680 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			680 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This header defines the implementation of the LLVM difference
 | 
						|
// engine, which structurally compares global values within a module.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "DifferenceEngine.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/StringSet.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/type_traits.h"
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// A priority queue, implemented as a heap.
 | 
						|
template <class T, class Sorter, unsigned InlineCapacity>
 | 
						|
class PriorityQueue {
 | 
						|
  Sorter Precedes;
 | 
						|
  llvm::SmallVector<T, InlineCapacity> Storage;
 | 
						|
 | 
						|
public:
 | 
						|
  PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
 | 
						|
 | 
						|
  /// Checks whether the heap is empty.
 | 
						|
  bool empty() const { return Storage.empty(); }
 | 
						|
 | 
						|
  /// Insert a new value on the heap.
 | 
						|
  void insert(const T &V) {
 | 
						|
    unsigned Index = Storage.size();
 | 
						|
    Storage.push_back(V);
 | 
						|
    if (Index == 0) return;
 | 
						|
 | 
						|
    T *data = Storage.data();
 | 
						|
    while (true) {
 | 
						|
      unsigned Target = (Index + 1) / 2 - 1;
 | 
						|
      if (!Precedes(data[Index], data[Target])) return;
 | 
						|
      std::swap(data[Index], data[Target]);
 | 
						|
      if (Target == 0) return;
 | 
						|
      Index = Target;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
 | 
						|
  T remove_min() {
 | 
						|
    assert(!empty());
 | 
						|
    T tmp = Storage[0];
 | 
						|
    
 | 
						|
    unsigned NewSize = Storage.size() - 1;
 | 
						|
    if (NewSize) {
 | 
						|
      // Move the slot at the end to the beginning.
 | 
						|
      if (isPodLike<T>::value)
 | 
						|
        Storage[0] = Storage[NewSize];
 | 
						|
      else
 | 
						|
        std::swap(Storage[0], Storage[NewSize]);
 | 
						|
 | 
						|
      // Bubble the root up as necessary.
 | 
						|
      unsigned Index = 0;
 | 
						|
      while (true) {
 | 
						|
        // With a 1-based index, the children would be Index*2 and Index*2+1.
 | 
						|
        unsigned R = (Index + 1) * 2;
 | 
						|
        unsigned L = R - 1;
 | 
						|
 | 
						|
        // If R is out of bounds, we're done after this in any case.
 | 
						|
        if (R >= NewSize) {
 | 
						|
          // If L is also out of bounds, we're done immediately.
 | 
						|
          if (L >= NewSize) break;
 | 
						|
 | 
						|
          // Otherwise, test whether we should swap L and Index.
 | 
						|
          if (Precedes(Storage[L], Storage[Index]))
 | 
						|
            std::swap(Storage[L], Storage[Index]);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        // Otherwise, we need to compare with the smaller of L and R.
 | 
						|
        // Prefer R because it's closer to the end of the array.
 | 
						|
        unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
 | 
						|
 | 
						|
        // If Index is >= the min of L and R, then heap ordering is restored.
 | 
						|
        if (!Precedes(Storage[IndexToTest], Storage[Index]))
 | 
						|
          break;
 | 
						|
 | 
						|
        // Otherwise, keep bubbling up.
 | 
						|
        std::swap(Storage[IndexToTest], Storage[Index]);
 | 
						|
        Index = IndexToTest;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Storage.pop_back();
 | 
						|
 | 
						|
    return tmp;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// A function-scope difference engine.
 | 
						|
class FunctionDifferenceEngine {
 | 
						|
  DifferenceEngine &Engine;
 | 
						|
 | 
						|
  /// The current mapping from old local values to new local values.
 | 
						|
  DenseMap<Value*, Value*> Values;
 | 
						|
 | 
						|
  /// The current mapping from old blocks to new blocks.
