | |
|   typedef OverflowingBinaryOperator OBO;
 | |
| 
 | |
|   for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) {
 | |
|     APInt C(4, Const, true /* = isSigned */);
 | |
| 
 | |
|     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|         Instruction::Add, C, OBO::NoUnsignedWrap);
 | |
| 
 | |
|     EXPECT_FALSE(NUWRegion.isEmptySet());
 | |
| 
 | |
|     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|         Instruction::Add, C, OBO::NoSignedWrap);
 | |
| 
 | |
|     EXPECT_FALSE(NSWRegion.isEmptySet());
 | |
| 
 | |
|     for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E;
 | |
|          ++I) {
 | |
|       bool Overflow = false;
 | |
|       (void)I.uadd_ov(C, Overflow);
 | |
|       EXPECT_FALSE(Overflow);
 | |
|     }
 | |
| 
 | |
|     for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E;
 | |
|          ++I) {
 | |
|       bool Overflow = false;
 | |
|       (void)I.sadd_ov(C, Overflow);
 | |
|       EXPECT_FALSE(Overflow);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) {
 | |
|     APInt C(4, Const, true /* = isSigned */);
 | |
| 
 | |
|     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|         Instruction::Sub, C, OBO::NoUnsignedWrap);
 | |
| 
 | |
|     EXPECT_FALSE(NUWRegion.isEmptySet());
 | |
| 
 | |
|     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|         Instruction::Sub, C, OBO::NoSignedWrap);
 | |
| 
 | |
|     EXPECT_FALSE(NSWRegion.isEmptySet());
 | |
| 
 | |
|     for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E;
 | |
|          ++I) {
 | |
|       bool Overflow = false;
 | |
|       (void)I.usub_ov(C, Overflow);
 | |
|       EXPECT_FALSE(Overflow);
 | |
|     }
 | |
| 
 | |
|     for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E;
 | |
|          ++I) {
 | |
|       bool Overflow = false;
 | |
|       (void)I.ssub_ov(C, Overflow);
 | |
|       EXPECT_FALSE(Overflow);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Add, ConstantRange(32, /* isFullSet = */ true),
 | |
|       OBO::NoSignedWrap);
 | |
|   EXPECT_TRUE(NSWForAllValues.isSingleElement() &&
 | |
|               NSWForAllValues.getSingleElement()->isMinValue());
 | |
| 
 | |
|   NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Sub, ConstantRange(32, /* isFullSet = */ true),
 | |
|       OBO::NoSignedWrap);
 | |
|   EXPECT_TRUE(NSWForAllValues.isSingleElement() &&
 | |
|               NSWForAllValues.getSingleElement()->isMaxValue());
 | |
| 
 | |
|   auto NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Add, ConstantRange(32, /* isFullSet = */ true),
 | |
|       OBO::NoUnsignedWrap);
 | |
|   EXPECT_TRUE(NUWForAllValues.isSingleElement() &&
 | |
|               NUWForAllValues.getSingleElement()->isMinValue());
 | |
| 
 | |
|   NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Sub, ConstantRange(32, /* isFullSet = */ true),
 | |
|       OBO::NoUnsignedWrap);
 | |
|   EXPECT_TRUE(NUWForAllValues.isSingleElement() &&
 | |
|               NUWForAllValues.getSingleElement()->isMaxValue());
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Add, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet());
 | |
|   EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Add, APInt(32, 0), OBO::NoSignedWrap).isFullSet());
 | |
|   EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Sub, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet());
 | |
|   EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|       Instruction::Sub, APInt(32, 0), OBO::NoSignedWrap).isFullSet());
 | |
| 
 | |
|   ConstantRange OneToFive(APInt(32, 1), APInt(32, 6));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, OneToFive, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32),
 | |
|                           APInt::getSignedMaxValue(32) - 4));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, OneToFive, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt::getMinValue(32), APInt::getMinValue(32) - 5));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, OneToFive, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32) + 5,
 | |
|                           APInt::getSignedMinValue(32)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, OneToFive, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt::getMinValue(32) + 5, APInt::getMinValue(32)));
 | |
| 
 | |
|   ConstantRange MinusFiveToMinusTwo(APInt(32, -5), APInt(32, -1));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, MinusFiveToMinusTwo, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32) + 5,
 | |
|                           APInt::getSignedMinValue(32)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, MinusFiveToMinusTwo, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(32, 0), APInt(32, 2)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, MinusFiveToMinusTwo, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32),
 | |
|                           APInt::getSignedMaxValue(32) - 4));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, MinusFiveToMinusTwo, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt::getMaxValue(32) - 1,
 | |
|                           APInt::getMinValue(32)));
 | |
| 
 | |
|   ConstantRange MinusOneToOne(APInt(32, -1), APInt(32, 2));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, MinusOneToOne, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32) + 1,
 | |
|                           APInt::getSignedMinValue(32) - 1));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, MinusOneToOne, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(32, 0), APInt(32, 1)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, MinusOneToOne, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32) + 1,
 | |
