16851 lines
		
	
	
		
			653 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			16851 lines
		
	
	
		
			653 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for declarations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "TypeLocBuilder.h"
 | 
						|
#include "clang/AST/ASTConsumer.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/ASTLambda.h"
 | 
						|
#include "clang/AST/CXXInheritance.h"
 | 
						|
#include "clang/AST/CharUnits.h"
 | 
						|
#include "clang/AST/CommentDiagnostic.h"
 | 
						|
#include "clang/AST/DeclCXX.h"
 | 
						|
#include "clang/AST/DeclObjC.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/EvaluatedExprVisitor.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Basic/SourceManager.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
 | 
						|
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
 | 
						|
#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
 | 
						|
#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
 | 
						|
#include "clang/Sema/CXXFieldCollector.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/DelayedDiagnostic.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/ParsedTemplate.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstring>
 | 
						|
#include <functional>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
 | 
						|
  if (OwnedType) {
 | 
						|
    Decl *Group[2] = { OwnedType, Ptr };
 | 
						|
    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
 | 
						|
  }
 | 
						|
 | 
						|
  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class TypeNameValidatorCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
 | 
						|
                        bool AllowTemplates = false,
 | 
						|
                        bool AllowNonTemplates = true)
 | 
						|
       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
 | 
						|
         AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
 | 
						|
     WantExpressionKeywords = false;
 | 
						|
     WantCXXNamedCasts = false;
 | 
						|
     WantRemainingKeywords = false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ValidateCandidate(const TypoCorrection &candidate) override {
 | 
						|
    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
 | 
						|
      if (!AllowInvalidDecl && ND->isInvalidDecl())
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (getAsTypeTemplateDecl(ND))
 | 
						|
        return AllowTemplates;
 | 
						|
 | 
						|
      bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
 | 
						|
      if (!IsType)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (AllowNonTemplates)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // An injected-class-name of a class template (specialization) is valid
 | 
						|
      // as a template or as a non-template.
 | 
						|
      if (AllowTemplates) {
 | 
						|
        auto *RD = dyn_cast<CXXRecordDecl>(ND);
 | 
						|
        if (!RD || !RD->isInjectedClassName())
 | 
						|
          return false;
 | 
						|
        RD = cast<CXXRecordDecl>(RD->getDeclContext());
 | 
						|
        return RD->getDescribedClassTemplate() ||
 | 
						|
               isa<ClassTemplateSpecializationDecl>(RD);
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return !WantClassName && candidate.isKeyword();
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  bool AllowInvalidDecl;
 | 
						|
  bool WantClassName;
 | 
						|
  bool AllowTemplates;
 | 
						|
  bool AllowNonTemplates;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// \brief Determine whether the token kind starts a simple-type-specifier.
 | 
						|
bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
 | 
						|
  switch (Kind) {
 | 
						|
  // FIXME: Take into account the current language when deciding whether a
 | 
						|
  // token kind is a valid type specifier
 | 
						|
  case tok::kw_short:
 | 
						|
  case tok::kw_long:
 | 
						|
  case tok::kw___int64:
 | 
						|
  case tok::kw___int128:
 | 
						|
  case tok::kw_signed:
 | 
						|
  case tok::kw_unsigned:
 | 
						|
  case tok::kw_void:
 | 
						|
  case tok::kw_char:
 | 
						|
  case tok::kw_int:
 | 
						|
  case tok::kw_half:
 | 
						|
  case tok::kw_float:
 | 
						|
  case tok::kw_double:
 | 
						|
  case tok::kw__Float16:
 | 
						|
  case tok::kw___float128:
 | 
						|
  case tok::kw_wchar_t:
 | 
						|
  case tok::kw_bool:
 | 
						|
  case tok::kw___underlying_type:
 | 
						|
  case tok::kw___auto_type:
 | 
						|
    return true;
 | 
						|
 | 
						|
  case tok::annot_typename:
 | 
						|
  case tok::kw_char16_t:
 | 
						|
  case tok::kw_char32_t:
 | 
						|
  case tok::kw_typeof:
 | 
						|
  case tok::annot_decltype:
 | 
						|
  case tok::kw_decltype:
 | 
						|
    return getLangOpts().CPlusPlus;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
enum class UnqualifiedTypeNameLookupResult {
 | 
						|
  NotFound,
 | 
						|
  FoundNonType,
 | 
						|
  FoundType
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// \brief Tries to perform unqualified lookup of the type decls in bases for
 | 
						|
/// dependent class.
 | 
						|
/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
 | 
						|
/// type decl, \a FoundType if only type decls are found.
 | 
						|
static UnqualifiedTypeNameLookupResult
 | 
						|
lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
 | 
						|
                                SourceLocation NameLoc,
 | 
						|
                                const CXXRecordDecl *RD) {
 | 
						|
  if (!RD->hasDefinition())
 | 
						|
    return UnqualifiedTypeNameLookupResult::NotFound;
 | 
						|
  // Look for type decls in base classes.
 | 
						|
  UnqualifiedTypeNameLookupResult FoundTypeDecl =
 | 
						|
      UnqualifiedTypeNameLookupResult::NotFound;
 | 
						|
  for (const auto &Base : RD->bases()) {
 | 
						|
    const CXXRecordDecl *BaseRD = nullptr;
 | 
						|
    if (auto *BaseTT = Base.getType()->getAs<TagType>())
 | 
						|
      BaseRD = BaseTT->getAsCXXRecordDecl();
 | 
						|
    else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
 | 
						|
      // Look for type decls in dependent base classes that have known primary
 | 
						|
      // templates.
 | 
						|
      if (!TST || !TST->isDependentType())
 | 
						|
        continue;
 | 
						|
      auto *TD = TST->getTemplateName().getAsTemplateDecl();
 | 
						|
      if (!TD)
 | 
						|
        continue;
 | 
						|
      if (auto *BasePrimaryTemplate =
 | 
						|
          dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
 | 
						|
        if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
 | 
						|
          BaseRD = BasePrimaryTemplate;
 | 
						|
        else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
 | 
						|
          if (const ClassTemplatePartialSpecializationDecl *PS =
 | 
						|
                  CTD->findPartialSpecialization(Base.getType()))
 | 
						|
            if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
 | 
						|
              BaseRD = PS;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (BaseRD) {
 | 
						|
      for (NamedDecl *ND : BaseRD->lookup(&II)) {
 | 
						|
        if (!isa<TypeDecl>(ND))
 | 
						|
          return UnqualifiedTypeNameLookupResult::FoundNonType;
 | 
						|
        FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
 | 
						|
      }
 | 
						|
      if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
 | 
						|
        switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
 | 
						|
        case UnqualifiedTypeNameLookupResult::FoundNonType:
 | 
						|
          return UnqualifiedTypeNameLookupResult::FoundNonType;
 | 
						|
        case UnqualifiedTypeNameLookupResult::FoundType:
 | 
						|
          FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
 | 
						|
          break;
 | 
						|
        case UnqualifiedTypeNameLookupResult::NotFound:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return FoundTypeDecl;
 | 
						|
}
 | 
						|
 | 
						|
static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
 | 
						|
                                                      const IdentifierInfo &II,
 | 
						|
                                                      SourceLocation NameLoc) {
 | 
						|
  // Lookup in the parent class template context, if any.
 | 
						|
  const CXXRecordDecl *RD = nullptr;
 | 
						|
  UnqualifiedTypeNameLookupResult FoundTypeDecl =
 | 
						|
      UnqualifiedTypeNameLookupResult::NotFound;
 | 
						|
  for (DeclContext *DC = S.CurContext;
 | 
						|
       DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
 | 
						|
       DC = DC->getParent()) {
 | 
						|
    // Look for type decls in dependent base classes that have known primary
 | 
						|
    // templates.
 | 
						|
    RD = dyn_cast<CXXRecordDecl>(DC);
 | 
						|
    if (RD && RD->getDescribedClassTemplate())
 | 
						|
      FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
 | 
						|
  }
 | 
						|
  if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // We found some types in dependent base classes.  Recover as if the user
 | 
						|
  // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
 | 
						|
  // lookup during template instantiation.
 | 
						|
  S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
 | 
						|
 | 
						|
  ASTContext &Context = S.Context;
 | 
						|
  auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
 | 
						|
                                          cast<Type>(Context.getRecordType(RD)));
 | 
						|
  QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
 | 
						|
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | 
						|
 | 
						|
  TypeLocBuilder Builder;
 | 
						|
  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
 | 
						|
  DepTL.setNameLoc(NameLoc);
 | 
						|
  DepTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
  DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the identifier refers to a type name within this scope,
 | 
						|
/// return the declaration of that type.
 | 
						|
///
 | 
						|
/// This routine performs ordinary name lookup of the identifier II
 | 
						|
/// within the given scope, with optional C++ scope specifier SS, to
 | 
						|
/// determine whether the name refers to a type. If so, returns an
 | 
						|
/// opaque pointer (actually a QualType) corresponding to that
 | 
						|
/// type. Otherwise, returns NULL.
 | 
						|
ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
 | 
						|
                             Scope *S, CXXScopeSpec *SS,
 | 
						|
                             bool isClassName, bool HasTrailingDot,
 | 
						|
                             ParsedType ObjectTypePtr,
 | 
						|
                             bool IsCtorOrDtorName,
 | 
						|
                             bool WantNontrivialTypeSourceInfo,
 | 
						|
                             bool IsClassTemplateDeductionContext,
 | 
						|
                             IdentifierInfo **CorrectedII) {
 | 
						|
  // FIXME: Consider allowing this outside C++1z mode as an extension.
 | 
						|
  bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
 | 
						|
                              getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
 | 
						|
                              !isClassName && !HasTrailingDot;
 | 
						|
 | 
						|
  // Determine where we will perform name lookup.
 | 
						|
  DeclContext *LookupCtx = nullptr;
 | 
						|
  if (ObjectTypePtr) {
 | 
						|
    QualType ObjectType = ObjectTypePtr.get();
 | 
						|
    if (ObjectType->isRecordType())
 | 
						|
      LookupCtx = computeDeclContext(ObjectType);
 | 
						|
  } else if (SS && SS->isNotEmpty()) {
 | 
						|
    LookupCtx = computeDeclContext(*SS, false);
 | 
						|
 | 
						|
    if (!LookupCtx) {
 | 
						|
      if (isDependentScopeSpecifier(*SS)) {
 | 
						|
        // C++ [temp.res]p3:
 | 
						|
        //   A qualified-id that refers to a type and in which the
 | 
						|
        //   nested-name-specifier depends on a template-parameter (14.6.2)
 | 
						|
        //   shall be prefixed by the keyword typename to indicate that the
 | 
						|
        //   qualified-id denotes a type, forming an
 | 
						|
        //   elaborated-type-specifier (7.1.5.3).
 | 
						|
        //
 | 
						|
        // We therefore do not perform any name lookup if the result would
 | 
						|
        // refer to a member of an unknown specialization.
 | 
						|
        if (!isClassName && !IsCtorOrDtorName)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        // We know from the grammar that this name refers to a type,
 | 
						|
        // so build a dependent node to describe the type.
 | 
						|
        if (WantNontrivialTypeSourceInfo)
 | 
						|
          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
 | 
						|
 | 
						|
        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
 | 
						|
        QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
 | 
						|
                                       II, NameLoc);
 | 
						|
        return ParsedType::make(T);
 | 
						|
      }
 | 
						|
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!LookupCtx->isDependentContext() &&
 | 
						|
        RequireCompleteDeclContext(*SS, LookupCtx))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
 | 
						|
  // lookup for class-names.
 | 
						|
  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
 | 
						|
                                      LookupOrdinaryName;
 | 
						|
  LookupResult Result(*this, &II, NameLoc, Kind);
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
    LookupQualifiedName(Result, LookupCtx);
 | 
						|
 | 
						|
    if (ObjectTypePtr && Result.empty()) {
 | 
						|
      // C++ [basic.lookup.classref]p3:
 | 
						|
      //   If the unqualified-id is ~type-name, the type-name is looked up
 | 
						|
      //   in the context of the entire postfix-expression. If the type T of
 | 
						|
      //   the object expression is of a class type C, the type-name is also
 | 
						|
      //   looked up in the scope of class C. At least one of the lookups shall
 | 
						|
      //   find a name that refers to (possibly cv-qualified) T.
 | 
						|
      LookupName(Result, S);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Perform unqualified name lookup.
 | 
						|
    LookupName(Result, S);
 | 
						|
 | 
						|
    // For unqualified lookup in a class template in MSVC mode, look into
 | 
						|
    // dependent base classes where the primary class template is known.
 | 
						|
    if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
 | 
						|
      if (ParsedType TypeInBase =
 | 
						|
              recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
 | 
						|
        return TypeInBase;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *IIDecl = nullptr;
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound:
 | 
						|
  case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
    if (CorrectedII) {
 | 
						|
      TypoCorrection Correction =
 | 
						|
          CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
 | 
						|
                      llvm::make_unique<TypeNameValidatorCCC>(
 | 
						|
                          true, isClassName, AllowDeducedTemplate),
 | 
						|
                      CTK_ErrorRecovery);
 | 
						|
      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
 | 
						|
      TemplateTy Template;
 | 
						|
      bool MemberOfUnknownSpecialization;
 | 
						|
      UnqualifiedId TemplateName;
 | 
						|
      TemplateName.setIdentifier(NewII, NameLoc);
 | 
						|
      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
 | 
						|
      CXXScopeSpec NewSS, *NewSSPtr = SS;
 | 
						|
      if (SS && NNS) {
 | 
						|
        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | 
						|
        NewSSPtr = &NewSS;
 | 
						|
      }
 | 
						|
      if (Correction && (NNS || NewII != &II) &&
 | 
						|
          // Ignore a correction to a template type as the to-be-corrected
 | 
						|
          // identifier is not a template (typo correction for template names
 | 
						|
          // is handled elsewhere).
 | 
						|
          !(getLangOpts().CPlusPlus && NewSSPtr &&
 | 
						|
            isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
 | 
						|
                           Template, MemberOfUnknownSpecialization))) {
 | 
						|
        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
 | 
						|
                                    isClassName, HasTrailingDot, ObjectTypePtr,
 | 
						|
                                    IsCtorOrDtorName,
 | 
						|
                                    WantNontrivialTypeSourceInfo,
 | 
						|
                                    IsClassTemplateDeductionContext);
 | 
						|
        if (Ty) {
 | 
						|
          diagnoseTypo(Correction,
 | 
						|
                       PDiag(diag::err_unknown_type_or_class_name_suggest)
 | 
						|
                         << Result.getLookupName() << isClassName);
 | 
						|
          if (SS && NNS)
 | 
						|
            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | 
						|
          *CorrectedII = NewII;
 | 
						|
          return Ty;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If typo correction failed or was not performed, fall through
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
  case LookupResult::FoundUnresolvedValue:
 | 
						|
    Result.suppressDiagnostics();
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    // Recover from type-hiding ambiguities by hiding the type.  We'll
 | 
						|
    // do the lookup again when looking for an object, and we can
 | 
						|
    // diagnose the error then.  If we don't do this, then the error
 | 
						|
    // about hiding the type will be immediately followed by an error
 | 
						|
    // that only makes sense if the identifier was treated like a type.
 | 
						|
    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
 | 
						|
      Result.suppressDiagnostics();
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Look to see if we have a type anywhere in the list of results.
 | 
						|
    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
 | 
						|
         Res != ResEnd; ++Res) {
 | 
						|
      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
 | 
						|
          (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
 | 
						|
        if (!IIDecl ||
 | 
						|
            (*Res)->getLocation().getRawEncoding() <
 | 
						|
              IIDecl->getLocation().getRawEncoding())
 | 
						|
          IIDecl = *Res;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IIDecl) {
 | 
						|
      // None of the entities we found is a type, so there is no way
 | 
						|
      // to even assume that the result is a type. In this case, don't
 | 
						|
      // complain about the ambiguity. The parser will either try to
 | 
						|
      // perform this lookup again (e.g., as an object name), which
 | 
						|
      // will produce the ambiguity, or will complain that it expected
 | 
						|
      // a type name.
 | 
						|
      Result.suppressDiagnostics();
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // We found a type within the ambiguous lookup; diagnose the
 | 
						|
    // ambiguity and then return that type. This might be the right
 | 
						|
    // answer, or it might not be, but it suppresses any attempt to
 | 
						|
    // perform the name lookup again.
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
    IIDecl = Result.getFoundDecl();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(IIDecl && "Didn't find decl");
 | 
						|
 | 
						|
  QualType T;
 | 
						|
  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
 | 
						|
    // C++ [class.qual]p2: A lookup that would find the injected-class-name
 | 
						|
    // instead names the constructors of the class, except when naming a class.
 | 
						|
    // This is ill-formed when we're not actually forming a ctor or dtor name.
 | 
						|
    auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
 | 
						|
    auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
 | 
						|
    if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
 | 
						|
        FoundRD->isInjectedClassName() &&
 | 
						|
        declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
 | 
						|
      Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
 | 
						|
          << &II << /*Type*/1;
 | 
						|
 | 
						|
    DiagnoseUseOfDecl(IIDecl, NameLoc);
 | 
						|
 | 
						|
    T = Context.getTypeDeclType(TD);
 | 
						|
    MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
 | 
						|
  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
 | 
						|
    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
 | 
						|
    if (!HasTrailingDot)
 | 
						|
      T = Context.getObjCInterfaceType(IDecl);
 | 
						|
  } else if (AllowDeducedTemplate) {
 | 
						|
    if (auto *TD = getAsTypeTemplateDecl(IIDecl))
 | 
						|
      T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
 | 
						|
                                                       QualType(), false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (T.isNull()) {
 | 
						|
    // If it's not plausibly a type, suppress diagnostics.
 | 
						|
    Result.suppressDiagnostics();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
 | 
						|
  // constructor or destructor name (in such a case, the scope specifier
 | 
						|
  // will be attached to the enclosing Expr or Decl node).
 | 
						|
  if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
 | 
						|
      !isa<ObjCInterfaceDecl>(IIDecl)) {
 | 
						|
    if (WantNontrivialTypeSourceInfo) {
 | 
						|
      // Construct a type with type-source information.
 | 
						|
      TypeLocBuilder Builder;
 | 
						|
      Builder.pushTypeSpec(T).setNameLoc(NameLoc);
 | 
						|
 | 
						|
      T = getElaboratedType(ETK_None, *SS, T);
 | 
						|
      ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
 | 
						|
      ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
      ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
 | 
						|
      return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
    } else {
 | 
						|
      T = getElaboratedType(ETK_None, *SS, T);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ParsedType::make(T);
 | 
						|
}
 | 
						|
 | 
						|
// Builds a fake NNS for the given decl context.
 | 
						|
static NestedNameSpecifier *
 | 
						|
synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
 | 
						|
  for (;; DC = DC->getLookupParent()) {
 | 
						|
    DC = DC->getPrimaryContext();
 | 
						|
    auto *ND = dyn_cast<NamespaceDecl>(DC);
 | 
						|
    if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
 | 
						|
      return NestedNameSpecifier::Create(Context, nullptr, ND);
 | 
						|
    else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
 | 
						|
      return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
 | 
						|
                                         RD->getTypeForDecl());
 | 
						|
    else if (isa<TranslationUnitDecl>(DC))
 | 
						|
      return NestedNameSpecifier::GlobalSpecifier(Context);
 | 
						|
  }
 | 
						|
  llvm_unreachable("something isn't in TU scope?");
 | 
						|
}
 | 
						|
 | 
						|
/// Find the parent class with dependent bases of the innermost enclosing method
 | 
						|
/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
 | 
						|
/// up allowing unqualified dependent type names at class-level, which MSVC
 | 
						|
/// correctly rejects.
 | 
						|
static const CXXRecordDecl *
 | 
						|
findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
 | 
						|
  for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
 | 
						|
    DC = DC->getPrimaryContext();
 | 
						|
    if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
 | 
						|
      if (MD->getParent()->hasAnyDependentBases())
 | 
						|
        return MD->getParent();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
 | 
						|
                                          SourceLocation NameLoc,
 | 
						|
                                          bool IsTemplateTypeArg) {
 | 
						|
  assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS = nullptr;
 | 
						|
  if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
 | 
						|
    // If we weren't able to parse a default template argument, delay lookup
 | 
						|
    // until instantiation time by making a non-dependent DependentTypeName. We
 | 
						|
    // pretend we saw a NestedNameSpecifier referring to the current scope, and
 | 
						|
    // lookup is retried.
 | 
						|
    // FIXME: This hurts our diagnostic quality, since we get errors like "no
 | 
						|
    // type named 'Foo' in 'current_namespace'" when the user didn't write any
 | 
						|
    // name specifiers.
 | 
						|
    NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
 | 
						|
    Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
 | 
						|
  } else if (const CXXRecordDecl *RD =
 | 
						|
                 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
 | 
						|
    // Build a DependentNameType that will perform lookup into RD at
 | 
						|
    // instantiation time.
 | 
						|
    NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
 | 
						|
                                      RD->getTypeForDecl());
 | 
						|
 | 
						|
    // Diagnose that this identifier was undeclared, and retry the lookup during
 | 
						|
    // template instantiation.
 | 
						|
    Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
 | 
						|
                                                                      << RD;
 | 
						|
  } else {
 | 
						|
    // This is not a situation that we should recover from.
 | 
						|
    return ParsedType();
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
 | 
						|
 | 
						|
  // Build type location information.  We synthesized the qualifier, so we have
 | 
						|
  // to build a fake NestedNameSpecifierLoc.
 | 
						|
  NestedNameSpecifierLocBuilder NNSLocBuilder;
 | 
						|
  NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
 | 
						|
  NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
 | 
						|
 | 
						|
  TypeLocBuilder Builder;
 | 
						|
  DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
 | 
						|
  DepTL.setNameLoc(NameLoc);
 | 
						|
  DepTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
  DepTL.setQualifierLoc(QualifierLoc);
 | 
						|
  return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
}
 | 
						|
 | 
						|
/// isTagName() - This method is called *for error recovery purposes only*
 | 
						|
/// to determine if the specified name is a valid tag name ("struct foo").  If
 | 
						|
/// so, this returns the TST for the tag corresponding to it (TST_enum,
 | 
						|
/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
 | 
						|
/// cases in C where the user forgot to specify the tag.
 | 
						|
DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
 | 
						|
  // Do a tag name lookup in this scope.
 | 
						|
  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
 | 
						|
  LookupName(R, S, false);
 | 
						|
  R.suppressDiagnostics();
 | 
						|
  if (R.getResultKind() == LookupResult::Found)
 | 
						|
    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
 | 
						|
      switch (TD->getTagKind()) {
 | 
						|
      case TTK_Struct: return DeclSpec::TST_struct;
 | 
						|
      case TTK_Interface: return DeclSpec::TST_interface;
 | 
						|
      case TTK_Union:  return DeclSpec::TST_union;
 | 
						|
      case TTK_Class:  return DeclSpec::TST_class;
 | 
						|
      case TTK_Enum:   return DeclSpec::TST_enum;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return DeclSpec::TST_unspecified;
 | 
						|
}
 | 
						|
 | 
						|
/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
 | 
						|
/// if a CXXScopeSpec's type is equal to the type of one of the base classes
 | 
						|
/// then downgrade the missing typename error to a warning.
 | 
						|
/// This is needed for MSVC compatibility; Example:
 | 
						|
/// @code
 | 
						|
/// template<class T> class A {
 | 
						|
/// public:
 | 
						|
///   typedef int TYPE;
 | 
						|
/// };
 | 
						|
/// template<class T> class B : public A<T> {
 | 
						|
/// public:
 | 
						|
///   A<T>::TYPE a; // no typename required because A<T> is a base class.
 | 
						|
/// };
 | 
						|
/// @endcode
 | 
						|
bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
 | 
						|
  if (CurContext->isRecord()) {
 | 
						|
    if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
 | 
						|
      return true;
 | 
						|
 | 
						|
    const Type *Ty = SS->getScopeRep()->getAsType();
 | 
						|
 | 
						|
    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
 | 
						|
    for (const auto &Base : RD->bases())
 | 
						|
      if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
 | 
						|
        return true;
 | 
						|
    return S->isFunctionPrototypeScope();
 | 
						|
  }
 | 
						|
  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
 | 
						|
                                   SourceLocation IILoc,
 | 
						|
                                   Scope *S,
 | 
						|
                                   CXXScopeSpec *SS,
 | 
						|
                                   ParsedType &SuggestedType,
 | 
						|
                                   bool IsTemplateName) {
 | 
						|
  // Don't report typename errors for editor placeholders.
 | 
						|
  if (II->isEditorPlaceholder())
 | 
						|
    return;
 | 
						|
  // We don't have anything to suggest (yet).
 | 
						|
  SuggestedType = nullptr;
 | 
						|
 | 
						|
  // There may have been a typo in the name of the type. Look up typo
 | 
						|
  // results, in case we have something that we can suggest.
 | 
						|
  if (TypoCorrection Corrected =
 | 
						|
          CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
 | 
						|
                      llvm::make_unique<TypeNameValidatorCCC>(
 | 
						|
                          false, false, IsTemplateName, !IsTemplateName),
 | 
						|
                      CTK_ErrorRecovery)) {
 | 
						|
    // FIXME: Support error recovery for the template-name case.
 | 
						|
    bool CanRecover = !IsTemplateName;
 | 
						|
    if (Corrected.isKeyword()) {
 | 
						|
      // We corrected to a keyword.
