1793 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1793 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/NoFolder.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "gtest/gtest.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct PatternMatchTest : ::testing::Test {
 | |
|   LLVMContext Ctx;
 | |
|   std::unique_ptr<Module> M;
 | |
|   Function *F;
 | |
|   BasicBlock *BB;
 | |
|   IRBuilder<NoFolder> IRB;
 | |
| 
 | |
|   PatternMatchTest()
 | |
|       : M(new Module("PatternMatchTestModule", Ctx)),
 | |
|         F(Function::Create(
 | |
|             FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
 | |
|             Function::ExternalLinkage, "f", M.get())),
 | |
|         BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
 | |
| };
 | |
| 
 | |
| TEST_F(PatternMatchTest, OneUse) {
 | |
|   // Build up a little tree of values:
 | |
|   //
 | |
|   //   One  = (1 + 2) + 42
 | |
|   //   Two  = One + 42
 | |
|   //   Leaf = (Two + 8) + (Two + 13)
 | |
|   Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
 | |
|                              IRB.getInt32(42));
 | |
|   Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
 | |
|   Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
 | |
|                               IRB.CreateAdd(Two, IRB.getInt32(13)));
 | |
|   Value *V;
 | |
| 
 | |
|   EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
 | |
|   EXPECT_EQ(One, V);
 | |
| 
 | |
|   EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
 | |
|   EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntEQ) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntNE) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntUGT) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SignbitZeroChecks) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_TRUE(m_Negative().match(NegOne));
 | |
|   EXPECT_FALSE(m_NonNegative().match(NegOne));
 | |
|   EXPECT_FALSE(m_StrictlyPositive().match(NegOne));
 | |
|   EXPECT_TRUE(m_NonPositive().match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(m_Negative().match(Zero));
 | |
|   EXPECT_TRUE(m_NonNegative().match(Zero));
 | |
|   EXPECT_FALSE(m_StrictlyPositive().match(Zero));
 | |
|   EXPECT_TRUE(m_NonPositive().match(Zero));
 | |
| 
 | |
|   EXPECT_FALSE(m_Negative().match(One));
 | |
|   EXPECT_TRUE(m_NonNegative().match(One));
 | |
|   EXPECT_TRUE(m_StrictlyPositive().match(One));
 | |
|   EXPECT_FALSE(m_NonPositive().match(One));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntUGE) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntULT) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntULE) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntSGT) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntSGE) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntSLT) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, SpecificIntSLE) {
 | |
|   Type *IntTy = IRB.getInt32Ty();
 | |
|   unsigned BitWidth = IntTy->getScalarSizeInBits();
 | |
| 
 | |
|   Value *Zero = ConstantInt::get(IntTy, 0);
 | |
|   Value *One = ConstantInt::get(IntTy, 1);
 | |
|   Value *NegOne = ConstantInt::get(IntTy, -1);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1))
 | |
|           .match(Zero));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1))
 | |
|           .match(NegOne));
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1))
 | |
|           .match(Zero));
 | |
|   EXPECT_FALSE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1))
 | |
|           .match(One));
 | |
|   EXPECT_TRUE(
 | |
|       m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1))
 | |
|           .match(NegOne));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, Unless) {
 | |
|   Value *X = IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(0));
 | |
| 
 | |
|   EXPECT_TRUE(m_Add(m_One(), m_Zero()).match(X));
 | |
|   EXPECT_FALSE(m_Add(m_Zero(), m_One()).match(X));
 | |
| 
 | |
|   EXPECT_FALSE(m_Unless(m_Add(m_One(), m_Zero())).match(X));
 | |
|   EXPECT_TRUE(m_Unless(m_Add(m_Zero(), m_One())).match(X));
 | |
| 
 | |
|   EXPECT_TRUE(m_c_Add(m_One(), m_Zero()).match(X));
 | |
|   EXPECT_TRUE(m_c_Add(m_Zero(), m_One()).match(X));
 | |
| 
 | |
|   EXPECT_FALSE(m_Unless(m_c_Add(m_One(), m_Zero())).match(X));
 | |
|   EXPECT_FALSE(m_Unless(m_c_Add(m_Zero(), m_One())).match(X));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, ZExtSExtSelf) {
 | |
|   LLVMContext &Ctx = IRB.getContext();
 | |
| 
 | |
|   Value *One32 = IRB.getInt32(1);
 | |
|   Value *One64Z = IRB.CreateZExt(One32, IntegerType::getInt64Ty(Ctx));
 | |
|   Value *One64S = IRB.CreateSExt(One32, IntegerType::getInt64Ty(Ctx));
 | |
| 
 | |
|   EXPECT_TRUE(m_One().match(One32));
 | |
|   EXPECT_FALSE(m_One().match(One64Z));
 | |
|   EXPECT_FALSE(m_One().match(One64S));
 | |
| 
 | |
|   EXPECT_FALSE(m_ZExt(m_One()).match(One32));
 | |
|   EXPECT_TRUE(m_ZExt(m_One()).match(One64Z));
 | |
|   EXPECT_FALSE(m_ZExt(m_One()).match(One64S));
 | |
| 
 | |
|   EXPECT_FALSE(m_SExt(m_One()).match(One32));
 | |
|   EXPECT_FALSE(m_SExt(m_One()).match(One64Z));
 | |
|   EXPECT_TRUE(m_SExt(m_One()).match(One64S));
 | |
| 
 | |
|   EXPECT_TRUE(m_ZExtOrSelf(m_One()).match(One32));
 | |
|   EXPECT_TRUE(m_ZExtOrSelf(m_One()).match(One64Z));
 | |
|   EXPECT_FALSE(m_ZExtOrSelf(m_One()).match(One64S));
 | |
| 
 | |
|   EXPECT_TRUE(m_SExtOrSelf(m_One()).match(One32));
 | |
|   EXPECT_FALSE(m_SExtOrSelf(m_One()).match(One64Z));
 | |
|   EXPECT_TRUE(m_SExtOrSelf(m_One()).match(One64S));
 | |
| 
 | |
|   EXPECT_FALSE(m_ZExtOrSExt(m_One()).match(One32));
 | |
|   EXPECT_TRUE(m_ZExtOrSExt(m_One()).match(One64Z));
 | |
|   EXPECT_TRUE(m_ZExtOrSExt(m_One()).match(One64S));
 | |
| 
 | |
|   EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One32));
 | |
|   EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One64Z));
 | |
|   EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One64S));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, Power2) {
 | |
|   Value *C128 = IRB.getInt32(128);
 | |
|   Value *CNeg128 = ConstantExpr::getNeg(cast<Constant>(C128));
 | |
| 
 | |
|   EXPECT_TRUE(m_Power2().match(C128));
 | |
|   EXPECT_FALSE(m_Power2().match(CNeg128));
 | |
| 
 | |
|   EXPECT_FALSE(m_NegatedPower2().match(C128));
 | |
|   EXPECT_TRUE(m_NegatedPower2().match(CNeg128));
 | |
| 
 | |
|   Value *CIntMin = IRB.getInt64(APSInt::getSignedMinValue(64).getSExtValue());
 | |
|   Value *CNegIntMin = ConstantExpr::getNeg(cast<Constant>(CIntMin));
 | |
| 
 | |
|   EXPECT_TRUE(m_Power2().match(CIntMin));
 | |
|   EXPECT_TRUE(m_Power2().match(CNegIntMin));
 | |
| 
 | |
|   EXPECT_TRUE(m_NegatedPower2().match(CIntMin));
 | |
|   EXPECT_TRUE(m_NegatedPower2().match(CNegIntMin));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, CommutativeDeferredValue) {
 | |
|   Value *X = IRB.getInt32(1);
 | |
|   Value *Y = IRB.getInt32(2);
 | |
| 
 | |
|   {
 | |
|     Value *tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
|   {
 | |
|     const Value *tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
|   {
 | |
|     Value *const tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
|   {
 | |
|     const Value *const tX = X;
 | |
|     EXPECT_TRUE(match(X, m_Deferred(tX)));
 | |
|     EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     Value *tX = nullptr;
 | |
|     EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
 | |
|     EXPECT_EQ(tX, X);
 | |
|   }
 | |
|   {
 | |
|     Value *tX = nullptr;
 | |
|     EXPECT_FALSE(
 | |
|         match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
 | |
|   }
 | |
| 
 | |
|   auto checkMatch = [X, Y](Value *Pattern) {
 | |
|     Value *tX = nullptr, *tY = nullptr;
 | |
|     EXPECT_TRUE(match(
 | |
|         Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
 | |
|     EXPECT_EQ(tX, X);
 | |
|     EXPECT_EQ(tY, Y);
 | |
|   };
 | |
| 
 | |
|   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
 | |
|   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
 | |
|   checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
 | |
|   checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test OLT.