|                           APInt::getSignedMinValue(32) - 1));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, MinusOneToOne, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt::getMaxValue(32),
 | |
|                           APInt::getMinValue(32)));
 | |
| 
 | |
|   ConstantRange One(APInt(32, 1), APInt(32, 2));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, One, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32),
 | |
|                           APInt::getSignedMaxValue(32)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Add, One, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt::getMinValue(32), APInt::getMaxValue(32)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, One, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt::getSignedMinValue(32) + 1,
 | |
|                           APInt::getSignedMinValue(32)));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Sub, One, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt::getMinValue(32) + 1, APInt::getMinValue(32)));
 | |
| 
 | |
|   ConstantRange OneLessThanBitWidth(APInt(32, 0), APInt(32, 31) + 1);
 | |
|   ConstantRange UpToBitWidth(APInt(32, 0), APInt(32, 32) + 1);
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap),
 | |
|             ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap),
 | |
|             ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(32, 0), APInt(32, 1) + 1));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(32, -1), APInt(32, 0) + 1));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, ConstantRange::getFull(32), OBO::NoUnsignedWrap),
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap));
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, ConstantRange::getFull(32), OBO::NoSignedWrap),
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap));
 | |
| 
 | |
|   ConstantRange IllegalShAmt(APInt(32, 32), APInt(32, 0) + 1);
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, IllegalShAmt, OBO::NoUnsignedWrap),
 | |
|             ConstantRange::getFull(32));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl, IllegalShAmt, OBO::NoSignedWrap),
 | |
|             ConstantRange::getFull(32));
 | |
| 
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
 | |
|           OBO::NoUnsignedWrap),
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1),
 | |
|           OBO::NoUnsignedWrap));
 | |
|   EXPECT_EQ(
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
 | |
|           OBO::NoSignedWrap),
 | |
|       ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1),
 | |
|           OBO::NoSignedWrap));
 | |
| 
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl,
 | |
|                 ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
 | |
|                 OBO::NoUnsignedWrap),
 | |
|             ConstantRange(APInt(32, 0), APInt(32, 65535) + 1));
 | |
|   EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|                 Instruction::Shl,
 | |
|                 ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
 | |
|                 OBO::NoSignedWrap),
 | |
|             ConstantRange(APInt(32, -32768), APInt(32, 32767) + 1));
 | |
| }
 | |
| 
 | |
| template<typename Fn>
 | |
| void TestNoWrapRegionExhaustive(Instruction::BinaryOps BinOp,
 | |
|                                 unsigned NoWrapKind, Fn OverflowFn) {
 | |
|   unsigned Bits = 5;
 | |
|   EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
 | |
|     if (CR.isEmptySet())
 | |
|       return;
 | |
|     if (Instruction::isShift(BinOp) && CR.getUnsignedMax().uge(Bits))
 | |
|       return;
 | |
| 
 | |
|     ConstantRange NoWrap =
 | |
|         ConstantRange::makeGuaranteedNoWrapRegion(BinOp, CR, NoWrapKind);
 | |
|     EnumerateAPInts(Bits, [&](const APInt &N1) {
 | |
|       bool NoOverflow = true;
 | |
|       bool Overflow = true;
 | |
|       ForeachNumInConstantRange(CR, [&](const APInt &N2) {
 | |
|         if (OverflowFn(N1, N2))
 | |
|           NoOverflow = false;
 | |
|         else
 | |
|           Overflow = false;
 | |
|       });
 | |
|       EXPECT_EQ(NoOverflow, NoWrap.contains(N1));
 | |
| 
 | |
|       // The no-wrap range is exact for single-element ranges.
 | |
|       if (CR.isSingleElement()) {
 | |
|         EXPECT_EQ(Overflow, !NoWrap.contains(N1));
 | |
|       }
 | |
|     });
 | |
|   });
 | |
| }
 | |
| 
 | |
| // Show that makeGuaranteedNoWrapRegion() is maximal, and for single-element
 | |
| // ranges also exact.
 | |
| TEST(ConstantRange, NoWrapRegionExhaustive) {
 | |
|   TestNoWrapRegionExhaustive(
 | |
|       Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap,
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.uadd_ov(N2, Overflow);
 | |
|         return Overflow;
 | |
|       });
 | |
|   TestNoWrapRegionExhaustive(
 | |
|       Instruction::Add, OverflowingBinaryOperator::NoSignedWrap,
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.sadd_ov(N2, Overflow);
 | |
|         return Overflow;
 | |
|       });
 | |
|   TestNoWrapRegionExhaustive(
 | |
|       Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap,
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.usub_ov(N2, Overflow);
 | |
|         return Overflow;
 | |
|       });
 | |
|   TestNoWrapRegionExhaustive(
 | |
|       Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap,
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.ssub_ov(N2, Overflow);
 | |
|         return Overflow;
 | |
|       });
 | |
|   TestNoWrapRegionExhaustive(
 | |
|       Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap,
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.umul_ov(N2, Overflow);
 | |
|         return Overflow;
 | |
|       });
 | |
|   TestNoWrapRegionExhaustive(
 | |
|       Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap,