 | 
						|
      diagnoseTypo(Corrected,
 | 
						|
                   PDiag(IsTemplateName ? diag::err_no_template_suggest
 | 
						|
                                        : diag::err_unknown_typename_suggest)
 | 
						|
                       << II);
 | 
						|
      II = Corrected.getCorrectionAsIdentifierInfo();
 | 
						|
    } else {
 | 
						|
      // We found a similarly-named type or interface; suggest that.
 | 
						|
      if (!SS || !SS->isSet()) {
 | 
						|
        diagnoseTypo(Corrected,
 | 
						|
                     PDiag(IsTemplateName ? diag::err_no_template_suggest
 | 
						|
                                          : diag::err_unknown_typename_suggest)
 | 
						|
                         << II, CanRecover);
 | 
						|
      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
 | 
						|
        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | 
						|
        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | 
						|
                                II->getName().equals(CorrectedStr);
 | 
						|
        diagnoseTypo(Corrected,
 | 
						|
                     PDiag(IsTemplateName
 | 
						|
                               ? diag::err_no_member_template_suggest
 | 
						|
                               : diag::err_unknown_nested_typename_suggest)
 | 
						|
                         << II << DC << DroppedSpecifier << SS->getRange(),
 | 
						|
                     CanRecover);
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("could not have corrected a typo here");
 | 
						|
      }
 | 
						|
 | 
						|
      if (!CanRecover)
 | 
						|
        return;
 | 
						|
 | 
						|
      CXXScopeSpec tmpSS;
 | 
						|
      if (Corrected.getCorrectionSpecifier())
 | 
						|
        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
 | 
						|
                          SourceRange(IILoc));
 | 
						|
      // FIXME: Support class template argument deduction here.
 | 
						|
      SuggestedType =
 | 
						|
          getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
 | 
						|
                      tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
 | 
						|
                      /*IsCtorOrDtorName=*/false,
 | 
						|
                      /*NonTrivialTypeSourceInfo=*/true);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus && !IsTemplateName) {
 | 
						|
    // See if II is a class template that the user forgot to pass arguments to.
 | 
						|
    UnqualifiedId Name;
 | 
						|
    Name.setIdentifier(II, IILoc);
 | 
						|
    CXXScopeSpec EmptySS;
 | 
						|
    TemplateTy TemplateResult;
 | 
						|
    bool MemberOfUnknownSpecialization;
 | 
						|
    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
 | 
						|
                       Name, nullptr, true, TemplateResult,
 | 
						|
                       MemberOfUnknownSpecialization) == TNK_Type_template) {
 | 
						|
      TemplateName TplName = TemplateResult.get();
 | 
						|
      Diag(IILoc, diag::err_template_missing_args)
 | 
						|
        << (int)getTemplateNameKindForDiagnostics(TplName) << TplName;
 | 
						|
      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
 | 
						|
        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
 | 
						|
          << TplDecl->getTemplateParameters()->getSourceRange();
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Should we move the logic that tries to recover from a missing tag
 | 
						|
  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
 | 
						|
 | 
						|
  if (!SS || (!SS->isSet() && !SS->isInvalid()))
 | 
						|
    Diag(IILoc, IsTemplateName ? diag::err_no_template
 | 
						|
                               : diag::err_unknown_typename)
 | 
						|
        << II;
 | 
						|
  else if (DeclContext *DC = computeDeclContext(*SS, false))
 | 
						|
    Diag(IILoc, IsTemplateName ? diag::err_no_member_template
 | 
						|
                               : diag::err_typename_nested_not_found)
 | 
						|
        << II << DC << SS->getRange();
 | 
						|
  else if (isDependentScopeSpecifier(*SS)) {
 | 
						|
    unsigned DiagID = diag::err_typename_missing;
 | 
						|
    if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
 | 
						|
      DiagID = diag::ext_typename_missing;
 | 
						|
 | 
						|
    Diag(SS->getRange().getBegin(), DiagID)
 | 
						|
      << SS->getScopeRep() << II->getName()
 | 
						|
      << SourceRange(SS->getRange().getBegin(), IILoc)
 | 
						|
      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
 | 
						|
    SuggestedType = ActOnTypenameType(S, SourceLocation(),
 | 
						|
                                      *SS, *II, IILoc).get();
 | 
						|
  } else {
 | 
						|
    assert(SS && SS->isInvalid() &&
 | 
						|
           "Invalid scope specifier has already been diagnosed");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given result set contains either a type name
 | 
						|
/// or
 | 
						|
static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
 | 
						|
  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
 | 
						|
                       NextToken.is(tok::less);
 | 
						|
 | 
						|
  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
 | 
						|
    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (CheckTemplate && isa<TemplateDecl>(*I))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
 | 
						|
                                    Scope *S, CXXScopeSpec &SS,
 | 
						|
                                    IdentifierInfo *&Name,
 | 
						|
                                    SourceLocation NameLoc) {
 | 
						|
  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
 | 
						|
  SemaRef.LookupParsedName(R, S, &SS);
 | 
						|
  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
 | 
						|
    StringRef FixItTagName;
 | 
						|
    switch (Tag->getTagKind()) {
 | 
						|
      case TTK_Class:
 | 
						|
        FixItTagName = "class ";
 | 
						|
        break;
 | 
						|
 | 
						|
      case TTK_Enum:
 | 
						|
        FixItTagName = "enum ";
 | 
						|
        break;
 | 
						|
 | 
						|
      case TTK_Struct:
 | 
						|
        FixItTagName = "struct ";
 | 
						|
        break;
 | 
						|
 | 
						|
      case TTK_Interface:
 | 
						|
        FixItTagName = "__interface ";
 | 
						|
        break;
 | 
						|
 | 
						|
      case TTK_Union:
 | 
						|
        FixItTagName = "union ";
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    StringRef TagName = FixItTagName.drop_back();
 | 
						|
    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
 | 
						|
      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
 | 
						|
      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
 | 
						|
 | 
						|
    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
 | 
						|
         I != IEnd; ++I)
 | 
						|
      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
 | 
						|
        << Name << TagName;
 | 
						|
 | 
						|
    // Replace lookup results with just the tag decl.
 | 
						|
    Result.clear(Sema::LookupTagName);
 | 
						|
    SemaRef.LookupParsedName(Result, S, &SS);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
 | 
						|
static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
 | 
						|
                                  QualType T, SourceLocation NameLoc) {
 | 
						|
  ASTContext &Context = S.Context;
 | 
						|
 | 
						|
  TypeLocBuilder Builder;
 | 
						|
  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
 | 
						|
 | 
						|
  T = S.getElaboratedType(ETK_None, SS, T);
 | 
						|
  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
 | 
						|
  ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
}
 | 
						|
 | 
						|
Sema::NameClassification
 | 
						|
Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
 | 
						|
                   SourceLocation NameLoc, const Token &NextToken,
 | 
						|
                   bool IsAddressOfOperand,
 | 
						|
                   std::unique_ptr<CorrectionCandidateCallback> CCC) {
 | 
						|
  DeclarationNameInfo NameInfo(Name, NameLoc);
 | 
						|
  ObjCMethodDecl *CurMethod = getCurMethodDecl();
 | 
						|
 | 
						|
  if (NextToken.is(tok::coloncolon)) {
 | 
						|
    NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
 | 
						|
    BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
 | 
						|
  } else if (getLangOpts().CPlusPlus && SS.isSet() &&
 | 
						|
             isCurrentClassName(*Name, S, &SS)) {
 | 
						|
    // Per [class.qual]p2, this names the constructors of SS, not the
 | 
						|
    // injected-class-name. We don't have a classification for that.
 | 
						|
    // There's not much point caching this result, since the parser
 | 
						|
    // will reject it later.
 | 
						|
    return NameClassification::Unknown();
 | 
						|
  }
 | 
						|
 | 
						|
  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
 | 
						|
  LookupParsedName(Result, S, &SS, !CurMethod);
 | 
						|
 | 
						|
  // For unqualified lookup in a class template in MSVC mode, look into
 | 
						|
  // dependent base classes where the primary class template is known.
 | 
						|
  if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
 | 
						|
    if (ParsedType TypeInBase =
 | 
						|
            recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
 | 
						|
      return TypeInBase;
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform lookup for Objective-C instance variables (including automatically
 | 
						|
  // synthesized instance variables), if we're in an Objective-C method.
 | 
						|
  // FIXME: This lookup really, really needs to be folded in to the normal
 | 
						|
  // unqualified lookup mechanism.
 | 
						|
  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
 | 
						|
    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
 | 
						|
    if (E.get() || E.isInvalid())
 | 
						|
      return E;
 | 
						|
  }
 | 
						|
 | 
						|
  bool SecondTry = false;
 | 
						|
  bool IsFilteredTemplateName = false;
 | 
						|
 | 
						|
Corrected:
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound:
 | 
						|
    // If an unqualified-id is followed by a '(', then we have a function
 | 
						|
    // call.
 | 
						|
    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
 | 
						|
      // In C++, this is an ADL-only call.
 | 
						|
      // FIXME: Reference?
 | 
						|
      if (getLangOpts().CPlusPlus)
 | 
						|
        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
 | 
						|
 | 
						|
      // C90 6.3.2.2:
 | 
						|
      //   If the expression that precedes the parenthesized argument list in a
 | 
						|
      //   function call consists solely of an identifier, and if no
 | 
						|
      //   declaration is visible for this identifier, the identifier is
 | 
						|
      //   implicitly declared exactly as if, in the innermost block containing
 | 
						|
      //   the function call, the declaration
 | 
						|
      //
 | 
						|
      //     extern int identifier ();
 | 
						|
      //
 | 
						|
      //   appeared.
 | 
						|
      //
 | 
						|
      // We also allow this in C99 as an extension.
 | 
						|
      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
 | 
						|
        Result.addDecl(D);
 | 
						|
        Result.resolveKind();
 | 
						|
        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // In C, we first see whether there is a tag type by the same name, in
 | 
						|
    // which case it's likely that the user just forgot to write "enum",
 | 
						|
    // "struct", or "union".
 | 
						|
    if (!getLangOpts().CPlusPlus && !SecondTry &&
 | 
						|
        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform typo correction to determine if there is another name that is
 | 
						|
    // close to this name.
 | 
						|
    if (!SecondTry && CCC) {
 | 
						|
      SecondTry = true;
 | 
						|
      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
 | 
						|
                                                 Result.getLookupKind(), S,
 | 
						|
                                                 &SS, std::move(CCC),
 | 
						|
                                                 CTK_ErrorRecovery)) {
 | 
						|
        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
 | 
						|
        unsigned QualifiedDiag = diag::err_no_member_suggest;
 | 
						|
 | 
						|
        NamedDecl *FirstDecl = Corrected.getFoundDecl();
 | 
						|
        NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
 | 
						|
        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
 | 
						|
            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
 | 
						|
          UnqualifiedDiag = diag::err_no_template_suggest;
 | 
						|
          QualifiedDiag = diag::err_no_member_template_suggest;
 | 
						|
        } else if (UnderlyingFirstDecl &&
 | 
						|
                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
 | 
						|
                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
 | 
						|
                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
 | 
						|
          UnqualifiedDiag = diag::err_unknown_typename_suggest;
 | 
						|
          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
 | 
						|
        }
 | 
						|
 | 
						|
        if (SS.isEmpty()) {
 | 
						|
          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
 | 
						|
        } else {// FIXME: is this even reachable? Test it.
 | 
						|
          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | 
						|
          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | 
						|
                                  Name->getName().equals(CorrectedStr);
 | 
						|
          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
 | 
						|
                                    << Name << computeDeclContext(SS, false)
 | 
						|
                                    << DroppedSpecifier << SS.getRange());
 | 
						|
        }
 | 
						|
 | 
						|
        // Update the name, so that the caller has the new name.
 | 
						|
        Name = Corrected.getCorrectionAsIdentifierInfo();
 | 
						|
 | 
						|
        // Typo correction corrected to a keyword.
 | 
						|
        if (Corrected.isKeyword())
 | 
						|
          return Name;
 | 
						|
 | 
						|
        // Also update the LookupResult...
 | 
						|
        // FIXME: This should probably go away at some point
 | 
						|
        Result.clear();
 | 
						|
        Result.setLookupName(Corrected.getCorrection());
 | 
						|
        if (FirstDecl)
 | 
						|
          Result.addDecl(FirstDecl);
 | 
						|
 | 
						|
        // If we found an Objective-C instance variable, let
 | 
						|
        // LookupInObjCMethod build the appropriate expression to
 | 
						|
        // reference the ivar.
 | 
						|
        // FIXME: This is a gross hack.
 | 
						|
        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
 | 
						|
          Result.clear();
 | 
						|
          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
 | 
						|
          return E;
 | 
						|
        }
 | 
						|
 | 
						|
        goto Corrected;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We failed to correct; just fall through and let the parser deal with it.
 | 
						|
    Result.suppressDiagnostics();
 | 
						|
    return NameClassification::Unknown();
 | 
						|
 | 
						|
  case LookupResult::NotFoundInCurrentInstantiation: {
 | 
						|
    // We performed name lookup into the current instantiation, and there were
 | 
						|
    // dependent bases, so we treat this result the same way as any other
 | 
						|
    // dependent nested-name-specifier.
 | 
						|
 | 
						|
    // C++ [temp.res]p2:
 | 
						|
    //   A name used in a template declaration or definition and that is
 | 
						|
    //   dependent on a template-parameter is assumed not to name a type
 | 
						|
    //   unless the applicable name lookup finds a type name or the name is
 | 
						|
    //   qualified by the keyword typename.
 | 
						|
    //
 | 
						|
    // FIXME: If the next token is '<', we might want to ask the parser to
 | 
						|
    // perform some heroics to see if we actually have a
 | 
						|
    // template-argument-list, which would indicate a missing 'template'
 | 
						|
    // keyword here.
 | 
						|
    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
 | 
						|
                                      NameInfo, IsAddressOfOperand,
 | 
						|
                                      /*TemplateArgs=*/nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
  case LookupResult::FoundUnresolvedValue:
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
 | 
						|
        hasAnyAcceptableTemplateNames(Result)) {
 | 
						|
      // C++ [temp.local]p3:
 | 
						|
      //   A lookup that finds an injected-class-name (10.2) can result in an
 | 
						|
      //   ambiguity in certain cases (for example, if it is found in more than
 | 
						|
      //   one base class). If all of the injected-class-names that are found
 | 
						|
      //   refer to specializations of the same class template, and if the name
 | 
						|
      //   is followed by a template-argument-list, the reference refers to the
 | 
						|
      //   class template itself and not a specialization thereof, and is not
 | 
						|
      //   ambiguous.
 | 
						|
      //
 | 
						|
      // This filtering can make an ambiguous result into an unambiguous one,
 | 
						|
      // so try again after filtering out template names.
 | 
						|
      FilterAcceptableTemplateNames(Result);
 | 
						|
      if (!Result.isAmbiguous()) {
 | 
						|
        IsFilteredTemplateName = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Diagnose the ambiguity and return an error.
 | 
						|
    return NameClassification::Error();
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
 | 
						|
      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
 | 
						|
    // C++ [temp.names]p3:
 | 
						|
    //   After name lookup (3.4) finds that a name is a template-name or that
 | 
						|
    //   an operator-function-id or a literal- operator-id refers to a set of
 | 
						|
    //   overloaded functions any member of which is a function template if
 | 
						|
    //   this is followed by a <, the < is always taken as the delimiter of a
 | 
						|
    //   template-argument-list and never as the less-than operator.
 | 
						|
    if (!IsFilteredTemplateName)
 | 
						|
      FilterAcceptableTemplateNames(Result);
 | 
						|
 | 
						|
    if (!Result.empty()) {
 | 
						|
      bool IsFunctionTemplate;
 | 
						|
      bool IsVarTemplate;
 | 
						|
      TemplateName Template;
 | 
						|
      if (Result.end() - Result.begin() > 1) {
 | 
						|
        IsFunctionTemplate = true;
 | 
						|
        Template = Context.getOverloadedTemplateName(Result.begin(),
 | 
						|
                                                     Result.end());
 | 
						|
      } else {
 | 
						|
        TemplateDecl *TD
 | 
						|
          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
 | 
						|
        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
 | 
						|
        IsVarTemplate = isa<VarTemplateDecl>(TD);
 | 
						|
 | 
						|
        if (SS.isSet() && !SS.isInvalid())
 | 
						|
          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
 | 
						|
                                                    /*TemplateKeyword=*/false,
 | 
						|
                                                      TD);
 | 
						|
        else
 | 
						|
          Template = TemplateName(TD);
 | 
						|
      }
 | 
						|
 | 
						|
      if (IsFunctionTemplate) {
 | 
						|
        // Function templates always go through overload resolution, at which
 | 
						|
        // point we'll perform the various checks (e.g., accessibility) we need
 | 
						|
        // to based on which function we selected.
 | 
						|
        Result.suppressDiagnostics();
 | 
						|
 | 
						|
        return NameClassification::FunctionTemplate(Template);
 | 
						|
      }
 | 
						|
 | 
						|
      return IsVarTemplate ? NameClassification::VarTemplate(Template)
 | 
						|
                           : NameClassification::TypeTemplate(Template);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
 | 
						|
  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
 | 
						|
    DiagnoseUseOfDecl(Type, NameLoc);
 | 
						|
    MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
 | 
						|
    QualType T = Context.getTypeDeclType(Type);
 | 
						|
    if (SS.isNotEmpty())
 | 
						|
      return buildNestedType(*this, SS, T, NameLoc);
 | 
						|
    return ParsedType::make(T);
 | 
						|
  }
 | 
						|
 | 
						|
  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
 | 
						|
  if (!Class) {
 | 
						|
    // FIXME: It's unfortunate that we don't have a Type node for handling this.
 | 
						|
    if (ObjCCompatibleAliasDecl *Alias =
 | 
						|
            dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
 | 
						|
      Class = Alias->getClassInterface();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Class) {
 | 
						|
    DiagnoseUseOfDecl(Class, NameLoc);
 | 
						|
 | 
						|
    if (NextToken.is(tok::period)) {
 | 
						|
      // Interface. <something> is parsed as a property reference expression.
 | 
						|
      // Just return "unknown" as a fall-through for now.
 | 
						|
      Result.suppressDiagnostics();
 | 
						|
      return NameClassification::Unknown();
 | 
						|
    }
 | 
						|
 | 
						|
    QualType T = Context.getObjCInterfaceType(Class);
 | 
						|
    return ParsedType::make(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // We can have a type template here if we're classifying a template argument.
 | 
						|
  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
 | 
						|
      !isa<VarTemplateDecl>(FirstDecl))
 | 
						|
    return NameClassification::TypeTemplate(
 | 
						|
        TemplateName(cast<TemplateDecl>(FirstDecl)));
 | 
						|
 | 
						|
  // Check for a tag type hidden by a non-type decl in a few cases where it
 | 
						|
  // seems likely a type is wanted instead of the non-type that was found.
 | 
						|
  bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
 | 
						|
  if ((NextToken.is(tok::identifier) ||
 | 
						|
       (NextIsOp &&
 | 
						|
        FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
 | 
						|
      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
 | 
						|
    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
 | 
						|
    DiagnoseUseOfDecl(Type, NameLoc);
 | 
						|
    QualType T = Context.getTypeDeclType(Type);
 | 
						|
    if (SS.isNotEmpty())
 | 
						|
      return buildNestedType(*this, SS, T, NameLoc);
 | 
						|
    return ParsedType::make(T);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FirstDecl->isCXXClassMember())
 | 
						|
    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
 | 
						|
                                           nullptr, S);
 | 
						|
 | 
						|
  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
 | 
						|
  return BuildDeclarationNameExpr(SS, Result, ADL);
 | 
						|
}
 | 
						|
 | 
						|
Sema::TemplateNameKindForDiagnostics
 | 
						|
Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
 | 
						|
  auto *TD = Name.getAsTemplateDecl();
 | 
						|
  if (!TD)
 | 
						|
    return TemplateNameKindForDiagnostics::DependentTemplate;
 | 
						|
  if (isa<ClassTemplateDecl>(TD))
 | 
						|
    return TemplateNameKindForDiagnostics::ClassTemplate;
 | 
						|
  if (isa<FunctionTemplateDecl>(TD))
 | 
						|
    return TemplateNameKindForDiagnostics::FunctionTemplate;
 | 
						|
  if (isa<VarTemplateDecl>(TD))
 | 
						|
    return TemplateNameKindForDiagnostics::VarTemplate;
 | 
						|
  if (isa<TypeAliasTemplateDecl>(TD))
 | 
						|
    return TemplateNameKindForDiagnostics::AliasTemplate;
 | 
						|
  if (isa<TemplateTemplateParmDecl>(TD))
 | 
						|
    return TemplateNameKindForDiagnostics::TemplateTemplateParam;
 | 
						|
  return TemplateNameKindForDiagnostics::DependentTemplate;
 | 
						|
}
 | 
						|
 | 
						|
// Determines the context to return to after temporarily entering a
 | 
						|
// context.  This depends in an unnecessarily complicated way on the
 | 
						|
// exact ordering of callbacks from the parser.
 | 
						|
DeclContext *Sema::getContainingDC(DeclContext *DC) {
 | 
						|
 | 
						|
  // Functions defined inline within classes aren't parsed until we've
 | 
						|
  // finished parsing the top-level class, so the top-level class is
 | 
						|
  // the context we'll need to return to.
 | 
						|
  // A Lambda call operator whose parent is a class must not be treated
 | 
						|
  // as an inline member function.  A Lambda can be used legally
 | 
						|
  // either as an in-class member initializer or a default argument.  These
 | 
						|
  // are parsed once the class has been marked complete and so the containing
 | 
						|
  // context would be the nested class (when the lambda is defined in one);
 | 
						|
  // If the class is not complete, then the lambda is being used in an
 | 
						|
  // ill-formed fashion (such as to specify the width of a bit-field, or
 | 
						|
  // in an array-bound) - in which case we still want to return the
 | 
						|
  // lexically containing DC (which could be a nested class).
 | 
						|
  if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
 | 
						|
    DC = DC->getLexicalParent();
 | 
						|
 | 
						|
    // A function not defined within a class will always return to its
 | 
						|
    // lexical context.
 | 
						|
    if (!isa<CXXRecordDecl>(DC))
 | 
						|
      return DC;
 | 
						|
 | 
						|
    // A C++ inline method/friend is parsed *after* the topmost class
 | 
						|
    // it was declared in is fully parsed ("complete");  the topmost
 | 
						|
    // class is the context we need to return to.
 | 
						|
    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
 | 
						|
      DC = RD;
 | 
						|
 | 
						|
    // Return the declaration context of the topmost class the inline method is
 | 
						|
    // declared in.
 | 
						|
    return DC;
 | 
						|
  }
 | 
						|
 | 
						|
  return DC->getLexicalParent();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
 | 
						|
  assert(getContainingDC(DC) == CurContext &&
 | 
						|
      "The next DeclContext should be lexically contained in the current one.");
 | 
						|
  CurContext = DC;
 | 
						|
  S->setEntity(DC);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::PopDeclContext() {
 | 
						|
  assert(CurContext && "DeclContext imbalance!");
 | 
						|
 | 
						|
  CurContext = getContainingDC(CurContext);
 | 
						|
  assert(CurContext && "Popped translation unit!");
 | 
						|
}
 | 
						|
 | 
						|
Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
 | 
						|
                                                                    Decl *D) {
 | 
						|
  // Unlike PushDeclContext, the context to which we return is not necessarily
 | 
						|
  // the containing DC of TD, because the new context will be some pre-existing
 | 
						|
  // TagDecl definition instead of a fresh one.
 | 
						|
  auto Result = static_cast<SkippedDefinitionContext>(CurContext);
 | 
						|
  CurContext = cast<TagDecl>(D)->getDefinition();
 | 
						|
  assert(CurContext && "skipping definition of undefined tag");
 | 
						|
  // Start lookups from the parent of the current context; we don't want to look
 | 
						|
  // into the pre-existing complete definition.
 | 
						|
  S->setEntity(CurContext->getLookupParent());
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
 | 
						|
  CurContext = static_cast<decltype(CurContext)>(Context);
 | 
						|
}
 | 
						|
 | 
						|
/// EnterDeclaratorContext - Used when we must lookup names in the context
 | 
						|
/// of a declarator's nested name specifier.
 | 
						|
///
 | 
						|
void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
 | 
						|
  // C++0x [basic.lookup.unqual]p13:
 | 
						|
  //   A name used in the definition of a static data member of class
 | 
						|
  //   X (after the qualified-id of the static member) is looked up as
 | 
						|
  //   if the name was used in a member function of X.
 | 
						|
  // C++0x [basic.lookup.unqual]p14:
 | 
						|
  //   If a variable member of a namespace is defined outside of the
 | 
						|
  //   scope of its namespace then any name used in the definition of
 | 
						|
  //   the variable member (after the declarator-id) is looked up as
 | 
						|
  //   if the definition of the variable member occurred in its
 | 
						|
  //   namespace.
 | 
						|
  // Both of these imply that we should push a scope whose context
 | 
						|
  // is the semantic context of the declaration.  We can't use
 | 
						|
  // PushDeclContext here because that context is not necessarily
 | 
						|
  // lexically contained in the current context.  Fortunately,
 | 
						|
  // the containing scope should have the appropriate information.
 | 
						|
 | 
						|
  assert(!S->getEntity() && "scope already has entity");
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  Scope *Ancestor = S->getParent();
 | 
						|
  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | 
						|
  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
 | 
						|
#endif
 | 
						|
 | 
						|
  CurContext = DC;
 | 
						|
  S->setEntity(DC);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ExitDeclaratorContext(Scope *S) {
 | 
						|
  assert(S->getEntity() == CurContext && "Context imbalance!");
 | 
						|
 | 
						|
  // Switch back to the lexical context.  The safety of this is
 | 
						|
  // enforced by an assert in EnterDeclaratorContext.
 | 
						|
  Scope *Ancestor = S->getParent();
 | 
						|
  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
 | 
						|
  CurContext = Ancestor->getEntity();
 | 
						|
 | 
						|
  // We don't need to do anything with the scope, which is going to
 | 
						|
  // disappear.