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test OLE.
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on OGE.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on OGT.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp oge L, R
 | |
|   // %min = select %cmp R, L
 | |
|   // Given L == NaN
 | |
|   // the above is expanded to %cmp == false ==> %min = L
 | |
|   // which is true for UnordFMin, not OrdFMin, so test that:
 | |
| 
 | |
|   // [OU]GE with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [OU]GT with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test OGT.
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test OGE.
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on OLE.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on OLT.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
 | |
| 
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp ole L, R
 | |
|   // %max = select %cmp, R, L
 | |
|   // Given L == NaN,
 | |
|   // the above is expanded to %cmp == false ==> %max == L
 | |
|   // which is true for UnordFMax, not OrdFMax, so test that:
 | |
| 
 | |
|   // [OU]LE with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [OUT]LT with inverted select.
 | |
|   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test ULT.
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test ULE.
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on UGE.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on UGT.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp uge L, R
 | |
|   // %min = select %cmp R, L
 | |
|   // Given L == NaN
 | |
|   // the above is expanded to %cmp == true ==> %min = R
 | |
|   // which is true for OrdFMin, not UnordFMin, so test that:
 | |
| 
 | |
|   // [UO]GE with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [UO]GT with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *L = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *R = ConstantFP::get(FltTy, 2.0);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Test UGT.
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test UGE.
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Test no match on ULE.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
 | |
| 
 | |
|   // Test no match on ULT.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                    .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
 | |
| 
 | |
|   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | |
|   // %cmp = fcmp ule L, R
 | |
|   // %max = select %cmp R, L
 | |
|   // Given L == NaN
 | |
|   // the above is expanded to %cmp == true ==> %max = R
 | |
|   // which is true for OrdFMax, not UnordFMax, so test that:
 | |
| 
 | |
|   // [UO]LE with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // [UO]LT with inverted select.
 | |
|   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
 | |
|   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, OverflowingBinOps) {
 | |
|   Value *L = IRB.getInt32(1);
 | |
|   Value *R = IRB.getInt32(2);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
|   MatchL = MatchR = nullptr;
 | |
|   EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
 | |
|   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
 | |
|   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
 | |
|   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
 | |
|   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
 | |
|   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
| 
 | |
|   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
 | |
|   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
 | |
|   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
 | |
|   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
 | |
|   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
|   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
 | |
|   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
 | |
|       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
 | |
|   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, LoadStoreOps) {
 | |
|   // Create this load/store sequence:
 | |
|   //
 | |
|   //  %p = alloca i32*
 | |
|   //  %0 = load i32*, i32** %p
 | |
|   //  store i32 42, i32* %0
 | |
| 
 | |
|   Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
 | |
|   Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca);
 | |
|   Value *FourtyTwo = IRB.getInt32(42);
 | |
|   Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
 | |
|   Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
 | |
| 
 | |
|   EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
 | |
|   EXPECT_EQ(Alloca, MatchLoad);
 | |
| 
 | |
|   EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
 | |
| 
 | |
|   EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
 | |
| 
 | |
|   EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
 | |
|                 .match(StoreInst));
 | |
|   EXPECT_EQ(FourtyTwo, MatchStoreVal);
 | |
|   EXPECT_EQ(Alloca, MatchStorePointer);
 | |
| 
 | |
|   EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
 | |
|                 .match(Alloca));
 | |
| 
 | |
|   EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
 | |
|                 .match(StoreInst));
 | |
|   EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
 | |
|                 .match(StoreInst));
 | |
|   EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
 | |
|                 .match(StoreInst));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, VectorOps) {
 | |
|   // Build up small tree of vector operations
 | |
|   //
 | |
|   //   Val = 0 + 1
 | |
|   //   Val2 = Val + 3
 | |
|   //   VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
 | |
|   //   VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
 | |
|   //   VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
 | |
|   //   VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
 | |
|   //
 | |
|   //   SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
 | |
|   //   SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
 | |
|   //   SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
 | |
|   //   SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
 | |
|   //
 | |
|   //   SP1 = VectorSplat(2, i8 2)
 | |
|   //   SP2 = VectorSplat(2, i8 %Val)
 | |
|   Type *VecTy = FixedVectorType::get(IRB.getInt8Ty(), 2);
 | |
|   Type *i32 = IRB.getInt32Ty();
 | |
|   Type *i32VecTy = FixedVectorType::get(i32, 2);
 | |
| 
 | |
|   Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
 | |
|   Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
 | |
| 
 | |
|   SmallVector<Constant *, 2> VecElemIdxs;
 | |
|   VecElemIdxs.push_back(ConstantInt::get(i32, 0));
 | |
|   VecElemIdxs.push_back(ConstantInt::get(i32, 2));
 | |
|   auto *IdxVec = ConstantVector::get(VecElemIdxs);
 | |
| 
 | |
|   Value *VI1 = IRB.CreateInsertElement(VecTy, IRB.getInt8(1), (uint64_t)0);