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.smul_ov(N2, Overflow);
 | |
|         return Overflow;
 | |
|       });
 | |
|   TestNoWrapRegionExhaustive(Instruction::Shl,
 | |
|                              OverflowingBinaryOperator::NoUnsignedWrap,
 | |
|                              [](const APInt &N1, const APInt &N2) {
 | |
|                                bool Overflow;
 | |
|                                (void)N1.ushl_ov(N2, Overflow);
 | |
|                                return Overflow;
 | |
|                              });
 | |
|   TestNoWrapRegionExhaustive(Instruction::Shl,
 | |
|                              OverflowingBinaryOperator::NoSignedWrap,
 | |
|                              [](const APInt &N1, const APInt &N2) {
 | |
|                                bool Overflow;
 | |
|                                (void)N1.sshl_ov(N2, Overflow);
 | |
|                                return Overflow;
 | |
|                              });
 | |
| }
 | |
| 
 | |
| TEST(ConstantRange, GetEquivalentICmp) {
 | |
|   APInt RHS;
 | |
|   CmpInst::Predicate Pred;
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt::getMinValue(32), APInt(32, 100))
 | |
|                   .getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_ULT);
 | |
|   EXPECT_EQ(RHS, APInt(32, 100));
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt::getSignedMinValue(32), APInt(32, 100))
 | |
|                   .getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_SLT);
 | |
|   EXPECT_EQ(RHS, APInt(32, 100));
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getMinValue(32))
 | |
|                   .getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_UGE);
 | |
|   EXPECT_EQ(RHS, APInt(32, 100));
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getSignedMinValue(32))
 | |
|                   .getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_SGE);
 | |
|   EXPECT_EQ(RHS, APInt(32, 100));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       ConstantRange(32, /*isFullSet=*/true).getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_UGE);
 | |
|   EXPECT_EQ(RHS, APInt(32, 0));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       ConstantRange(32, /*isFullSet=*/false).getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_ULT);
 | |
|   EXPECT_EQ(RHS, APInt(32, 0));
 | |
| 
 | |
|   EXPECT_FALSE(ConstantRange(APInt(32, 100), APInt(32, 200))
 | |
|                    .getEquivalentICmp(Pred, RHS));
 | |
| 
 | |
|   EXPECT_FALSE(ConstantRange(APInt::getSignedMinValue(32) - APInt(32, 100),
 | |
|                              APInt::getSignedMinValue(32) + APInt(32, 100))
 | |
|                    .getEquivalentICmp(Pred, RHS));
 | |
| 
 | |
|   EXPECT_FALSE(ConstantRange(APInt::getMinValue(32) - APInt(32, 100),
 | |
|                              APInt::getMinValue(32) + APInt(32, 100))
 | |
|                    .getEquivalentICmp(Pred, RHS));
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt(32, 100)).getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_EQ);
 | |
|   EXPECT_EQ(RHS, APInt(32, 100));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       ConstantRange(APInt(32, 100)).inverse().getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_NE);
 | |
|   EXPECT_EQ(RHS, APInt(32, 100));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       ConstantRange(APInt(512, 100)).inverse().getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_NE);
 | |
|   EXPECT_EQ(RHS, APInt(512, 100));
 | |
| 
 | |
|   // NB!  It would be correct for the following four calls to getEquivalentICmp
 | |
|   // to return ordered predicates like CmpInst::ICMP_ULT or CmpInst::ICMP_UGT.
 | |
|   // However, that's not the case today.
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt(32, 0)).getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_EQ);
 | |
|   EXPECT_EQ(RHS, APInt(32, 0));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       ConstantRange(APInt(32, 0)).inverse().getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_NE);
 | |
|   EXPECT_EQ(RHS, APInt(32, 0));
 | |
| 
 | |
|   EXPECT_TRUE(ConstantRange(APInt(32, -1)).getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_EQ);
 | |
|   EXPECT_EQ(RHS, APInt(32, -1));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       ConstantRange(APInt(32, -1)).inverse().getEquivalentICmp(Pred, RHS));
 | |
|   EXPECT_EQ(Pred, CmpInst::ICMP_NE);
 | |
|   EXPECT_EQ(RHS, APInt(32, -1));
 | |
| 
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [Bits](const ConstantRange &CR) {
 | |
|     CmpInst::Predicate Pred;
 | |
|     APInt RHS, Offset;
 | |
|     CR.getEquivalentICmp(Pred, RHS, Offset);
 | |
|     EnumerateAPInts(Bits, [&](const APInt &N) {
 | |
|       bool Result = ICmpInst::compare(N + Offset, RHS, Pred);
 | |
|       EXPECT_EQ(CR.contains(N), Result);
 | |
|     });
 | |
| 
 | |
|     if (CR.getEquivalentICmp(Pred, RHS)) {
 | |
|       EnumerateAPInts(Bits, [&](const APInt &N) {
 | |
|         bool Result = ICmpInst::compare(N, RHS, Pred);
 | |
|         EXPECT_EQ(CR.contains(N), Result);
 | |
|       });
 | |
|     }
 | |
|   });
 | |
| }
 | |
| 
 | |
| #define EXPECT_MAY_OVERFLOW(op) \
 | |
|   EXPECT_EQ(ConstantRange::OverflowResult::MayOverflow, (op))
 | |
| #define EXPECT_ALWAYS_OVERFLOWS_LOW(op) \
 | |
|   EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsLow, (op))
 | |
| #define EXPECT_ALWAYS_OVERFLOWS_HIGH(op) \
 | |
|   EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsHigh, (op))
 | |
| #define EXPECT_NEVER_OVERFLOWS(op) \
 | |
|   EXPECT_EQ(ConstantRange::OverflowResult::NeverOverflows, (op))
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnsignedAddOverflow) {
 | |
|   // Ill-defined - may overflow is a conservative result.
