679 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			679 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This tablegen backend is responsible for emitting the memory fold tables of
 | 
						|
// the X86 backend instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "X86RecognizableInstr.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/TableGen/Error.h"
 | 
						|
#include "llvm/TableGen/TableGenBackend.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
 | 
						|
// manual added entries.
 | 
						|
enum UnfoldStrategy {
 | 
						|
  UNFOLD,     // Allow unfolding
 | 
						|
  NO_UNFOLD,  // Prevent unfolding
 | 
						|
  NO_STRATEGY // Make decision according to operands' sizes
 | 
						|
};
 | 
						|
 | 
						|
// Represents an entry in the manual mapped instructions set.
 | 
						|
struct ManualMapEntry {
 | 
						|
  const char *RegInstStr;
 | 
						|
  const char *MemInstStr;
 | 
						|
  UnfoldStrategy Strategy;
 | 
						|
 | 
						|
  ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
 | 
						|
                 UnfoldStrategy Strategy = NO_STRATEGY)
 | 
						|
      : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
 | 
						|
};
 | 
						|
 | 
						|
// List of instructions requiring explicitly aligned memory.
 | 
						|
const char *ExplicitAlign[] = {"MOVDQA",  "MOVAPS",  "MOVAPD",  "MOVNTPS",
 | 
						|
                               "MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
 | 
						|
 | 
						|
// List of instructions NOT requiring explicit memory alignment.
 | 
						|
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
 | 
						|
                                 "PCMPESTRM", "PCMPESTRI",
 | 
						|
                                 "PCMPISTRM", "PCMPISTRI" };
 | 
						|
 | 
						|
// For manually mapping instructions that do not match by their encoding.
 | 
						|
const ManualMapEntry ManualMapSet[] = {
 | 
						|
    { "ADD16ri_DB",       "ADD16mi",         NO_UNFOLD  },
 | 
						|
    { "ADD16ri8_DB",      "ADD16mi8",        NO_UNFOLD  },
 | 
						|
    { "ADD16rr_DB",       "ADD16mr",         NO_UNFOLD  },
 | 
						|
    { "ADD32ri_DB",       "ADD32mi",         NO_UNFOLD  },
 | 
						|
    { "ADD32ri8_DB",      "ADD32mi8",        NO_UNFOLD  },
 | 
						|
    { "ADD32rr_DB",       "ADD32mr",         NO_UNFOLD  },
 | 
						|
    { "ADD64ri32_DB",     "ADD64mi32",       NO_UNFOLD  },
 | 
						|
    { "ADD64ri8_DB",      "ADD64mi8",        NO_UNFOLD  },
 | 
						|
    { "ADD64rr_DB",       "ADD64mr",         NO_UNFOLD  },
 | 
						|
    { "ADD8ri_DB",        "ADD8mi",          NO_UNFOLD  },
 | 
						|
    { "ADD8rr_DB",        "ADD8mr",          NO_UNFOLD  },
 | 
						|
    { "ADD16rr_DB",       "ADD16rm",         NO_UNFOLD  },
 | 
						|
    { "ADD32rr_DB",       "ADD32rm",         NO_UNFOLD  },
 | 
						|
    { "ADD64rr_DB",       "ADD64rm",         NO_UNFOLD  },
 | 
						|
    { "ADD8rr_DB",        "ADD8rm",          NO_UNFOLD  },
 | 
						|
    { "PUSH16r",          "PUSH16rmm",       UNFOLD },
 | 
						|
    { "PUSH32r",          "PUSH32rmm",       UNFOLD },
 | 
						|
    { "PUSH64r",          "PUSH64rmm",       UNFOLD },
 | 
						|
    { "TAILJMPr",         "TAILJMPm",        UNFOLD },
 | 
						|
    { "TAILJMPr64",       "TAILJMPm64",      UNFOLD },
 | 
						|
    { "TAILJMPr64_REX",   "TAILJMPm64_REX",  UNFOLD },
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
 | 
						|
  return any_of(ExplicitAlign, [Inst](const char *InstStr) {
 | 
						|
    return Inst->TheDef->getName().contains(InstStr);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
 | 
						|
  return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
 | 
						|