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
 | 
						|
  // We assume that the caller has already called
 | 
						|
  // ActOnReenterTemplateScope so getTemplatedDecl() works.
 | 
						|
  FunctionDecl *FD = D->getAsFunction();
 | 
						|
  if (!FD)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Same implementation as PushDeclContext, but enters the context
 | 
						|
  // from the lexical parent, rather than the top-level class.
 | 
						|
  assert(CurContext == FD->getLexicalParent() &&
 | 
						|
    "The next DeclContext should be lexically contained in the current one.");
 | 
						|
  CurContext = FD;
 | 
						|
  S->setEntity(CurContext);
 | 
						|
 | 
						|
  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
 | 
						|
    ParmVarDecl *Param = FD->getParamDecl(P);
 | 
						|
    // If the parameter has an identifier, then add it to the scope
 | 
						|
    if (Param->getIdentifier()) {
 | 
						|
      S->AddDecl(Param);
 | 
						|
      IdResolver.AddDecl(Param);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnExitFunctionContext() {
 | 
						|
  // Same implementation as PopDeclContext, but returns to the lexical parent,
 | 
						|
  // rather than the top-level class.
 | 
						|
  assert(CurContext && "DeclContext imbalance!");
 | 
						|
  CurContext = CurContext->getLexicalParent();
 | 
						|
  assert(CurContext && "Popped translation unit!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether we allow overloading of the function
 | 
						|
/// PrevDecl with another declaration.
 | 
						|
///
 | 
						|
/// This routine determines whether overloading is possible, not
 | 
						|
/// whether some new function is actually an overload. It will return
 | 
						|
/// true in C++ (where we can always provide overloads) or, as an
 | 
						|
/// extension, in C when the previous function is already an
 | 
						|
/// overloaded function declaration or has the "overloadable"
 | 
						|
/// attribute.
 | 
						|
static bool AllowOverloadingOfFunction(LookupResult &Previous,
 | 
						|
                                       ASTContext &Context,
 | 
						|
                                       const FunctionDecl *New) {
 | 
						|
  if (Context.getLangOpts().CPlusPlus)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return Previous.getResultKind() == LookupResult::Found &&
 | 
						|
         (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
 | 
						|
          New->hasAttr<OverloadableAttr>());
 | 
						|
}
 | 
						|
 | 
						|
/// Add this decl to the scope shadowed decl chains.
 | 
						|
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
 | 
						|
  // Move up the scope chain until we find the nearest enclosing
 | 
						|
  // non-transparent context. The declaration will be introduced into this
 | 
						|
  // scope.
 | 
						|
  while (S->getEntity() && S->getEntity()->isTransparentContext())
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // Add scoped declarations into their context, so that they can be
 | 
						|
  // found later. Declarations without a context won't be inserted
 | 
						|
  // into any context.
 | 
						|
  if (AddToContext)
 | 
						|
    CurContext->addDecl(D);
 | 
						|
 | 
						|
  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
 | 
						|
  // are function-local declarations.
 | 
						|
  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
 | 
						|
      !D->getDeclContext()->getRedeclContext()->Equals(
 | 
						|
        D->getLexicalDeclContext()->getRedeclContext()) &&
 | 
						|
      !D->getLexicalDeclContext()->isFunctionOrMethod())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Template instantiations should also not be pushed into scope.
 | 
						|
  if (isa<FunctionDecl>(D) &&
 | 
						|
      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this replaces anything in the current scope,
 | 
						|
  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
 | 
						|
                               IEnd = IdResolver.end();
 | 
						|
  for (; I != IEnd; ++I) {
 | 
						|
    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
 | 
						|
      S->RemoveDecl(*I);
 | 
						|
      IdResolver.RemoveDecl(*I);
 | 
						|
 | 
						|
      // Should only need to replace one decl.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  S->AddDecl(D);
 | 
						|
 | 
						|
  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
 | 
						|
    // Implicitly-generated labels may end up getting generated in an order that
 | 
						|
    // isn't strictly lexical, which breaks name lookup. Be careful to insert
 | 
						|
    // the label at the appropriate place in the identifier chain.
 | 
						|
    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
 | 
						|
      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
 | 
						|
      if (IDC == CurContext) {
 | 
						|
        if (!S->isDeclScope(*I))
 | 
						|
          continue;
 | 
						|
      } else if (IDC->Encloses(CurContext))
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    IdResolver.InsertDeclAfter(I, D);
 | 
						|
  } else {
 | 
						|
    IdResolver.AddDecl(D);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
 | 
						|
  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
 | 
						|
    TUScope->AddDecl(D);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
 | 
						|
                         bool AllowInlineNamespace) {
 | 
						|
  return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
 | 
						|
}
 | 
						|
 | 
						|
Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
 | 
						|
  DeclContext *TargetDC = DC->getPrimaryContext();
 | 
						|
  do {
 | 
						|
    if (DeclContext *ScopeDC = S->getEntity())
 | 
						|
      if (ScopeDC->getPrimaryContext() == TargetDC)
 | 
						|
        return S;
 | 
						|
  } while ((S = S->getParent()));
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool isOutOfScopePreviousDeclaration(NamedDecl *,
 | 
						|
                                            DeclContext*,
 | 
						|
                                            ASTContext&);
 | 
						|
 | 
						|
/// Filters out lookup results that don't fall within the given scope
 | 
						|
/// as determined by isDeclInScope.
 | 
						|
void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
 | 
						|
                                bool ConsiderLinkage,
 | 
						|
                                bool AllowInlineNamespace) {
 | 
						|
  LookupResult::Filter F = R.makeFilter();
 | 
						|
  while (F.hasNext()) {
 | 
						|
    NamedDecl *D = F.next();
 | 
						|
 | 
						|
    if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
 | 
						|
      continue;
 | 
						|
 | 
						|
    F.erase();
 | 
						|
  }
 | 
						|
 | 
						|
  F.done();
 | 
						|
}
 | 
						|
 | 
						|
/// We've determined that \p New is a redeclaration of \p Old. Check that they
 | 
						|
/// have compatible owning modules.
 | 
						|
bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
 | 
						|
  // FIXME: The Modules TS is not clear about how friend declarations are
 | 
						|
  // to be treated. It's not meaningful to have different owning modules for
 | 
						|
  // linkage in redeclarations of the same entity, so for now allow the
 | 
						|
  // redeclaration and change the owning modules to match.
 | 
						|
  if (New->getFriendObjectKind() &&
 | 
						|
      Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
 | 
						|
    New->setLocalOwningModule(Old->getOwningModule());
 | 
						|
    makeMergedDefinitionVisible(New);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Module *NewM = New->getOwningModule();
 | 
						|
  Module *OldM = Old->getOwningModule();
 | 
						|
  if (NewM == OldM)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Check proclaimed-ownership-declarations here too.
 | 
						|
  bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
 | 
						|
  bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
 | 
						|
  if (NewIsModuleInterface || OldIsModuleInterface) {
 | 
						|
    // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
 | 
						|
    //   if a declaration of D [...] appears in the purview of a module, all
 | 
						|
    //   other such declarations shall appear in the purview of the same module
 | 
						|
    Diag(New->getLocation(), diag::err_mismatched_owning_module)
 | 
						|
      << New
 | 
						|
      << NewIsModuleInterface
 | 
						|
      << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
 | 
						|
      << OldIsModuleInterface
 | 
						|
      << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_declaration);
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isUsingDecl(NamedDecl *D) {
 | 
						|
  return isa<UsingShadowDecl>(D) ||
 | 
						|
         isa<UnresolvedUsingTypenameDecl>(D) ||
 | 
						|
         isa<UnresolvedUsingValueDecl>(D);
 | 
						|
}
 | 
						|
 | 
						|
/// Removes using shadow declarations from the lookup results.
 | 
						|
static void RemoveUsingDecls(LookupResult &R) {
 | 
						|
  LookupResult::Filter F = R.makeFilter();
 | 
						|
  while (F.hasNext())
 | 
						|
    if (isUsingDecl(F.next()))
 | 
						|
      F.erase();
 | 
						|
 | 
						|
  F.done();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check for this common pattern:
 | 
						|
/// @code
 | 
						|
/// class S {
 | 
						|
///   S(const S&); // DO NOT IMPLEMENT
 | 
						|
///   void operator=(const S&); // DO NOT IMPLEMENT
 | 
						|
/// };
 | 
						|
/// @endcode
 | 
						|
static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
 | 
						|
  // FIXME: Should check for private access too but access is set after we get
 | 
						|
  // the decl here.
 | 
						|
  if (D->doesThisDeclarationHaveABody())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
 | 
						|
    return CD->isCopyConstructor();
 | 
						|
  return D->isCopyAssignmentOperator();
 | 
						|
}
 | 
						|
 | 
						|
// We need this to handle
 | 
						|
//
 | 
						|
// typedef struct {
 | 
						|
//   void *foo() { return 0; }
 | 
						|
// } A;
 | 
						|
//
 | 
						|
// When we see foo we don't know if after the typedef we will get 'A' or '*A'
 | 
						|
// for example. If 'A', foo will have external linkage. If we have '*A',
 | 
						|
// foo will have no linkage. Since we can't know until we get to the end
 | 
						|
// of the typedef, this function finds out if D might have non-external linkage.
 | 
						|
// Callers should verify at the end of the TU if it D has external linkage or
 | 
						|
// not.
 | 
						|
bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
 | 
						|
  const DeclContext *DC = D->getDeclContext();
 | 
						|
  while (!DC->isTranslationUnit()) {
 | 
						|
    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
 | 
						|
      if (!RD->hasNameForLinkage())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    DC = DC->getParent();
 | 
						|
  }
 | 
						|
 | 
						|
  return !D->isExternallyVisible();
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This needs to be refactored; some other isInMainFile users want
 | 
						|
// these semantics.
 | 
						|
static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
 | 
						|
  if (S.TUKind != TU_Complete)
 | 
						|
    return false;
 | 
						|
  return S.SourceMgr.isInMainFile(Loc);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
 | 
						|
  assert(D);
 | 
						|
 | 
						|
  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ignore all entities declared within templates, and out-of-line definitions
 | 
						|
  // of members of class templates.
 | 
						|
  if (D->getDeclContext()->isDependentContext() ||
 | 
						|
      D->getLexicalDeclContext()->isDependentContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | 
						|
      return false;
 | 
						|
    // A non-out-of-line declaration of a member specialization was implicitly
 | 
						|
    // instantiated; it's the out-of-line declaration that we're interested in.
 | 
						|
    if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
 | 
						|
        FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      // 'static inline' functions are defined in headers; don't warn.
 | 
						|
      if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FD->doesThisDeclarationHaveABody() &&
 | 
						|
        Context.DeclMustBeEmitted(FD))
 | 
						|
      return false;
 | 
						|
  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    // Constants and utility variables are defined in headers with internal
 | 
						|
    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
 | 
						|
    // like "inline".)
 | 
						|
    if (!isMainFileLoc(*this, VD->getLocation()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Context.DeclMustBeEmitted(VD))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (VD->isStaticDataMember() &&
 | 
						|
        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
 | 
						|
      return false;
 | 
						|
    if (VD->isStaticDataMember() &&
 | 
						|
        VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
 | 
						|
        VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Only warn for unused decls internal to the translation unit.
 | 
						|
  // FIXME: This seems like a bogus check; it suppresses -Wunused-function
 | 
						|
  // for inline functions defined in the main source file, for instance.
 | 
						|
  return mightHaveNonExternalLinkage(D);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
 | 
						|
  if (!D)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
 | 
						|
    const FunctionDecl *First = FD->getFirstDecl();
 | 
						|
    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | 
						|
      return; // First should already be in the vector.
 | 
						|
  }
 | 
						|
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    const VarDecl *First = VD->getFirstDecl();
 | 
						|
    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
 | 
						|
      return; // First should already be in the vector.
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShouldWarnIfUnusedFileScopedDecl(D))
 | 
						|
    UnusedFileScopedDecls.push_back(D);
 | 
						|
}
 | 
						|
 | 
						|
static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
 | 
						|
  if (D->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Referenced = false;
 | 
						|
  if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
 | 
						|
    // For a decomposition declaration, warn if none of the bindings are
 | 
						|
    // referenced, instead of if the variable itself is referenced (which
 | 
						|
    // it is, by the bindings' expressions).
 | 
						|
    for (auto *BD : DD->bindings()) {
 | 
						|
      if (BD->isReferenced()) {
 | 
						|
        Referenced = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (!D->getDeclName()) {
 | 
						|
    return false;
 | 
						|
  } else if (D->isReferenced() || D->isUsed()) {
 | 
						|
    Referenced = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Referenced || D->hasAttr<UnusedAttr>() ||
 | 
						|
      D->hasAttr<ObjCPreciseLifetimeAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<LabelDecl>(D))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Except for labels, we only care about unused decls that are local to
 | 
						|
  // functions.
 | 
						|
  bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
 | 
						|
  if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
 | 
						|
    // For dependent types, the diagnostic is deferred.
 | 
						|
    WithinFunction =
 | 
						|
        WithinFunction || (R->isLocalClass() && !R->isDependentType());
 | 
						|
  if (!WithinFunction)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isa<TypedefNameDecl>(D))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // White-list anything that isn't a local variable.
 | 
						|
  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Types of valid local variables should be complete, so this should succeed.
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
 | 
						|
    // White-list anything with an __attribute__((unused)) type.
 | 
						|
    const auto *Ty = VD->getType().getTypePtr();
 | 
						|
 | 
						|
    // Only look at the outermost level of typedef.
 | 
						|
    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
 | 
						|
      if (TT->getDecl()->hasAttr<UnusedAttr>())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we failed to complete the type for some reason, or if the type is
 | 
						|
    // dependent, don't diagnose the variable.
 | 
						|
    if (Ty->isIncompleteType() || Ty->isDependentType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Look at the element type to ensure that the warning behaviour is
 | 
						|
    // consistent for both scalars and arrays.
 | 
						|
    Ty = Ty->getBaseElementTypeUnsafe();
 | 
						|
 | 
						|
    if (const TagType *TT = Ty->getAs<TagType>()) {
 | 
						|
      const TagDecl *Tag = TT->getDecl();
 | 
						|
      if (Tag->hasAttr<UnusedAttr>())
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
 | 
						|
        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
 | 
						|
          return false;
 | 
						|
 | 
						|
        if (const Expr *Init = VD->getInit()) {
 | 
						|
          if (const ExprWithCleanups *Cleanups =
 | 
						|
                  dyn_cast<ExprWithCleanups>(Init))
 | 
						|
            Init = Cleanups->getSubExpr();
 | 
						|
          const CXXConstructExpr *Construct =
 | 
						|
            dyn_cast<CXXConstructExpr>(Init);
 | 
						|
          if (Construct && !Construct->isElidable()) {
 | 
						|
            CXXConstructorDecl *CD = Construct->getConstructor();
 | 
						|
            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
 | 
						|
                (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: __attribute__((unused)) templates?
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
 | 
						|
                                     FixItHint &Hint) {
 | 
						|
  if (isa<LabelDecl>(D)) {
 | 
						|
    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
 | 
						|
                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
 | 
						|
    if (AfterColon.isInvalid())
 | 
						|
      return;
 | 
						|
    Hint = FixItHint::CreateRemoval(CharSourceRange::
 | 
						|
                                    getCharRange(D->getLocStart(), AfterColon));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
 | 
						|
  if (D->getTypeForDecl()->isDependentType())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (auto *TmpD : D->decls()) {
 | 
						|
    if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
 | 
						|
      DiagnoseUnusedDecl(T);
 | 
						|
    else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
 | 
						|
      DiagnoseUnusedNestedTypedefs(R);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
 | 
						|
/// unless they are marked attr(unused).
 | 
						|
void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
 | 
						|
  if (!ShouldDiagnoseUnusedDecl(D))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
 | 
						|
    // typedefs can be referenced later on, so the diagnostics are emitted
 | 
						|
    // at end-of-translation-unit.
 | 
						|
    UnusedLocalTypedefNameCandidates.insert(TD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  FixItHint Hint;
 | 
						|
  GenerateFixForUnusedDecl(D, Context, Hint);
 | 
						|
 | 
						|
  unsigned DiagID;
 | 
						|
  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
 | 
						|
    DiagID = diag::warn_unused_exception_param;
 | 
						|
  else if (isa<LabelDecl>(D))
 | 
						|
    DiagID = diag::warn_unused_label;
 | 
						|
  else
 | 
						|
    DiagID = diag::warn_unused_variable;
 | 
						|
 | 
						|
  Diag(D->getLocation(), DiagID) << D << Hint;
 | 
						|
}
 | 
						|
 | 
						|
static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
 | 
						|
  // Verify that we have no forward references left.  If so, there was a goto
 | 
						|
  // or address of a label taken, but no definition of it.  Label fwd
 | 
						|
  // definitions are indicated with a null substmt which is also not a resolved
 | 
						|
  // MS inline assembly label name.
 | 
						|
  bool Diagnose = false;
 | 
						|
  if (L->isMSAsmLabel())
 | 
						|
    Diagnose = !L->isResolvedMSAsmLabel();
 | 
						|
  else
 | 
						|
    Diagnose = L->getStmt() == nullptr;
 | 
						|
  if (Diagnose)
 | 
						|
    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
 | 
						|
  S->mergeNRVOIntoParent();
 | 
						|
 | 
						|
  if (S->decl_empty()) return;
 | 
						|
  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
 | 
						|
         "Scope shouldn't contain decls!");
 | 
						|
 | 
						|
  for (auto *TmpD : S->decls()) {
 | 
						|
    assert(TmpD && "This decl didn't get pushed??");
 | 
						|
 | 
						|
    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
 | 
						|
    NamedDecl *D = cast<NamedDecl>(TmpD);
 | 
						|
 | 
						|
    // Diagnose unused variables in this scope.
 | 
						|
    if (!S->hasUnrecoverableErrorOccurred()) {
 | 
						|
      DiagnoseUnusedDecl(D);
 | 
						|
      if (const auto *RD = dyn_cast<RecordDecl>(D))
 | 
						|
        DiagnoseUnusedNestedTypedefs(RD);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!D->getDeclName()) continue;
 | 
						|
 | 
						|
    // If this was a forward reference to a label, verify it was defined.
 | 
						|
    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
 | 
						|
      CheckPoppedLabel(LD, *this);
 | 
						|
 | 
						|
    // Remove this name from our lexical scope, and warn on it if we haven't
 | 
						|
    // already.
 | 
						|
    IdResolver.RemoveDecl(D);
 | 
						|
    auto ShadowI = ShadowingDecls.find(D);
 | 
						|
    if (ShadowI != ShadowingDecls.end()) {
 | 
						|
      if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
 | 
						|
        Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
 | 
						|
            << D << FD << FD->getParent();
 | 
						|
        Diag(FD->getLocation(), diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
      ShadowingDecls.erase(ShadowI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Look for an Objective-C class in the translation unit.
 | 
						|
///
 | 
						|
/// \param Id The name of the Objective-C class we're looking for. If
 | 
						|
/// typo-correction fixes this name, the Id will be updated
 | 
						|
/// to the fixed name.
 | 
						|
///
 | 
						|
/// \param IdLoc The location of the name in the translation unit.
 | 
						|
///
 | 
						|
/// \param DoTypoCorrection If true, this routine will attempt typo correction
 | 
						|
/// if there is no class with the given name.
 | 
						|
///
 | 
						|
/// \returns The declaration of the named Objective-C class, or NULL if the
 | 
						|
/// class could not be found.
 | 
						|
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
 | 
						|
                                              SourceLocation IdLoc,
 | 
						|
                                              bool DoTypoCorrection) {
 | 
						|
  // The third "scope" argument is 0 since we aren't enabling lazy built-in
 | 
						|
  // creation from this context.
 | 
						|
  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
 | 
						|
 | 
						|
  if (!IDecl && DoTypoCorrection) {
 | 
						|
    // Perform typo correction at the given location, but only if we
 | 
						|
    // find an Objective-C class name.
 | 
						|
    if (TypoCorrection C = CorrectTypo(
 | 
						|
            DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
 | 
						|
            llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
 | 
						|
            CTK_ErrorRecovery)) {
 | 
						|
      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
 | 
						|
      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
 | 
						|
      Id = IDecl->getIdentifier();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
 | 
						|
  // This routine must always return a class definition, if any.
 | 
						|
  if (Def && Def->getDefinition())
 | 
						|
      Def = Def->getDefinition();
 | 
						|
  return Def;
 | 
						|
}
 | 
						|
 | 
						|
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
 | 
						|
/// from S, where a non-field would be declared. This routine copes
 | 
						|
/// with the difference between C and C++ scoping rules in structs and
 | 
						|
/// unions. For example, the following code is well-formed in C but
 | 
						|
/// ill-formed in C++:
 | 
						|
/// @code
 | 
						|
/// struct S6 {
 | 
						|
///   enum { BAR } e;
 | 
						|
/// };
 | 
						|
///
 | 
						|
/// void test_S6() {
 | 
						|
///   struct S6 a;
 | 
						|
///   a.e = BAR;
 | 
						|
/// }
 | 
						|
/// @endcode
 | 
						|
/// For the declaration of BAR, this routine will return a different
 | 
						|
/// scope. The scope S will be the scope of the unnamed enumeration
 | 
						|
/// within S6. In C++, this routine will return the scope associated
 | 
						|
/// with S6, because the enumeration's scope is a transparent
 | 
						|
/// context but structures can contain non-field names. In C, this
 | 
						|
/// routine will return the translation unit scope, since the
 | 
						|
/// enumeration's scope is a transparent context and structures cannot
 | 
						|
/// contain non-field names.
 | 
						|
Scope *Sema::getNonFieldDeclScope(Scope *S) {
 | 
						|
  while (((S->getFlags() & Scope::DeclScope) == 0) ||
 | 
						|
         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
 | 
						|
         (S->isClassScope() && !getLangOpts().CPlusPlus))
 | 
						|
    S = S->getParent();
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Looks up the declaration of "struct objc_super" and
 | 
						|
/// saves it for later use in building builtin declaration of
 | 
						|
/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
 | 
						|
/// pre-existing declaration exists no action takes place.
 | 
						|
static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
 | 
						|
                                        IdentifierInfo *II) {
 | 
						|
  if (!II->isStr("objc_msgSendSuper"))
 | 
						|
    return;
 | 
						|
  ASTContext &Context = ThisSema.Context;
 | 
						|
 | 
						|
  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
 | 
						|
                      SourceLocation(), Sema::LookupTagName);
 | 
						|
  ThisSema.LookupName(Result, S);
 | 
						|
  if (Result.getResultKind() == LookupResult::Found)
 | 
						|
    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
 | 
						|
      Context.setObjCSuperType(Context.getTagDeclType(TD));
 | 
						|
}
 | 
						|
 | 
						|
static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
 | 
						|
  switch (Error) {
 | 
						|
  case ASTContext::GE_None:
 | 
						|
    return "";
 | 
						|
  case ASTContext::GE_Missing_stdio:
 | 
						|
    return "stdio.h";
 | 
						|
  case ASTContext::GE_Missing_setjmp:
 | 
						|
    return "setjmp.h";
 | 
						|
  case ASTContext::GE_Missing_ucontext:
 | 
						|
    return "ucontext.h";
 | 
						|
  }
 | 
						|
  llvm_unreachable("unhandled error kind");
 | 
						|
}
 | 
						|
 | 
						|
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
 | 
						|
/// file scope.  lazily create a decl for it. ForRedeclaration is true
 | 
						|
/// if we're creating this built-in in anticipation of redeclaring the
 | 
						|
/// built-in.
 | 
						|
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
 | 
						|
                                     Scope *S, bool ForRedeclaration,
 | 
						|
                                     SourceLocation Loc) {
 | 
						|
  LookupPredefedObjCSuperType(*this, S, II);
 | 
						|
 | 
						|
  ASTContext::GetBuiltinTypeError Error;
 | 
						|
  QualType R = Context.GetBuiltinType(ID, Error);
 | 
						|
  if (Error) {
 | 
						|
    if (ForRedeclaration)
 | 
						|
      Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
 | 
						|
          << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ForRedeclaration &&
 | 
						|
      (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
 | 
						|
       Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
 | 
						|
    Diag(Loc, diag::ext_implicit_lib_function_decl)
 | 
						|
        << Context.BuiltinInfo.getName(ID) << R;
 | 
						|
    if (Context.BuiltinInfo.getHeaderName(ID) &&
 | 
						|
        !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
 | 
						|
      Diag(Loc, diag::note_include_header_or_declare)
 | 
						|
          << Context.BuiltinInfo.getHeaderName(ID)
 | 
						|
          << Context.BuiltinInfo.getName(ID);
 | 
						|
  }
 | 
						|
 | 
						|
  if (R.isNull())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  DeclContext *Parent = Context.getTranslationUnitDecl();
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    LinkageSpecDecl *CLinkageDecl =
 | 
						|
        LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
 | 
						|
                                LinkageSpecDecl::lang_c, false);
 | 
						|
    CLinkageDecl->setImplicit();
 | 
						|
    Parent->addDecl(CLinkageDecl);
 | 
						|
    Parent = CLinkageDecl;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *New = FunctionDecl::Create(Context,
 | 
						|
                                           Parent,
 | 
						|
                                           Loc, Loc, II, R, /*TInfo=*/nullptr,
 | 
						|
                                           SC_Extern,
 | 
						|
                                           false,
 | 
						|
                                           R->isFunctionProtoType());
 | 
						|
  New->setImplicit();
 | 
						|
 | 
						|
  // Create Decl objects for each parameter, adding them to the
 | 
						|
  // FunctionDecl.