 | |
|   EXPECT_MAY_OVERFLOW(Some.unsignedAddMayOverflow(Empty));
 | |
|   EXPECT_MAY_OVERFLOW(Empty.unsignedAddMayOverflow(Some));
 | |
| 
 | |
|   // Never overflow despite one full/wrap set.
 | |
|   ConstantRange Zero(APInt::getZero(16));
 | |
|   EXPECT_NEVER_OVERFLOWS(Full.unsignedAddMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Wrap.unsignedAddMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Full));
 | |
|   EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Wrap));
 | |
| 
 | |
|   // But usually full/wrap always may overflow.
 | |
|   EXPECT_MAY_OVERFLOW(Full.unsignedAddMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(Wrap.unsignedAddMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Full));
 | |
|   EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Wrap));
 | |
| 
 | |
|   ConstantRange A(APInt(16, 0xfd00), APInt(16, 0xfe00));
 | |
|   ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201));
 | |
|   ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202));
 | |
|   EXPECT_NEVER_OVERFLOWS(A.unsignedAddMayOverflow(B1));
 | |
|   EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(B2));
 | |
|   EXPECT_NEVER_OVERFLOWS(B1.unsignedAddMayOverflow(A));
 | |
|   EXPECT_MAY_OVERFLOW(B2.unsignedAddMayOverflow(A));
 | |
| 
 | |
|   ConstantRange C1(APInt(16, 0x0299), APInt(16, 0x0400));
 | |
|   ConstantRange C2(APInt(16, 0x0300), APInt(16, 0x0400));
 | |
|   EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(C1));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_HIGH(A.unsignedAddMayOverflow(C2));
 | |
|   EXPECT_MAY_OVERFLOW(C1.unsignedAddMayOverflow(A));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_HIGH(C2.unsignedAddMayOverflow(A));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnsignedSubOverflow) {
 | |
|   // Ill-defined - may overflow is a conservative result.
 | |
|   EXPECT_MAY_OVERFLOW(Some.unsignedSubMayOverflow(Empty));
 | |
|   EXPECT_MAY_OVERFLOW(Empty.unsignedSubMayOverflow(Some));
 | |
| 
 | |
|   // Never overflow despite one full/wrap set.
 | |
|   ConstantRange Zero(APInt::getZero(16));
 | |
|   ConstantRange Max(APInt::getAllOnes(16));
 | |
|   EXPECT_NEVER_OVERFLOWS(Full.unsignedSubMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Wrap.unsignedSubMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Full));
 | |
|   EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Wrap));
 | |
| 
 | |
|   // But usually full/wrap always may overflow.
 | |
|   EXPECT_MAY_OVERFLOW(Full.unsignedSubMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(Wrap.unsignedSubMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Full));
 | |
|   EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Wrap));
 | |
| 
 | |
|   ConstantRange A(APInt(16, 0x0000), APInt(16, 0x0100));
 | |
|   ConstantRange B(APInt(16, 0x0100), APInt(16, 0x0200));
 | |
|   EXPECT_NEVER_OVERFLOWS(B.unsignedSubMayOverflow(A));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_LOW(A.unsignedSubMayOverflow(B));
 | |
| 
 | |
|   ConstantRange A1(APInt(16, 0x0000), APInt(16, 0x0101));
 | |
|   ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201));
 | |
|   EXPECT_NEVER_OVERFLOWS(B1.unsignedSubMayOverflow(A1));
 | |
|   EXPECT_MAY_OVERFLOW(A1.unsignedSubMayOverflow(B1));
 | |
| 
 | |
|   ConstantRange A2(APInt(16, 0x0000), APInt(16, 0x0102));
 | |
|   ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202));
 | |
|   EXPECT_MAY_OVERFLOW(B2.unsignedSubMayOverflow(A2));
 | |
|   EXPECT_MAY_OVERFLOW(A2.unsignedSubMayOverflow(B2));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SignedAddOverflow) {
 | |
|   // Ill-defined - may overflow is a conservative result.
 | |
|   EXPECT_MAY_OVERFLOW(Some.signedAddMayOverflow(Empty));
 | |
|   EXPECT_MAY_OVERFLOW(Empty.signedAddMayOverflow(Some));
 | |
| 
 | |
|   // Never overflow despite one full/wrap set.
 | |
|   ConstantRange Zero(APInt::getZero(16));
 | |
|   EXPECT_NEVER_OVERFLOWS(Full.signedAddMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Wrap.signedAddMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Full));
 | |
|   EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Wrap));
 | |
| 
 | |
|   // But usually full/wrap always may overflow.