    return Inst->TheDef->getName().contains(InstStr);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
class X86FoldTablesEmitter {
 | 
						|
  RecordKeeper &Records;
 | 
						|
  CodeGenTarget Target;
 | 
						|
 | 
						|
  // Represents an entry in the folding table
 | 
						|
  class X86FoldTableEntry {
 | 
						|
    const CodeGenInstruction *RegInst;
 | 
						|
    const CodeGenInstruction *MemInst;
 | 
						|
 | 
						|
  public:
 | 
						|
    bool CannotUnfold = false;
 | 
						|
    bool IsLoad = false;
 | 
						|
    bool IsStore = false;
 | 
						|
    bool IsAligned = false;
 | 
						|
    unsigned int Alignment = 0;
 | 
						|
 | 
						|
    X86FoldTableEntry(const CodeGenInstruction *RegInst,
 | 
						|
                      const CodeGenInstruction *MemInst)
 | 
						|
        : RegInst(RegInst), MemInst(MemInst) {}
 | 
						|
 | 
						|
    void print(formatted_raw_ostream &OS) const {
 | 
						|
      OS.indent(2);
 | 
						|
      OS << "{ X86::" << RegInst->TheDef->getName() << ",";
 | 
						|
      OS.PadToColumn(40);
 | 
						|
      OS  << "X86::" << MemInst->TheDef->getName() << ",";
 | 
						|
      OS.PadToColumn(75);
 | 
						|
 | 
						|
      if (IsLoad)
 | 
						|
        OS << "TB_FOLDED_LOAD | ";
 | 
						|
      if (IsStore)
 | 
						|
        OS << "TB_FOLDED_STORE | ";
 | 
						|
      if (CannotUnfold)
 | 
						|
        OS << "TB_NO_REVERSE | ";
 | 
						|
      if (IsAligned)
 | 
						|
        OS << "TB_ALIGN_" << Alignment << " | ";
 | 
						|
 | 
						|
      OS << "0 },\n";
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator<(const X86FoldTableEntry &RHS) const {
 | 
						|
      bool LHSpseudo = RegInst->TheDef->getValueAsBit("isPseudo");
 | 
						|
      bool RHSpseudo = RHS.RegInst->TheDef->getValueAsBit("isPseudo");
 | 
						|
      if (LHSpseudo != RHSpseudo)
 | 
						|
        return LHSpseudo;
 | 
						|
 | 
						|
      return RegInst->TheDef->getName() < RHS.RegInst->TheDef->getName();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef std::vector<X86FoldTableEntry> FoldTable;
 | 
						|
  // std::vector for each folding table.
 | 
						|
  // Table2Addr - Holds instructions which their memory form performs load+store
 | 
						|
  // Table#i - Holds instructions which the their memory form perform a load OR
 | 
						|
  //           a store,  and their #i'th operand is folded.
 | 
						|
  FoldTable Table2Addr;
 | 
						|
  FoldTable Table0;
 | 
						|
  FoldTable Table1;
 | 
						|
  FoldTable Table2;
 | 
						|
  FoldTable Table3;
 | 
						|
  FoldTable Table4;
 | 
						|
 | 
						|
public:
 | 
						|
  X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
 | 
						|
 | 
						|
  // run - Generate the 6 X86 memory fold tables.
 | 
						|
  void run(formatted_raw_ostream &OS);
 | 
						|
 | 
						|
private:
 | 
						|
  // Decides to which table to add the entry with the given instructions.
 | 
						|
  // S sets the strategy of adding the TB_NO_REVERSE flag.
 | 
						|
  void updateTables(const CodeGenInstruction *RegInstr,
 | 
						|
                    const CodeGenInstruction *MemInstr,
 | 
						|
                    const UnfoldStrategy S = NO_STRATEGY);
 | 
						|
 | 
						|
  // Generates X86FoldTableEntry with the given instructions and fill it with
 | 
						|
  // the appropriate flags - then adds it to Table.
 | 
						|
  void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
 | 
						|
                         const CodeGenInstruction *MemInstr,
 | 
						|
                         const UnfoldStrategy S, const unsigned int FoldedInd);
 | 
						|
 | 
						|
  // Print the given table as a static const C++ array of type
 | 
						|
  // X86MemoryFoldTableEntry.