 | 
						|
  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
 | 
						|
    SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
 | 
						|
      ParmVarDecl *parm =
 | 
						|
          ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
 | 
						|
                              nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
 | 
						|
                              SC_None, nullptr);
 | 
						|
      parm->setScopeInfo(0, i);
 | 
						|
      Params.push_back(parm);
 | 
						|
    }
 | 
						|
    New->setParams(Params);
 | 
						|
  }
 | 
						|
 | 
						|
  AddKnownFunctionAttributes(New);
 | 
						|
  RegisterLocallyScopedExternCDecl(New, S);
 | 
						|
 | 
						|
  // TUScope is the translation-unit scope to insert this function into.
 | 
						|
  // FIXME: This is hideous. We need to teach PushOnScopeChains to
 | 
						|
  // relate Scopes to DeclContexts, and probably eliminate CurContext
 | 
						|
  // entirely, but we're not there yet.
 | 
						|
  DeclContext *SavedContext = CurContext;
 | 
						|
  CurContext = Parent;
 | 
						|
  PushOnScopeChains(New, TUScope);
 | 
						|
  CurContext = SavedContext;
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// Typedef declarations don't have linkage, but they still denote the same
 | 
						|
/// entity if their types are the same.
 | 
						|
/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
 | 
						|
/// isSameEntity.
 | 
						|
static void filterNonConflictingPreviousTypedefDecls(Sema &S,
 | 
						|
                                                     TypedefNameDecl *Decl,
 | 
						|
                                                     LookupResult &Previous) {
 | 
						|
  // This is only interesting when modules are enabled.
 | 
						|
  if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Empty sets are uninteresting.
 | 
						|
  if (Previous.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  LookupResult::Filter Filter = Previous.makeFilter();
 | 
						|
  while (Filter.hasNext()) {
 | 
						|
    NamedDecl *Old = Filter.next();
 | 
						|
 | 
						|
    // Non-hidden declarations are never ignored.
 | 
						|
    if (S.isVisible(Old))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Declarations of the same entity are not ignored, even if they have
 | 
						|
    // different linkages.
 | 
						|
    if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
 | 
						|
      if (S.Context.hasSameType(OldTD->getUnderlyingType(),
 | 
						|
                                Decl->getUnderlyingType()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If both declarations give a tag declaration a typedef name for linkage
 | 
						|
      // purposes, then they declare the same entity.
 | 
						|
      if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
 | 
						|
          Decl->getAnonDeclWithTypedefName())
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Filter.erase();
 | 
						|
  }
 | 
						|
 | 
						|
  Filter.done();
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
 | 
						|
  QualType OldType;
 | 
						|
  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
 | 
						|
    OldType = OldTypedef->getUnderlyingType();
 | 
						|
  else
 | 
						|
    OldType = Context.getTypeDeclType(Old);
 | 
						|
  QualType NewType = New->getUnderlyingType();
 | 
						|
 | 
						|
  if (NewType->isVariablyModifiedType()) {
 | 
						|
    // Must not redefine a typedef with a variably-modified type.
 | 
						|
    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
 | 
						|
      << Kind << NewType;
 | 
						|
    if (Old->getLocation().isValid())
 | 
						|
      notePreviousDefinition(Old, New->getLocation());
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldType != NewType &&
 | 
						|
      !OldType->isDependentType() &&
 | 
						|
      !NewType->isDependentType() &&
 | 
						|
      !Context.hasSameType(OldType, NewType)) {
 | 
						|
    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
 | 
						|
      << Kind << NewType << OldType;
 | 
						|
    if (Old->getLocation().isValid())
 | 
						|
      notePreviousDefinition(Old, New->getLocation());
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
 | 
						|
/// same name and scope as a previous declaration 'Old'.  Figure out
 | 
						|
/// how to resolve this situation, merging decls or emitting
 | 
						|
/// diagnostics as appropriate. If there was an error, set New to be invalid.
 | 
						|
///
 | 
						|
void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
 | 
						|
                                LookupResult &OldDecls) {
 | 
						|
  // If the new decl is known invalid already, don't bother doing any
 | 
						|
  // merging checks.
 | 
						|
  if (New->isInvalidDecl()) return;
 | 
						|
 | 
						|
  // Allow multiple definitions for ObjC built-in typedefs.
 | 
						|
  // FIXME: Verify the underlying types are equivalent!
 | 
						|
  if (getLangOpts().ObjC1) {
 | 
						|
    const IdentifierInfo *TypeID = New->getIdentifier();
 | 
						|
    switch (TypeID->getLength()) {
 | 
						|
    default: break;
 | 
						|
    case 2:
 | 
						|
      {
 | 
						|
        if (!TypeID->isStr("id"))
 | 
						|
          break;
 | 
						|
        QualType T = New->getUnderlyingType();
 | 
						|
        if (!T->isPointerType())
 | 
						|
          break;
 | 
						|
        if (!T->isVoidPointerType()) {
 | 
						|
          QualType PT = T->getAs<PointerType>()->getPointeeType();
 | 
						|
          if (!PT->isStructureType())
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        Context.setObjCIdRedefinitionType(T);
 | 
						|
        // Install the built-in type for 'id', ignoring the current definition.
 | 
						|
        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    case 5:
 | 
						|
      if (!TypeID->isStr("Class"))
 | 
						|
        break;
 | 
						|
      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
 | 
						|
      // Install the built-in type for 'Class', ignoring the current definition.
 | 
						|
      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
 | 
						|
      return;
 | 
						|
    case 3:
 | 
						|
      if (!TypeID->isStr("SEL"))
 | 
						|
        break;
 | 
						|
      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
 | 
						|
      // Install the built-in type for 'SEL', ignoring the current definition.
 | 
						|
      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // Fall through - the typedef name was not a builtin type.
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify the old decl was also a type.
 | 
						|
  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
 | 
						|
  if (!Old) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | 
						|
      << New->getDeclName();
 | 
						|
 | 
						|
    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
 | 
						|
    if (OldD->getLocation().isValid())
 | 
						|
      notePreviousDefinition(OldD, New->getLocation());
 | 
						|
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the old declaration is invalid, just give up here.
 | 
						|
  if (Old->isInvalidDecl())
 | 
						|
    return New->setInvalidDecl();
 | 
						|
 | 
						|
  if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
 | 
						|
    auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
 | 
						|
    auto *NewTag = New->getAnonDeclWithTypedefName();
 | 
						|
    NamedDecl *Hidden = nullptr;
 | 
						|
    if (OldTag && NewTag &&
 | 
						|
        OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
 | 
						|
        !hasVisibleDefinition(OldTag, &Hidden)) {
 | 
						|
      // There is a definition of this tag, but it is not visible. Use it
 | 
						|
      // instead of our tag.
 | 
						|
      New->setTypeForDecl(OldTD->getTypeForDecl());
 | 
						|
      if (OldTD->isModed())
 | 
						|
        New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
 | 
						|
                                    OldTD->getUnderlyingType());
 | 
						|
      else
 | 
						|
        New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
 | 
						|
 | 
						|
      // Make the old tag definition visible.
 | 
						|
      makeMergedDefinitionVisible(Hidden);
 | 
						|
 | 
						|
      // If this was an unscoped enumeration, yank all of its enumerators
 | 
						|
      // out of the scope.
 | 
						|
      if (isa<EnumDecl>(NewTag)) {
 | 
						|
        Scope *EnumScope = getNonFieldDeclScope(S);
 | 
						|
        for (auto *D : NewTag->decls()) {
 | 
						|
          auto *ED = cast<EnumConstantDecl>(D);
 | 
						|
          assert(EnumScope->isDeclScope(ED));
 | 
						|
          EnumScope->RemoveDecl(ED);
 | 
						|
          IdResolver.RemoveDecl(ED);
 | 
						|
          ED->getLexicalDeclContext()->removeDecl(ED);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the typedef types are not identical, reject them in all languages and
 | 
						|
  // with any extensions enabled.
 | 
						|
  if (isIncompatibleTypedef(Old, New))
 | 
						|
    return;
 | 
						|
 | 
						|
  // The types match.  Link up the redeclaration chain and merge attributes if
 | 
						|
  // the old declaration was a typedef.
 | 
						|
  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
 | 
						|
    New->setPreviousDecl(Typedef);
 | 
						|
    mergeDeclAttributes(New, Old);
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().MicrosoftExt)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    // C++ [dcl.typedef]p2:
 | 
						|
    //   In a given non-class scope, a typedef specifier can be used to
 | 
						|
    //   redefine the name of any type declared in that scope to refer
 | 
						|
    //   to the type to which it already refers.
 | 
						|
    if (!isa<CXXRecordDecl>(CurContext))
 | 
						|
      return;
 | 
						|
 | 
						|
    // C++0x [dcl.typedef]p4:
 | 
						|
    //   In a given class scope, a typedef specifier can be used to redefine
 | 
						|
    //   any class-name declared in that scope that is not also a typedef-name
 | 
						|
    //   to refer to the type to which it already refers.
 | 
						|
    //
 | 
						|
    // This wording came in via DR424, which was a correction to the
 | 
						|
    // wording in DR56, which accidentally banned code like:
 | 
						|
    //
 | 
						|
    //   struct S {
 | 
						|
    //     typedef struct A { } A;
 | 
						|
    //   };
 | 
						|
    //
 | 
						|
    // in the C++03 standard. We implement the C++0x semantics, which
 | 
						|
    // allow the above but disallow
 | 
						|
    //
 | 
						|
    //   struct S {
 | 
						|
    //     typedef int I;
 | 
						|
    //     typedef int I;
 | 
						|
    //   };
 | 
						|
    //
 | 
						|
    // since that was the intent of DR56.
 | 
						|
    if (!isa<TypedefNameDecl>(Old))
 | 
						|
      return;
 | 
						|
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition)
 | 
						|
      << New->getDeclName();
 | 
						|
    notePreviousDefinition(Old, New->getLocation());
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Modules always permit redefinition of typedefs, as does C11.
 | 
						|
  if (getLangOpts().Modules || getLangOpts().C11)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we have a redefinition of a typedef in C, emit a warning.  This warning
 | 
						|
  // is normally mapped to an error, but can be controlled with
 | 
						|
  // -Wtypedef-redefinition.  If either the original or the redefinition is
 | 
						|
  // in a system header, don't emit this for compatibility with GCC.
 | 
						|
  if (getDiagnostics().getSuppressSystemWarnings() &&
 | 
						|
      // Some standard types are defined implicitly in Clang (e.g. OpenCL).
 | 
						|
      (Old->isImplicit() ||
 | 
						|
       Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
 | 
						|
       Context.getSourceManager().isInSystemHeader(New->getLocation())))
 | 
						|
    return;
 | 
						|
 | 
						|
  Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
 | 
						|
    << New->getDeclName();
 | 
						|
  notePreviousDefinition(Old, New->getLocation());
 | 
						|
}
 | 
						|
 | 
						|
/// DeclhasAttr - returns true if decl Declaration already has the target
 | 
						|
/// attribute.
 | 
						|
static bool DeclHasAttr(const Decl *D, const Attr *A) {
 | 
						|
  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
 | 
						|
  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
 | 
						|
  for (const auto *i : D->attrs())
 | 
						|
    if (i->getKind() == A->getKind()) {
 | 
						|
      if (Ann) {
 | 
						|
        if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
 | 
						|
          return true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // FIXME: Don't hardcode this check
 | 
						|
      if (OA && isa<OwnershipAttr>(i))
 | 
						|
        return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAttributeTargetADefinition(Decl *D) {
 | 
						|
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
 | 
						|
    return VD->isThisDeclarationADefinition();
 | 
						|
  if (TagDecl *TD = dyn_cast<TagDecl>(D))
 | 
						|
    return TD->isCompleteDefinition() || TD->isBeingDefined();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Merge alignment attributes from \p Old to \p New, taking into account the
 | 
						|
/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
 | 
						|
///
 | 
						|
/// \return \c true if any attributes were added to \p New.
 | 
						|
static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
 | 
						|
  // Look for alignas attributes on Old, and pick out whichever attribute
 | 
						|
  // specifies the strictest alignment requirement.
 | 
						|
  AlignedAttr *OldAlignasAttr = nullptr;
 | 
						|
  AlignedAttr *OldStrictestAlignAttr = nullptr;
 | 
						|
  unsigned OldAlign = 0;
 | 
						|
  for (auto *I : Old->specific_attrs<AlignedAttr>()) {
 | 
						|
    // FIXME: We have no way of representing inherited dependent alignments
 | 
						|
    // in a case like:
 | 
						|
    //   template<int A, int B> struct alignas(A) X;
 | 
						|
    //   template<int A, int B> struct alignas(B) X {};
 | 
						|
    // For now, we just ignore any alignas attributes which are not on the
 | 
						|
    // definition in such a case.
 | 
						|
    if (I->isAlignmentDependent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (I->isAlignas())
 | 
						|
      OldAlignasAttr = I;
 | 
						|
 | 
						|
    unsigned Align = I->getAlignment(S.Context);
 | 
						|
    if (Align > OldAlign) {
 | 
						|
      OldAlign = Align;
 | 
						|
      OldStrictestAlignAttr = I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for alignas attributes on New.
 | 
						|
  AlignedAttr *NewAlignasAttr = nullptr;
 | 
						|
  unsigned NewAlign = 0;
 | 
						|
  for (auto *I : New->specific_attrs<AlignedAttr>()) {
 | 
						|
    if (I->isAlignmentDependent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (I->isAlignas())
 | 
						|
      NewAlignasAttr = I;
 | 
						|
 | 
						|
    unsigned Align = I->getAlignment(S.Context);
 | 
						|
    if (Align > NewAlign)
 | 
						|
      NewAlign = Align;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
 | 
						|
    // Both declarations have 'alignas' attributes. We require them to match.
 | 
						|
    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
 | 
						|
    // fall short. (If two declarations both have alignas, they must both match
 | 
						|
    // every definition, and so must match each other if there is a definition.)
 | 
						|
 | 
						|
    // If either declaration only contains 'alignas(0)' specifiers, then it
 | 
						|
    // specifies the natural alignment for the type.
 | 
						|
    if (OldAlign == 0 || NewAlign == 0) {
 | 
						|
      QualType Ty;
 | 
						|
      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
 | 
						|
        Ty = VD->getType();
 | 
						|
      else
 | 
						|
        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
 | 
						|
 | 
						|
      if (OldAlign == 0)
 | 
						|
        OldAlign = S.Context.getTypeAlign(Ty);
 | 
						|
      if (NewAlign == 0)
 | 
						|
        NewAlign = S.Context.getTypeAlign(Ty);
 | 
						|
    }
 | 
						|
 | 
						|
    if (OldAlign != NewAlign) {
 | 
						|
      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
 | 
						|
        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
 | 
						|
        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
 | 
						|
      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
 | 
						|
    // C++11 [dcl.align]p6:
 | 
						|
    //   if any declaration of an entity has an alignment-specifier,
 | 
						|
    //   every defining declaration of that entity shall specify an
 | 
						|
    //   equivalent alignment.
 | 
						|
    // C11 6.7.5/7:
 | 
						|
    //   If the definition of an object does not have an alignment
 | 
						|
    //   specifier, any other declaration of that object shall also
 | 
						|
    //   have no alignment specifier.
 | 
						|
    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
 | 
						|
      << OldAlignasAttr;
 | 
						|
    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
 | 
						|
      << OldAlignasAttr;
 | 
						|
  }
 | 
						|
 | 
						|
  bool AnyAdded = false;
 | 
						|
 | 
						|
  // Ensure we have an attribute representing the strictest alignment.
 | 
						|
  if (OldAlign > NewAlign) {
 | 
						|
    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
 | 
						|
    Clone->setInherited(true);
 | 
						|
    New->addAttr(Clone);
 | 
						|
    AnyAdded = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure we have an alignas attribute if the old declaration had one.
 | 
						|
  if (OldAlignasAttr && !NewAlignasAttr &&
 | 
						|
      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
 | 
						|
    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
 | 
						|
    Clone->setInherited(true);
 | 
						|
    New->addAttr(Clone);
 | 
						|
    AnyAdded = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return AnyAdded;
 | 
						|
}
 | 
						|
 | 
						|
static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
 | 
						|
                               const InheritableAttr *Attr,
 | 
						|
                               Sema::AvailabilityMergeKind AMK) {
 | 
						|
  // This function copies an attribute Attr from a previous declaration to the
 | 
						|
  // new declaration D if the new declaration doesn't itself have that attribute
 | 
						|
  // yet or if that attribute allows duplicates.
 | 
						|
  // If you're adding a new attribute that requires logic different from
 | 
						|
  // "use explicit attribute on decl if present, else use attribute from
 | 
						|
  // previous decl", for example if the attribute needs to be consistent
 | 
						|
  // between redeclarations, you need to call a custom merge function here.
 | 
						|
  InheritableAttr *NewAttr = nullptr;
 | 
						|
  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
 | 
						|
  if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
 | 
						|
    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
 | 
						|
                                      AA->isImplicit(), AA->getIntroduced(),
 | 
						|
                                      AA->getDeprecated(),
 | 
						|
                                      AA->getObsoleted(), AA->getUnavailable(),
 | 
						|
                                      AA->getMessage(), AA->getStrict(),
 | 
						|
                                      AA->getReplacement(), AMK,
 | 
						|
                                      AttrSpellingListIndex);
 | 
						|
  else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
 | 
						|
    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
 | 
						|
                                    AttrSpellingListIndex);
 | 
						|
  else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
 | 
						|
    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
 | 
						|
                                        AttrSpellingListIndex);
 | 
						|
  else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
 | 
						|
    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
 | 
						|
                                   AttrSpellingListIndex);
 | 
						|
  else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
 | 
						|
    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
 | 
						|
                                   AttrSpellingListIndex);
 | 
						|
  else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
 | 
						|
    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
 | 
						|
                                FA->getFormatIdx(), FA->getFirstArg(),
 | 
						|
                                AttrSpellingListIndex);
 | 
						|
  else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
 | 
						|
    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
 | 
						|
                                 AttrSpellingListIndex);
 | 
						|
  else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
 | 
						|
    NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
 | 
						|
                                       AttrSpellingListIndex,
 | 
						|
                                       IA->getSemanticSpelling());
 | 
						|
  else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
 | 
						|
    NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
 | 
						|
                                      &S.Context.Idents.get(AA->getSpelling()),
 | 
						|
                                      AttrSpellingListIndex);
 | 
						|
  else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
 | 
						|
           (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
 | 
						|
            isa<CUDAGlobalAttr>(Attr))) {
 | 
						|
    // CUDA target attributes are part of function signature for
 | 
						|
    // overloading purposes and must not be merged.
 | 
						|
    return false;
 | 
						|
  } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
 | 
						|
    NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
 | 
						|
  else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
 | 
						|
    NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
 | 
						|
  else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
 | 
						|
    NewAttr = S.mergeInternalLinkageAttr(
 | 
						|
        D, InternalLinkageA->getRange(),
 | 
						|
        &S.Context.Idents.get(InternalLinkageA->getSpelling()),
 | 
						|
        AttrSpellingListIndex);
 | 
						|
  else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
 | 
						|
    NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
 | 
						|
                                &S.Context.Idents.get(CommonA->getSpelling()),
 | 
						|
                                AttrSpellingListIndex);
 | 
						|
  else if (isa<AlignedAttr>(Attr))
 | 
						|
    // AlignedAttrs are handled separately, because we need to handle all
 | 
						|
    // such attributes on a declaration at the same time.
 | 
						|
    NewAttr = nullptr;
 | 
						|
  else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
 | 
						|
           (AMK == Sema::AMK_Override ||
 | 
						|
            AMK == Sema::AMK_ProtocolImplementation))
 | 
						|
    NewAttr = nullptr;
 | 
						|
  else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
 | 
						|
    NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
 | 
						|
                              UA->getGuid());
 | 
						|
  else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
 | 
						|
    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
 | 
						|
 | 
						|
  if (NewAttr) {
 | 
						|
    NewAttr->setInherited(true);
 | 
						|
    D->addAttr(NewAttr);
 | 
						|
    if (isa<MSInheritanceAttr>(NewAttr))
 | 
						|
      S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static const NamedDecl *getDefinition(const Decl *D) {
 | 
						|
  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
 | 
						|
    return TD->getDefinition();
 | 
						|
  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
 | 
						|
    const VarDecl *Def = VD->getDefinition();
 | 
						|
    if (Def)
 | 
						|
      return Def;
 | 
						|
    return VD->getActingDefinition();
 | 
						|
  }
 | 
						|
  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    return FD->getDefinition();
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasAttribute(const Decl *D, attr::Kind Kind) {
 | 
						|
  for (const auto *Attribute : D->attrs())
 | 
						|
    if (Attribute->getKind() == Kind)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// checkNewAttributesAfterDef - If we already have a definition, check that
 | 
						|
/// there are no new attributes in this declaration.
 | 
						|
static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
 | 
						|
  if (!New->hasAttrs())
 | 
						|
    return;
 | 
						|
 | 
						|
  const NamedDecl *Def = getDefinition(Old);
 | 
						|
  if (!Def || Def == New)
 | 
						|
    return;
 | 
						|
 | 
						|
  AttrVec &NewAttributes = New->getAttrs();
 | 
						|
  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
 | 
						|
    const Attr *NewAttribute = NewAttributes[I];
 | 
						|
 | 
						|
    if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
 | 
						|
      if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
 | 
						|
        Sema::SkipBodyInfo SkipBody;
 | 
						|
        S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
 | 
						|
 | 
						|
        // If we're skipping this definition, drop the "alias" attribute.
 | 
						|
        if (SkipBody.ShouldSkip) {
 | 
						|
          NewAttributes.erase(NewAttributes.begin() + I);
 | 
						|
          --E;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        VarDecl *VD = cast<VarDecl>(New);
 | 
						|
        unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
 | 
						|
                                VarDecl::TentativeDefinition
 | 
						|
                            ? diag::err_alias_after_tentative
 | 
						|
                            : diag::err_redefinition;
 | 
						|
        S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
 | 
						|
        if (Diag == diag::err_redefinition)
 | 
						|
          S.notePreviousDefinition(Def, VD->getLocation());
 | 
						|
        else
 | 
						|
          S.Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
        VD->setInvalidDecl();
 | 
						|
      }
 | 
						|
      ++I;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
 | 
						|
      // Tentative definitions are only interesting for the alias check above.
 | 
						|
      if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
 | 
						|
        ++I;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (hasAttribute(Def, NewAttribute->getKind())) {
 | 
						|
      ++I;
 | 
						|
      continue; // regular attr merging will take care of validating this.