 | 
						|
  DenseMap<BasicBlock*, BasicBlock*> Blocks;
 | 
						|
 | 
						|
  DenseSet<std::pair<Value*, Value*> > TentativeValues;
 | 
						|
 | 
						|
  unsigned getUnprocPredCount(BasicBlock *Block) const {
 | 
						|
    unsigned Count = 0;
 | 
						|
    for (pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E; ++I)
 | 
						|
      if (!Blocks.count(*I)) Count++;
 | 
						|
    return Count;
 | 
						|
  }
 | 
						|
 | 
						|
  typedef std::pair<BasicBlock*, BasicBlock*> BlockPair;
 | 
						|
 | 
						|
  /// A type which sorts a priority queue by the number of unprocessed
 | 
						|
  /// predecessor blocks it has remaining.
 | 
						|
  ///
 | 
						|
  /// This is actually really expensive to calculate.
 | 
						|
  struct QueueSorter {
 | 
						|
    const FunctionDifferenceEngine &fde;
 | 
						|
    explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
 | 
						|
 | 
						|
    bool operator()(const BlockPair &Old, const BlockPair &New) {
 | 
						|
      return fde.getUnprocPredCount(Old.first)
 | 
						|
           < fde.getUnprocPredCount(New.first);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// A queue of unified blocks to process.
 | 
						|
  PriorityQueue<BlockPair, QueueSorter, 20> Queue;
 | 
						|
 | 
						|
  /// Try to unify the given two blocks.  Enqueues them for processing
 | 
						|
  /// if they haven't already been processed.
 | 
						|
  ///
 | 
						|
  /// Returns true if there was a problem unifying them.
 | 
						|
  bool tryUnify(BasicBlock *L, BasicBlock *R) {
 | 
						|
    BasicBlock *&Ref = Blocks[L];
 | 
						|
 | 
						|
    if (Ref) {
 | 
						|
      if (Ref == R) return false;
 | 
						|
 | 
						|
      Engine.logf("successor %l cannot be equivalent to %r; "
 | 
						|
                  "it's already equivalent to %r")
 | 
						|
        << L << R << Ref;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    Ref = R;
 | 
						|
    Queue.insert(BlockPair(L, R));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// Unifies two instructions, given that they're known not to have
 | 
						|
  /// structural differences.
 | 
						|
  void unify(Instruction *L, Instruction *R) {
 | 
						|
    DifferenceEngine::Context C(Engine, L, R);
 | 
						|
 | 
						|
    bool Result = diff(L, R, true, true);
 | 
						|
    assert(!Result && "structural differences second time around?");
 | 
						|
    (void) Result;
 | 
						|
    if (!L->use_empty())
 | 
						|
      Values[L] = R;
 | 
						|
  }
 | 
						|
 | 
						|
  void processQueue() {
 | 
						|
    while (!Queue.empty()) {
 | 
						|
      BlockPair Pair = Queue.remove_min();
 | 
						|
      diff(Pair.first, Pair.second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void diff(BasicBlock *L, BasicBlock *R) {
 | 
						|
    DifferenceEngine::Context C(Engine, L, R);
 | 
						|
 | 
						|
    BasicBlock::iterator LI = L->begin(), LE = L->end();
 | 
						|
    BasicBlock::iterator RI = R->begin();
 | 
						|
 | 
						|
    do {
 | 
						|
      assert(LI != LE && RI != R->end());
 | 
						|
      Instruction *LeftI = &*LI, *RightI = &*RI;
 | 
						|
 | 
						|
      // If the instructions differ, start the more sophisticated diff
 | 
						|
      // algorithm at the start of the block.
 | 
						|
      if (diff(LeftI, RightI, false, false)) {
 | 
						|
        TentativeValues.clear();
 | 
						|
        return runBlockDiff(L->begin(), R->begin());
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, tentatively unify them.
 | 
						|
      if (!LeftI->use_empty())
 | 
						|
        TentativeValues.insert(std::make_pair(LeftI, RightI));
 | 
						|
 | 
						|
      ++LI, ++RI;
 | 
						|
    } while (LI != LE); // This is sufficient: we can't get equality of
 | 
						|
                        // terminators if there are residual instructions.