 | 
						|
  void printTable(const FoldTable &Table, StringRef TableName,
 | 
						|
                  formatted_raw_ostream &OS) {
 | 
						|
    OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
 | 
						|
       << "[] = {\n";
 | 
						|
 | 
						|
    for (const X86FoldTableEntry &E : Table)
 | 
						|
      E.print(OS);
 | 
						|
 | 
						|
    OS << "};\n\n";
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Return true if one of the instruction's operands is a RST register class
 | 
						|
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
 | 
						|
  return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
 | 
						|
    return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
// Return true if one of the instruction's operands is a ptr_rc_tailcall
 | 
						|
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
 | 
						|
  return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
 | 
						|
    return OpIn.Rec->getName() == "ptr_rc_tailcall";
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
// Calculates the integer value representing the BitsInit object
 | 
						|
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
 | 
						|
  assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!");
 | 
						|
 | 
						|
  uint64_t Value = 0;
 | 
						|
  for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
 | 
						|
    BitInit *Bit = cast<BitInit>(B->getBit(i));
 | 
						|
    Value |= uint64_t(Bit->getValue()) << i;
 | 
						|
  }
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if the two given BitsInits represent the same integer value
 | 
						|
static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
 | 
						|
  if (B1->getNumBits() != B2->getNumBits())
 | 
						|
    PrintFatalError("Comparing two BitsInits with different sizes!");
 | 
						|
 | 
						|
  for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
 | 
						|
    BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
 | 
						|
    BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
 | 
						|
    if (Bit1->getValue() != Bit2->getValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return the size of the register operand
 | 
						|
static inline unsigned int getRegOperandSize(const Record *RegRec) {
 | 
						|
  if (RegRec->isSubClassOf("RegisterOperand"))
 | 
						|
    RegRec = RegRec->getValueAsDef("RegClass");
 | 
						|
  if (RegRec->isSubClassOf("RegisterClass"))
 | 
						|
    return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");
 | 
						|
 | 
						|
  llvm_unreachable("Register operand's size not known!");
 | 
						|
}
 | 
						|
 | 
						|
// Return the size of the memory operand
 | 
						|
static inline unsigned getMemOperandSize(const Record *MemRec) {
 | 
						|
  if (MemRec->isSubClassOf("Operand")) {
 | 
						|
    StringRef Name =
 | 
						|
        MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
 | 
						|
    if (Name == "Mem8")
 | 
						|
      return 8;
 | 
						|
    if (Name == "Mem16")
 | 
						|
      return 16;
 | 
						|
    if (Name == "Mem32")
 | 
						|
      return 32;
 | 
						|
    if (Name == "Mem64")
 | 
						|
      return 64;
 | 
						|
    if (Name == "Mem80")
 | 
						|
      return 80;
 | 
						|
    if (Name == "Mem128")
 | 
						|
      return 128;
 | 
						|
    if (Name == "Mem256")
 | 
						|
      return 256;
 | 
						|
    if (Name == "Mem512")
 | 
						|
      return 512;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Memory operand's size not known!");
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the instruction defined as a register flavor.
 | 
						|
static inline bool hasRegisterFormat(const Record *Inst) {
 | 
						|
  const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
 | 
						|
  uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
 | 
						|
 | 
						|
  // Values from X86Local namespace defined in X86RecognizableInstr.cpp
 | 
						|
  return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if the instruction defined as a memory flavor.
 | 
						|
static inline bool hasMemoryFormat(const Record *Inst) {
 | 
						|
  const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
 | 
						|
  uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
 | 
						|
 | 
						|
  // Values from X86Local namespace defined in X86RecognizableInstr.cpp
 | 
						|
  return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isNOREXRegClass(const Record *Op) {
 | 
						|
  return Op->getName().contains("_NOREX");
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isRegisterOperand(const Record *Rec) {
 | 
						|
  return Rec->isSubClassOf("RegisterClass") ||
 | 
						|
         Rec->isSubClassOf("RegisterOperand") ||
 | 
						|
         Rec->isSubClassOf("PointerLikeRegClass");
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isMemoryOperand(const Record *Rec) {
 | 
						|
  return Rec->isSubClassOf("Operand") &&
 | 
						|
         Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
 | 
						|
}
 | 
						|
 | 
						|
static inline bool isImmediateOperand(const Record *Rec) {
 | 
						|
  return Rec->isSubClassOf("Operand") &&
 | 
						|
         Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
 | 
						|
}
 | 
						|
 | 
						|
// Get the alternative instruction pointed by "FoldGenRegForm" field.