 | |
|   Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
 | |
|   Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
 | |
|   Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
 | |
| 
 | |
|   Value *EX1 = IRB.CreateExtractElement(VI4, Val);
 | |
|   Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
 | |
|   Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
 | |
| 
 | |
|   Constant *Zero = ConstantAggregateZero::get(i32VecTy);
 | |
|   SmallVector<int, 16> ZeroMask;
 | |
|   ShuffleVectorInst::getShuffleMask(Zero, ZeroMask);
 | |
| 
 | |
|   Value *SI1 = IRB.CreateShuffleVector(VI1, ZeroMask);
 | |
|   Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
 | |
|   Value *SI3 = IRB.CreateShuffleVector(VI3, ZeroMask);
 | |
|   Value *SI4 = IRB.CreateShuffleVector(VI4, ZeroMask);
 | |
| 
 | |
|   Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
 | |
|   Value *SP2 = IRB.CreateVectorSplat(2, Val);
 | |
| 
 | |
|   Value *A = nullptr, *B = nullptr, *C = nullptr;
 | |
| 
 | |
|   // Test matching insertelement
 | |
|   EXPECT_TRUE(match(VI1, m_InsertElt(m_Value(), m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(
 | |
|       match(VI1, m_InsertElt(m_Undef(), m_ConstantInt(), m_ConstantInt())));
 | |
|   EXPECT_TRUE(
 | |
|       match(VI1, m_InsertElt(m_Undef(), m_ConstantInt(), m_Zero())));
 | |
|   EXPECT_TRUE(
 | |
|       match(VI1, m_InsertElt(m_Undef(), m_SpecificInt(1), m_Zero())));
 | |
|   EXPECT_TRUE(match(VI2, m_InsertElt(m_Value(), m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(
 | |
|       match(VI2, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())));
 | |
|   EXPECT_FALSE(
 | |
|       match(VI2, m_InsertElt(m_Value(), m_ConstantInt(), m_Value())));
 | |
|   EXPECT_FALSE(match(VI2, m_InsertElt(m_Constant(), m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(match(VI3, m_InsertElt(m_Value(A), m_Value(B), m_Value(C))));
 | |
|   EXPECT_TRUE(A == VI1);
 | |
|   EXPECT_TRUE(B == Val2);
 | |
|   EXPECT_TRUE(isa<ConstantInt>(C));
 | |
|   A = B = C = nullptr; // reset
 | |
| 
 | |
|   // Test matching extractelement
 | |
|   EXPECT_TRUE(match(EX1, m_ExtractElt(m_Value(A), m_Value(B))));
 | |
|   EXPECT_TRUE(A == VI4);
 | |
|   EXPECT_TRUE(B == Val);
 | |
|   A = B = C = nullptr; // reset
 | |
|   EXPECT_FALSE(match(EX1, m_ExtractElt(m_Value(), m_ConstantInt())));
 | |
|   EXPECT_TRUE(match(EX2, m_ExtractElt(m_Value(), m_ConstantInt())));
 | |
|   EXPECT_TRUE(match(EX3, m_ExtractElt(m_Constant(), m_ConstantInt())));
 | |
| 
 | |
|   // Test matching shufflevector
 | |
|   ArrayRef<int> Mask;
 | |
|   EXPECT_TRUE(match(SI1, m_Shuffle(m_Value(), m_Undef(), m_ZeroMask())));
 | |
|   EXPECT_TRUE(match(SI2, m_Shuffle(m_Value(A), m_Value(B), m_Mask(Mask))));
 | |
|   EXPECT_TRUE(A == VI3);
 | |
|   EXPECT_TRUE(B == VI4);
 | |
|   A = B = C = nullptr; // reset
 | |
| 
 | |
|   // Test matching the vector splat pattern
 | |
|   EXPECT_TRUE(match(
 | |
|       SI1,
 | |
|       m_Shuffle(m_InsertElt(m_Undef(), m_SpecificInt(1), m_Zero()),
 | |
|                 m_Undef(), m_ZeroMask())));
 | |
|   EXPECT_FALSE(match(
 | |
|       SI3, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_Zero()),
 | |
|                      m_Undef(), m_ZeroMask())));
 | |
|   EXPECT_FALSE(match(
 | |
|       SI4, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_Zero()),
 | |
|                      m_Undef(), m_ZeroMask())));
 | |
|   EXPECT_TRUE(match(
 | |
|       SP1,
 | |
|       m_Shuffle(m_InsertElt(m_Undef(), m_SpecificInt(2), m_Zero()),
 | |
|                 m_Undef(), m_ZeroMask())));
 | |
|   EXPECT_TRUE(match(
 | |
|       SP2, m_Shuffle(m_InsertElt(m_Undef(), m_Value(A), m_Zero()),
 | |
|                      m_Undef(), m_ZeroMask())));
 | |
|   EXPECT_TRUE(A == Val);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, UndefPoisonMix) {
 | |
|   Type *ScalarTy = IRB.getInt8Ty();
 | |
|   ArrayType *ArrTy = ArrayType::get(ScalarTy, 2);
 | |
|   StructType *StTy = StructType::get(ScalarTy, ScalarTy);
 | |
|   StructType *StTy2 = StructType::get(ScalarTy, StTy);
 | |
|   StructType *StTy3 = StructType::get(StTy, ScalarTy);
 | |
|   Constant *Zero = ConstantInt::getNullValue(ScalarTy);
 | |
|   UndefValue *U = UndefValue::get(ScalarTy);
 | |
|   UndefValue *P = PoisonValue::get(ScalarTy);
 | |
| 
 | |
|   EXPECT_TRUE(match(ConstantVector::get({U, P}), m_Undef()));
 | |
|   EXPECT_TRUE(match(ConstantVector::get({P, U}), m_Undef()));
 | |
| 
 | |
|   EXPECT_TRUE(match(ConstantArray::get(ArrTy, {U, P}), m_Undef()));
 | |
|   EXPECT_TRUE(match(ConstantArray::get(ArrTy, {P, U}), m_Undef()));
 | |
| 
 | |
|   auto *UP = ConstantStruct::get(StTy, {U, P});
 | |
|   EXPECT_TRUE(match(ConstantStruct::get(StTy2, {U, UP}), m_Undef()));
 | |
|   EXPECT_TRUE(match(ConstantStruct::get(StTy2, {P, UP}), m_Undef()));
 | |
|   EXPECT_TRUE(match(ConstantStruct::get(StTy3, {UP, U}), m_Undef()));
 | |
|   EXPECT_TRUE(match(ConstantStruct::get(StTy3, {UP, P}), m_Undef()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ConstantStruct::get(StTy, {U, Zero}), m_Undef()));
 | |
|   EXPECT_FALSE(match(ConstantStruct::get(StTy, {Zero, U}), m_Undef()));
 | |
|   EXPECT_FALSE(match(ConstantStruct::get(StTy, {P, Zero}), m_Undef()));
 | |
|   EXPECT_FALSE(match(ConstantStruct::get(StTy, {Zero, P}), m_Undef()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ConstantStruct::get(StTy2, {Zero, UP}), m_Undef()));
 | |
|   EXPECT_FALSE(match(ConstantStruct::get(StTy3, {UP, Zero}), m_Undef()));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, VectorUndefInt) {
 | |
|   Type *ScalarTy = IRB.getInt8Ty();
 | |
|   Type *VectorTy = FixedVectorType::get(ScalarTy, 4);
 | |
|   Constant *ScalarUndef = UndefValue::get(ScalarTy);
 | |
|   Constant *VectorUndef = UndefValue::get(VectorTy);
 | |
|   Constant *ScalarZero = Constant::getNullValue(ScalarTy);
 | |
|   Constant *VectorZero = Constant::getNullValue(VectorTy);
 | |
| 
 | |
|   SmallVector<Constant *, 4> Elems;
 | |
|   Elems.push_back(ScalarUndef);
 | |
|   Elems.push_back(ScalarZero);
 | |
|   Elems.push_back(ScalarUndef);
 | |
|   Elems.push_back(ScalarZero);
 | |
|   Constant *VectorZeroUndef = ConstantVector::get(Elems);
 | |
| 
 | |
|   EXPECT_TRUE(match(ScalarUndef, m_Undef()));
 | |
|   EXPECT_TRUE(match(VectorUndef, m_Undef()));
 | |
|   EXPECT_FALSE(match(ScalarZero, m_Undef()));
 | |
|   EXPECT_FALSE(match(VectorZero, m_Undef()));
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_Zero()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_Zero()));
 | |
|   EXPECT_TRUE(match(ScalarZero, m_Zero()));
 | |
|   EXPECT_TRUE(match(VectorZero, m_Zero()));
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_Zero()));
 | |
| 
 | |
|   const APInt *C;
 | |
|   // Regardless of whether undefs are allowed,
 | |
|   // a fully undef constant does not match.