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<C11NoReturnAttr>(NewAttribute)) {
 | 
						|
      // C's _Noreturn is allowed to be added to a function after it is defined.
 | 
						|
      ++I;
 | 
						|
      continue;
 | 
						|
    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
 | 
						|
      if (AA->isAlignas()) {
 | 
						|
        // C++11 [dcl.align]p6:
 | 
						|
        //   if any declaration of an entity has an alignment-specifier,
 | 
						|
        //   every defining declaration of that entity shall specify an
 | 
						|
        //   equivalent alignment.
 | 
						|
        // C11 6.7.5/7:
 | 
						|
        //   If the definition of an object does not have an alignment
 | 
						|
        //   specifier, any other declaration of that object shall also
 | 
						|
        //   have no alignment specifier.
 | 
						|
        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
 | 
						|
          << AA;
 | 
						|
        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
 | 
						|
          << AA;
 | 
						|
        NewAttributes.erase(NewAttributes.begin() + I);
 | 
						|
        --E;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(NewAttribute->getLocation(),
 | 
						|
           diag::warn_attribute_precede_definition);
 | 
						|
    S.Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
    NewAttributes.erase(NewAttributes.begin() + I);
 | 
						|
    --E;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
 | 
						|
void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
 | 
						|
                               AvailabilityMergeKind AMK) {
 | 
						|
  if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
 | 
						|
    UsedAttr *NewAttr = OldAttr->clone(Context);
 | 
						|
    NewAttr->setInherited(true);
 | 
						|
    New->addAttr(NewAttr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Old->hasAttrs() && !New->hasAttrs())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Attributes declared post-definition are currently ignored.
 | 
						|
  checkNewAttributesAfterDef(*this, New, Old);
 | 
						|
 | 
						|
  if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
 | 
						|
    if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
 | 
						|
      if (OldA->getLabel() != NewA->getLabel()) {
 | 
						|
        // This redeclaration changes __asm__ label.
 | 
						|
        Diag(New->getLocation(), diag::err_different_asm_label);
 | 
						|
        Diag(OldA->getLocation(), diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
    } else if (Old->isUsed()) {
 | 
						|
      // This redeclaration adds an __asm__ label to a declaration that has
 | 
						|
      // already been ODR-used.
 | 
						|
      Diag(New->getLocation(), diag::err_late_asm_label_name)
 | 
						|
        << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Re-declaration cannot add abi_tag's.
 | 
						|
  if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
 | 
						|
    if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
 | 
						|
      for (const auto &NewTag : NewAbiTagAttr->tags()) {
 | 
						|
        if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
 | 
						|
                      NewTag) == OldAbiTagAttr->tags_end()) {
 | 
						|
          Diag(NewAbiTagAttr->getLocation(),
 | 
						|
               diag::err_new_abi_tag_on_redeclaration)
 | 
						|
              << NewTag;
 | 
						|
          Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
 | 
						|
      Diag(Old->getLocation(), diag::note_previous_declaration);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This redeclaration adds a section attribute.
 | 
						|
  if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
 | 
						|
    if (auto *VD = dyn_cast<VarDecl>(New)) {
 | 
						|
      if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
 | 
						|
        Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
 | 
						|
        Diag(Old->getLocation(), diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Old->hasAttrs())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool foundAny = New->hasAttrs();
 | 
						|
 | 
						|
  // Ensure that any moving of objects within the allocated map is done before
 | 
						|
  // we process them.
 | 
						|
  if (!foundAny) New->setAttrs(AttrVec());
 | 
						|
 | 
						|
  for (auto *I : Old->specific_attrs<InheritableAttr>()) {
 | 
						|
    // Ignore deprecated/unavailable/availability attributes if requested.
 | 
						|
    AvailabilityMergeKind LocalAMK = AMK_None;
 | 
						|
    if (isa<DeprecatedAttr>(I) ||
 | 
						|
        isa<UnavailableAttr>(I) ||
 | 
						|
        isa<AvailabilityAttr>(I)) {
 | 
						|
      switch (AMK) {
 | 
						|
      case AMK_None:
 | 
						|
        continue;
 | 
						|
 | 
						|
      case AMK_Redeclaration:
 | 
						|
      case AMK_Override:
 | 
						|
      case AMK_ProtocolImplementation:
 | 
						|
        LocalAMK = AMK;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Already handled.
 | 
						|
    if (isa<UsedAttr>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (mergeDeclAttribute(*this, New, I, LocalAMK))
 | 
						|
      foundAny = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (mergeAlignedAttrs(*this, New, Old))
 | 
						|
    foundAny = true;
 | 
						|
 | 
						|
  if (!foundAny) New->dropAttrs();
 | 
						|
}
 | 
						|
 | 
						|
/// mergeParamDeclAttributes - Copy attributes from the old parameter
 | 
						|
/// to the new one.
 | 
						|
static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
 | 
						|
                                     const ParmVarDecl *oldDecl,
 | 
						|
                                     Sema &S) {
 | 
						|
  // C++11 [dcl.attr.depend]p2:
 | 
						|
  //   The first declaration of a function shall specify the
 | 
						|
  //   carries_dependency attribute for its declarator-id if any declaration
 | 
						|
  //   of the function specifies the carries_dependency attribute.
 | 
						|
  const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
 | 
						|
  if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
 | 
						|
    S.Diag(CDA->getLocation(),
 | 
						|
           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
 | 
						|
    // Find the first declaration of the parameter.
 | 
						|
    // FIXME: Should we build redeclaration chains for function parameters?
 | 
						|
    const FunctionDecl *FirstFD =
 | 
						|
      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
 | 
						|
    const ParmVarDecl *FirstVD =
 | 
						|
      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
 | 
						|
    S.Diag(FirstVD->getLocation(),
 | 
						|
           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!oldDecl->hasAttrs())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool foundAny = newDecl->hasAttrs();
 | 
						|
 | 
						|
  // Ensure that any moving of objects within the allocated map is
 | 
						|
  // done before we process them.
 | 
						|
  if (!foundAny) newDecl->setAttrs(AttrVec());
 | 
						|
 | 
						|
  for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
 | 
						|
    if (!DeclHasAttr(newDecl, I)) {
 | 
						|
      InheritableAttr *newAttr =
 | 
						|
        cast<InheritableParamAttr>(I->clone(S.Context));
 | 
						|
      newAttr->setInherited(true);
 | 
						|
      newDecl->addAttr(newAttr);
 | 
						|
      foundAny = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!foundAny) newDecl->dropAttrs();
 | 
						|
}
 | 
						|
 | 
						|
static void mergeParamDeclTypes(ParmVarDecl *NewParam,
 | 
						|
                                const ParmVarDecl *OldParam,
 | 
						|
                                Sema &S) {
 | 
						|
  if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
 | 
						|
    if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
 | 
						|
      if (*Oldnullability != *Newnullability) {
 | 
						|
        S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
 | 
						|
          << DiagNullabilityKind(
 | 
						|
               *Newnullability,
 | 
						|
               ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | 
						|
                != 0))
 | 
						|
          << DiagNullabilityKind(
 | 
						|
               *Oldnullability,
 | 
						|
               ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
 | 
						|
                != 0));
 | 
						|
        S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      QualType NewT = NewParam->getType();
 | 
						|
      NewT = S.Context.getAttributedType(
 | 
						|
                         AttributedType::getNullabilityAttrKind(*Oldnullability),
 | 
						|
                         NewT, NewT);
 | 
						|
      NewParam->setType(NewT);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Used in MergeFunctionDecl to keep track of function parameters in
 | 
						|
/// C.
 | 
						|
struct GNUCompatibleParamWarning {
 | 
						|
  ParmVarDecl *OldParm;
 | 
						|
  ParmVarDecl *NewParm;
 | 
						|
  QualType PromotedType;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// getSpecialMember - get the special member enum for a method.
 | 
						|
Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
 | 
						|
  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
 | 
						|
    if (Ctor->isDefaultConstructor())
 | 
						|
      return Sema::CXXDefaultConstructor;
 | 
						|
 | 
						|
    if (Ctor->isCopyConstructor())
 | 
						|
      return Sema::CXXCopyConstructor;
 | 
						|
 | 
						|
    if (Ctor->isMoveConstructor())
 | 
						|
      return Sema::CXXMoveConstructor;
 | 
						|
  } else if (isa<CXXDestructorDecl>(MD)) {
 | 
						|
    return Sema::CXXDestructor;
 | 
						|
  } else if (MD->isCopyAssignmentOperator()) {
 | 
						|
    return Sema::CXXCopyAssignment;
 | 
						|
  } else if (MD->isMoveAssignmentOperator()) {
 | 
						|
    return Sema::CXXMoveAssignment;
 | 
						|
  }
 | 
						|
 | 
						|
  return Sema::CXXInvalid;
 | 
						|
}
 | 
						|
 | 
						|
// Determine whether the previous declaration was a definition, implicit
 | 
						|
// declaration, or a declaration.
 | 
						|
template <typename T>
 | 
						|
static std::pair<diag::kind, SourceLocation>
 | 
						|
getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
 | 
						|
  diag::kind PrevDiag;
 | 
						|
  SourceLocation OldLocation = Old->getLocation();
 | 
						|
  if (Old->isThisDeclarationADefinition())
 | 
						|
    PrevDiag = diag::note_previous_definition;
 | 
						|
  else if (Old->isImplicit()) {
 | 
						|
    PrevDiag = diag::note_previous_implicit_declaration;
 | 
						|
    if (OldLocation.isInvalid())
 | 
						|
      OldLocation = New->getLocation();
 | 
						|
  } else
 | 
						|
    PrevDiag = diag::note_previous_declaration;
 | 
						|
  return std::make_pair(PrevDiag, OldLocation);
 | 
						|
}
 | 
						|
 | 
						|
/// canRedefineFunction - checks if a function can be redefined. Currently,
 | 
						|
/// only extern inline functions can be redefined, and even then only in
 | 
						|
/// GNU89 mode.
 | 
						|
static bool canRedefineFunction(const FunctionDecl *FD,
 | 
						|
                                const LangOptions& LangOpts) {
 | 
						|
  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
 | 
						|
          !LangOpts.CPlusPlus &&
 | 
						|
          FD->isInlineSpecified() &&
 | 
						|
          FD->getStorageClass() == SC_Extern);
 | 
						|
}
 | 
						|
 | 
						|
const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
 | 
						|
  const AttributedType *AT = T->getAs<AttributedType>();
 | 
						|
  while (AT && !AT->isCallingConv())
 | 
						|
    AT = AT->getModifiedType()->getAs<AttributedType>();
 | 
						|
  return AT;
 | 
						|
}
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
 | 
						|
  const DeclContext *DC = Old->getDeclContext();
 | 
						|
  if (DC->isRecord())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
 | 
						|
  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
 | 
						|
    return true;
 | 
						|
  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
 | 
						|
static bool isExternC(VarTemplateDecl *) { return false; }
 | 
						|
 | 
						|
/// \brief Check whether a redeclaration of an entity introduced by a
 | 
						|
/// using-declaration is valid, given that we know it's not an overload
 | 
						|
/// (nor a hidden tag declaration).
 | 
						|
template<typename ExpectedDecl>
 | 
						|
static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
 | 
						|
                                   ExpectedDecl *New) {
 | 
						|
  // C++11 [basic.scope.declarative]p4:
 | 
						|
  //   Given a set of declarations in a single declarative region, each of
 | 
						|
  //   which specifies the same unqualified name,
 | 
						|
  //   -- they shall all refer to the same entity, or all refer to functions
 | 
						|
  //      and function templates; or
 | 
						|
  //   -- exactly one declaration shall declare a class name or enumeration
 | 
						|
  //      name that is not a typedef name and the other declarations shall all
 | 
						|
  //      refer to the same variable or enumerator, or all refer to functions
 | 
						|
  //      and function templates; in this case the class name or enumeration
 | 
						|
  //      name is hidden (3.3.10).
 | 
						|
 | 
						|
  // C++11 [namespace.udecl]p14:
 | 
						|
  //   If a function declaration in namespace scope or block scope has the
 | 
						|
  //   same name and the same parameter-type-list as a function introduced
 | 
						|
  //   by a using-declaration, and the declarations do not declare the same
 | 
						|
  //   function, the program is ill-formed.
 | 
						|
 | 
						|
  auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
 | 
						|
  if (Old &&
 | 
						|
      !Old->getDeclContext()->getRedeclContext()->Equals(
 | 
						|
          New->getDeclContext()->getRedeclContext()) &&
 | 
						|
      !(isExternC(Old) && isExternC(New)))
 | 
						|
    Old = nullptr;
 | 
						|
 | 
						|
  if (!Old) {
 | 
						|
    S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
 | 
						|
    S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
 | 
						|
    S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
 | 
						|
                                            const FunctionDecl *B) {
 | 
						|
  assert(A->getNumParams() == B->getNumParams());
 | 
						|
 | 
						|
  auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
 | 
						|
    const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
 | 
						|
    const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
 | 
						|
    if (AttrA == AttrB)
 | 
						|
      return true;
 | 
						|
    return AttrA && AttrB && AttrA->getType() == AttrB->getType();
 | 
						|
  };
 | 
						|
 | 
						|
  return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
 | 
						|
}
 | 
						|
 | 
						|
/// If necessary, adjust the semantic declaration context for a qualified
 | 
						|
/// declaration to name the correct inline namespace within the qualifier.
 | 
						|
static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
 | 
						|
                                               DeclaratorDecl *OldD) {
 | 
						|
  // The only case where we need to update the DeclContext is when
 | 
						|
  // redeclaration lookup for a qualified name finds a declaration
 | 
						|
  // in an inline namespace within the context named by the qualifier:
 | 
						|
  //
 | 
						|
  //   inline namespace N { int f(); }
 | 
						|
  //   int ::f(); // Sema DC needs adjusting from :: to N::.
 | 
						|
  //
 | 
						|
  // For unqualified declarations, the semantic context *can* change
 | 
						|
  // along the redeclaration chain (for local extern declarations,
 | 
						|
  // extern "C" declarations, and friend declarations in particular).
 | 
						|
  if (!NewD->getQualifier())
 | 
						|
    return;
 | 
						|
 | 
						|
  // NewD is probably already in the right context.
 | 
						|
  auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
 | 
						|
  auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
 | 
						|
  if (NamedDC->Equals(SemaDC))
 | 
						|
    return;
 | 
						|
 | 
						|
  assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
 | 
						|
          NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
 | 
						|
         "unexpected context for redeclaration");
 | 
						|
 | 
						|
  auto *LexDC = NewD->getLexicalDeclContext();
 | 
						|
  auto FixSemaDC = [=](NamedDecl *D) {
 | 
						|
    if (!D)
 | 
						|
      return;
 | 
						|
    D->setDeclContext(SemaDC);
 | 
						|
    D->setLexicalDeclContext(LexDC);
 | 
						|
  };
 | 
						|
 | 
						|
  FixSemaDC(NewD);
 | 
						|
  if (auto *FD = dyn_cast<FunctionDecl>(NewD))
 | 
						|
    FixSemaDC(FD->getDescribedFunctionTemplate());
 | 
						|
  else if (auto *VD = dyn_cast<VarDecl>(NewD))
 | 
						|
    FixSemaDC(VD->getDescribedVarTemplate());
 | 
						|
}
 | 
						|
 | 
						|
/// MergeFunctionDecl - We just parsed a function 'New' from
 | 
						|
/// declarator D which has the same name and scope as a previous
 | 
						|
/// declaration 'Old'.  Figure out how to resolve this situation,
 | 
						|
/// merging decls or emitting diagnostics as appropriate.
 | 
						|
///
 | 
						|
/// In C++, New and Old must be declarations that are not
 | 
						|
/// overloaded. Use IsOverload to determine whether New and Old are
 | 
						|
/// overloaded, and to select the Old declaration that New should be
 | 
						|
/// merged with.
 | 
						|
///
 | 
						|
/// Returns true if there was an error, false otherwise.
 | 
						|
bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
 | 
						|
                             Scope *S, bool MergeTypeWithOld) {
 | 
						|
  // Verify the old decl was also a function.
 | 
						|
  FunctionDecl *Old = OldD->getAsFunction();
 | 
						|
  if (!Old) {
 | 
						|
    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
 | 
						|
      if (New->getFriendObjectKind()) {
 | 
						|
        Diag(New->getLocation(), diag::err_using_decl_friend);
 | 
						|
        Diag(Shadow->getTargetDecl()->getLocation(),
 | 
						|
             diag::note_using_decl_target);
 | 
						|
        Diag(Shadow->getUsingDecl()->getLocation(),
 | 
						|
             diag::note_using_decl) << 0;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check whether the two declarations might declare the same function.
 | 
						|
      if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
 | 
						|
        return true;
 | 
						|
      OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
 | 
						|
    } else {
 | 
						|
      Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | 
						|
        << New->getDeclName();
 | 
						|
      notePreviousDefinition(OldD, New->getLocation());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the old declaration is invalid, just give up here.
 | 
						|
  if (Old->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  diag::kind PrevDiag;
 | 
						|
  SourceLocation OldLocation;
 | 
						|
  std::tie(PrevDiag, OldLocation) =
 | 
						|
      getNoteDiagForInvalidRedeclaration(Old, New);
 | 
						|
 | 
						|
  // Don't complain about this if we're in GNU89 mode and the old function
 | 
						|
  // is an extern inline function.
 | 
						|
  // Don't complain about specializations. They are not supposed to have
 | 
						|
  // storage classes.
 | 
						|
  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
 | 
						|
      New->getStorageClass() == SC_Static &&
 | 
						|
      Old->hasExternalFormalLinkage() &&
 | 
						|
      !New->getTemplateSpecializationInfo() &&
 | 
						|
      !canRedefineFunction(Old, getLangOpts())) {
 | 
						|
    if (getLangOpts().MicrosoftExt) {
 | 
						|
      Diag(New->getLocation(), diag::ext_static_non_static) << New;
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
    } else {
 | 
						|
      Diag(New->getLocation(), diag::err_static_non_static) << New;
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (New->hasAttr<InternalLinkageAttr>() &&
 | 
						|
      !Old->hasAttr<InternalLinkageAttr>()) {
 | 
						|
    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
 | 
						|
        << New->getDeclName();
 | 
						|
    notePreviousDefinition(Old, New->getLocation());
 | 
						|
    New->dropAttr<InternalLinkageAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckRedeclarationModuleOwnership(New, Old))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!getLangOpts().CPlusPlus) {
 | 
						|
    bool OldOvl = Old->hasAttr<OverloadableAttr>();
 | 
						|
    if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
 | 
						|
      Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
 | 
						|
        << New << OldOvl;
 | 
						|
 | 
						|
      // Try our best to find a decl that actually has the overloadable
 | 
						|
      // attribute for the note. In most cases (e.g. programs with only one
 | 
						|
      // broken declaration/definition), this won't matter.
 | 
						|
      //
 | 
						|
      // FIXME: We could do this if we juggled some extra state in
 | 
						|
      // OverloadableAttr, rather than just removing it.
 | 
						|
      const Decl *DiagOld = Old;
 | 
						|
      if (OldOvl) {
 | 
						|
        auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
 | 
						|
          const auto *A = D->getAttr<OverloadableAttr>();
 | 
						|
          return A && !A->isImplicit();
 | 
						|
        });
 | 
						|
        // If we've implicitly added *all* of the overloadable attrs to this
 | 
						|
        // chain, emitting a "previous redecl" note is pointless.
 | 
						|
        DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
 | 
						|
      }
 | 
						|
 | 
						|
      if (DiagOld)
 | 
						|
        Diag(DiagOld->getLocation(),
 | 
						|
             diag::note_attribute_overloadable_prev_overload)
 | 
						|
          << OldOvl;
 | 
						|
 | 
						|
      if (OldOvl)
 | 
						|
        New->addAttr(OverloadableAttr::CreateImplicit(Context));
 | 
						|
      else
 | 
						|
        New->dropAttr<OverloadableAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If a function is first declared with a calling convention, but is later
 | 
						|
  // declared or defined without one, all following decls assume the calling
 | 
						|
  // convention of the first.
 | 
						|
  //
 | 
						|
  // It's OK if a function is first declared without a calling convention,
 | 
						|
  // but is later declared or defined with the default calling convention.
 | 
						|
  //
 | 
						|
  // To test if either decl has an explicit calling convention, we look for
 | 
						|
  // AttributedType sugar nodes on the type as written.  If they are missing or
 | 
						|
  // were canonicalized away, we assume the calling convention was implicit.
 | 
						|
  //
 | 
						|
  // Note also that we DO NOT return at this point, because we still have
 | 
						|
  // other tests to run.
 | 
						|
  QualType OldQType = Context.getCanonicalType(Old->getType());
 | 
						|
  QualType NewQType = Context.getCanonicalType(New->getType());
 | 
						|
  const FunctionType *OldType = cast<FunctionType>(OldQType);
 | 
						|
  const FunctionType *NewType = cast<FunctionType>(NewQType);
 | 
						|
  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
 | 
						|
  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
 | 
						|
  bool RequiresAdjustment = false;
 | 
						|
 | 
						|
  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
 | 
						|
    FunctionDecl *First = Old->getFirstDecl();
 | 
						|
    const FunctionType *FT =
 | 
						|
        First->getType().getCanonicalType()->castAs<FunctionType>();
 | 
						|
    FunctionType::ExtInfo FI = FT->getExtInfo();
 | 
						|
    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
 | 
						|
    if (!NewCCExplicit) {
 | 
						|
      // Inherit the CC from the previous declaration if it was specified
 | 
						|
      // there but not here.
 | 
						|
      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
 | 
						|
      RequiresAdjustment = true;
 | 
						|
    } else {
 | 
						|
      // Calling conventions aren't compatible, so complain.
 | 
						|
      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
 | 
						|
      Diag(New->getLocation(), diag::err_cconv_change)
 | 
						|
        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
 | 
						|
        << !FirstCCExplicit
 | 
						|
        << (!FirstCCExplicit ? "" :
 | 
						|
            FunctionType::getNameForCallConv(FI.getCC()));
 | 
						|
 | 
						|
      // Put the note on the first decl, since it is the one that matters.
 | 
						|
      Diag(First->getLocation(), diag::note_previous_declaration);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: diagnose the other way around?
 | 
						|
  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
 | 
						|
    NewTypeInfo = NewTypeInfo.withNoReturn(true);
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge regparm attribute.
 | 
						|
  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
 | 
						|
      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
 | 
						|
    if (NewTypeInfo.getHasRegParm()) {
 | 
						|
      Diag(New->getLocation(), diag::err_regparm_mismatch)
 | 
						|
        << NewType->getRegParmType()
 | 
						|
        << OldType->getRegParmType();
 | 
						|
      Diag(OldLocation, diag::note_previous_declaration);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge ns_returns_retained attribute.
 | 
						|
  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
 | 
						|
    if (NewTypeInfo.getProducesResult()) {
 | 
						|
      Diag(New->getLocation(), diag::err_function_attribute_mismatch)
 | 
						|
          << "'ns_returns_retained'";
 | 
						|
      Diag(OldLocation, diag::note_previous_declaration);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NewTypeInfo = NewTypeInfo.withProducesResult(true);
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldTypeInfo.getNoCallerSavedRegs() !=
 | 
						|
      NewTypeInfo.getNoCallerSavedRegs()) {
 | 
						|
    if (NewTypeInfo.getNoCallerSavedRegs()) {
 | 
						|
      AnyX86NoCallerSavedRegistersAttr *Attr = 
 | 
						|
        New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
 | 
						|
      Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
 | 
						|
      Diag(OldLocation, diag::note_previous_declaration);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
 | 
						|
    RequiresAdjustment = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RequiresAdjustment) {
 | 
						|
    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
 | 
						|
    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
 | 
						|
    New->setType(QualType(AdjustedType, 0));
 | 
						|
    NewQType = Context.getCanonicalType(New->getType());
 | 
						|
    NewType = cast<FunctionType>(NewQType);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this redeclaration makes the function inline, we may need to add it to
 | 
						|
  // UndefinedButUsed.
 | 
						|
  if (!Old->isInlined() && New->isInlined() &&
 | 
						|
      !New->hasAttr<GNUInlineAttr>() &&
 | 
						|
      !getLangOpts().GNUInline &&
 | 
						|
      Old->isUsed(false) &&
 | 
						|
      !Old->isDefined() && !New->isThisDeclarationADefinition())
 | 
						|
    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
 | 
						|
                                           SourceLocation()));
 | 
						|
 | 
						|
  // If this redeclaration makes it newly gnu_inline, we don't want to warn
 | 
						|
  // about it.
 | 
						|
  if (New->hasAttr<GNUInlineAttr>() &&
 | 
						|
      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
 | 
						|
    UndefinedButUsed.erase(Old->getCanonicalDecl());
 | 
						|
  }
 | 
						|
 | 
						|
  // If pass_object_size params don't match up perfectly, this isn't a valid
 | 
						|
  // redeclaration.
 | 
						|
  if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
 | 
						|
      !hasIdenticalPassObjectSizeAttrs(Old, New)) {
 | 
						|
    Diag(New->getLocation(), diag::err_different_pass_object_size_params)
 | 
						|
        << New->getDeclName();
 | 
						|
    Diag(OldLocation, PrevDiag) << Old << Old->getType();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    // C++1z [over.load]p2
 | 
						|
    //   Certain function declarations cannot be overloaded:
 | 
						|
    //     -- Function declarations that differ only in the return type,
 | 
						|
    //        the exception specification, or both cannot be overloaded.
 | 
						|
 | 
						|
    // Check the exception specifications match. This may recompute the type of
 | 
						|
    // both Old and New if it resolved exception specifications, so grab the
 | 
						|
    // types again after this. Because this updates the type, we do this before
 | 
						|
    // any of the other checks below, which may update the "de facto" NewQType
 | 
						|
    // but do not necessarily update the type of New.
 | 
						|
    if (CheckEquivalentExceptionSpec(Old, New))
 | 
						|
      return true;
 | 
						|
    OldQType = Context.getCanonicalType(Old->getType());
 | 
						|
    NewQType = Context.getCanonicalType(New->getType());
 | 
						|
 | 
						|
    // Go back to the type source info to compare the declared return types,
 | 
						|
    // per C++1y [dcl.type.auto]p13:
 | 
						|
    //   Redeclarations or specializations of a function or function template
 | 
						|
    //   with a declared return type that uses a placeholder type shall also
 | 
						|
    //   use that placeholder, not a deduced type.
 | 
						|
    QualType OldDeclaredReturnType =
 | 
						|
        (Old->getTypeSourceInfo()
 | 
						|
             ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
 | 
						|
             : OldType)->getReturnType();
 | 
						|
    QualType NewDeclaredReturnType =
 | 
						|
        (New->getTypeSourceInfo()
 | 
						|
             ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
 | 
						|
             : NewType)->getReturnType();
 | 
						|
    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
 | 
						|
        !((NewQType->isDependentType() || OldQType->isDependentType()) &&
 | 
						|
          New->isLocalExternDecl())) {
 | 
						|
      QualType ResQT;
 | 
						|
      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
 | 
						|
          OldDeclaredReturnType->isObjCObjectPointerType())
 | 
						|
        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
 | 
						|
      if (ResQT.isNull()) {
 | 
						|
        if (New->isCXXClassMember() && New->isOutOfLine())
 | 
						|
          Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
 | 
						|
              << New << New->getReturnTypeSourceRange();
 | 
						|
        else
 | 
						|
          Diag(New->getLocation(), diag::err_ovl_diff_return_type)
 | 
						|
              << New->getReturnTypeSourceRange();
 | 
						|
        Diag(OldLocation, PrevDiag) << Old << Old->getType()
 | 
						|
                                    << Old->getReturnTypeSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        NewQType = ResQT;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType OldReturnType = OldType->getReturnType();
 | 
						|
    QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
 | 
						|
    if (OldReturnType != NewReturnType) {
 | 
						|
      // If this function has a deduced return type and has already been
 | 
						|
      // defined, copy the deduced value from the old declaration.