 | 
						|
static inline const CodeGenInstruction *
 | 
						|
getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
 | 
						|
              const CodeGenTarget &Target) {
 | 
						|
 | 
						|
  StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
 | 
						|
  Record *AltRegInstRec = Records.getDef(AltRegInstStr);
 | 
						|
  assert(AltRegInstRec &&
 | 
						|
         "Alternative register form instruction def not found");
 | 
						|
  CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
 | 
						|
  return &AltRegInst;
 | 
						|
}
 | 
						|
 | 
						|
// Function object - Operator() returns true if the given VEX instruction
 | 
						|
// matches the EVEX instruction of this object.
 | 
						|
class IsMatch {
 | 
						|
  const CodeGenInstruction *MemInst;
 | 
						|
 | 
						|
public:
 | 
						|
  IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
 | 
						|
      : MemInst(Inst) {}
 | 
						|
 | 
						|
  bool operator()(const CodeGenInstruction *RegInst) {
 | 
						|
    Record *MemRec = MemInst->TheDef;
 | 
						|
    Record *RegRec = RegInst->TheDef;
 | 
						|
 | 
						|
    // Return false if one (at least) of the encoding fields of both
 | 
						|
    // instructions do not match.
 | 
						|
    if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
 | 
						|
        !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
 | 
						|
                        MemRec->getValueAsBitsInit("Opcode")) ||
 | 
						|
        // VEX/EVEX fields
 | 
						|
        RegRec->getValueAsDef("OpPrefix") !=
 | 
						|
            MemRec->getValueAsDef("OpPrefix") ||
 | 
						|
        RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
 | 
						|
        RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
 | 
						|
        RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") ||
 | 
						|
        RegRec->getValueAsBit("hasVEX_4V") !=
 | 
						|
            MemRec->getValueAsBit("hasVEX_4V") ||
 | 
						|
        RegRec->getValueAsBit("hasEVEX_K") !=
 | 
						|
            MemRec->getValueAsBit("hasEVEX_K") ||
 | 
						|
        RegRec->getValueAsBit("hasEVEX_Z") !=
 | 
						|
            MemRec->getValueAsBit("hasEVEX_Z") ||
 | 
						|
        // EVEX_B means different things for memory and register forms.
 | 
						|
        RegRec->getValueAsBit("hasEVEX_B") != 0 ||
 | 
						|
        MemRec->getValueAsBit("hasEVEX_B") != 0 ||
 | 
						|
        RegRec->getValueAsBit("hasEVEX_RC") !=
 | 
						|
            MemRec->getValueAsBit("hasEVEX_RC") ||
 | 
						|
        RegRec->getValueAsBit("hasREX_WPrefix") !=
 | 
						|
            MemRec->getValueAsBit("hasREX_WPrefix") ||
 | 
						|
        RegRec->getValueAsBit("hasLockPrefix") !=
 | 
						|
            MemRec->getValueAsBit("hasLockPrefix") ||
 | 
						|
        RegRec->getValueAsBit("hasNoTrackPrefix") !=
 | 
						|
            MemRec->getValueAsBit("hasNoTrackPrefix") ||
 | 
						|
        RegRec->getValueAsBit("hasVEX_L") !=
 | 
						|
            MemRec->getValueAsBit("hasVEX_L") ||
 | 
						|
        RegRec->getValueAsBit("hasEVEX_L2") !=
 | 
						|
            MemRec->getValueAsBit("hasEVEX_L2") ||
 | 
						|
        RegRec->getValueAsBit("ignoresVEX_L") !=
 | 
						|
            MemRec->getValueAsBit("ignoresVEX_L") ||
 | 
						|
        RegRec->getValueAsBit("HasVEX_W") !=
 | 
						|
            MemRec->getValueAsBit("HasVEX_W") ||
 | 
						|
        RegRec->getValueAsBit("IgnoresVEX_W") !=
 | 
						|
            MemRec->getValueAsBit("IgnoresVEX_W") ||
 | 
						|
        RegRec->getValueAsBit("EVEX_W1_VEX_W0") !=
 | 
						|
            MemRec->getValueAsBit("EVEX_W1_VEX_W0") ||
 | 
						|
        // Instruction's format - The register form's "Form" field should be
 | 
						|
        // the opposite of the memory form's "Form" field.