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_APInt(C)));
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_APIntForbidUndef(C)));
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_APIntAllowUndef(C)));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_APInt(C)));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_APIntForbidUndef(C)));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_APIntAllowUndef(C)));
 | |
| 
 | |
|   // We can always match simple constants and simple splats.
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(ScalarZero, m_APInt(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(ScalarZero, m_APIntForbidUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(ScalarZero, m_APIntAllowUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZero, m_APInt(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZero, m_APIntForbidUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZero, m_APIntAllowUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
| 
 | |
|   // Whether splats with undef can be matched depends on the matcher.
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_APInt(C)));
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_APIntForbidUndef(C)));
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_APIntAllowUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, VectorUndefFloat) {
 | |
|   Type *ScalarTy = IRB.getFloatTy();
 | |
|   Type *VectorTy = FixedVectorType::get(ScalarTy, 4);
 | |
|   Constant *ScalarUndef = UndefValue::get(ScalarTy);
 | |
|   Constant *VectorUndef = UndefValue::get(VectorTy);
 | |
|   Constant *ScalarZero = Constant::getNullValue(ScalarTy);
 | |
|   Constant *VectorZero = Constant::getNullValue(VectorTy);
 | |
|   Constant *ScalarPosInf = ConstantFP::getInfinity(ScalarTy, false);
 | |
|   Constant *ScalarNegInf = ConstantFP::getInfinity(ScalarTy, true);
 | |
|   Constant *ScalarNaN = ConstantFP::getNaN(ScalarTy, true);
 | |
| 
 | |
|   Constant *VectorZeroUndef =
 | |
|       ConstantVector::get({ScalarUndef, ScalarZero, ScalarUndef, ScalarZero});
 | |
| 
 | |
|   Constant *VectorInfUndef = ConstantVector::get(
 | |
|       {ScalarPosInf, ScalarNegInf, ScalarUndef, ScalarPosInf});
 | |
| 
 | |
|   Constant *VectorNaNUndef =
 | |
|       ConstantVector::get({ScalarUndef, ScalarNaN, ScalarNaN, ScalarNaN});
 | |
| 
 | |
|   EXPECT_TRUE(match(ScalarUndef, m_Undef()));
 | |
|   EXPECT_TRUE(match(VectorUndef, m_Undef()));
 | |
|   EXPECT_FALSE(match(ScalarZero, m_Undef()));
 | |
|   EXPECT_FALSE(match(VectorZero, m_Undef()));
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
 | |
|   EXPECT_FALSE(match(VectorInfUndef, m_Undef()));
 | |
|   EXPECT_FALSE(match(VectorNaNUndef, m_Undef()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP()));
 | |
|   EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP()));
 | |
|   EXPECT_TRUE(match(VectorZero, m_AnyZeroFP()));
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP()));
 | |
|   EXPECT_FALSE(match(VectorInfUndef, m_AnyZeroFP()));
 | |
|   EXPECT_FALSE(match(VectorNaNUndef, m_AnyZeroFP()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_NaN()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_NaN()));
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_NaN()));
 | |
|   EXPECT_FALSE(match(ScalarPosInf, m_NaN()));
 | |
|   EXPECT_FALSE(match(ScalarNegInf, m_NaN()));
 | |
|   EXPECT_TRUE(match(ScalarNaN, m_NaN()));
 | |
|   EXPECT_FALSE(match(VectorInfUndef, m_NaN()));
 | |
|   EXPECT_TRUE(match(VectorNaNUndef, m_NaN()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_NonNaN()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_NonNaN()));
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_NonNaN()));
 | |
|   EXPECT_TRUE(match(ScalarPosInf, m_NonNaN()));
 | |
|   EXPECT_TRUE(match(ScalarNegInf, m_NonNaN()));
 | |
|   EXPECT_FALSE(match(ScalarNaN, m_NonNaN()));
 | |
|   EXPECT_TRUE(match(VectorInfUndef, m_NonNaN()));
 | |
|   EXPECT_FALSE(match(VectorNaNUndef, m_NonNaN()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_Inf()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_Inf()));
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_Inf()));
 | |
|   EXPECT_TRUE(match(ScalarPosInf, m_Inf()));
 | |
|   EXPECT_TRUE(match(ScalarNegInf, m_Inf()));
 | |
|   EXPECT_FALSE(match(ScalarNaN, m_Inf()));
 | |
|   EXPECT_TRUE(match(VectorInfUndef, m_Inf()));
 | |
|   EXPECT_FALSE(match(VectorNaNUndef, m_Inf()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_NonInf()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_NonInf()));
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_NonInf()));
 | |
|   EXPECT_FALSE(match(ScalarPosInf, m_NonInf()));
 | |
|   EXPECT_FALSE(match(ScalarNegInf, m_NonInf()));
 | |
|   EXPECT_TRUE(match(ScalarNaN, m_NonInf()));
 | |
|   EXPECT_FALSE(match(VectorInfUndef, m_NonInf()));
 | |
|   EXPECT_TRUE(match(VectorNaNUndef, m_NonInf()));
 | |
| 
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_Finite()));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_Finite()));
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_Finite()));
 | |
|   EXPECT_FALSE(match(ScalarPosInf, m_Finite()));
 | |
|   EXPECT_FALSE(match(ScalarNegInf, m_Finite()));
 | |
|   EXPECT_FALSE(match(ScalarNaN, m_Finite()));
 | |
|   EXPECT_FALSE(match(VectorInfUndef, m_Finite()));
 | |
|   EXPECT_FALSE(match(VectorNaNUndef, m_Finite()));
 | |
| 
 | |
|   const APFloat *C;
 | |
|   // Regardless of whether undefs are allowed,
 | |
|   // a fully undef constant does not match.
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_APFloat(C)));
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_APFloatForbidUndef(C)));
 | |
|   EXPECT_FALSE(match(ScalarUndef, m_APFloatAllowUndef(C)));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_APFloat(C)));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_APFloatForbidUndef(C)));
 | |
|   EXPECT_FALSE(match(VectorUndef, m_APFloatAllowUndef(C)));
 | |
| 
 | |
|   // We can always match simple constants and simple splats.
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(ScalarZero, m_APFloat(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(ScalarZero, m_APFloatForbidUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(ScalarZero, m_APFloatAllowUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZero, m_APFloat(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZero, m_APFloatForbidUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZero, m_APFloatAllowUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
| 
 | |
|   // Whether splats with undef can be matched depends on the matcher.