 | |
|   EXPECT_MAY_OVERFLOW(Full.signedAddMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(Wrap.signedAddMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Full));
 | |
|   EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Wrap));
 | |
| 
 | |
|   ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00));
 | |
|   ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201));
 | |
|   ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202));
 | |
|   EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B1));
 | |
|   EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B2));
 | |
|   ConstantRange B3(APInt(16, 0x8000), APInt(16, 0x0201));
 | |
|   ConstantRange B4(APInt(16, 0x8000), APInt(16, 0x0202));
 | |
|   EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B3));
 | |
|   EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B4));
 | |
|   ConstantRange B5(APInt(16, 0x0299), APInt(16, 0x0400));
 | |
|   ConstantRange B6(APInt(16, 0x0300), APInt(16, 0x0400));
 | |
|   EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B5));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedAddMayOverflow(B6));
 | |
| 
 | |
|   ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300));
 | |
|   ConstantRange D1(APInt(16, 0xfe00), APInt(16, 0xff00));
 | |
|   ConstantRange D2(APInt(16, 0xfd99), APInt(16, 0xff00));
 | |
|   EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D1));
 | |
|   EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D2));
 | |
|   ConstantRange D3(APInt(16, 0xfe00), APInt(16, 0x8000));
 | |
|   ConstantRange D4(APInt(16, 0xfd99), APInt(16, 0x8000));
 | |
|   EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D3));
 | |
|   EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D4));
 | |
|   ConstantRange D5(APInt(16, 0xfc00), APInt(16, 0xfd02));
 | |
|   ConstantRange D6(APInt(16, 0xfc00), APInt(16, 0xfd01));
 | |
|   EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D5));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedAddMayOverflow(D6));
 | |
| 
 | |
|   ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100));
 | |
|   EXPECT_NEVER_OVERFLOWS(E.signedAddMayOverflow(E));
 | |
|   ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7000));
 | |
|   EXPECT_MAY_OVERFLOW(F.signedAddMayOverflow(F));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SignedSubOverflow) {
 | |
|   // Ill-defined - may overflow is a conservative result.
 | |
|   EXPECT_MAY_OVERFLOW(Some.signedSubMayOverflow(Empty));
 | |
|   EXPECT_MAY_OVERFLOW(Empty.signedSubMayOverflow(Some));
 | |
| 
 | |
|   // Never overflow despite one full/wrap set.
 | |
|   ConstantRange Zero(APInt::getZero(16));
 | |
|   EXPECT_NEVER_OVERFLOWS(Full.signedSubMayOverflow(Zero));
 | |
|   EXPECT_NEVER_OVERFLOWS(Wrap.signedSubMayOverflow(Zero));
 | |
| 
 | |
|   // But usually full/wrap always may overflow.
 | |
|   EXPECT_MAY_OVERFLOW(Full.signedSubMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(Wrap.signedSubMayOverflow(One));
 | |
|   EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Full));
 | |
|   EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Wrap));
 | |
| 
 | |
|   ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00));
 | |
|   ConstantRange B1(APInt(16, 0xfe00), APInt(16, 0xff00));
 | |
|   ConstantRange B2(APInt(16, 0xfd99), APInt(16, 0xff00));
 | |
|   EXPECT_NEVER_OVERFLOWS(A.signedSubMayOverflow(B1));
 | |
|   EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B2));
 | |
|   ConstantRange B3(APInt(16, 0xfc00), APInt(16, 0xfd02));
 | |
|   ConstantRange B4(APInt(16, 0xfc00), APInt(16, 0xfd01));
 | |
|   EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B3));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedSubMayOverflow(B4));
 | |
| 
 | |
|   ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300));
 | |
|   ConstantRange D1(APInt(16, 0x0100), APInt(16, 0x0201));
 | |
|   ConstantRange D2(APInt(16, 0x0100), APInt(16, 0x0202));
 | |
|   EXPECT_NEVER_OVERFLOWS(C.signedSubMayOverflow(D1));
 | |
|   EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D2));
 | |
|   ConstantRange D3(APInt(16, 0x0299), APInt(16, 0x0400));
 | |
|   ConstantRange D4(APInt(16, 0x0300), APInt(16, 0x0400));
 | |
|   EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D3));
 | |
|   EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedSubMayOverflow(D4));
 | |
| 
 | |
|   ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100));
 | |
|   EXPECT_NEVER_OVERFLOWS(E.signedSubMayOverflow(E));
 | |
|   ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7001));
 | |
|   EXPECT_MAY_OVERFLOW(F.signedSubMayOverflow(F));
 | |
| }
 | |
| 
 | |
| template<typename Fn1, typename Fn2>
 | |
| static void TestOverflowExhaustive(Fn1 OverflowFn, Fn2 MayOverflowFn) {
 | |
|   // Constant range overflow checks are tested exhaustively on 4-bit numbers.
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(Bits, [=](const ConstantRange &CR1,
 | |
|                                        const ConstantRange &CR2) {
 | |
|     // Loop over all N1 in CR1 and N2 in CR2 and check whether any of the
 | |
|     // operations have overflow / have no overflow.
 | |
|     bool RangeHasOverflowLow = false;
 | |
|     bool RangeHasOverflowHigh = false;
 | |
|     bool RangeHasNoOverflow = false;
 | |
|     ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|       ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|         bool IsOverflowHigh;
 | |
|         if (!OverflowFn(IsOverflowHigh, N1, N2)) {
 | |
|           RangeHasNoOverflow = true;
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         if (IsOverflowHigh)
 | |
|           RangeHasOverflowHigh = true;
 | |
|         else
 | |
|           RangeHasOverflowLow = true;
 | |
|       });
 | |
|     });
 | |
| 
 | |
|     ConstantRange::OverflowResult OR = MayOverflowFn(CR1, CR2);
 | |
|     switch (OR) {
 | |
|     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
 | |
|       EXPECT_TRUE(RangeHasOverflowLow);
 | |
|       EXPECT_FALSE(RangeHasOverflowHigh);
 | |
|       EXPECT_FALSE(RangeHasNoOverflow);
 | |
|       break;
 | |
|     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
 | |
|       EXPECT_TRUE(RangeHasOverflowHigh);
 | |
|       EXPECT_FALSE(RangeHasOverflowLow);
 | |
|       EXPECT_FALSE(RangeHasNoOverflow);
 | |
|       break;
 | |
|     case ConstantRange::OverflowResult::NeverOverflows:
 | |
|       EXPECT_FALSE(RangeHasOverflowLow);
 | |
|       EXPECT_FALSE(RangeHasOverflowHigh);
 | |
|       EXPECT_TRUE(RangeHasNoOverflow);
 | |
|       break;
 | |
|     case ConstantRange::OverflowResult::MayOverflow:
 | |
|       // We return MayOverflow for empty sets as a conservative result,
 | |
|       // but of course neither the RangeHasOverflow nor the
 | |
|       // RangeHasNoOverflow flags will be set.