 | 
						|
        !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
 | 
						|
                          MemRec->getValueAsBitsInit("FormBits")) ||
 | 
						|
        RegRec->getValueAsBit("isAsmParserOnly") !=
 | 
						|
            MemRec->getValueAsBit("isAsmParserOnly"))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Make sure the sizes of the operands of both instructions suit each other.
 | 
						|
    // This is needed for instructions with intrinsic version (_Int).
 | 
						|
    // Where the only difference is the size of the operands.
 | 
						|
    // For example: VUCOMISDZrm and Int_VUCOMISDrm
 | 
						|
    // Also for instructions that their EVEX version was upgraded to work with
 | 
						|
    // k-registers. For example VPCMPEQBrm (xmm output register) and
 | 
						|
    // VPCMPEQBZ128rm (k register output register).
 | 
						|
    bool ArgFolded = false;
 | 
						|
    unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
 | 
						|
    unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
 | 
						|
    unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
 | 
						|
    unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
 | 
						|
 | 
						|
    // Instructions with one output in their memory form use the memory folded
 | 
						|
    // operand as source and destination (Read-Modify-Write).
 | 
						|
    unsigned RegStartIdx =
 | 
						|
        (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
 | 
						|
      Record *MemOpRec = MemInst->Operands[i].Rec;
 | 
						|
      Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
 | 
						|
 | 
						|
      if (MemOpRec == RegOpRec)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
 | 
						|
        if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
 | 
						|
            isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
 | 
						|
          return false;
 | 
						|
      } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
 | 
						|
        if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
 | 
						|
          return false;
 | 
						|
      } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
 | 
						|
        if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
 | 
						|
          return false;
 | 
						|
      } else {
 | 
						|
        // Only one operand can be folded.
 | 
						|
        if (ArgFolded)
 | 
						|
          return false;
 | 
						|
 | 
						|
        assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
 | 
						|
        ArgFolded = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // Return true of the 2 given forms are the opposite of each other.
 | 
						|
  bool areOppositeForms(const BitsInit *RegFormBits,
 | 
						|
                        const BitsInit *MemFormBits) {
 | 
						|
    uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
 | 
						|
    uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);
 | 
						|
 | 
						|
    if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
 | 
						|
        (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
 | 
						|
        (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
 | 
						|
        (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
 | 
						|
        (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
 | 
						|
        (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
 | 
						|
        (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
 | 
						|
        (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
 | 
						|
        (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
 | 
						|
        (MemFormNum == X86Local::MRMXmCC && RegFormNum == X86Local::MRMXrCC) ||
 | 
						|
        (MemFormNum == X86Local::MRMDestMem &&
 | 
						|
         RegFormNum == X86Local::MRMDestReg) ||
 | 
						|
        (MemFormNum == X86Local::MRMSrcMem &&
 | 
						|
         RegFormNum == X86Local::MRMSrcReg) ||
 | 
						|
        (MemFormNum == X86Local::MRMSrcMem4VOp3 &&
 | 
						|
         RegFormNum == X86Local::MRMSrcReg4VOp3) ||
 | 
						|
        (MemFormNum == X86Local::MRMSrcMemOp4 &&
 | 
						|
         RegFormNum == X86Local::MRMSrcRegOp4) ||
 | 
						|
        (MemFormNum == X86Local::MRMSrcMemCC &&
 | 
						|
         RegFormNum == X86Local::MRMSrcRegCC))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
 | 
						|
                                             const CodeGenInstruction *RegInstr,
 | 
						|
                                             const CodeGenInstruction *MemInstr,
 | 
						|
                                             const UnfoldStrategy S,
 | 
						|
                                             const unsigned int FoldedInd) {
 | 
						|
 | 
						|
  X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
 | 
						|
  Record *RegRec = RegInstr->TheDef;
 | 
						|
  Record *MemRec = MemInstr->TheDef;
 | 
						|
 | 
						|
  // Only table0 entries should explicitly specify a load or store flag.
 | 
						|
  if (&Table == &Table0) {
 | 
						|
    unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
 | 
						|
    unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
 | 
						|
    // If the instruction writes to the folded operand, it will appear as an
 | 
						|
    // output in the register form instruction and as an input in the memory
 | 
						|
    // form instruction.