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_APFloat(C)));
 | |
|   EXPECT_FALSE(match(VectorZeroUndef, m_APFloatForbidUndef(C)));
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_APFloatAllowUndef(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
|   C = nullptr;
 | |
|   EXPECT_TRUE(match(VectorZeroUndef, m_Finite(C)));
 | |
|   EXPECT_TRUE(C->isZero());
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, FloatingPointFNeg) {
 | |
|   Type *FltTy = IRB.getFloatTy();
 | |
|   Value *One = ConstantFP::get(FltTy, 1.0);
 | |
|   Value *Z = ConstantFP::get(FltTy, 0.0);
 | |
|   Value *NZ = ConstantFP::get(FltTy, -0.0);
 | |
|   Value *V = IRB.CreateFNeg(One);
 | |
|   Value *V1 = IRB.CreateFSub(NZ, One);
 | |
|   Value *V2 = IRB.CreateFSub(Z, One);
 | |
|   Value *V3 = IRB.CreateFAdd(NZ, One);
 | |
|   Value *Match;
 | |
| 
 | |
|   // Test FNeg(1.0)
 | |
|   EXPECT_TRUE(match(V, m_FNeg(m_Value(Match))));
 | |
|   EXPECT_EQ(One, Match);
 | |
| 
 | |
|   // Test FSub(-0.0, 1.0)
 | |
|   EXPECT_TRUE(match(V1, m_FNeg(m_Value(Match))));
 | |
|   EXPECT_EQ(One, Match);
 | |
| 
 | |
|   // Test FSub(0.0, 1.0)
 | |
|   EXPECT_FALSE(match(V2, m_FNeg(m_Value(Match))));
 | |
|   cast<Instruction>(V2)->setHasNoSignedZeros(true);
 | |
|   EXPECT_TRUE(match(V2, m_FNeg(m_Value(Match))));
 | |
|   EXPECT_EQ(One, Match);
 | |
| 
 | |
|   // Test FAdd(-0.0, 1.0)
 | |
|   EXPECT_FALSE(match(V3, m_FNeg(m_Value(Match))));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, CondBranchTest) {
 | |
|   BasicBlock *TrueBB = BasicBlock::Create(Ctx, "TrueBB", F);
 | |
|   BasicBlock *FalseBB = BasicBlock::Create(Ctx, "FalseBB", F);
 | |
|   Value *Br1 = IRB.CreateCondBr(IRB.getTrue(), TrueBB, FalseBB);
 | |
| 
 | |
|   EXPECT_TRUE(match(Br1, m_Br(m_Value(), m_BasicBlock(), m_BasicBlock())));
 | |
| 
 | |
|   BasicBlock *A, *B;
 | |
|   EXPECT_TRUE(match(Br1, m_Br(m_Value(), m_BasicBlock(A), m_BasicBlock(B))));
 | |
|   EXPECT_EQ(TrueBB, A);
 | |
|   EXPECT_EQ(FalseBB, B);
 | |
| 
 | |
|   EXPECT_FALSE(
 | |
|       match(Br1, m_Br(m_Value(), m_SpecificBB(FalseBB), m_BasicBlock())));
 | |
|   EXPECT_FALSE(
 | |
|       match(Br1, m_Br(m_Value(), m_BasicBlock(), m_SpecificBB(TrueBB))));
 | |
|   EXPECT_FALSE(
 | |
|       match(Br1, m_Br(m_Value(), m_SpecificBB(FalseBB), m_BasicBlock(TrueBB))));
 | |
|   EXPECT_TRUE(
 | |
|       match(Br1, m_Br(m_Value(), m_SpecificBB(TrueBB), m_BasicBlock(FalseBB))));
 | |
| 
 | |
|   // Check we can use m_Deferred with branches.
 | |
|   EXPECT_FALSE(match(Br1, m_Br(m_Value(), m_BasicBlock(A), m_Deferred(A))));
 | |
|   Value *Br2 = IRB.CreateCondBr(IRB.getTrue(), TrueBB, TrueBB);
 | |
|   A = nullptr;
 | |
|   EXPECT_TRUE(match(Br2, m_Br(m_Value(), m_BasicBlock(A), m_Deferred(A))));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, WithOverflowInst) {
 | |
|   Value *Add = IRB.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow,
 | |
|                                          IRB.getInt32(0), IRB.getInt32(0));
 | |
|   Value *Add0 = IRB.CreateExtractValue(Add, 0);
 | |
|   Value *Add1 = IRB.CreateExtractValue(Add, 1);
 | |
| 
 | |
|   EXPECT_TRUE(match(Add0, m_ExtractValue<0>(m_Value())));
 | |
|   EXPECT_FALSE(match(Add0, m_ExtractValue<1>(m_Value())));
 | |
|   EXPECT_FALSE(match(Add1, m_ExtractValue<0>(m_Value())));
 | |
|   EXPECT_TRUE(match(Add1, m_ExtractValue<1>(m_Value())));
 | |
|   EXPECT_FALSE(match(Add, m_ExtractValue<1>(m_Value())));
 | |
|   EXPECT_FALSE(match(Add, m_ExtractValue<1>(m_Value())));
 | |
| 
 | |
|   WithOverflowInst *WOI;
 | |
|   EXPECT_FALSE(match(Add0, m_WithOverflowInst(WOI)));
 | |
|   EXPECT_FALSE(match(Add1, m_WithOverflowInst(WOI)));
 | |
|   EXPECT_TRUE(match(Add, m_WithOverflowInst(WOI)));
 | |
| 
 | |
|   EXPECT_TRUE(match(Add0, m_ExtractValue<0>(m_WithOverflowInst(WOI))));
 | |
|   EXPECT_EQ(Add, WOI);
 | |
|   EXPECT_TRUE(match(Add1, m_ExtractValue<1>(m_WithOverflowInst(WOI))));
 | |
|   EXPECT_EQ(Add, WOI);
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, MinMaxIntrinsics) {
 | |
|   Type *Ty = IRB.getInt32Ty();
 | |
|   Value *L = ConstantInt::get(Ty, 1);
 | |
|   Value *R = ConstantInt::get(Ty, 2);
 | |
|   Value *MatchL, *MatchR;
 | |
| 
 | |
|   // Check for intrinsic ID match and capture of operands.
 | |
|   EXPECT_TRUE(m_SMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::smax, L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_TRUE(m_SMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::smin, L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_TRUE(m_UMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::umax, L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   EXPECT_TRUE(m_UMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::umin, L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| 
 | |
|   // Check for intrinsic ID mismatch.
 | |
|   EXPECT_FALSE(m_SMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::smin, L, R)));
 | |
|   EXPECT_FALSE(m_SMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::umax, L, R)));
 | |
|   EXPECT_FALSE(m_UMax(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::umin, L, R)));
 | |
|   EXPECT_FALSE(m_UMin(m_Value(MatchL), m_Value(MatchR))
 | |
|                   .match(IRB.CreateBinaryIntrinsic(Intrinsic::smax, L, R)));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, IntrinsicMatcher) {
 | |
|   Value *Name = IRB.CreateAlloca(IRB.getInt8Ty());
 | |
|   Value *Hash = IRB.getInt64(0);
 | |
|   Value *Num = IRB.getInt32(1);
 | |
|   Value *Index = IRB.getInt32(2);
 | |
|   Value *Step = IRB.getInt64(3);
 | |
| 
 | |
|   Value *Ops[] = {Name, Hash, Num, Index, Step};
 | |
|   Module *M = BB->getParent()->getParent();
 | |
|   Function *TheFn =
 | |
|       Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step);
 | |
| 
 | |
|   Value *Intrinsic5 = CallInst::Create(TheFn, Ops, "", BB);
 | |
| 
 | |
|   // Match without capturing.