 | 
						|
 | 
						|
    // Unify everything in the block, non-tentatively this time.
 | 
						|
    TentativeValues.clear();
 | 
						|
    for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
 | 
						|
      unify(&*LI, &*RI);
 | 
						|
  }
 | 
						|
 | 
						|
  bool matchForBlockDiff(Instruction *L, Instruction *R);
 | 
						|
  void runBlockDiff(BasicBlock::iterator LI, BasicBlock::iterator RI);
 | 
						|
 | 
						|
  bool diffCallSites(CallSite L, CallSite R, bool Complain) {
 | 
						|
    // FIXME: call attributes
 | 
						|
    if (!equivalentAsOperands(L.getCalledValue(), R.getCalledValue())) {
 | 
						|
      if (Complain) Engine.log("called functions differ");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (L.arg_size() != R.arg_size()) {
 | 
						|
      if (Complain) Engine.log("argument counts differ");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
 | 
						|
      if (!equivalentAsOperands(L.getArgument(I), R.getArgument(I))) {
 | 
						|
        if (Complain)
 | 
						|
          Engine.logf("arguments %l and %r differ")
 | 
						|
            << L.getArgument(I) << R.getArgument(I);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool diff(Instruction *L, Instruction *R, bool Complain, bool TryUnify) {
 | 
						|
    // FIXME: metadata (if Complain is set)
 | 
						|
 | 
						|
    // Different opcodes always imply different operations.
 | 
						|
    if (L->getOpcode() != R->getOpcode()) {
 | 
						|
      if (Complain) Engine.log("different instruction types");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<CmpInst>(L)) {
 | 
						|
      if (cast<CmpInst>(L)->getPredicate()
 | 
						|
            != cast<CmpInst>(R)->getPredicate()) {
 | 
						|
        if (Complain) Engine.log("different predicates");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else if (isa<CallInst>(L)) {
 | 
						|
      return diffCallSites(CallSite(L), CallSite(R), Complain);
 | 
						|
    } else if (isa<PHINode>(L)) {
 | 
						|
      // FIXME: implement.
 | 
						|
 | 
						|
      // This is really weird;  type uniquing is broken?
 | 
						|
      if (L->getType() != R->getType()) {
 | 
						|
        if (!L->getType()->isPointerTy() || !R->getType()->isPointerTy()) {
 | 
						|
          if (Complain) Engine.log("different phi types");
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Terminators.
 | 
						|
    } else if (isa<InvokeInst>(L)) {
 | 
						|
      InvokeInst *LI = cast<InvokeInst>(L);
 | 
						|
      InvokeInst *RI = cast<InvokeInst>(R);
 | 
						|
      if (diffCallSites(CallSite(LI), CallSite(RI), Complain))
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (TryUnify) {
 | 
						|
        tryUnify(LI->getNormalDest(), RI->getNormalDest());
 | 
						|
        tryUnify(LI->getUnwindDest(), RI->getUnwindDest());
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
 | 
						|
    } else if (isa<BranchInst>(L)) {
 | 
						|
      BranchInst *LI = cast<BranchInst>(L);
 | 
						|
      BranchInst *RI = cast<BranchInst>(R);
 | 
						|
      if (LI->isConditional() != RI->isConditional()) {
 | 
						|
        if (Complain) Engine.log("branch conditionality differs");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (LI->isConditional()) {
 | 
						|
        if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
 | 
						|
          if (Complain) Engine.log("branch conditions differ");
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
        if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
 | 
						|
      }
 | 
						|
      if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
 | 
						|
      return false;
 | 
						|
 | 
						|
    } else if (isa<SwitchInst>(L)) {
 | 
						|
      SwitchInst *LI = cast<SwitchInst>(L);
 | 
						|
      SwitchInst *RI = cast<SwitchInst>(R);
 | 
						|
      if (!equivalentAsOperands(LI->getCondition(), RI->getCondition())) {
 | 