 | |
|       if (CR1.isEmptySet() || CR2.isEmptySet())
 | |
|         break;
 | |
| 
 | |
|       EXPECT_TRUE(RangeHasOverflowLow || RangeHasOverflowHigh);
 | |
|       EXPECT_TRUE(RangeHasNoOverflow);
 | |
|       break;
 | |
|     }
 | |
|   });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnsignedAddOverflowExhaustive) {
 | |
|   TestOverflowExhaustive(
 | |
|       [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.uadd_ov(N2, Overflow);
 | |
|         IsOverflowHigh = true;
 | |
|         return Overflow;
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.unsignedAddMayOverflow(CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnsignedSubOverflowExhaustive) {
 | |
|   TestOverflowExhaustive(
 | |
|       [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.usub_ov(N2, Overflow);
 | |
|         IsOverflowHigh = false;
 | |
|         return Overflow;
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.unsignedSubMayOverflow(CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UnsignedMulOverflowExhaustive) {
 | |
|   TestOverflowExhaustive(
 | |
|       [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.umul_ov(N2, Overflow);
 | |
|         IsOverflowHigh = true;
 | |
|         return Overflow;
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.unsignedMulMayOverflow(CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SignedAddOverflowExhaustive) {
 | |
|   TestOverflowExhaustive(
 | |
|       [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.sadd_ov(N2, Overflow);
 | |
|         IsOverflowHigh = N1.isNonNegative();
 | |
|         return Overflow;
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.signedAddMayOverflow(CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SignedSubOverflowExhaustive) {
 | |
|   TestOverflowExhaustive(
 | |
|       [](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
 | |
|         bool Overflow;
 | |
|         (void) N1.ssub_ov(N2, Overflow);
 | |
|         IsOverflowHigh = N1.isNonNegative();
 | |
|         return Overflow;
 | |
|       },
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.signedSubMayOverflow(CR2);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, FromKnownBits) {
 | |
|   KnownBits Unknown(16);
 | |
|   EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/false));
 | |
|   EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/true));
 | |
| 
 | |
|   // .10..01. -> unsigned 01000010 (66)  to 11011011 (219)
 | |
|   //          -> signed   11000010 (194) to 01011011 (91)
 | |
|   KnownBits Known(8);
 | |
|   Known.Zero = 36;
 | |
|   Known.One = 66;
 | |
|   ConstantRange Unsigned(APInt(8, 66), APInt(8, 219 + 1));
 | |
|   ConstantRange Signed(APInt(8, 194), APInt(8, 91 + 1));
 | |
|   EXPECT_EQ(Unsigned, ConstantRange::fromKnownBits(Known, /*signed*/false));
 | |
|   EXPECT_EQ(Signed, ConstantRange::fromKnownBits(Known, /*signed*/true));
 | |
| 
 | |
|   // 1.10.10. -> 10100100 (164) to 11101101 (237)
 | |
|   Known.Zero = 18;
 | |
|   Known.One = 164;
 | |
|   ConstantRange CR1(APInt(8, 164), APInt(8, 237 + 1));
 | |
|   EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/false));
 | |
|   EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/true));
 | |
| 
 | |
|   // 01.0.1.0 -> 01000100 (68) to 01101110 (110)
 | |
|   Known.Zero = 145;
 | |
|   Known.One = 68;
 | |
|   ConstantRange CR2(APInt(8, 68), APInt(8, 110 + 1));
 | |
|   EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/false));
 | |
|   EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/true));
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, FromKnownBitsExhaustive) {
 | |
|   unsigned Bits = 4;
 | |
|   unsigned Max = 1 << Bits;
 | |
|   KnownBits Known(Bits);
 | |
|   for (unsigned Zero = 0; Zero < Max; ++Zero) {
 | |
|     for (unsigned One = 0; One < Max; ++One) {
 | |
|       Known.Zero = Zero;
 | |
|       Known.One = One;
 | |
|       if (Known.hasConflict() || Known.isUnknown())
 | |
|         continue;
 | |
| 
 | |
|       UnsignedOpRangeGatherer UR(Bits);
 | |
|       SignedOpRangeGatherer SR(Bits);
 | |
|       for (unsigned N = 0; N < Max; ++N) {
 | |
|         APInt Num(Bits, N);
 | |
|         if ((Num & Known.Zero) != 0 || (~Num & Known.One) != 0)
 | |
|           continue;
 | |
| 
 | |
|         UR.account(Num);
 | |
|         SR.account(Num);
 | |
|       }
 | |
| 
 | |
|       ConstantRange UnsignedCR = UR.getRange();
 | |
|       ConstantRange SignedCR = SR.getRange();
 | |
|       EXPECT_EQ(UnsignedCR, ConstantRange::fromKnownBits(Known, false));
 | |
|       EXPECT_EQ(SignedCR, ConstantRange::fromKnownBits(Known, true));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Negative) {
 | |
|   // All elements in an empty set (of which there are none) are both negative
 | |
|   // and non-negative. Empty & full sets checked explicitly for clarity, but
 | |
|   // they are also covered by the exhaustive test below.