 | |
|   EXPECT_TRUE(match(
 | |
|       Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                       m_Value(), m_Value(), m_Value(), m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(
 | |
|       Intrinsic5, m_Intrinsic<Intrinsic::memmove>(
 | |
|                       m_Value(), m_Value(), m_Value(), m_Value(), m_Value())));
 | |
| 
 | |
|   // Match with capturing.
 | |
|   Value *Arg1 = nullptr;
 | |
|   Value *Arg2 = nullptr;
 | |
|   Value *Arg3 = nullptr;
 | |
|   Value *Arg4 = nullptr;
 | |
|   Value *Arg5 = nullptr;
 | |
|   EXPECT_TRUE(
 | |
|       match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                             m_Value(Arg1), m_Value(Arg2), m_Value(Arg3),
 | |
|                             m_Value(Arg4), m_Value(Arg5))));
 | |
|   EXPECT_EQ(Arg1, Name);
 | |
|   EXPECT_EQ(Arg2, Hash);
 | |
|   EXPECT_EQ(Arg3, Num);
 | |
|   EXPECT_EQ(Arg4, Index);
 | |
|   EXPECT_EQ(Arg5, Step);
 | |
| 
 | |
|   // Match specific second argument.
 | |
|   EXPECT_TRUE(
 | |
|       match(Intrinsic5,
 | |
|             m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                 m_Value(), m_SpecificInt(0), m_Value(), m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(
 | |
|       match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                             m_Value(), m_SpecificInt(10), m_Value(), m_Value(),
 | |
|                             m_Value())));
 | |
| 
 | |
|   // Match specific third argument.
 | |
|   EXPECT_TRUE(
 | |
|       match(Intrinsic5,
 | |
|             m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                 m_Value(), m_Value(), m_SpecificInt(1), m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(
 | |
|       match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                             m_Value(), m_Value(), m_SpecificInt(10), m_Value(),
 | |
|                             m_Value())));
 | |
| 
 | |
|   // Match specific fourth argument.
 | |
|   EXPECT_TRUE(
 | |
|       match(Intrinsic5,
 | |
|             m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                 m_Value(), m_Value(), m_Value(), m_SpecificInt(2), m_Value())));
 | |
|   EXPECT_FALSE(
 | |
|       match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                             m_Value(), m_Value(), m_Value(), m_SpecificInt(10),
 | |
|                             m_Value())));
 | |
| 
 | |
|   // Match specific fifth argument.
 | |
|   EXPECT_TRUE(
 | |
|       match(Intrinsic5,
 | |
|             m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                 m_Value(), m_Value(), m_Value(), m_Value(), m_SpecificInt(3))));
 | |
|   EXPECT_FALSE(
 | |
|       match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>(
 | |
|                             m_Value(), m_Value(), m_Value(), m_Value(),
 | |
|                             m_SpecificInt(10))));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct is_unsigned_zero_pred {
 | |
|   bool isValue(const APInt &C) { return C.isZero(); }
 | |
| };
 | |
| 
 | |
| struct is_float_zero_pred {
 | |
|   bool isValue(const APFloat &C) { return C.isZero(); }
 | |
| };
 | |
| 
 | |
| template <typename T> struct always_true_pred {
 | |
|   bool isValue(const T &) { return true; }
 | |
| };
 | |
| 
 | |
| template <typename T> struct always_false_pred {
 | |
|   bool isValue(const T &) { return false; }
 | |
| };
 | |
| 
 | |
| struct is_unsigned_max_pred {
 | |
|   bool isValue(const APInt &C) { return C.isMaxValue(); }
 | |
| };
 | |
| 
 | |
| struct is_float_nan_pred {
 | |
|   bool isValue(const APFloat &C) { return C.isNaN(); }
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| TEST_F(PatternMatchTest, ConstantPredicateType) {
 | |
| 
 | |
|   // Scalar integer
 | |
|   APInt U32Max = APInt::getAllOnes(32);
 | |
|   APInt U32Zero = APInt::getZero(32);
 | |
|   APInt U32DeadBeef(32, 0xDEADBEEF);
 | |
| 
 | |
|   Type *U32Ty = Type::getInt32Ty(Ctx);
 | |
| 
 | |
|   Constant *CU32Max = Constant::getIntegerValue(U32Ty, U32Max);
 | |
|   Constant *CU32Zero = Constant::getIntegerValue(U32Ty, U32Zero);
 | |
|   Constant *CU32DeadBeef = Constant::getIntegerValue(U32Ty, U32DeadBeef);
 | |
| 
 | |
|   EXPECT_TRUE(match(CU32Max, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|   EXPECT_FALSE(match(CU32Max, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CU32Max, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|   EXPECT_FALSE(match(CU32Max, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|   EXPECT_FALSE(match(CU32Zero, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|   EXPECT_TRUE(match(CU32Zero, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CU32Zero, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|   EXPECT_FALSE(match(CU32Zero, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|   EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|   EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CU32DeadBeef, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|   EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|   // Scalar float
 | |
|   APFloat F32NaN = APFloat::getNaN(APFloat::IEEEsingle());
 | |
|   APFloat F32Zero = APFloat::getZero(APFloat::IEEEsingle());
 | |
|   APFloat F32Pi(3.14f);
 | |
| 
 | |
|   Type *F32Ty = Type::getFloatTy(Ctx);
 | |
| 
 | |
|   Constant *CF32NaN = ConstantFP::get(F32Ty, F32NaN);
 | |
|   Constant *CF32Zero = ConstantFP::get(F32Ty, F32Zero);
 | |
|   Constant *CF32Pi = ConstantFP::get(F32Ty, F32Pi);
 | |
| 
 | |
|   EXPECT_TRUE(match(CF32NaN, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|   EXPECT_FALSE(match(CF32NaN, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CF32NaN, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|   EXPECT_FALSE(match(CF32NaN, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| 
 | |
|   EXPECT_FALSE(match(CF32Zero, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|   EXPECT_TRUE(match(CF32Zero, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CF32Zero, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|   EXPECT_FALSE(match(CF32Zero, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| 
 | |
|   EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|   EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CF32Pi, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|   EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| 
 | |
|   auto FixedEC = ElementCount::getFixed(4);
 | |
|   auto ScalableEC = ElementCount::getScalable(4);
 | |
| 
 | |
|   // Vector splat
 | |
| 
 | |
|   for (auto EC : {FixedEC, ScalableEC}) {
 | |
|     // integer
 | |
| 
 | |
|     Constant *CSplatU32Max = ConstantVector::getSplat(EC, CU32Max);
 | |
|     Constant *CSplatU32Zero = ConstantVector::getSplat(EC, CU32Zero);
 | |
|     Constant *CSplatU32DeadBeef = ConstantVector::getSplat(EC, CU32DeadBeef);
 | |
| 
 | |