						|
        if (Complain) Engine.log("switch conditions differ");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
 | 
						|
 | 
						|
      bool Difference = false;
 | 
						|
 | 
						|
      DenseMap<ConstantInt*,BasicBlock*> LCases;
 | 
						|
      
 | 
						|
      for (SwitchInst::CaseIt I = LI->case_begin(), E = LI->case_end();
 | 
						|
           I != E; ++I)
 | 
						|
        LCases[I.getCaseValue()] = I.getCaseSuccessor();
 | 
						|
        
 | 
						|
      for (SwitchInst::CaseIt I = RI->case_begin(), E = RI->case_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        ConstantInt *CaseValue = I.getCaseValue();
 | 
						|
        BasicBlock *LCase = LCases[CaseValue];
 | 
						|
        if (LCase) {
 | 
						|
          if (TryUnify) tryUnify(LCase, I.getCaseSuccessor());
 | 
						|
          LCases.erase(CaseValue);
 | 
						|
        } else if (Complain || !Difference) {
 | 
						|
          if (Complain)
 | 
						|
            Engine.logf("right switch has extra case %r") << CaseValue;
 | 
						|
          Difference = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!Difference)
 | 
						|
        for (DenseMap<ConstantInt*,BasicBlock*>::iterator
 | 
						|
               I = LCases.begin(), E = LCases.end(); I != E; ++I) {
 | 
						|
          if (Complain)
 | 
						|
            Engine.logf("left switch has extra case %l") << I->first;
 | 
						|
          Difference = true;
 | 
						|
        }
 | 
						|
      return Difference;
 | 
						|
    } else if (isa<UnreachableInst>(L)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (L->getNumOperands() != R->getNumOperands()) {
 | 
						|
      if (Complain) Engine.log("instructions have different operand counts");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
 | 
						|
      Value *LO = L->getOperand(I), *RO = R->getOperand(I);
 | 
						|
      if (!equivalentAsOperands(LO, RO)) {
 | 
						|
        if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool equivalentAsOperands(Constant *L, Constant *R) {
 | 
						|
    // Use equality as a preliminary filter.
 | 
						|
    if (L == R)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (L->getValueID() != R->getValueID())
 | 
						|
      return false;
 | 
						|
    
 | 
						|
    // Ask the engine about global values.
 | 
						|
    if (isa<GlobalValue>(L))
 | 
						|
      return Engine.equivalentAsOperands(cast<GlobalValue>(L),
 | 
						|
                                         cast<GlobalValue>(R));
 | 
						|
 | 
						|
    // Compare constant expressions structurally.
 | 
						|
    if (isa<ConstantExpr>(L))
 | 
						|
      return equivalentAsOperands(cast<ConstantExpr>(L),
 | 
						|
                                  cast<ConstantExpr>(R));
 | 
						|
 | 
						|
    // Nulls of the "same type" don't always actually have the same
 | 
						|
    // type; I don't know why.  Just white-list them.
 | 
						|
    if (isa<ConstantPointerNull>(L))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Block addresses only match if we've already encountered the
 | 
						|
    // block.  FIXME: tentative matches?
 | 
						|
    if (isa<BlockAddress>(L))
 | 
						|
      return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
 | 
						|
                 == cast<BlockAddress>(R)->getBasicBlock();
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool equivalentAsOperands(ConstantExpr *L, ConstantExpr *R) {
 | 
						|
    if (L == R)
 | 
						|
      return true;
 | 
						|
    if (L->getOpcode() != R->getOpcode())
 | 
						|
      return false;
 | 
						|
 | 
						|
    switch (L->getOpcode()) {
 | 
						|
    case Instruction::ICmp:
 | 
						|
    case Instruction::FCmp:
 | 
						|
      if (L->getPredicate() != R->getPredicate())
 | 
						|
        return false;
 | 
						|
      break;
 | 
						|
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      // FIXME: inbounds?