 | 
						|
      AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
 | 
						|
      if (OldAT && OldAT->isDeduced()) {
 | 
						|
        New->setType(
 | 
						|
            SubstAutoType(New->getType(),
 | 
						|
                          OldAT->isDependentType() ? Context.DependentTy
 | 
						|
                                                   : OldAT->getDeducedType()));
 | 
						|
        NewQType = Context.getCanonicalType(
 | 
						|
            SubstAutoType(NewQType,
 | 
						|
                          OldAT->isDependentType() ? Context.DependentTy
 | 
						|
                                                   : OldAT->getDeducedType()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
 | 
						|
    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
 | 
						|
    if (OldMethod && NewMethod) {
 | 
						|
      // Preserve triviality.
 | 
						|
      NewMethod->setTrivial(OldMethod->isTrivial());
 | 
						|
 | 
						|
      // MSVC allows explicit template specialization at class scope:
 | 
						|
      // 2 CXXMethodDecls referring to the same function will be injected.
 | 
						|
      // We don't want a redeclaration error.
 | 
						|
      bool IsClassScopeExplicitSpecialization =
 | 
						|
                              OldMethod->isFunctionTemplateSpecialization() &&
 | 
						|
                              NewMethod->isFunctionTemplateSpecialization();
 | 
						|
      bool isFriend = NewMethod->getFriendObjectKind();
 | 
						|
 | 
						|
      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
 | 
						|
          !IsClassScopeExplicitSpecialization) {
 | 
						|
        //    -- Member function declarations with the same name and the
 | 
						|
        //       same parameter types cannot be overloaded if any of them
 | 
						|
        //       is a static member function declaration.
 | 
						|
        if (OldMethod->isStatic() != NewMethod->isStatic()) {
 | 
						|
          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
 | 
						|
          Diag(OldLocation, PrevDiag) << Old << Old->getType();
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++ [class.mem]p1:
 | 
						|
        //   [...] A member shall not be declared twice in the
 | 
						|
        //   member-specification, except that a nested class or member
 | 
						|
        //   class template can be declared and then later defined.
 | 
						|
        if (!inTemplateInstantiation()) {
 | 
						|
          unsigned NewDiag;
 | 
						|
          if (isa<CXXConstructorDecl>(OldMethod))
 | 
						|
            NewDiag = diag::err_constructor_redeclared;
 | 
						|
          else if (isa<CXXDestructorDecl>(NewMethod))
 | 
						|
            NewDiag = diag::err_destructor_redeclared;
 | 
						|
          else if (isa<CXXConversionDecl>(NewMethod))
 | 
						|
            NewDiag = diag::err_conv_function_redeclared;
 | 
						|
          else
 | 
						|
            NewDiag = diag::err_member_redeclared;
 | 
						|
 | 
						|
          Diag(New->getLocation(), NewDiag);
 | 
						|
        } else {
 | 
						|
          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
 | 
						|
            << New << New->getType();
 | 
						|
        }
 | 
						|
        Diag(OldLocation, PrevDiag) << Old << Old->getType();
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Complain if this is an explicit declaration of a special
 | 
						|
      // member that was initially declared implicitly.
 | 
						|
      //
 | 
						|
      // As an exception, it's okay to befriend such methods in order
 | 
						|
      // to permit the implicit constructor/destructor/operator calls.
 | 
						|
      } else if (OldMethod->isImplicit()) {
 | 
						|
        if (isFriend) {
 | 
						|
          NewMethod->setImplicit();
 | 
						|
        } else {
 | 
						|
          Diag(NewMethod->getLocation(),
 | 
						|
               diag::err_definition_of_implicitly_declared_member)
 | 
						|
            << New << getSpecialMember(OldMethod);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
 | 
						|
        Diag(NewMethod->getLocation(),
 | 
						|
             diag::err_definition_of_explicitly_defaulted_member)
 | 
						|
          << getSpecialMember(OldMethod);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [dcl.attr.noreturn]p1:
 | 
						|
    //   The first declaration of a function shall specify the noreturn
 | 
						|
    //   attribute if any declaration of that function specifies the noreturn
 | 
						|
    //   attribute.
 | 
						|
    const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
 | 
						|
    if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
 | 
						|
      Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
 | 
						|
      Diag(Old->getFirstDecl()->getLocation(),
 | 
						|
           diag::note_noreturn_missing_first_decl);
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [dcl.attr.depend]p2:
 | 
						|
    //   The first declaration of a function shall specify the
 | 
						|
    //   carries_dependency attribute for its declarator-id if any declaration
 | 
						|
    //   of the function specifies the carries_dependency attribute.
 | 
						|
    const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
 | 
						|
    if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
 | 
						|
      Diag(CDA->getLocation(),
 | 
						|
           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
 | 
						|
      Diag(Old->getFirstDecl()->getLocation(),
 | 
						|
           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
 | 
						|
    }
 | 
						|
 | 
						|
    // (C++98 8.3.5p3):
 | 
						|
    //   All declarations for a function shall agree exactly in both the
 | 
						|
    //   return type and the parameter-type-list.
 | 
						|
    // We also want to respect all the extended bits except noreturn.
 | 
						|
 | 
						|
    // noreturn should now match unless the old type info didn't have it.
 | 
						|
    QualType OldQTypeForComparison = OldQType;
 | 
						|
    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
 | 
						|
      auto *OldType = OldQType->castAs<FunctionProtoType>();
 | 
						|
      const FunctionType *OldTypeForComparison
 | 
						|
        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
 | 
						|
      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
 | 
						|
      assert(OldQTypeForComparison.isCanonical());
 | 
						|
    }
 | 
						|
 | 
						|
    if (haveIncompatibleLanguageLinkages(Old, New)) {
 | 
						|
      // As a special case, retain the language linkage from previous
 | 
						|
      // declarations of a friend function as an extension.
 | 
						|
      //
 | 
						|
      // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
 | 
						|
      // and is useful because there's otherwise no way to specify language
 | 
						|
      // linkage within class scope.
 | 
						|
      //
 | 
						|
      // Check cautiously as the friend object kind isn't yet complete.
 | 
						|
      if (New->getFriendObjectKind() != Decl::FOK_None) {
 | 
						|
        Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
 | 
						|
        Diag(OldLocation, PrevDiag);
 | 
						|
      } else {
 | 
						|
        Diag(New->getLocation(), diag::err_different_language_linkage) << New;
 | 
						|
        Diag(OldLocation, PrevDiag);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (OldQTypeForComparison == NewQType)
 | 
						|
      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
 | 
						|
 | 
						|
    if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
 | 
						|
        New->isLocalExternDecl()) {
 | 
						|
      // It's OK if we couldn't merge types for a local function declaraton
 | 
						|
      // if either the old or new type is dependent. We'll merge the types
 | 
						|
      // when we instantiate the function.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through for conflicting redeclarations and redefinitions.
 | 
						|
  }
 | 
						|
 | 
						|
  // C: Function types need to be compatible, not identical. This handles
 | 
						|
  // duplicate function decls like "void f(int); void f(enum X);" properly.
 | 
						|
  if (!getLangOpts().CPlusPlus &&
 | 
						|
      Context.typesAreCompatible(OldQType, NewQType)) {
 | 
						|
    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
 | 
						|
    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
 | 
						|
    const FunctionProtoType *OldProto = nullptr;
 | 
						|
    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
 | 
						|
        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
 | 
						|
      // The old declaration provided a function prototype, but the
 | 
						|
      // new declaration does not. Merge in the prototype.
 | 
						|
      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
 | 
						|
      SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
 | 
						|
      NewQType =
 | 
						|
          Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
 | 
						|
                                  OldProto->getExtProtoInfo());
 | 
						|
      New->setType(NewQType);
 | 
						|
      New->setHasInheritedPrototype();
 | 
						|
 | 
						|
      // Synthesize parameters with the same types.
 | 
						|
      SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
      for (const auto &ParamType : OldProto->param_types()) {
 | 
						|
        ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
 | 
						|
                                                 SourceLocation(), nullptr,
 | 
						|
                                                 ParamType, /*TInfo=*/nullptr,
 | 
						|
                                                 SC_None, nullptr);
 | 
						|
        Param->setScopeInfo(0, Params.size());
 | 
						|
        Param->setImplicit();
 | 
						|
        Params.push_back(Param);
 | 
						|
      }
 | 
						|
 | 
						|
      New->setParams(Params);
 | 
						|
    }
 | 
						|
 | 
						|
    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
 | 
						|
  }
 | 
						|
 | 
						|
  // GNU C permits a K&R definition to follow a prototype declaration
 | 
						|
  // if the declared types of the parameters in the K&R definition
 | 
						|
  // match the types in the prototype declaration, even when the
 | 
						|
  // promoted types of the parameters from the K&R definition differ
 | 
						|
  // from the types in the prototype. GCC then keeps the types from
 | 
						|
  // the prototype.
 | 
						|
  //
 | 
						|
  // If a variadic prototype is followed by a non-variadic K&R definition,
 | 
						|
  // the K&R definition becomes variadic.  This is sort of an edge case, but
 | 
						|
  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
 | 
						|
  // C99 6.9.1p8.
 | 
						|
  if (!getLangOpts().CPlusPlus &&
 | 
						|
      Old->hasPrototype() && !New->hasPrototype() &&
 | 
						|
      New->getType()->getAs<FunctionProtoType>() &&
 | 
						|
      Old->getNumParams() == New->getNumParams()) {
 | 
						|
    SmallVector<QualType, 16> ArgTypes;
 | 
						|
    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
 | 
						|
    const FunctionProtoType *OldProto
 | 
						|
      = Old->getType()->getAs<FunctionProtoType>();
 | 
						|
    const FunctionProtoType *NewProto
 | 
						|
      = New->getType()->getAs<FunctionProtoType>();
 | 
						|
 | 
						|
    // Determine whether this is the GNU C extension.
 | 
						|
    QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
 | 
						|
                                               NewProto->getReturnType());
 | 
						|
    bool LooseCompatible = !MergedReturn.isNull();
 | 
						|
    for (unsigned Idx = 0, End = Old->getNumParams();
 | 
						|
         LooseCompatible && Idx != End; ++Idx) {
 | 
						|
      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
 | 
						|
      ParmVarDecl *NewParm = New->getParamDecl(Idx);
 | 
						|
      if (Context.typesAreCompatible(OldParm->getType(),
 | 
						|
                                     NewProto->getParamType(Idx))) {
 | 
						|
        ArgTypes.push_back(NewParm->getType());
 | 
						|
      } else if (Context.typesAreCompatible(OldParm->getType(),
 | 
						|
                                            NewParm->getType(),
 | 
						|
                                            /*CompareUnqualified=*/true)) {
 | 
						|
        GNUCompatibleParamWarning Warn = { OldParm, NewParm,
 | 
						|
                                           NewProto->getParamType(Idx) };
 | 
						|
        Warnings.push_back(Warn);
 | 
						|
        ArgTypes.push_back(NewParm->getType());
 | 
						|
      } else
 | 
						|
        LooseCompatible = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LooseCompatible) {
 | 
						|
      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
 | 
						|
        Diag(Warnings[Warn].NewParm->getLocation(),
 | 
						|
             diag::ext_param_promoted_not_compatible_with_prototype)
 | 
						|
          << Warnings[Warn].PromotedType
 | 
						|
          << Warnings[Warn].OldParm->getType();
 | 
						|
        if (Warnings[Warn].OldParm->getLocation().isValid())
 | 
						|
          Diag(Warnings[Warn].OldParm->getLocation(),
 | 
						|
               diag::note_previous_declaration);
 | 
						|
      }
 | 
						|
 | 
						|
      if (MergeTypeWithOld)
 | 
						|
        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
 | 
						|
                                             OldProto->getExtProtoInfo()));
 | 
						|
      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
 | 
						|
    }
 | 
						|
 | 
						|
    // Fall through to diagnose conflicting types.
 | 
						|
  }
 | 
						|
 | 
						|
  // A function that has already been declared has been redeclared or
 | 
						|
  // defined with a different type; show an appropriate diagnostic.
 | 
						|
 | 
						|
  // If the previous declaration was an implicitly-generated builtin
 | 
						|
  // declaration, then at the very least we should use a specialized note.
 | 
						|
  unsigned BuiltinID;
 | 
						|
  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
 | 
						|
    // If it's actually a library-defined builtin function like 'malloc'
 | 
						|
    // or 'printf', just warn about the incompatible redeclaration.
 | 
						|
    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
 | 
						|
      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
 | 
						|
      Diag(OldLocation, diag::note_previous_builtin_declaration)
 | 
						|
        << Old << Old->getType();
 | 
						|
 | 
						|
      // If this is a global redeclaration, just forget hereafter
 | 
						|
      // about the "builtin-ness" of the function.
 | 
						|
      //
 | 
						|
      // Doing this for local extern declarations is problematic.  If
 | 
						|
      // the builtin declaration remains visible, a second invalid
 | 
						|
      // local declaration will produce a hard error; if it doesn't
 | 
						|
      // remain visible, a single bogus local redeclaration (which is
 | 
						|
      // actually only a warning) could break all the downstream code.
 | 
						|
      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
 | 
						|
        New->getIdentifier()->revertBuiltin();
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    PrevDiag = diag::note_previous_builtin_declaration;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
 | 
						|
  Diag(OldLocation, PrevDiag) << Old << Old->getType();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Completes the merge of two function declarations that are
 | 
						|
/// known to be compatible.
 | 
						|
///
 | 
						|
/// This routine handles the merging of attributes and other
 | 
						|
/// properties of function declarations from the old declaration to
 | 
						|
/// the new declaration, once we know that New is in fact a
 | 
						|
/// redeclaration of Old.
 | 
						|
///
 | 
						|
/// \returns false
 | 
						|
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
 | 
						|
                                        Scope *S, bool MergeTypeWithOld) {
 | 
						|
  // Merge the attributes
 | 
						|
  mergeDeclAttributes(New, Old);
 | 
						|
 | 
						|
  // Merge "pure" flag.
 | 
						|
  if (Old->isPure())
 | 
						|
    New->setPure();
 | 
						|
 | 
						|
  // Merge "used" flag.
 | 
						|
  if (Old->getMostRecentDecl()->isUsed(false))
 | 
						|
    New->setIsUsed();
 | 
						|
 | 
						|
  // Merge attributes from the parameters.  These can mismatch with K&R
 | 
						|
  // declarations.
 | 
						|
  if (New->getNumParams() == Old->getNumParams())
 | 
						|
      for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
 | 
						|
        ParmVarDecl *NewParam = New->getParamDecl(i);
 | 
						|
        ParmVarDecl *OldParam = Old->getParamDecl(i);
 | 
						|
        mergeParamDeclAttributes(NewParam, OldParam, *this);
 | 
						|
        mergeParamDeclTypes(NewParam, OldParam, *this);
 | 
						|
      }
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus)
 | 
						|
    return MergeCXXFunctionDecl(New, Old, S);
 | 
						|
 | 
						|
  // Merge the function types so the we get the composite types for the return
 | 
						|
  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
 | 
						|
  // was visible.
 | 
						|
  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
 | 
						|
  if (!Merged.isNull() && MergeTypeWithOld)
 | 
						|
    New->setType(Merged);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
 | 
						|
                                ObjCMethodDecl *oldMethod) {
 | 
						|
  // Merge the attributes, including deprecated/unavailable
 | 
						|
  AvailabilityMergeKind MergeKind =
 | 
						|
    isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
 | 
						|
      ? AMK_ProtocolImplementation
 | 
						|
      : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
 | 
						|
                                                       : AMK_Override;
 | 
						|
 | 
						|
  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
 | 
						|
 | 
						|
  // Merge attributes from the parameters.
 | 
						|
  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
 | 
						|
                                       oe = oldMethod->param_end();
 | 
						|
  for (ObjCMethodDecl::param_iterator
 | 
						|
         ni = newMethod->param_begin(), ne = newMethod->param_end();
 | 
						|
       ni != ne && oi != oe; ++ni, ++oi)
 | 
						|
    mergeParamDeclAttributes(*ni, *oi, *this);
 | 
						|
 | 
						|
  CheckObjCMethodOverride(newMethod, oldMethod);
 | 
						|
}
 | 
						|
 | 
						|
static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
 | 
						|
  assert(!S.Context.hasSameType(New->getType(), Old->getType()));
 | 
						|
 | 
						|
  S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
 | 
						|
         ? diag::err_redefinition_different_type
 | 
						|
         : diag::err_redeclaration_different_type)
 | 
						|
    << New->getDeclName() << New->getType() << Old->getType();
 | 
						|
 | 
						|
  diag::kind PrevDiag;
 | 
						|
  SourceLocation OldLocation;
 | 
						|
  std::tie(PrevDiag, OldLocation)
 | 
						|
    = getNoteDiagForInvalidRedeclaration(Old, New);
 | 
						|
  S.Diag(OldLocation, PrevDiag);
 | 
						|
  New->setInvalidDecl();
 | 
						|
}
 | 
						|
 | 
						|
/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
 | 
						|
/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
 | 
						|
/// emitting diagnostics as appropriate.
 | 
						|
///
 | 
						|
/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
 | 
						|
/// to here in AddInitializerToDecl. We can't check them before the initializer
 | 
						|
/// is attached.
 | 
						|
void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
 | 
						|
                             bool MergeTypeWithOld) {
 | 
						|
  if (New->isInvalidDecl() || Old->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  QualType MergedT;
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    if (New->getType()->isUndeducedType()) {
 | 
						|
      // We don't know what the new type is until the initializer is attached.
 | 
						|
      return;
 | 
						|
    } else if (Context.hasSameType(New->getType(), Old->getType())) {
 | 
						|
      // These could still be something that needs exception specs checked.
 | 
						|
      return MergeVarDeclExceptionSpecs(New, Old);
 | 
						|
    }
 | 
						|
    // C++ [basic.link]p10:
 | 
						|
    //   [...] the types specified by all declarations referring to a given
 | 
						|
    //   object or function shall be identical, except that declarations for an
 | 
						|
    //   array object can specify array types that differ by the presence or
 | 
						|
    //   absence of a major array bound (8.3.4).
 | 
						|
    else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
 | 
						|
      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
 | 
						|
      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
 | 
						|
 | 
						|
      // We are merging a variable declaration New into Old. If it has an array
 | 
						|
      // bound, and that bound differs from Old's bound, we should diagnose the
 | 
						|
      // mismatch.
 | 
						|
      if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
 | 
						|
        for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
 | 
						|
             PrevVD = PrevVD->getPreviousDecl()) {
 | 
						|
          const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
 | 
						|
          if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (!Context.hasSameType(NewArray, PrevVDTy))
 | 
						|
            return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
 | 
						|
        if (Context.hasSameType(OldArray->getElementType(),
 | 
						|
                                NewArray->getElementType()))
 | 
						|
          MergedT = New->getType();
 | 
						|
      }
 | 
						|
      // FIXME: Check visibility. New is hidden but has a complete type. If New
 | 
						|
      // has no array bound, it should not inherit one from Old, if Old is not
 | 
						|
      // visible.
 | 
						|
      else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
 | 
						|
        if (Context.hasSameType(OldArray->getElementType(),
 | 
						|
                                NewArray->getElementType()))
 | 
						|
          MergedT = Old->getType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (New->getType()->isObjCObjectPointerType() &&
 | 
						|
               Old->getType()->isObjCObjectPointerType()) {
 | 
						|
      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
 | 
						|
                                              Old->getType());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // C 6.2.7p2:
 | 
						|
    //   All declarations that refer to the same object or function shall have
 | 
						|
    //   compatible type.
 | 
						|
    MergedT = Context.mergeTypes(New->getType(), Old->getType());
 | 
						|
  }
 | 
						|
  if (MergedT.isNull()) {
 | 
						|
    // It's OK if we couldn't merge types if either type is dependent, for a
 | 
						|
    // block-scope variable. In other cases (static data members of class
 | 
						|
    // templates, variable templates, ...), we require the types to be
 | 
						|
    // equivalent.
 | 
						|
    // FIXME: The C++ standard doesn't say anything about this.
 | 
						|
    if ((New->getType()->isDependentType() ||
 | 
						|
         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
 | 
						|
      // If the old type was dependent, we can't merge with it, so the new type
 | 
						|
      // becomes dependent for now. We'll reproduce the original type when we
 | 
						|
      // instantiate the TypeSourceInfo for the variable.
 | 
						|
      if (!New->getType()->isDependentType() && MergeTypeWithOld)
 | 
						|
        New->setType(Context.DependentTy);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    return diagnoseVarDeclTypeMismatch(*this, New, Old);
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't actually update the type on the new declaration if the old
 | 
						|
  // declaration was an extern declaration in a different scope.
 | 
						|
  if (MergeTypeWithOld)
 | 
						|
    New->setType(MergedT);
 | 
						|
}
 | 
						|
 | 
						|
static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
 | 
						|
                                  LookupResult &Previous) {
 | 
						|
  // C11 6.2.7p4:
 | 
						|
  //   For an identifier with internal or external linkage declared
 | 
						|
  //   in a scope in which a prior declaration of that identifier is
 | 
						|
  //   visible, if the prior declaration specifies internal or
 | 
						|
  //   external linkage, the type of the identifier at the later
 | 
						|
  //   declaration becomes the composite type.
 | 
						|
  //
 | 
						|
  // If the variable isn't visible, we do not merge with its type.
 | 
						|
  if (Previous.isShadowed())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (S.getLangOpts().CPlusPlus) {
 | 
						|
    // C++11 [dcl.array]p3:
 | 
						|
    //   If there is a preceding declaration of the entity in the same
 | 
						|
    //   scope in which the bound was specified, an omitted array bound
 | 
						|
    //   is taken to be the same as in that earlier declaration.
 | 
						|
    return NewVD->isPreviousDeclInSameBlockScope() ||
 | 
						|
           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
 | 
						|
            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
 | 
						|
  } else {
 | 
						|
    // If the old declaration was function-local, don't merge with its
 | 
						|
    // type unless we're in the same function.
 | 
						|
    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
 | 
						|
           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
 | 
						|
/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
 | 
						|
/// situation, merging decls or emitting diagnostics as appropriate.
 | 
						|
///
 | 
						|
/// Tentative definition rules (C99 6.9.2p2) are checked by
 | 
						|
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
 | 
						|
/// definitions here, since the initializer hasn't been attached.
 | 
						|
///
 | 
						|
void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
 | 
						|
  // If the new decl is already invalid, don't do any other checking.
 | 
						|
  if (New->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!shouldLinkPossiblyHiddenDecl(Previous, New))
 | 
						|
    return;
 | 
						|
 | 
						|
  VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
 | 
						|
 | 
						|
  // Verify the old decl was also a variable or variable template.
 | 
						|
  VarDecl *Old = nullptr;
 | 
						|
  VarTemplateDecl *OldTemplate = nullptr;
 | 
						|
  if (Previous.isSingleResult()) {
 | 
						|
    if (NewTemplate) {
 | 
						|
      OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
 | 
						|
      Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
 | 
						|
 | 
						|
      if (auto *Shadow =
 | 
						|
              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
 | 
						|
        if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
 | 
						|
          return New->setInvalidDecl();
 | 
						|
    } else {
 | 
						|
      Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
 | 
						|
 | 
						|
      if (auto *Shadow =
 | 
						|
              dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
 | 
						|
        if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
 | 
						|
          return New->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Old) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition_different_kind)
 | 
						|
        << New->getDeclName();
 | 
						|
    notePreviousDefinition(Previous.getRepresentativeDecl(),
 | 
						|
                           New->getLocation());
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure the template parameters are compatible.
 | 
						|
  if (NewTemplate &&
 | 
						|
      !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
 | 
						|
                                      OldTemplate->getTemplateParameters(),
 | 
						|
                                      /*Complain=*/true, TPL_TemplateMatch))
 | 
						|
    return New->setInvalidDecl();
 | 
						|
 | 
						|
  // C++ [class.mem]p1:
 | 
						|
  //   A member shall not be declared twice in the member-specification [...]
 | 
						|
  //
 | 
						|
  // Here, we need only consider static data members.
 | 
						|
  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
 | 
						|
    Diag(New->getLocation(), diag::err_duplicate_member)
 | 
						|
      << New->getIdentifier();
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_declaration);
 | 
						|
    New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  mergeDeclAttributes(New, Old);
 | 
						|
  // Warn if an already-declared variable is made a weak_import in a subsequent
 | 
						|
  // declaration
 | 
						|
  if (New->hasAttr<WeakImportAttr>() &&
 | 
						|
      Old->getStorageClass() == SC_None &&
 | 
						|
      !Old->hasAttr<WeakImportAttr>()) {
 | 
						|
    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
 | 
						|
    notePreviousDefinition(Old, New->getLocation());
 | 
						|
    // Remove weak_import attribute on new declaration.
 | 
						|
    New->dropAttr<WeakImportAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  if (New->hasAttr<InternalLinkageAttr>() &&
 | 
						|
      !Old->hasAttr<InternalLinkageAttr>()) {
 | 
						|
    Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
 | 
						|
        << New->getDeclName();
 | 
						|
    notePreviousDefinition(Old, New->getLocation());
 | 
						|
    New->dropAttr<InternalLinkageAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge the types.