|     EXPECT_TRUE(match(CSplatU32Max, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|     EXPECT_FALSE(match(CSplatU32Max, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|     EXPECT_TRUE(match(CSplatU32Max, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|     EXPECT_FALSE(match(CSplatU32Max, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|     EXPECT_FALSE(match(CSplatU32Zero, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|     EXPECT_TRUE(match(CSplatU32Zero, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|     EXPECT_TRUE(match(CSplatU32Zero, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|     EXPECT_FALSE(match(CSplatU32Zero, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|     EXPECT_FALSE(match(CSplatU32DeadBeef, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|     EXPECT_FALSE(
 | |
|         match(CSplatU32DeadBeef, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|     EXPECT_TRUE(
 | |
|         match(CSplatU32DeadBeef, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|     EXPECT_FALSE(
 | |
|         match(CSplatU32DeadBeef, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|     // float
 | |
| 
 | |
|     Constant *CSplatF32NaN = ConstantVector::getSplat(EC, CF32NaN);
 | |
|     Constant *CSplatF32Zero = ConstantVector::getSplat(EC, CF32Zero);
 | |
|     Constant *CSplatF32Pi = ConstantVector::getSplat(EC, CF32Pi);
 | |
| 
 | |
|     EXPECT_TRUE(match(CSplatF32NaN, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|     EXPECT_FALSE(match(CSplatF32NaN, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|     EXPECT_TRUE(
 | |
|         match(CSplatF32NaN, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|     EXPECT_FALSE(
 | |
|         match(CSplatF32NaN, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| 
 | |
|     EXPECT_FALSE(match(CSplatF32Zero, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|     EXPECT_TRUE(match(CSplatF32Zero, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|     EXPECT_TRUE(
 | |
|         match(CSplatF32Zero, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|     EXPECT_FALSE(
 | |
|         match(CSplatF32Zero, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| 
 | |
|     EXPECT_FALSE(match(CSplatF32Pi, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|     EXPECT_FALSE(match(CSplatF32Pi, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|     EXPECT_TRUE(match(CSplatF32Pi, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|     EXPECT_FALSE(
 | |
|         match(CSplatF32Pi, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
|   }
 | |
| 
 | |
|   // Int arbitrary vector
 | |
| 
 | |
|   Constant *CMixedU32 = ConstantVector::get({CU32Max, CU32Zero, CU32DeadBeef});
 | |
|   Constant *CU32Undef = UndefValue::get(U32Ty);
 | |
|   Constant *CU32MaxWithUndef =
 | |
|       ConstantVector::get({CU32Undef, CU32Max, CU32Undef});
 | |
| 
 | |
|   EXPECT_FALSE(match(CMixedU32, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|   EXPECT_FALSE(match(CMixedU32, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CMixedU32, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|   EXPECT_FALSE(match(CMixedU32, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|   EXPECT_TRUE(match(CU32MaxWithUndef, cst_pred_ty<is_unsigned_max_pred>()));
 | |
|   EXPECT_FALSE(match(CU32MaxWithUndef, cst_pred_ty<is_unsigned_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CU32MaxWithUndef, cst_pred_ty<always_true_pred<APInt>>()));
 | |
|   EXPECT_FALSE(
 | |
|       match(CU32MaxWithUndef, cst_pred_ty<always_false_pred<APInt>>()));
 | |
| 
 | |
|   // Float arbitrary vector
 | |
| 
 | |
|   Constant *CMixedF32 = ConstantVector::get({CF32NaN, CF32Zero, CF32Pi});
 | |
|   Constant *CF32Undef = UndefValue::get(F32Ty);
 | |
|   Constant *CF32NaNWithUndef =
 | |
|       ConstantVector::get({CF32Undef, CF32NaN, CF32Undef});
 | |
| 
 | |
|   EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|   EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|   EXPECT_TRUE(match(CMixedF32, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|   EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| 
 | |
|   EXPECT_TRUE(match(CF32NaNWithUndef, cstfp_pred_ty<is_float_nan_pred>()));
 | |
|   EXPECT_FALSE(match(CF32NaNWithUndef, cstfp_pred_ty<is_float_zero_pred>()));
 | |
|   EXPECT_TRUE(
 | |
|       match(CF32NaNWithUndef, cstfp_pred_ty<always_true_pred<APFloat>>()));
 | |
|   EXPECT_FALSE(
 | |
|       match(CF32NaNWithUndef, cstfp_pred_ty<always_false_pred<APFloat>>()));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, InsertValue) {
 | |
|   Type *StructTy = StructType::create(IRB.getContext(),
 | |
|                                       {IRB.getInt32Ty(), IRB.getInt64Ty()});
 | |
|   Value *Ins0 =
 | |
|       IRB.CreateInsertValue(UndefValue::get(StructTy), IRB.getInt32(20), 0);
 | |
|   Value *Ins1 = IRB.CreateInsertValue(Ins0, IRB.getInt64(90), 1);
 | |
| 
 | |
|   EXPECT_TRUE(match(Ins0, m_InsertValue<0>(m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(Ins0, m_InsertValue<1>(m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(Ins1, m_InsertValue<0>(m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(match(Ins1, m_InsertValue<1>(m_Value(), m_Value())));
 | |
| 
 | |
|   EXPECT_TRUE(match(Ins0, m_InsertValue<0>(m_Undef(), m_SpecificInt(20))));
 | |
|   EXPECT_FALSE(match(Ins0, m_InsertValue<0>(m_Undef(), m_SpecificInt(0))));
 | |
| 
 | |
|   EXPECT_TRUE(
 | |
|       match(Ins1, m_InsertValue<1>(m_InsertValue<0>(m_Value(), m_Value()),
 | |
|                                    m_SpecificInt(90))));
 | |
|   EXPECT_FALSE(match(IRB.getInt64(99), m_InsertValue<0>(m_Value(), m_Value())));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, LogicalSelects) {
 | |
|   Value *Alloca = IRB.CreateAlloca(IRB.getInt1Ty());
 | |
|   Value *X = IRB.CreateLoad(IRB.getInt1Ty(), Alloca);
 | |
|   Value *Y = IRB.CreateLoad(IRB.getInt1Ty(), Alloca);
 | |
|   Constant *T = IRB.getInt1(true);
 | |
|   Constant *F = IRB.getInt1(false);
 | |
|   Value *And = IRB.CreateSelect(X, Y, F);
 | |
|   Value *Or = IRB.CreateSelect(X, T, Y);
 | |
| 
 | |
|   // Logical and:
 | |
|   // Check basic no-capture logic - opcode and constant must match.
 | |
|   EXPECT_TRUE(match(And, m_LogicalAnd(m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(And, m_LogicalOr(m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(And, m_c_LogicalOr(m_Value(), m_Value())));
 | |
| 
 | |
|   // Check with captures.
 | |
|   EXPECT_TRUE(match(And, m_LogicalAnd(m_Specific(X), m_Value())));
 | |
|   EXPECT_TRUE(match(And, m_LogicalAnd(m_Value(), m_Specific(Y))));
 | |
|   EXPECT_TRUE(match(And, m_LogicalAnd(m_Specific(X), m_Specific(Y))));
 | |
| 
 | |
|   EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(Y), m_Value())));
 | |
|   EXPECT_FALSE(match(And, m_LogicalAnd(m_Value(), m_Specific(X))));
 | |
|   EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(Y), m_Specific(X))));
 | |
| 
 | |
|   EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(X), m_Specific(X))));
 | |
|   EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(Y), m_Specific(Y))));
 | |
| 
 | |
|   // Check captures for commutative match.