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (L->getNumOperands() != R->getNumOperands())
 | 
						|
      return false;
 | 
						|
 | 
						|
    for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I)
 | 
						|
      if (!equivalentAsOperands(L->getOperand(I), R->getOperand(I)))
 | 
						|
        return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool equivalentAsOperands(Value *L, Value *R) {
 | 
						|
    // Fall out if the values have different kind.
 | 
						|
    // This possibly shouldn't take priority over oracles.
 | 
						|
    if (L->getValueID() != R->getValueID())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
 | 
						|
    //                  InlineAsm, MDNode, MDString, PseudoSourceValue
 | 
						|
 | 
						|
    if (isa<Constant>(L))
 | 
						|
      return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R));
 | 
						|
 | 
						|
    if (isa<Instruction>(L))
 | 
						|
      return Values[L] == R || TentativeValues.count(std::make_pair(L, R));
 | 
						|
 | 
						|
    if (isa<Argument>(L))
 | 
						|
      return Values[L] == R;
 | 
						|
 | 
						|
    if (isa<BasicBlock>(L))
 | 
						|
      return Blocks[cast<BasicBlock>(L)] != R;
 | 
						|
 | 
						|
    // Pretend everything else is identical.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Avoid a gcc warning about accessing 'this' in an initializer.
 | 
						|
  FunctionDifferenceEngine *this_() { return this; }
 | 
						|
 | 
						|
public:
 | 
						|
  FunctionDifferenceEngine(DifferenceEngine &Engine) :
 | 
						|
    Engine(Engine), Queue(QueueSorter(*this_())) {}
 | 
						|
 | 
						|
  void diff(Function *L, Function *R) {
 | 
						|
    if (L->arg_size() != R->arg_size())
 | 
						|
      Engine.log("different argument counts");
 | 
						|
 | 
						|
    // Map the arguments.
 | 
						|
    for (Function::arg_iterator
 | 
						|
           LI = L->arg_begin(), LE = L->arg_end(),
 | 
						|
           RI = R->arg_begin(), RE = R->arg_end();
 | 
						|
         LI != LE && RI != RE; ++LI, ++RI)
 | 
						|
      Values[&*LI] = &*RI;
 | 
						|
 | 
						|
    tryUnify(&*L->begin(), &*R->begin());
 | 
						|
    processQueue();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct DiffEntry {
 | 
						|
  DiffEntry() : Cost(0) {}
 | 
						|
 | 
						|
  unsigned Cost;
 | 
						|
  llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
 | 
						|
};
 | 
						|
 | 
						|
bool FunctionDifferenceEngine::matchForBlockDiff(Instruction *L,
 | 
						|
                                                 Instruction *R) {
 | 
						|
  return !diff(L, R, false, false);
 | 
						|
}
 | 
						|
 | 
						|
void FunctionDifferenceEngine::runBlockDiff(BasicBlock::iterator LStart,
 | 
						|
                                            BasicBlock::iterator RStart) {
 | 
						|
  BasicBlock::iterator LE = LStart->getParent()->end();
 | 
						|
  BasicBlock::iterator RE = RStart->getParent()->end();
 | 
						|
 | 
						|
  unsigned NL = std::distance(LStart, LE);
 | 
						|
 | 
						|
  SmallVector<DiffEntry, 20> Paths1(NL+1);
 | 
						|
  SmallVector<DiffEntry, 20> Paths2(NL+1);
 | 
						|
 | 
						|
  DiffEntry *Cur = Paths1.data();
 | 
						|
  DiffEntry *Next = Paths2.data();
 | 
						|
 | 
						|
  const unsigned LeftCost = 2;
 | 
						|
  const unsigned RightCost = 2;
 | 
						|
  const unsigned MatchCost = 0;
 | 
						|
 | 
						|
  assert(TentativeValues.empty());
 | 
						|
 | 
						|
  // Initialize the first column.
 | 
						|
  for (unsigned I = 0; I != NL+1; ++I) {
 | 
						|
    Cur[I].Cost = I * LeftCost;
 | 
						|
    for (unsigned J = 0; J != I; ++J)
 | 
						|
      Cur[I].Path.push_back(DC_left);
 | 
						|
  }
 | 
						|
 | 
						|
  for (BasicBlock::iterator RI = RStart; RI != RE; ++RI) {
 | 
						|
    // Initialize the first row.