 | |
|   EXPECT_TRUE(Empty.isAllNegative());
 | |
|   EXPECT_TRUE(Empty.isAllNonNegative());
 | |
|   EXPECT_FALSE(Full.isAllNegative());
 | |
|   EXPECT_FALSE(Full.isAllNonNegative());
 | |
| 
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateConstantRanges(Bits, [](const ConstantRange &CR) {
 | |
|     bool AllNegative = true;
 | |
|     bool AllNonNegative = true;
 | |
|     ForeachNumInConstantRange(CR, [&](const APInt &N) {
 | |
|       if (!N.isNegative())
 | |
|         AllNegative = false;
 | |
|       if (!N.isNonNegative())
 | |
|         AllNonNegative = false;
 | |
|     });
 | |
|     assert((CR.isEmptySet() || !AllNegative || !AllNonNegative) &&
 | |
|            "Only empty set can be both all negative and all non-negative");
 | |
| 
 | |
|     EXPECT_EQ(AllNegative, CR.isAllNegative());
 | |
|     EXPECT_EQ(AllNonNegative, CR.isAllNonNegative());
 | |
|   });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UAddSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.uadd_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1.uadd_sat(N2);
 | |
|       },
 | |
|       PreferSmallestUnsigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, USubSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.usub_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1.usub_sat(N2);
 | |
|       },
 | |
|       PreferSmallestUnsigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UMulSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.umul_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) { return N1.umul_sat(N2); },
 | |
|       PreferSmallestUnsigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, UShlSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.ushl_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) { return N1.ushl_sat(N2); },
 | |
|       PreferSmallestUnsigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SAddSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.sadd_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1.sadd_sat(N2);
 | |
|       },
 | |
|       PreferSmallestSigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SSubSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.ssub_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) {
 | |
|         return N1.ssub_sat(N2);
 | |
|       },
 | |
|       PreferSmallestSigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SMulSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.smul_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) { return N1.smul_sat(N2); },
 | |
|       PreferSmallestSigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, SShlSat) {
 | |
|   TestBinaryOpExhaustive(
 | |
|       [](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         return CR1.sshl_sat(CR2);
 | |
|       },
 | |
|       [](const APInt &N1, const APInt &N2) { return N1.sshl_sat(N2); },
 | |
|       PreferSmallestSigned);
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, Abs) {
 | |
|   TestUnaryOpExhaustive(
 | |
|       [](const ConstantRange &CR) { return CR.abs(); },
 | |
|       [](const APInt &N) { return N.abs(); });
 | |
| 
 | |
|   TestUnaryOpExhaustive(
 | |
|       [](const ConstantRange &CR) { return CR.abs(/*IntMinIsPoison=*/true); },
 | |
|       [](const APInt &N) -> Optional<APInt> {
 | |
|         if (N.isMinSignedValue())
 | |
|           return None;
 | |
|         return N.abs();
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, castOps) {
 | |
|   ConstantRange A(APInt(16, 66), APInt(16, 128));
 | |
|   ConstantRange FpToI8 = A.castOp(Instruction::FPToSI, 8);
 | |
|   EXPECT_EQ(8u, FpToI8.getBitWidth());
 | |
|   EXPECT_TRUE(FpToI8.isFullSet());
 | |
| 
 | |
|   ConstantRange FpToI16 = A.castOp(Instruction::FPToSI, 16);
 | |
|   EXPECT_EQ(16u, FpToI16.getBitWidth());
 | |
|   EXPECT_EQ(A, FpToI16);
 | |
| 
 | |
|   ConstantRange FPExtToDouble = A.castOp(Instruction::FPExt, 64);
 | |
|   EXPECT_EQ(64u, FPExtToDouble.getBitWidth());
 | |
|   EXPECT_TRUE(FPExtToDouble.isFullSet());
 | |
| 
 | |
|   ConstantRange PtrToInt = A.castOp(Instruction::PtrToInt, 64);
 | |
|   EXPECT_EQ(64u, PtrToInt.getBitWidth());
 | |
|   EXPECT_TRUE(PtrToInt.isFullSet());
 | |
| 
 | |
|   ConstantRange IntToPtr = A.castOp(Instruction::IntToPtr, 64);
 | |
|   EXPECT_EQ(64u, IntToPtr.getBitWidth());
 | |
|   EXPECT_TRUE(IntToPtr.isFullSet());
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, binaryXor) {
 | |
|   // Single element ranges.
 | |
|   ConstantRange R16(APInt(8, 16));
 | |
|   ConstantRange R20(APInt(8, 20));
 | |
|   EXPECT_EQ(*R16.binaryXor(R16).getSingleElement(), APInt(8, 0));
 | |
|   EXPECT_EQ(*R16.binaryXor(R20).getSingleElement(), APInt(8, 16 ^ 20));
 | |
| 
 | |
|   // Ranges with more than a single element. Handled conservatively for now.