 | 
						|
    // If the instruction reads from the folded operand, it well appear as in
 | 
						|
    // input in both forms.
 | 
						|
    if (MemInOpsNum == RegInOpsNum)
 | 
						|
      Result.IsLoad = true;
 | 
						|
    else
 | 
						|
      Result.IsStore = true;
 | 
						|
  }
 | 
						|
 | 
						|
  Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
 | 
						|
  Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
 | 
						|
 | 
						|
  // Unfolding code generates a load/store instruction according to the size of
 | 
						|
  // the register in the register form instruction.
 | 
						|
  // If the register's size is greater than the memory's operand size, do not
 | 
						|
  // allow unfolding.
 | 
						|
  if (S == UNFOLD)
 | 
						|
    Result.CannotUnfold = false;
 | 
						|
  else if (S == NO_UNFOLD)
 | 
						|
    Result.CannotUnfold = true;
 | 
						|
  else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
 | 
						|
    Result.CannotUnfold = true; // S == NO_STRATEGY
 | 
						|
 | 
						|
  uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
 | 
						|
  if (isExplicitAlign(RegInstr)) {
 | 
						|
    // The instruction require explicitly aligned memory.
 | 
						|
    BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
 | 
						|
    uint64_t Value = getValueFromBitsInit(VectSize);
 | 
						|
    Result.IsAligned = true;
 | 
						|
    Result.Alignment = Value;
 | 
						|
  } else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
 | 
						|
             Enc != X86Local::EVEX) {
 | 
						|
    // Instructions with VEX encoding do not require alignment.
 | 
						|
    if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
 | 
						|
      // SSE packed vector instructions require a 16 byte alignment.
 | 
						|
      Result.IsAligned = true;
 | 
						|
      Result.Alignment = 16;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Table.push_back(Result);
 | 
						|
}
 | 
						|
 | 
						|
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
 | 
						|
                                        const CodeGenInstruction *MemInstr,
 | 
						|
                                        const UnfoldStrategy S) {
 | 
						|
 | 
						|
  Record *RegRec = RegInstr->TheDef;
 | 
						|
  Record *MemRec = MemInstr->TheDef;
 | 
						|
  unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
 | 
						|
  unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
 | 
						|
  unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
 | 
						|
  unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
 | 
						|
 | 
						|
  // Instructions which Read-Modify-Write should be added to Table2Addr.
 | 
						|
  if (MemOutSize != RegOutSize && MemInSize == RegInSize) {
 | 
						|
    addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
 | 
						|
    // Load-Folding cases.
 | 
						|
    // If the i'th register form operand is a register and the i'th memory form
 | 
						|
    // operand is a memory operand, add instructions to Table#i.
 | 
						|
    for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
 | 
						|
      Record *RegOpRec = RegInstr->Operands[i].Rec;
 | 
						|
      Record *MemOpRec = MemInstr->Operands[i].Rec;
 | 
						|
      if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
 | 
						|
        switch (i) {
 | 
						|
        case 0:
 | 
						|
          addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
 | 
						|
          return;
 | 
						|
        case 1:
 | 
						|
          addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
 | 
						|
          return;
 | 
						|
        case 2:
 | 
						|
          addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
 | 
						|
          return;
 | 
						|
        case 3:
 | 
						|
          addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
 | 
						|
          return;
 | 
						|
        case 4:
 | 
						|
          addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
 | 
						|
    // Store-Folding cases.
 | 
						|
    // If the memory form instruction performs a store, the *output*
 | 
						|
    // register of the register form instructions disappear and instead a
 | 
						|
    // memory *input* operand appears in the memory form instruction.
 | 
						|
    // For example:
 | 
						|
    //   MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
 | 
						|
    //   MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
 | 
						|
    Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
 | 
						|
    Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
 | 
						|
    if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
 | 
						|
        getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
 | 
						|
      addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void X86FoldTablesEmitter::run(formatted_raw_ostream &OS) {
 | 
						|
  emitSourceFileHeader("X86 fold tables", OS);
 | 
						|
 | 
						|
  // Holds all memory instructions
 | 
						|
  std::vector<const CodeGenInstruction *> MemInsts;
 | 
						|
  // Holds all register instructions - divided according to opcode.