 | 
						|
    Next[0] = Cur[0];
 | 
						|
    Next[0].Cost += RightCost;
 | 
						|
    Next[0].Path.push_back(DC_right);
 | 
						|
 | 
						|
    unsigned Index = 1;
 | 
						|
    for (BasicBlock::iterator LI = LStart; LI != LE; ++LI, ++Index) {
 | 
						|
      if (matchForBlockDiff(&*LI, &*RI)) {
 | 
						|
        Next[Index] = Cur[Index-1];
 | 
						|
        Next[Index].Cost += MatchCost;
 | 
						|
        Next[Index].Path.push_back(DC_match);
 | 
						|
        TentativeValues.insert(std::make_pair(&*LI, &*RI));
 | 
						|
      } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
 | 
						|
        Next[Index] = Next[Index-1];
 | 
						|
        Next[Index].Cost += LeftCost;
 | 
						|
        Next[Index].Path.push_back(DC_left);
 | 
						|
      } else {
 | 
						|
        Next[Index] = Cur[Index];
 | 
						|
        Next[Index].Cost += RightCost;
 | 
						|
        Next[Index].Path.push_back(DC_right);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    std::swap(Cur, Next);
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't need the tentative values anymore; everything from here
 | 
						|
  // on out should be non-tentative.
 | 
						|
  TentativeValues.clear();
 | 
						|
 | 
						|
  SmallVectorImpl<char> &Path = Cur[NL].Path;
 | 
						|
  BasicBlock::iterator LI = LStart, RI = RStart;
 | 
						|
 | 
						|
  DiffLogBuilder Diff(Engine.getConsumer());
 | 
						|
 | 
						|
  // Drop trailing matches.
 | 
						|
  while (Path.back() == DC_match)
 | 
						|
    Path.pop_back();
 | 
						|
 | 
						|
  // Skip leading matches.
 | 
						|
  SmallVectorImpl<char>::iterator
 | 
						|
    PI = Path.begin(), PE = Path.end();
 | 
						|
  while (PI != PE && *PI == DC_match) {
 | 
						|
    unify(&*LI, &*RI);
 | 
						|
    ++PI, ++LI, ++RI;
 | 
						|
  }
 | 
						|
 | 
						|
  for (; PI != PE; ++PI) {
 | 
						|
    switch (static_cast<DiffChange>(*PI)) {
 | 
						|
    case DC_match:
 | 
						|
      assert(LI != LE && RI != RE);
 | 
						|
      {
 | 
						|
        Instruction *L = &*LI, *R = &*RI;
 | 
						|
        unify(L, R);
 | 
						|
        Diff.addMatch(L, R);
 | 
						|
      }
 | 
						|
      ++LI; ++RI;
 | 
						|
      break;
 | 
						|
 | 
						|
    case DC_left:
 | 
						|
      assert(LI != LE);
 | 
						|
      Diff.addLeft(&*LI);
 | 
						|
      ++LI;
 | 
						|
      break;
 | 
						|
 | 
						|
    case DC_right:
 | 
						|
      assert(RI != RE);
 | 
						|
      Diff.addRight(&*RI);
 | 
						|
      ++RI;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finishing unifying and complaining about the tails of the block,
 | 
						|
  // which should be matches all the way through.
 | 
						|
  while (LI != LE) {
 | 
						|
    assert(RI != RE);
 | 
						|
    unify(&*LI, &*RI);
 | 
						|
    ++LI, ++RI;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the terminators have different kinds, but one is an invoke and the
 | 
						|
  // other is an unconditional branch immediately following a call, unify
 | 
						|
  // the results and the destinations.