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(X), m_Value())));
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Value(), m_Specific(Y))));
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(X), m_Specific(Y))));
 | |
| 
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(Y), m_Value())));
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Value(), m_Specific(X))));
 | |
|   EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(Y), m_Specific(X))));
 | |
| 
 | |
|   EXPECT_FALSE(match(And, m_c_LogicalAnd(m_Specific(X), m_Specific(X))));
 | |
|   EXPECT_FALSE(match(And, m_c_LogicalAnd(m_Specific(Y), m_Specific(Y))));
 | |
| 
 | |
|   // Logical or:
 | |
|   // Check basic no-capture logic - opcode and constant must match.
 | |
|   EXPECT_TRUE(match(Or, m_LogicalOr(m_Value(), m_Value())));
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(Or, m_LogicalAnd(m_Value(), m_Value())));
 | |
|   EXPECT_FALSE(match(Or, m_c_LogicalAnd(m_Value(), m_Value())));
 | |
| 
 | |
|   // Check with captures.
 | |
|   EXPECT_TRUE(match(Or, m_LogicalOr(m_Specific(X), m_Value())));
 | |
|   EXPECT_TRUE(match(Or, m_LogicalOr(m_Value(), m_Specific(Y))));
 | |
|   EXPECT_TRUE(match(Or, m_LogicalOr(m_Specific(X), m_Specific(Y))));
 | |
| 
 | |
|   EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(Y), m_Value())));
 | |
|   EXPECT_FALSE(match(Or, m_LogicalOr(m_Value(), m_Specific(X))));
 | |
|   EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(Y), m_Specific(X))));
 | |
| 
 | |
|   EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(X), m_Specific(X))));
 | |
|   EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(Y), m_Specific(Y))));
 | |
| 
 | |
|   // Check captures for commutative match.
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(X), m_Value())));
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Value(), m_Specific(Y))));
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(X), m_Specific(Y))));
 | |
| 
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(Y), m_Value())));
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Value(), m_Specific(X))));
 | |
|   EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(Y), m_Specific(X))));
 | |
| 
 | |
|   EXPECT_FALSE(match(Or, m_c_LogicalOr(m_Specific(X), m_Specific(X))));
 | |
|   EXPECT_FALSE(match(Or, m_c_LogicalOr(m_Specific(Y), m_Specific(Y))));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, VScale) {
 | |
|   DataLayout DL = M->getDataLayout();
 | |
| 
 | |
|   Type *VecTy = ScalableVectorType::get(IRB.getInt8Ty(), 1);
 | |
|   Type *VecPtrTy = VecTy->getPointerTo();
 | |
|   Value *NullPtrVec = Constant::getNullValue(VecPtrTy);
 | |
|   Value *GEP = IRB.CreateGEP(VecTy, NullPtrVec, IRB.getInt64(1));
 | |
|   Value *PtrToInt = IRB.CreatePtrToInt(GEP, DL.getIntPtrType(GEP->getType()));
 | |
|   EXPECT_TRUE(match(PtrToInt, m_VScale(DL)));
 | |
| 
 | |
|   // Prior to this patch, this case would cause assertion failures when attempting to match m_VScale
 | |
|   Type *VecTy2 = ScalableVectorType::get(IRB.getInt8Ty(), 2);
 | |
|   Value *NullPtrVec2 = Constant::getNullValue(VecTy2->getPointerTo());
 | |
|   Value *BitCast = IRB.CreateBitCast(NullPtrVec2, VecPtrTy);
 | |
|   Value *GEP2 = IRB.CreateGEP(VecTy, BitCast, IRB.getInt64(1));
 | |
|   Value *PtrToInt2 =
 | |
|       IRB.CreatePtrToInt(GEP2, DL.getIntPtrType(GEP2->getType()));
 | |
|   EXPECT_FALSE(match(PtrToInt2, m_VScale(DL)));
 | |
| }
 | |
| 
 | |
| TEST_F(PatternMatchTest, NotForbidUndef) {
 | |
|   Type *ScalarTy = IRB.getInt8Ty();
 | |
|   Type *VectorTy = FixedVectorType::get(ScalarTy, 3);
 | |
|   Constant *ScalarUndef = UndefValue::get(ScalarTy);
 | |
|   Constant *ScalarOnes = Constant::getAllOnesValue(ScalarTy);
 | |
|   Constant *VectorZero = Constant::getNullValue(VectorTy);
 | |
|   Constant *VectorOnes = Constant::getAllOnesValue(VectorTy);
 | |
| 
 | |
|   SmallVector<Constant *, 3> MixedElems;
 | |
|   MixedElems.push_back(ScalarOnes);
 | |
|   MixedElems.push_back(ScalarOnes);
 | |
|   MixedElems.push_back(ScalarUndef);
 | |
|   Constant *VectorMixed = ConstantVector::get(MixedElems);
 | |
| 
 | |
|   Value *Not = IRB.CreateXor(VectorZero, VectorOnes);
 | |
|   Value *X;
 | |
|   EXPECT_TRUE(match(Not, m_Not(m_Value())));
 | |
|   EXPECT_TRUE(match(Not, m_NotForbidUndef(m_Value(X))));
 | |
|   EXPECT_TRUE(match(X, m_Zero()));
 | |
| 
 | |
|   Value *NotCommute = IRB.CreateXor(VectorOnes, VectorZero);
 | |
|   Value *Y;
 | |
|   EXPECT_TRUE(match(NotCommute, m_Not(m_Value())));
 | |
|   EXPECT_TRUE(match(NotCommute, m_NotForbidUndef(m_Value(Y))));
 | |
|   EXPECT_TRUE(match(Y, m_Zero()));
 | |
| 
 | |
|   Value *NotWithUndefs = IRB.CreateXor(VectorZero, VectorMixed);
 | |
|   EXPECT_TRUE(match(NotWithUndefs, m_Not(m_Value())));
 | |
|   EXPECT_FALSE(match(NotWithUndefs, m_NotForbidUndef(m_Value())));
 | |
| 
 | |
|   Value *NotWithUndefsCommute = IRB.CreateXor(VectorMixed, VectorZero);
 | |
|   EXPECT_TRUE(match(NotWithUndefsCommute, m_Not(m_Value())));
 | |
|   EXPECT_FALSE(match(NotWithUndefsCommute, m_NotForbidUndef(m_Value(X))));
 | |
| }
 | |
| 
 | |
| template <typename T> struct MutableConstTest : PatternMatchTest { };
 | |
| 
 | |
| typedef ::testing::Types<std::tuple<Value*, Instruction*>,
 | |
|                          std::tuple<const Value*, const Instruction *>>
 | |
|     MutableConstTestTypes;
 | |
| TYPED_TEST_SUITE(MutableConstTest, MutableConstTestTypes, );
 | |
| 
 | |
| TYPED_TEST(MutableConstTest, ICmp) {
 | |
|   auto &IRB = PatternMatchTest::IRB;
 | |
| 
 | |
|   typedef std::tuple_element_t<0, TypeParam> ValueType;
 | |
|   typedef std::tuple_element_t<1, TypeParam> InstructionType;
 | |
| 
 | |
|   Value *L = IRB.getInt32(1);
 | |
|   Value *R = IRB.getInt32(2);
 | |
|   ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
 | |
| 
 | |
|   ValueType MatchL;
 | |
|   ValueType MatchR;
 | |
|   ICmpInst::Predicate MatchPred;
 | |
| 
 | |
|   EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
 | |
|               .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
 | |
|   EXPECT_EQ(L, MatchL);
 | |
|   EXPECT_EQ(R, MatchR);
 | |
| }
 | |
| 
 | |
| } // anonymous namespace.
 |