 | 
						|
  VarDecl *MostRecent = Old->getMostRecentDecl();
 | 
						|
  if (MostRecent != Old) {
 | 
						|
    MergeVarDeclTypes(New, MostRecent,
 | 
						|
                      mergeTypeWithPrevious(*this, New, MostRecent, Previous));
 | 
						|
    if (New->isInvalidDecl())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
 | 
						|
  if (New->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  diag::kind PrevDiag;
 | 
						|
  SourceLocation OldLocation;
 | 
						|
  std::tie(PrevDiag, OldLocation) =
 | 
						|
      getNoteDiagForInvalidRedeclaration(Old, New);
 | 
						|
 | 
						|
  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
 | 
						|
  if (New->getStorageClass() == SC_Static &&
 | 
						|
      !New->isStaticDataMember() &&
 | 
						|
      Old->hasExternalFormalLinkage()) {
 | 
						|
    if (getLangOpts().MicrosoftExt) {
 | 
						|
      Diag(New->getLocation(), diag::ext_static_non_static)
 | 
						|
          << New->getDeclName();
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
    } else {
 | 
						|
      Diag(New->getLocation(), diag::err_static_non_static)
 | 
						|
          << New->getDeclName();
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
      return New->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // C99 6.2.2p4:
 | 
						|
  //   For an identifier declared with the storage-class specifier
 | 
						|
  //   extern in a scope in which a prior declaration of that
 | 
						|
  //   identifier is visible,23) if the prior declaration specifies
 | 
						|
  //   internal or external linkage, the linkage of the identifier at
 | 
						|
  //   the later declaration is the same as the linkage specified at
 | 
						|
  //   the prior declaration. If no prior declaration is visible, or
 | 
						|
  //   if the prior declaration specifies no linkage, then the
 | 
						|
  //   identifier has external linkage.
 | 
						|
  if (New->hasExternalStorage() && Old->hasLinkage())
 | 
						|
    /* Okay */;
 | 
						|
  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
 | 
						|
           !New->isStaticDataMember() &&
 | 
						|
           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
 | 
						|
    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
 | 
						|
    Diag(OldLocation, PrevDiag);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if extern is followed by non-extern and vice-versa.
 | 
						|
  if (New->hasExternalStorage() &&
 | 
						|
      !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
 | 
						|
    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
 | 
						|
    Diag(OldLocation, PrevDiag);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
  if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
 | 
						|
      !New->hasExternalStorage()) {
 | 
						|
    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
 | 
						|
    Diag(OldLocation, PrevDiag);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckRedeclarationModuleOwnership(New, Old))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
 | 
						|
 | 
						|
  // FIXME: The test for external storage here seems wrong? We still
 | 
						|
  // need to check for mismatches.
 | 
						|
  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
 | 
						|
      // Don't complain about out-of-line definitions of static members.
 | 
						|
      !(Old->getLexicalDeclContext()->isRecord() &&
 | 
						|
        !New->getLexicalDeclContext()->isRecord())) {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
 | 
						|
    Diag(OldLocation, PrevDiag);
 | 
						|
    return New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
 | 
						|
    if (VarDecl *Def = Old->getDefinition()) {
 | 
						|
      // C++1z [dcl.fcn.spec]p4:
 | 
						|
      //   If the definition of a variable appears in a translation unit before
 | 
						|
      //   its first declaration as inline, the program is ill-formed.
 | 
						|
      Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this redeclaration makes the variable inline, we may need to add it to
 | 
						|
  // UndefinedButUsed.
 | 
						|
  if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
 | 
						|
      !Old->getDefinition() && !New->isThisDeclarationADefinition())
 | 
						|
    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
 | 
						|
                                           SourceLocation()));
 | 
						|
 | 
						|
  if (New->getTLSKind() != Old->getTLSKind()) {
 | 
						|
    if (!Old->getTLSKind()) {
 | 
						|
      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
    } else if (!New->getTLSKind()) {
 | 
						|
      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
    } else {
 | 
						|
      // Do not allow redeclaration to change the variable between requiring
 | 
						|
      // static and dynamic initialization.
 | 
						|
      // FIXME: GCC allows this, but uses the TLS keyword on the first
 | 
						|
      // declaration to determine the kind. Do we need to be compatible here?
 | 
						|
      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
 | 
						|
        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
 | 
						|
      Diag(OldLocation, PrevDiag);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ doesn't have tentative definitions, so go right ahead and check here.
 | 
						|
  if (getLangOpts().CPlusPlus &&
 | 
						|
      New->isThisDeclarationADefinition() == VarDecl::Definition) {
 | 
						|
    if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
 | 
						|
        Old->getCanonicalDecl()->isConstexpr()) {
 | 
						|
      // This definition won't be a definition any more once it's been merged.
 | 
						|
      Diag(New->getLocation(),
 | 
						|
           diag::warn_deprecated_redundant_constexpr_static_def);
 | 
						|
    } else if (VarDecl *Def = Old->getDefinition()) {
 | 
						|
      if (checkVarDeclRedefinition(Def, New))
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (haveIncompatibleLanguageLinkages(Old, New)) {
 | 
						|
    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
 | 
						|
    Diag(OldLocation, PrevDiag);
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge "used" flag.
 | 
						|
  if (Old->getMostRecentDecl()->isUsed(false))
 | 
						|
    New->setIsUsed();
 | 
						|
 | 
						|
  // Keep a chain of previous declarations.
 | 
						|
  New->setPreviousDecl(Old);
 | 
						|
  if (NewTemplate)
 | 
						|
    NewTemplate->setPreviousDecl(OldTemplate);
 | 
						|
  adjustDeclContextForDeclaratorDecl(New, Old);
 | 
						|
 | 
						|
  // Inherit access appropriately.
 | 
						|
  New->setAccess(Old->getAccess());
 | 
						|
  if (NewTemplate)
 | 
						|
    NewTemplate->setAccess(New->getAccess());
 | 
						|
 | 
						|
  if (Old->isInline())
 | 
						|
    New->setImplicitlyInline();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
 | 
						|
  SourceManager &SrcMgr = getSourceManager();
 | 
						|
  auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
 | 
						|
  auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
 | 
						|
  auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
 | 
						|
  auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
 | 
						|
  auto &HSI = PP.getHeaderSearchInfo();
 | 
						|
  StringRef HdrFilename =
 | 
						|
      SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
 | 
						|
 | 
						|
  auto noteFromModuleOrInclude = [&](Module *Mod,
 | 
						|
                                     SourceLocation IncLoc) -> bool {
 | 
						|
    // Redefinition errors with modules are common with non modular mapped
 | 
						|
    // headers, example: a non-modular header H in module A that also gets
 | 
						|
    // included directly in a TU. Pointing twice to the same header/definition
 | 
						|
    // is confusing, try to get better diagnostics when modules is on.
 | 
						|
    if (IncLoc.isValid()) {
 | 
						|
      if (Mod) {
 | 
						|
        Diag(IncLoc, diag::note_redefinition_modules_same_file)
 | 
						|
            << HdrFilename.str() << Mod->getFullModuleName();
 | 
						|
        if (!Mod->DefinitionLoc.isInvalid())
 | 
						|
          Diag(Mod->DefinitionLoc, diag::note_defined_here)
 | 
						|
              << Mod->getFullModuleName();
 | 
						|
      } else {
 | 
						|
        Diag(IncLoc, diag::note_redefinition_include_same_file)
 | 
						|
            << HdrFilename.str();
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Is it the same file and same offset? Provide more information on why
 | 
						|
  // this leads to a redefinition error.
 | 
						|
  bool EmittedDiag = false;
 | 
						|
  if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
 | 
						|
    SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
 | 
						|
    SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
 | 
						|
    EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
 | 
						|
    EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
 | 
						|
 | 
						|
    // If the header has no guards, emit a note suggesting one.
 | 
						|
    if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
 | 
						|
      Diag(Old->getLocation(), diag::note_use_ifdef_guards);
 | 
						|
 | 
						|
    if (EmittedDiag)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Redefinition coming from different files or couldn't do better above.
 | 
						|
  if (Old->getLocation().isValid())
 | 
						|
    Diag(Old->getLocation(), diag::note_previous_definition);
 | 
						|
}
 | 
						|
 | 
						|
/// We've just determined that \p Old and \p New both appear to be definitions
 | 
						|
/// of the same variable. Either diagnose or fix the problem.
 | 
						|
bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
 | 
						|
  if (!hasVisibleDefinition(Old) &&
 | 
						|
      (New->getFormalLinkage() == InternalLinkage ||
 | 
						|
       New->isInline() ||
 | 
						|
       New->getDescribedVarTemplate() ||
 | 
						|
       New->getNumTemplateParameterLists() ||
 | 
						|
       New->getDeclContext()->isDependentContext())) {
 | 
						|
    // The previous definition is hidden, and multiple definitions are
 | 
						|
    // permitted (in separate TUs). Demote this to a declaration.
 | 
						|
    New->demoteThisDefinitionToDeclaration();
 | 
						|
 | 
						|
    // Make the canonical definition visible.
 | 
						|
    if (auto *OldTD = Old->getDescribedVarTemplate())
 | 
						|
      makeMergedDefinitionVisible(OldTD);
 | 
						|
    makeMergedDefinitionVisible(Old);
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    Diag(New->getLocation(), diag::err_redefinition) << New;
 | 
						|
    notePreviousDefinition(Old, New->getLocation());
 | 
						|
    New->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | 
						|
/// no declarator (e.g. "struct foo;") is parsed.
 | 
						|
Decl *
 | 
						|
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
 | 
						|
                                 RecordDecl *&AnonRecord) {
 | 
						|
  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
 | 
						|
                                    AnonRecord);
 | 
						|
}
 | 
						|
 | 
						|
// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
 | 
						|
// disambiguate entities defined in different scopes.
 | 
						|
// While the VS2015 ABI fixes potential miscompiles, it is also breaks
 | 
						|
// compatibility.
 | 
						|
// We will pick our mangling number depending on which version of MSVC is being
 | 
						|
// targeted.
 | 
						|
static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
 | 
						|
  return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
 | 
						|
             ? S->getMSCurManglingNumber()
 | 
						|
             : S->getMSLastManglingNumber();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
 | 
						|
  if (!Context.getLangOpts().CPlusPlus)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isa<CXXRecordDecl>(Tag->getParent())) {
 | 
						|
    // If this tag is the direct child of a class, number it if
 | 
						|
    // it is anonymous.
 | 
						|
    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
 | 
						|
      return;
 | 
						|
    MangleNumberingContext &MCtx =
 | 
						|
        Context.getManglingNumberContext(Tag->getParent());
 | 
						|
    Context.setManglingNumber(
 | 
						|
        Tag, MCtx.getManglingNumber(
 | 
						|
                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this tag isn't a direct child of a class, number it if it is local.
 | 
						|
  Decl *ManglingContextDecl;
 | 
						|
  if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
 | 
						|
          Tag->getDeclContext(), ManglingContextDecl)) {
 | 
						|
    Context.setManglingNumber(
 | 
						|
        Tag, MCtx->getManglingNumber(
 | 
						|
                 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
 | 
						|
                                        TypedefNameDecl *NewTD) {
 | 
						|
  if (TagFromDeclSpec->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do nothing if the tag already has a name for linkage purposes.
 | 
						|
  if (TagFromDeclSpec->hasNameForLinkage())
 | 
						|
    return;
 | 
						|
 | 
						|
  // A well-formed anonymous tag must always be a TUK_Definition.
 | 
						|
  assert(TagFromDeclSpec->isThisDeclarationADefinition());
 | 
						|
 | 
						|
  // The type must match the tag exactly;  no qualifiers allowed.
 | 
						|
  if (!Context.hasSameType(NewTD->getUnderlyingType(),
 | 
						|
                           Context.getTagDeclType(TagFromDeclSpec))) {
 | 
						|
    if (getLangOpts().CPlusPlus)
 | 
						|
      Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we've already computed linkage for the anonymous tag, then
 | 
						|
  // adding a typedef name for the anonymous decl can change that
 | 
						|
  // linkage, which might be a serious problem.  Diagnose this as
 | 
						|
  // unsupported and ignore the typedef name.  TODO: we should
 | 
						|
  // pursue this as a language defect and establish a formal rule
 | 
						|
  // for how to handle it.
 | 
						|
  if (TagFromDeclSpec->hasLinkageBeenComputed()) {
 | 
						|
    Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
 | 
						|
 | 
						|
    SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
 | 
						|
    tagLoc = getLocForEndOfToken(tagLoc);
 | 
						|
 | 
						|
    llvm::SmallString<40> textToInsert;
 | 
						|
    textToInsert += ' ';
 | 
						|
    textToInsert += NewTD->getIdentifier()->getName();
 | 
						|
    Diag(tagLoc, diag::note_typedef_changes_linkage)
 | 
						|
        << FixItHint::CreateInsertion(tagLoc, textToInsert);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, set this is the anon-decl typedef for the tag.
 | 
						|
  TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
 | 
						|
  switch (T) {
 | 
						|
  case DeclSpec::TST_class:
 | 
						|
    return 0;
 | 
						|
  case DeclSpec::TST_struct:
 | 
						|
    return 1;
 | 
						|
  case DeclSpec::TST_interface:
 | 
						|
    return 2;
 | 
						|
  case DeclSpec::TST_union:
 | 
						|
    return 3;
 | 
						|
  case DeclSpec::TST_enum:
 | 
						|
    return 4;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unexpected type specifier");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
 | 
						|
/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
 | 
						|
/// parameters to cope with template friend declarations.
 | 
						|
Decl *
 | 
						|
Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
 | 
						|
                                 MultiTemplateParamsArg TemplateParams,
 | 
						|
                                 bool IsExplicitInstantiation,
 | 
						|
                                 RecordDecl *&AnonRecord) {
 | 
						|
  Decl *TagD = nullptr;
 | 
						|
  TagDecl *Tag = nullptr;
 | 
						|
  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_struct ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_interface ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_union ||
 | 
						|
      DS.getTypeSpecType() == DeclSpec::TST_enum) {
 | 
						|
    TagD = DS.getRepAsDecl();
 | 
						|
 | 
						|
    if (!TagD) // We probably had an error
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Note that the above type specs guarantee that the
 | 
						|
    // type rep is a Decl, whereas in many of the others
 | 
						|
    // it's a Type.
 | 
						|
    if (isa<TagDecl>(TagD))
 | 
						|
      Tag = cast<TagDecl>(TagD);
 | 
						|
    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
 | 
						|
      Tag = CTD->getTemplatedDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Tag) {
 | 
						|
    handleTagNumbering(Tag, S);
 | 
						|
    Tag->setFreeStanding();
 | 
						|
    if (Tag->isInvalidDecl())
 | 
						|
      return Tag;
 | 
						|
  }
 | 
						|
 | 
						|
  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
 | 
						|
    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
 | 
						|
    // or incomplete types shall not be restrict-qualified."
 | 
						|
    if (TypeQuals & DeclSpec::TQ_restrict)
 | 
						|
      Diag(DS.getRestrictSpecLoc(),
 | 
						|
           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
 | 
						|
           << DS.getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  if (DS.isInlineSpecified())
 | 
						|
    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
 | 
						|
        << getLangOpts().CPlusPlus17;
 | 
						|
 | 
						|
  if (DS.isConstexprSpecified()) {
 | 
						|
    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
 | 
						|
    // and definitions of functions and variables.
 | 
						|
    if (Tag)
 | 
						|
      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
 | 
						|
          << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
 | 
						|
    else
 | 
						|
      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
 | 
						|
    // Don't emit warnings after this error.
 | 
						|
    return TagD;
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(DS);
 | 
						|
 | 
						|
  if (DS.isFriendSpecified()) {
 | 
						|
    // If we're dealing with a decl but not a TagDecl, assume that
 | 
						|
    // whatever routines created it handled the friendship aspect.
 | 
						|
    if (TagD && !Tag)
 | 
						|
      return nullptr;
 | 
						|
    return ActOnFriendTypeDecl(S, DS, TemplateParams);
 | 
						|
  }
 | 
						|
 | 
						|
  const CXXScopeSpec &SS = DS.getTypeSpecScope();
 | 
						|
  bool IsExplicitSpecialization =
 | 
						|
    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
 | 
						|
  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
 | 
						|
      !IsExplicitInstantiation && !IsExplicitSpecialization &&
 | 
						|
      !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
 | 
						|
    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
 | 
						|
    // nested-name-specifier unless it is an explicit instantiation
 | 
						|
    // or an explicit specialization.
 | 
						|
    //
 | 
						|
    // FIXME: We allow class template partial specializations here too, per the
 | 
						|
    // obvious intent of DR1819.
 | 
						|
    //
 | 
						|
    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
 | 
						|
    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
 | 
						|
        << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Track whether this decl-specifier declares anything.
 | 
						|
  bool DeclaresAnything = true;
 | 
						|
 | 
						|
  // Handle anonymous struct definitions.
 | 
						|
  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
 | 
						|
    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
 | 
						|
        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
 | 
						|
      if (getLangOpts().CPlusPlus ||
 | 
						|
          Record->getDeclContext()->isRecord()) {
 | 
						|
        // If CurContext is a DeclContext that can contain statements,
 | 
						|
        // RecursiveASTVisitor won't visit the decls that
 | 
						|
        // BuildAnonymousStructOrUnion() will put into CurContext.
 | 
						|
        // Also store them here so that they can be part of the
 | 
						|
        // DeclStmt that gets created in this case.
 | 
						|
        // FIXME: Also return the IndirectFieldDecls created by
 | 
						|
        // BuildAnonymousStructOr union, for the same reason?
 | 
						|
        if (CurContext->isFunctionOrMethod())
 | 
						|
          AnonRecord = Record;
 | 
						|
        return BuildAnonymousStructOrUnion(S, DS, AS, Record,
 | 
						|
                                           Context.getPrintingPolicy());
 | 
						|
      }
 | 
						|
 | 
						|
      DeclaresAnything = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C11 6.7.2.1p2:
 | 
						|
  //   A struct-declaration that does not declare an anonymous structure or
 | 
						|
  //   anonymous union shall contain a struct-declarator-list.
 | 
						|
  //
 | 
						|
  // This rule also existed in C89 and C99; the grammar for struct-declaration
 | 
						|
  // did not permit a struct-declaration without a struct-declarator-list.
 | 
						|
  if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
 | 
						|
      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
 | 
						|
    // Check for Microsoft C extension: anonymous struct/union member.
 | 
						|
    // Handle 2 kinds of anonymous struct/union:
 | 
						|
    //   struct STRUCT;
 | 
						|
    //   union UNION;
 | 
						|
    // and
 | 
						|
    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
 | 
						|
    //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
 | 
						|
    if ((Tag && Tag->getDeclName()) ||
 | 
						|
        DS.getTypeSpecType() == DeclSpec::TST_typename) {
 | 
						|
      RecordDecl *Record = nullptr;
 | 
						|
      if (Tag)
 | 
						|
        Record = dyn_cast<RecordDecl>(Tag);
 | 
						|
      else if (const RecordType *RT =
 | 
						|
                   DS.getRepAsType().get()->getAsStructureType())
 | 
						|
        Record = RT->getDecl();
 | 
						|
      else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
 | 
						|
        Record = UT->getDecl();
 | 
						|
 | 
						|
      if (Record && getLangOpts().MicrosoftExt) {
 | 
						|
        Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
 | 
						|
          << Record->isUnion() << DS.getSourceRange();
 | 
						|
        return BuildMicrosoftCAnonymousStruct(S, DS, Record);
 | 
						|
      }
 | 
						|
 | 
						|
      DeclaresAnything = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Skip all the checks below if we have a type error.
 | 
						|
  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
 | 
						|
      (TagD && TagD->isInvalidDecl()))
 | 
						|
    return TagD;
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus &&
 | 
						|
      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
 | 
						|
    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
 | 
						|
      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
 | 
						|
          !Enum->getIdentifier() && !Enum->isInvalidDecl())
 | 
						|
        DeclaresAnything = false;
 | 
						|
 | 
						|
  if (!DS.isMissingDeclaratorOk()) {
 | 
						|
    // Customize diagnostic for a typedef missing a name.
 | 
						|
    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
 | 
						|
      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
 | 
						|
        << DS.getSourceRange();
 | 
						|
    else
 | 
						|
      DeclaresAnything = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DS.isModulePrivateSpecified() &&
 | 
						|
      Tag && Tag->getDeclContext()->isFunctionOrMethod())
 | 
						|
    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
 | 
						|
      << Tag->getTagKind()
 | 
						|
      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
 | 
						|
 | 
						|
  ActOnDocumentableDecl(TagD);
 | 
						|
 | 
						|
  // C 6.7/2:
 | 
						|
  //   A declaration [...] shall declare at least a declarator [...], a tag,
 | 
						|
  //   or the members of an enumeration.
 | 
						|
  // C++ [dcl.dcl]p3:
 | 
						|
  //   [If there are no declarators], and except for the declaration of an
 | 
						|
  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
 | 
						|
  //   names into the program, or shall redeclare a name introduced by a
 | 
						|
  //   previous declaration.
 | 
						|
  if (!DeclaresAnything) {
 | 
						|
    // In C, we allow this as a (popular) extension / bug. Don't bother
 | 
						|
    // producing further diagnostics for redundant qualifiers after this.
 | 
						|
    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
 | 
						|
    return TagD;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [dcl.stc]p1:
 | 
						|
  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
 | 
						|
  //   init-declarator-list of the declaration shall not be empty.
 | 
						|
  // C++ [dcl.fct.spec]p1:
 | 
						|
  //   If a cv-qualifier appears in a decl-specifier-seq, the
 | 
						|
  //   init-declarator-list of the declaration shall not be empty.
 | 
						|
  //
 | 
						|
  // Spurious qualifiers here appear to be valid in C.
 | 
						|
  unsigned DiagID = diag::warn_standalone_specifier;
 | 
						|
  if (getLangOpts().CPlusPlus)
 | 
						|
    DiagID = diag::ext_standalone_specifier;
 | 
						|
 | 
						|
  // Note that a linkage-specification sets a storage class, but
 | 
						|
  // 'extern "C" struct foo;' is actually valid and not theoretically
 | 
						|
  // useless.
 | 
						|
  if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
 | 
						|
    if (SCS == DeclSpec::SCS_mutable)
 | 
						|
      // Since mutable is not a viable storage class specifier in C, there is
 | 
						|
      // no reason to treat it as an extension. Instead, diagnose as an error.
 | 
						|
      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
 | 
						|
    else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
 | 
						|
      Diag(DS.getStorageClassSpecLoc(), DiagID)
 | 
						|
        << DeclSpec::getSpecifierName(SCS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
 | 
						|
    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
 | 
						|
      << DeclSpec::getSpecifierName(TSCS);
 | 
						|
  if (DS.getTypeQualifiers()) {
 | 
						|
    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | 
						|
      Diag(DS.getConstSpecLoc(), DiagID) << "const";
 | 
						|
    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | 
						|
      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
 | 
						|
    // Restrict is covered above.
 | 
						|
    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
 | 
						|
      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
 | 
						|
    if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
 | 
						|
      Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn about ignored type attributes, for example:
 | 
						|
  // __attribute__((aligned)) struct A;
 | 
						|
  // Attributes should be placed after tag to apply to type declaration.
 | 
						|
  if (!DS.getAttributes().empty()) {
 | 
						|
    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
 | 
						|
    if (TypeSpecType == DeclSpec::TST_class ||
 | 
						|
        TypeSpecType == DeclSpec::TST_struct ||
 | 
						|
        TypeSpecType == DeclSpec::TST_interface ||
 | 
						|
        TypeSpecType == DeclSpec::TST_union ||
 | 
						|
        TypeSpecType == DeclSpec::TST_enum) {
 | 
						|
      for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
 | 
						|
           attrs = attrs->getNext())
 | 
						|
        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
 | 
						|
            << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TagD;
 | 
						|
}
 | 
						|
 | 
						|
/// We are trying to inject an anonymous member into the given scope;
 | 
						|
/// check if there's an existing declaration that can't be overloaded.
 | 
						|
///
 | 
						|
/// \return true if this is a forbidden redeclaration
 | 
						|
static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
 | 
						|
                                         Scope *S,
 | 
						|
                                         DeclContext *Owner,
 | 
						|
                                         DeclarationName Name,
 | 
						|
                                         SourceLocation NameLoc,
 | 
						|
                                         bool IsUnion) {
 | 
						|
  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
 | 
						|
                 Sema::ForVisibleRedeclaration);
 | 
						|
  if (!SemaRef.LookupName(R, S)) return false;
 | 
						|
 | 
						|
  // Pick a representative declaration.
 | 
						|
  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
 | 
						|
  assert(PrevDecl && "Expected a non-null Decl");
 | 
						|
 | 
						|
  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
 | 
						|
    return false;
 | 
						|
 | 
						|
  SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
 | 
						|
    << IsUnion << Name;
 | 
						|
  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// InjectAnonymousStructOrUnionMembers - Inject the members of the
 | 
						|
/// anonymous struct or union AnonRecord into the owning context Owner
 | 
						|
/// and scope S. This routine will be invoked just after we realize
 | 
						|
/// that an unnamed union or struct is actually an anonymous union or
 | 
						|
/// struct, e.g.,
 | 
						|
///
 | 
						|
/// @code
 | 
						|
/// union {
 | 
						|
///   int i;
 | 
						|
///   float f;
 | 
						|
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
 | 
						|
///    // f into the surrounding scope.x
 | 
						|
/// @endcode
 | 
						|
///
 | 
						|
/// This routine is recursive, injecting the names of nested anonymous
 | 
						|
/// structs/unions into the owning context and scope as well.