 | 
						|
  TerminatorInst *LTerm = LStart->getParent()->getTerminator();
 | 
						|
  TerminatorInst *RTerm = RStart->getParent()->getTerminator();
 | 
						|
  if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
 | 
						|
    if (cast<BranchInst>(LTerm)->isConditional()) return;
 | 
						|
    BasicBlock::iterator I = LTerm;
 | 
						|
    if (I == LStart->getParent()->begin()) return;
 | 
						|
    --I;
 | 
						|
    if (!isa<CallInst>(*I)) return;
 | 
						|
    CallInst *LCall = cast<CallInst>(&*I);
 | 
						|
    InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
 | 
						|
    if (!equivalentAsOperands(LCall->getCalledValue(), RInvoke->getCalledValue()))
 | 
						|
      return;
 | 
						|
    if (!LCall->use_empty())
 | 
						|
      Values[LCall] = RInvoke;
 | 
						|
    tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
 | 
						|
  } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
 | 
						|
    if (cast<BranchInst>(RTerm)->isConditional()) return;
 | 
						|
    BasicBlock::iterator I = RTerm;
 | 
						|
    if (I == RStart->getParent()->begin()) return;
 | 
						|
    --I;
 | 
						|
    if (!isa<CallInst>(*I)) return;
 | 
						|
    CallInst *RCall = cast<CallInst>(I);
 | 
						|
    InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
 | 
						|
    if (!equivalentAsOperands(LInvoke->getCalledValue(), RCall->getCalledValue()))
 | 
						|
      return;
 | 
						|
    if (!LInvoke->use_empty())
 | 
						|
      Values[LInvoke] = RCall;
 | 
						|
    tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void DifferenceEngine::Oracle::anchor() { }
 | 
						|
 | 
						|
void DifferenceEngine::diff(Function *L, Function *R) {
 | 
						|
  Context C(*this, L, R);
 | 
						|
 | 
						|
  // FIXME: types
 | 
						|
  // FIXME: attributes and CC
 | 
						|
  // FIXME: parameter attributes
 | 
						|
  
 | 
						|
  // If both are declarations, we're done.
 | 
						|
  if (L->empty() && R->empty())
 | 
						|
    return;
 | 
						|
  else if (L->empty())
 | 
						|
    log("left function is declaration, right function is definition");
 | 
						|
  else if (R->empty())
 | 
						|
    log("right function is declaration, left function is definition");
 | 
						|
  else
 | 
						|
    FunctionDifferenceEngine(*this).diff(L, R);
 | 
						|
}
 | 
						|
 | 
						|
void DifferenceEngine::diff(Module *L, Module *R) {
 | 
						|
  StringSet<> LNames;
 | 
						|
  SmallVector<std::pair<Function*,Function*>, 20> Queue;
 | 
						|
 | 
						|
  for (Module::iterator I = L->begin(), E = L->end(); I != E; ++I) {
 | 
						|
    Function *LFn = &*I;
 | 
						|
    LNames.insert(LFn->getName());
 | 
						|
 | 
						|
    if (Function *RFn = R->getFunction(LFn->getName()))
 | 
						|
      Queue.push_back(std::make_pair(LFn, RFn));
 | 
						|
    else
 | 
						|
      logf("function %l exists only in left module") << LFn;
 | 
						|
  }
 | 
						|
 | 
						|
  for (Module::iterator I = R->begin(), E = R->end(); I != E; ++I) {
 | 
						|
    Function *RFn = &*I;
 | 
						|
    if (!LNames.count(RFn->getName()))
 | 
						|
      logf("function %r exists only in right module") << RFn;
 | 
						|
  }
 | 
						|
 | 
						|
  for (SmallVectorImpl<std::pair<Function*,Function*> >::iterator
 | 
						|
         I = Queue.begin(), E = Queue.end(); I != E; ++I)
 | 
						|
    diff(I->first, I->second);
 | 
						|
}
 | 
						|
 | 
						|
bool DifferenceEngine::equivalentAsOperands(GlobalValue *L, GlobalValue *R) {
 | 
						|
  if (globalValueOracle) return (*globalValueOracle)(L, R);
 | 
						|
  return L->getName() == R->getName();
 | 
						|
}
 |