 | 
						|
  std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
 | 
						|
 | 
						|
  ArrayRef<const CodeGenInstruction *> NumberedInstructions =
 | 
						|
      Target.getInstructionsByEnumValue();
 | 
						|
 | 
						|
  for (const CodeGenInstruction *Inst : NumberedInstructions) {
 | 
						|
    if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const Record *Rec = Inst->TheDef;
 | 
						|
 | 
						|
    // - Do not proceed if the instruction is marked as notMemoryFoldable.
 | 
						|
    // - Instructions including RST register class operands are not relevant
 | 
						|
    //   for memory folding (for further details check the explanation in
 | 
						|
    //   lib/Target/X86/X86InstrFPStack.td file).
 | 
						|
    // - Some instructions (listed in the manual map above) use the register
 | 
						|
    //   class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
 | 
						|
    //   safe mapping of these instruction we manually map them and exclude
 | 
						|
    //   them from the automation.
 | 
						|
    if (Rec->getValueAsBit("isMemoryFoldable") == false ||
 | 
						|
        hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Add all the memory form instructions to MemInsts, and all the register
 | 
						|
    // form instructions to RegInsts[Opc], where Opc in the opcode of each
 | 
						|
    // instructions. this helps reducing the runtime of the backend.
 | 
						|
    if (hasMemoryFormat(Rec))
 | 
						|
      MemInsts.push_back(Inst);
 | 
						|
    else if (hasRegisterFormat(Rec)) {
 | 
						|
      uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
 | 
						|
      RegInsts[Opc].push_back(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For each memory form instruction, try to find its register form
 | 
						|
  // instruction.
 | 
						|
  for (const CodeGenInstruction *MemInst : MemInsts) {
 | 
						|
    uint8_t Opc =
 | 
						|
        getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
 | 
						|
 | 
						|
    auto RegInstsIt = RegInsts.find(Opc);
 | 
						|
    if (RegInstsIt == RegInsts.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Two forms (memory & register) of the same instruction must have the same
 | 
						|
    // opcode. try matching only with register form instructions with the same
 | 
						|
    // opcode.
 | 
						|
    std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
 | 
						|
 | 
						|
    auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
 | 
						|
    if (Match != OpcRegInsts.end()) {
 | 
						|
      const CodeGenInstruction *RegInst = *Match;
 | 
						|
      // If the matched instruction has it's "FoldGenRegForm" set, map the
 | 
						|
      // memory form instruction to the register form instruction pointed by
 | 
						|
      // this field
 | 
						|
      if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
 | 
						|
        updateTables(RegInst, MemInst);
 | 
						|
      } else {
 | 
						|
        const CodeGenInstruction *AltRegInst =
 | 
						|
            getAltRegInst(RegInst, Records, Target);
 | 
						|
        updateTables(AltRegInst, MemInst);
 | 
						|
      }
 | 
						|
      OpcRegInsts.erase(Match);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the manually mapped instructions listed above.
 | 
						|
  for (const ManualMapEntry &Entry : ManualMapSet) {
 | 
						|
    Record *RegInstIter = Records.getDef(Entry.RegInstStr);
 | 
						|
    Record *MemInstIter = Records.getDef(Entry.MemInstStr);
 | 
						|
 | 
						|
    updateTables(&(Target.getInstruction(RegInstIter)),
 | 
						|
                 &(Target.getInstruction(MemInstIter)), Entry.Strategy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort the tables before printing.
 | 
						|
  llvm::sort(Table2Addr);
 | 
						|
  llvm::sort(Table0);
 | 
						|
  llvm::sort(Table1);
 | 
						|
  llvm::sort(Table2);
 | 
						|
  llvm::sort(Table3);
 | 
						|
  llvm::sort(Table4);
 | 
						|
 | 
						|
  // Print all tables.
 | 
						|
  printTable(Table2Addr, "Table2Addr", OS);
 | 
						|
  printTable(Table0, "Table0", OS);
 | 
						|
  printTable(Table1, "Table1", OS);
 | 
						|
  printTable(Table2, "Table2", OS);
 | 
						|
  printTable(Table3, "Table3", OS);
 | 
						|
  printTable(Table4, "Table4", OS);
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &o) {
 | 
						|
  formatted_raw_ostream OS(o);
 | 
						|
  X86FoldTablesEmitter(RK).run(OS);
 | 
						|
}
 | 
						|
} // namespace llvm
 |