 | |
|   ConstantRange R16_35(APInt(8, 16), APInt(8, 35));
 | |
|   ConstantRange R0_99(APInt(8, 0), APInt(8, 99));
 | |
|   EXPECT_TRUE(R16_35.binaryXor(R16_35).isFullSet());
 | |
|   EXPECT_TRUE(R16_35.binaryXor(R0_99).isFullSet());
 | |
|   EXPECT_TRUE(R0_99.binaryXor(R16_35).isFullSet());
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, binaryNot) {
 | |
|   TestUnaryOpExhaustive(
 | |
|       [](const ConstantRange &CR) { return CR.binaryNot(); },
 | |
|       [](const APInt &N) { return ~N; },
 | |
|       PreferSmallest);
 | |
|   TestUnaryOpExhaustive(
 | |
|       [](const ConstantRange &CR) {
 | |
|         return CR.binaryXor(ConstantRange(APInt::getAllOnes(CR.getBitWidth())));
 | |
|       },
 | |
|       [](const APInt &N) { return ~N; }, PreferSmallest);
 | |
|   TestUnaryOpExhaustive(
 | |
|       [](const ConstantRange &CR) {
 | |
|         return ConstantRange(APInt::getAllOnes(CR.getBitWidth())).binaryXor(CR);
 | |
|       },
 | |
|       [](const APInt &N) { return ~N; }, PreferSmallest);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void testConstantRangeICmpPredEquivalence(ICmpInst::Predicate SrcPred, T Func) {
 | |
|   unsigned Bits = 4;
 | |
|   EnumerateTwoConstantRanges(
 | |
|       Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|         ICmpInst::Predicate TgtPred;
 | |
|         bool ExpectedEquivalent;
 | |
|         std::tie(TgtPred, ExpectedEquivalent) = Func(CR1, CR2);
 | |
|         if (TgtPred == CmpInst::Predicate::BAD_ICMP_PREDICATE)
 | |
|           return;
 | |
|         bool TrulyEquivalent = true;
 | |
|         ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
 | |
|           if (!TrulyEquivalent)
 | |
|             return;
 | |
|           ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
 | |
|             if (!TrulyEquivalent)
 | |
|               return;
 | |
|             TrulyEquivalent &= ICmpInst::compare(N1, N2, SrcPred) ==
 | |
|                                ICmpInst::compare(N1, N2, TgtPred);
 | |
|           });
 | |
|         });
 | |
|         ASSERT_EQ(TrulyEquivalent, ExpectedEquivalent);
 | |
|       });
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, areInsensitiveToSignednessOfICmpPredicate) {
 | |
|   for (auto Pred : ICmpInst::predicates()) {
 | |
|     if (ICmpInst::isEquality(Pred))
 | |
|       continue;
 | |
|     ICmpInst::Predicate FlippedSignednessPred =
 | |
|         ICmpInst::getFlippedSignednessPredicate(Pred);
 | |
|     testConstantRangeICmpPredEquivalence(Pred, [FlippedSignednessPred](
 | |
|                                                    const ConstantRange &CR1,
 | |
|                                                    const ConstantRange &CR2) {
 | |
|       return std::make_pair(
 | |
|           FlippedSignednessPred,
 | |
|           ConstantRange::areInsensitiveToSignednessOfICmpPredicate(CR1, CR2));
 | |
|     });
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, areInsensitiveToSignednessOfInvertedICmpPredicate) {
 | |
|   for (auto Pred : ICmpInst::predicates()) {
 | |
|     if (ICmpInst::isEquality(Pred))
 | |
|       continue;
 | |
|     ICmpInst::Predicate InvertedFlippedSignednessPred =
 | |
|         ICmpInst::getInversePredicate(
 | |
|             ICmpInst::getFlippedSignednessPredicate(Pred));
 | |
|     testConstantRangeICmpPredEquivalence(
 | |
|         Pred, [InvertedFlippedSignednessPred](const ConstantRange &CR1,
 | |
|                                               const ConstantRange &CR2) {
 | |
|           return std::make_pair(
 | |
|               InvertedFlippedSignednessPred,
 | |
|               ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
 | |
|                   CR1, CR2));
 | |
|         });
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, getEquivalentPredWithFlippedSignedness) {
 | |
|   for (auto Pred : ICmpInst::predicates()) {
 | |
|     if (ICmpInst::isEquality(Pred))
 | |
|       continue;
 | |
|     testConstantRangeICmpPredEquivalence(
 | |
|         Pred, [Pred](const ConstantRange &CR1, const ConstantRange &CR2) {
 | |
|           return std::make_pair(
 | |
|               ConstantRange::getEquivalentPredWithFlippedSignedness(Pred, CR1,
 | |
|                                                                     CR2),
 | |
|               /*ExpectedEquivalent=*/true);
 | |
|         });
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST_F(ConstantRangeTest, isSizeLargerThan) {
 | |
|   EXPECT_FALSE(Empty.isSizeLargerThan(0));
 | |
| 
 | |
|   EXPECT_TRUE(Full.isSizeLargerThan(0));
 | |
|   EXPECT_TRUE(Full.isSizeLargerThan(65535));
 | |
|   EXPECT_FALSE(Full.isSizeLargerThan(65536));
 | |
| 
 | |
|   EXPECT_TRUE(One.isSizeLargerThan(0));
 | |
|   EXPECT_FALSE(One.isSizeLargerThan(1));
 | |
| }
 | |
| 
 | |
| } // anonymous namespace
 |