 | 
						|
static bool
 | 
						|
InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
 | 
						|
                                    RecordDecl *AnonRecord, AccessSpecifier AS,
 | 
						|
                                    SmallVectorImpl<NamedDecl *> &Chaining) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Look every FieldDecl and IndirectFieldDecl with a name.
 | 
						|
  for (auto *D : AnonRecord->decls()) {
 | 
						|
    if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
 | 
						|
        cast<NamedDecl>(D)->getDeclName()) {
 | 
						|
      ValueDecl *VD = cast<ValueDecl>(D);
 | 
						|
      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
 | 
						|
                                       VD->getLocation(),
 | 
						|
                                       AnonRecord->isUnion())) {
 | 
						|
        // C++ [class.union]p2:
 | 
						|
        //   The names of the members of an anonymous union shall be
 | 
						|
        //   distinct from the names of any other entity in the
 | 
						|
        //   scope in which the anonymous union is declared.
 | 
						|
        Invalid = true;
 | 
						|
      } else {
 | 
						|
        // C++ [class.union]p2:
 | 
						|
        //   For the purpose of name lookup, after the anonymous union
 | 
						|
        //   definition, the members of the anonymous union are
 | 
						|
        //   considered to have been defined in the scope in which the
 | 
						|
        //   anonymous union is declared.
 | 
						|
        unsigned OldChainingSize = Chaining.size();
 | 
						|
        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
 | 
						|
          Chaining.append(IF->chain_begin(), IF->chain_end());
 | 
						|
        else
 | 
						|
          Chaining.push_back(VD);
 | 
						|
 | 
						|
        assert(Chaining.size() >= 2);
 | 
						|
        NamedDecl **NamedChain =
 | 
						|
          new (SemaRef.Context)NamedDecl*[Chaining.size()];
 | 
						|
        for (unsigned i = 0; i < Chaining.size(); i++)
 | 
						|
          NamedChain[i] = Chaining[i];
 | 
						|
 | 
						|
        IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
 | 
						|
            SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
 | 
						|
            VD->getType(), {NamedChain, Chaining.size()});
 | 
						|
 | 
						|
        for (const auto *Attr : VD->attrs())
 | 
						|
          IndirectField->addAttr(Attr->clone(SemaRef.Context));
 | 
						|
 | 
						|
        IndirectField->setAccess(AS);
 | 
						|
        IndirectField->setImplicit();
 | 
						|
        SemaRef.PushOnScopeChains(IndirectField, S);
 | 
						|
 | 
						|
        // That includes picking up the appropriate access specifier.
 | 
						|
        if (AS != AS_none) IndirectField->setAccess(AS);
 | 
						|
 | 
						|
        Chaining.resize(OldChainingSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
 | 
						|
/// a VarDecl::StorageClass. Any error reporting is up to the caller:
 | 
						|
/// illegal input values are mapped to SC_None.
 | 
						|
static StorageClass
 | 
						|
StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
 | 
						|
  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
 | 
						|
  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
 | 
						|
         "Parser allowed 'typedef' as storage class VarDecl.");
 | 
						|
  switch (StorageClassSpec) {
 | 
						|
  case DeclSpec::SCS_unspecified:    return SC_None;
 | 
						|
  case DeclSpec::SCS_extern:
 | 
						|
    if (DS.isExternInLinkageSpec())
 | 
						|
      return SC_None;
 | 
						|
    return SC_Extern;
 | 
						|
  case DeclSpec::SCS_static:         return SC_Static;
 | 
						|
  case DeclSpec::SCS_auto:           return SC_Auto;
 | 
						|
  case DeclSpec::SCS_register:       return SC_Register;
 | 
						|
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | 
						|
    // Illegal SCSs map to None: error reporting is up to the caller.
 | 
						|
  case DeclSpec::SCS_mutable:        // Fall through.
 | 
						|
  case DeclSpec::SCS_typedef:        return SC_None;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unknown storage class specifier");
 | 
						|
}
 | 
						|
 | 
						|
static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
 | 
						|
  assert(Record->hasInClassInitializer());
 | 
						|
 | 
						|
  for (const auto *I : Record->decls()) {
 | 
						|
    const auto *FD = dyn_cast<FieldDecl>(I);
 | 
						|
    if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
 | 
						|
      FD = IFD->getAnonField();
 | 
						|
    if (FD && FD->hasInClassInitializer())
 | 
						|
      return FD->getLocation();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("couldn't find in-class initializer");
 | 
						|
}
 | 
						|
 | 
						|
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
 | 
						|
                                      SourceLocation DefaultInitLoc) {
 | 
						|
  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
 | 
						|
    return;
 | 
						|
 | 
						|
  S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
 | 
						|
  S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
 | 
						|
}
 | 
						|
 | 
						|
static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
 | 
						|
                                      CXXRecordDecl *AnonUnion) {
 | 
						|
  if (!Parent->isUnion() || !Parent->hasInClassInitializer())
 | 
						|
    return;
 | 
						|
 | 
						|
  checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
 | 
						|
}
 | 
						|
 | 
						|
/// BuildAnonymousStructOrUnion - Handle the declaration of an
 | 
						|
/// anonymous structure or union. Anonymous unions are a C++ feature
 | 
						|
/// (C++ [class.union]) and a C11 feature; anonymous structures
 | 
						|
/// are a C11 feature and GNU C++ extension.
 | 
						|
Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
 | 
						|
                                        AccessSpecifier AS,
 | 
						|
                                        RecordDecl *Record,
 | 
						|
                                        const PrintingPolicy &Policy) {
 | 
						|
  DeclContext *Owner = Record->getDeclContext();
 | 
						|
 | 
						|
  // Diagnose whether this anonymous struct/union is an extension.
 | 
						|
  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
 | 
						|
    Diag(Record->getLocation(), diag::ext_anonymous_union);
 | 
						|
  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
 | 
						|
    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
 | 
						|
  else if (!Record->isUnion() && !getLangOpts().C11)
 | 
						|
    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
 | 
						|
 | 
						|
  // C and C++ require different kinds of checks for anonymous
 | 
						|
  // structs/unions.
 | 
						|
  bool Invalid = false;
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    const char *PrevSpec = nullptr;
 | 
						|
    unsigned DiagID;
 | 
						|
    if (Record->isUnion()) {
 | 
						|
      // C++ [class.union]p6:
 | 
						|
      //   Anonymous unions declared in a named namespace or in the
 | 
						|
      //   global namespace shall be declared static.
 | 
						|
      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
 | 
						|
          (isa<TranslationUnitDecl>(Owner) ||
 | 
						|
           (isa<NamespaceDecl>(Owner) &&
 | 
						|
            cast<NamespaceDecl>(Owner)->getDeclName()))) {
 | 
						|
        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
 | 
						|
          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
 | 
						|
 | 
						|
        // Recover by adding 'static'.
 | 
						|
        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
 | 
						|
                               PrevSpec, DiagID, Policy);
 | 
						|
      }
 | 
						|
      // C++ [class.union]p6:
 | 
						|
      //   A storage class is not allowed in a declaration of an
 | 
						|
      //   anonymous union in a class scope.
 | 
						|
      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
 | 
						|
               isa<RecordDecl>(Owner)) {
 | 
						|
        Diag(DS.getStorageClassSpecLoc(),
 | 
						|
             diag::err_anonymous_union_with_storage_spec)
 | 
						|
          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | 
						|
 | 
						|
        // Recover by removing the storage specifier.
 | 
						|
        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
 | 
						|
                               SourceLocation(),
 | 
						|
                               PrevSpec, DiagID, Context.getPrintingPolicy());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Ignore const/volatile/restrict qualifiers.
 | 
						|
    if (DS.getTypeQualifiers()) {
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
 | 
						|
        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << "const"
 | 
						|
          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
 | 
						|
        Diag(DS.getVolatileSpecLoc(),
 | 
						|
             diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << "volatile"
 | 
						|
          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
 | 
						|
        Diag(DS.getRestrictSpecLoc(),
 | 
						|
             diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << "restrict"
 | 
						|
          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
 | 
						|
        Diag(DS.getAtomicSpecLoc(),
 | 
						|
             diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << "_Atomic"
 | 
						|
          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
 | 
						|
      if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
 | 
						|
        Diag(DS.getUnalignedSpecLoc(),
 | 
						|
             diag::ext_anonymous_struct_union_qualified)
 | 
						|
          << Record->isUnion() << "__unaligned"
 | 
						|
          << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
 | 
						|
 | 
						|
      DS.ClearTypeQualifiers();
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [class.union]p2:
 | 
						|
    //   The member-specification of an anonymous union shall only
 | 
						|
    //   define non-static data members. [Note: nested types and
 | 
						|
    //   functions cannot be declared within an anonymous union. ]
 | 
						|
    for (auto *Mem : Record->decls()) {
 | 
						|
      if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
 | 
						|
        // C++ [class.union]p3:
 | 
						|
        //   An anonymous union shall not have private or protected
 | 
						|
        //   members (clause 11).
 | 
						|
        assert(FD->getAccess() != AS_none);
 | 
						|
        if (FD->getAccess() != AS_public) {
 | 
						|
          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
 | 
						|
            << Record->isUnion() << (FD->getAccess() == AS_protected);
 | 
						|
          Invalid = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++ [class.union]p1
 | 
						|
        //   An object of a class with a non-trivial constructor, a non-trivial
 | 
						|
        //   copy constructor, a non-trivial destructor, or a non-trivial copy
 | 
						|
        //   assignment operator cannot be a member of a union, nor can an
 | 
						|
        //   array of such objects.
 | 
						|
        if (CheckNontrivialField(FD))
 | 
						|
          Invalid = true;
 | 
						|
      } else if (Mem->isImplicit()) {
 | 
						|
        // Any implicit members are fine.
 | 
						|
      } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
 | 
						|
        // This is a type that showed up in an
 | 
						|
        // elaborated-type-specifier inside the anonymous struct or
 | 
						|
        // union, but which actually declares a type outside of the
 | 
						|
        // anonymous struct or union. It's okay.
 | 
						|
      } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
 | 
						|
        if (!MemRecord->isAnonymousStructOrUnion() &&
 | 
						|
            MemRecord->getDeclName()) {
 | 
						|
          // Visual C++ allows type definition in anonymous struct or union.
 | 
						|
          if (getLangOpts().MicrosoftExt)
 | 
						|
            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
 | 
						|
              << Record->isUnion();
 | 
						|
          else {
 | 
						|
            // This is a nested type declaration.
 | 
						|
            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
 | 
						|
              << Record->isUnion();
 | 
						|
            Invalid = true;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // This is an anonymous type definition within another anonymous type.
 | 
						|
          // This is a popular extension, provided by Plan9, MSVC and GCC, but
 | 
						|
          // not part of standard C++.
 | 
						|
          Diag(MemRecord->getLocation(),
 | 
						|
               diag::ext_anonymous_record_with_anonymous_type)
 | 
						|
            << Record->isUnion();
 | 
						|
        }
 | 
						|
      } else if (isa<AccessSpecDecl>(Mem)) {
 | 
						|
        // Any access specifier is fine.
 | 
						|
      } else if (isa<StaticAssertDecl>(Mem)) {
 | 
						|
        // In C++1z, static_assert declarations are also fine.
 | 
						|
      } else {
 | 
						|
        // We have something that isn't a non-static data
 | 
						|
        // member. Complain about it.
 | 
						|
        unsigned DK = diag::err_anonymous_record_bad_member;
 | 
						|
        if (isa<TypeDecl>(Mem))
 | 
						|
          DK = diag::err_anonymous_record_with_type;
 | 
						|
        else if (isa<FunctionDecl>(Mem))
 | 
						|
          DK = diag::err_anonymous_record_with_function;
 | 
						|
        else if (isa<VarDecl>(Mem))
 | 
						|
          DK = diag::err_anonymous_record_with_static;
 | 
						|
 | 
						|
        // Visual C++ allows type definition in anonymous struct or union.
 | 
						|
        if (getLangOpts().MicrosoftExt &&
 | 
						|
            DK == diag::err_anonymous_record_with_type)
 | 
						|
          Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
 | 
						|
            << Record->isUnion();
 | 
						|
        else {
 | 
						|
          Diag(Mem->getLocation(), DK) << Record->isUnion();
 | 
						|
          Invalid = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [class.union]p8 (DR1460):
 | 
						|
    //   At most one variant member of a union may have a
 | 
						|
    //   brace-or-equal-initializer.
 | 
						|
    if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
 | 
						|
        Owner->isRecord())
 | 
						|
      checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
 | 
						|
                                cast<CXXRecordDecl>(Record));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Record->isUnion() && !Owner->isRecord()) {
 | 
						|
    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
 | 
						|
      << getLangOpts().CPlusPlus;
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mock up a declarator.
 | 
						|
  Declarator Dc(DS, DeclaratorContext::MemberContext);
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | 
						|
  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
 | 
						|
 | 
						|
  // Create a declaration for this anonymous struct/union.
 | 
						|
  NamedDecl *Anon = nullptr;
 | 
						|
  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
 | 
						|
    Anon = FieldDecl::Create(Context, OwningClass,
 | 
						|
                             DS.getLocStart(),
 | 
						|
                             Record->getLocation(),
 | 
						|
                             /*IdentifierInfo=*/nullptr,
 | 
						|
                             Context.getTypeDeclType(Record),
 | 
						|
                             TInfo,
 | 
						|
                             /*BitWidth=*/nullptr, /*Mutable=*/false,
 | 
						|
                             /*InitStyle=*/ICIS_NoInit);
 | 
						|
    Anon->setAccess(AS);
 | 
						|
    if (getLangOpts().CPlusPlus)
 | 
						|
      FieldCollector->Add(cast<FieldDecl>(Anon));
 | 
						|
  } else {
 | 
						|
    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
 | 
						|
    StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
 | 
						|
    if (SCSpec == DeclSpec::SCS_mutable) {
 | 
						|
      // mutable can only appear on non-static class members, so it's always
 | 
						|
      // an error here
 | 
						|
      Diag(Record->getLocation(), diag::err_mutable_nonmember);
 | 
						|
      Invalid = true;
 | 
						|
      SC = SC_None;
 | 
						|
    }
 | 
						|
 | 
						|
    Anon = VarDecl::Create(Context, Owner,
 | 
						|
                           DS.getLocStart(),
 | 
						|
                           Record->getLocation(), /*IdentifierInfo=*/nullptr,
 | 
						|
                           Context.getTypeDeclType(Record),
 | 
						|
                           TInfo, SC);
 | 
						|
 | 
						|
    // Default-initialize the implicit variable. This initialization will be
 | 
						|
    // trivial in almost all cases, except if a union member has an in-class
 | 
						|
    // initializer:
 | 
						|
    //   union { int n = 0; };
 | 
						|
    ActOnUninitializedDecl(Anon);
 | 
						|
  }
 | 
						|
  Anon->setImplicit();
 | 
						|
 | 
						|
  // Mark this as an anonymous struct/union type.
 | 
						|
  Record->setAnonymousStructOrUnion(true);
 | 
						|
 | 
						|
  // Add the anonymous struct/union object to the current
 | 
						|
  // context. We'll be referencing this object when we refer to one of
 | 
						|
  // its members.
 | 
						|
  Owner->addDecl(Anon);
 | 
						|
 | 
						|
  // Inject the members of the anonymous struct/union into the owning
 | 
						|
  // context and into the identifier resolver chain for name lookup
 | 
						|
  // purposes.
 | 
						|
  SmallVector<NamedDecl*, 2> Chain;
 | 
						|
  Chain.push_back(Anon);
 | 
						|
 | 
						|
  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
 | 
						|
    if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
 | 
						|
      Decl *ManglingContextDecl;
 | 
						|
      if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
 | 
						|
              NewVD->getDeclContext(), ManglingContextDecl)) {
 | 
						|
        Context.setManglingNumber(
 | 
						|
            NewVD, MCtx->getManglingNumber(
 | 
						|
                       NewVD, getMSManglingNumber(getLangOpts(), S)));
 | 
						|
        Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    Anon->setInvalidDecl();
 | 
						|
 | 
						|
  return Anon;
 | 
						|
}
 | 
						|
 | 
						|
/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
 | 
						|
/// Microsoft C anonymous structure.
 | 
						|
/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
 | 
						|
/// Example:
 | 
						|
///
 | 
						|
/// struct A { int a; };
 | 
						|
/// struct B { struct A; int b; };
 | 
						|
///
 | 
						|
/// void foo() {
 | 
						|
///   B var;
 | 
						|
///   var.a = 3;
 | 
						|
/// }
 | 
						|
///
 | 
						|
Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
 | 
						|
                                           RecordDecl *Record) {
 | 
						|
  assert(Record && "expected a record!");
 | 
						|
 | 
						|
  // Mock up a declarator.
 | 
						|
  Declarator Dc(DS, DeclaratorContext::TypeNameContext);
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
 | 
						|
  assert(TInfo && "couldn't build declarator info for anonymous struct");
 | 
						|
 | 
						|
  auto *ParentDecl = cast<RecordDecl>(CurContext);
 | 
						|
  QualType RecTy = Context.getTypeDeclType(Record);
 | 
						|
 | 
						|
  // Create a declaration for this anonymous struct.
 | 
						|
  NamedDecl *Anon = FieldDecl::Create(Context,
 | 
						|
                             ParentDecl,
 | 
						|
                             DS.getLocStart(),
 | 
						|
                             DS.getLocStart(),
 | 
						|
                             /*IdentifierInfo=*/nullptr,
 | 
						|
                             RecTy,
 | 
						|
                             TInfo,
 | 
						|
                             /*BitWidth=*/nullptr, /*Mutable=*/false,
 | 
						|
                             /*InitStyle=*/ICIS_NoInit);
 | 
						|
  Anon->setImplicit();
 | 
						|
 | 
						|
  // Add the anonymous struct object to the current context.
 | 
						|
  CurContext->addDecl(Anon);
 | 
						|
 | 
						|
  // Inject the members of the anonymous struct into the current
 | 
						|
  // context and into the identifier resolver chain for name lookup
 | 
						|
  // purposes.
 | 
						|
  SmallVector<NamedDecl*, 2> Chain;
 | 
						|
  Chain.push_back(Anon);
 | 
						|
 | 
						|
  RecordDecl *RecordDef = Record->getDefinition();
 | 
						|
  if (RequireCompleteType(Anon->getLocation(), RecTy,
 | 
						|
                          diag::err_field_incomplete) ||
 | 
						|
      InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
 | 
						|
                                          AS_none, Chain)) {
 | 
						|
    Anon->setInvalidDecl();
 | 
						|
    ParentDecl->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  return Anon;
 | 
						|
}
 | 
						|
 | 
						|
/// GetNameForDeclarator - Determine the full declaration name for the
 | 
						|
/// given Declarator.
 | 
						|
DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
 | 
						|
  return GetNameFromUnqualifiedId(D.getName());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Retrieves the declaration name from a parsed unqualified-id.
 | 
						|
DeclarationNameInfo
 | 
						|
Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
 | 
						|
  DeclarationNameInfo NameInfo;
 | 
						|
  NameInfo.setLoc(Name.StartLocation);
 | 
						|
 | 
						|
  switch (Name.getKind()) {
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_ImplicitSelfParam:
 | 
						|
  case UnqualifiedIdKind::IK_Identifier:
 | 
						|
    NameInfo.setName(Name.Identifier);
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    return NameInfo;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_DeductionGuideName: {
 | 
						|
    // C++ [temp.deduct.guide]p3:
 | 
						|
    //   The simple-template-id shall name a class template specialization.
 | 
						|
    //   The template-name shall be the same identifier as the template-name
 | 
						|
    //   of the simple-template-id.
 | 
						|
    // These together intend to imply that the template-name shall name a
 | 
						|
    // class template.
 | 
						|
    // FIXME: template<typename T> struct X {};
 | 
						|
    //        template<typename T> using Y = X<T>;
 | 
						|
    //        Y(int) -> Y<int>;
 | 
						|
    //   satisfies these rules but does not name a class template.
 | 
						|
    TemplateName TN = Name.TemplateName.get().get();
 | 
						|
    auto *Template = TN.getAsTemplateDecl();
 | 
						|
    if (!Template || !isa<ClassTemplateDecl>(Template)) {
 | 
						|
      Diag(Name.StartLocation,
 | 
						|
           diag::err_deduction_guide_name_not_class_template)
 | 
						|
        << (int)getTemplateNameKindForDiagnostics(TN) << TN;
 | 
						|
      if (Template)
 | 
						|
        Diag(Template->getLocation(), diag::note_template_decl_here);
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    }
 | 
						|
 | 
						|
    NameInfo.setName(
 | 
						|
        Context.DeclarationNames.getCXXDeductionGuideName(Template));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_OperatorFunctionId:
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                           Name.OperatorFunctionId.Operator));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
 | 
						|
      = Name.OperatorFunctionId.SymbolLocations[0];
 | 
						|
    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
 | 
						|
      = Name.EndLocation.getRawEncoding();
 | 
						|
    return NameInfo;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_LiteralOperatorId:
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
 | 
						|
                                                           Name.Identifier));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
 | 
						|
    return NameInfo;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_ConversionFunctionId: {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
 | 
						|
    if (Ty.isNull())
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
 | 
						|
                                               Context.getCanonicalType(Ty)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setNamedTypeInfo(TInfo);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_ConstructorName: {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
 | 
						|
    if (Ty.isNull())
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | 
						|
                                              Context.getCanonicalType(Ty)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setNamedTypeInfo(TInfo);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_ConstructorTemplateId: {
 | 
						|
    // In well-formed code, we can only have a constructor
 | 
						|
    // template-id that refers to the current context, so go there
 | 
						|
    // to find the actual type being constructed.
 | 
						|
    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
 | 
						|
    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
 | 
						|
      return DeclarationNameInfo();
 | 
						|
 | 
						|
    // Determine the type of the class being constructed.
 | 
						|
    QualType CurClassType = Context.getTypeDeclType(CurClass);
 | 
						|
 | 
						|
    // FIXME: Check two things: that the template-id names the same type as
 | 
						|
    // CurClassType, and that the template-id does not occur when the name
 | 
						|
    // was qualified.
 | 
						|
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
 | 
						|
                                    Context.getCanonicalType(CurClassType)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    // FIXME: should we retrieve TypeSourceInfo?
 | 
						|
    NameInfo.setNamedTypeInfo(nullptr);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_DestructorName: {
 | 
						|
    TypeSourceInfo *TInfo;
 | 
						|
    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
 | 
						|
    if (Ty.isNull())
 | 
						|
      return DeclarationNameInfo();
 | 
						|
    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
 | 
						|
                                              Context.getCanonicalType(Ty)));
 | 
						|
    NameInfo.setLoc(Name.StartLocation);
 | 
						|
    NameInfo.setNamedTypeInfo(TInfo);
 | 
						|
    return NameInfo;
 | 
						|
  }
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_TemplateId: {
 | 
						|
    TemplateName TName = Name.TemplateId->Template.get();
 | 
						|
    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
 | 
						|
    return Context.getNameForTemplate(TName, TNameLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  } // switch (Name.getKind())
 | 
						|
 | 
						|
  llvm_unreachable("Unknown name kind");
 | 
						|
}
 | 
						|
 | 
						|
static QualType getCoreType(QualType Ty) {
 | 
						|
  do {
 | 
						|
    if (Ty->isPointerType() || Ty->isReferenceType())
 | 
						|
      Ty = Ty->getPointeeType();
 | 
						|
    else if (Ty->isArrayType())
 | 
						|
      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
 | 
						|
    else
 | 
						|
      return Ty.withoutLocalFastQualifiers();
 | 
						|
  } while (true);
 | 
						|
}
 | 
						|
 | 
						|
/// hasSimilarParameters - Determine whether the C++ functions Declaration
 | 
						|
/// and Definition have "nearly" matching parameters. This heuristic is
 | 
						|
/// used to improve diagnostics in the case where an out-of-line function
 | 
						|
/// definition doesn't match any declaration within the class or namespace.
 | 
						|
/// Also sets Params to the list of indices to the parameters that differ
 | 
						|
/// between the declaration and the definition. If hasSimilarParameters
 | 
						|
/// returns true and Params is empty, then all of the parameters match.
 | 
						|
static bool hasSimilarParameters(ASTContext &Context,
 | 
						|
                                     FunctionDecl *Declaration,
 | 
						|
                                     FunctionDecl *Definition,
 | 
						|
                                     SmallVectorImpl<unsigned> &Params) {
 | 
						|
  Params.clear();
 | 
						|
  if (Declaration->param_size() != Definition->param_size())
 | 
						|
    return false;
 | 
						|
  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
 | 
						|
    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
 | 
						|
    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
 | 
						|
 | 
						|
    // The parameter types are identical
 | 
						|
    if (Context.hasSameType(DefParamTy, DeclParamTy))
 | 
						|
      continue;
 | 
						|
 | 
						|
    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
 | 
						|
    QualType DefParamBaseTy = getCoreType(DefParamTy);
 | 
						|
    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
 | 
						|
    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
 | 
						|
 | 
						|
    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
 | 
						|
        (DeclTyName && DeclTyName == DefTyName))
 | 
						|
      Params.push_back(Idx);
 | 
						|
    else  // The two parameters aren't even close
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
 | 
						|
/// declarator needs to be rebuilt in the current instantiation.
 | 
						|
/// Any bits of declarator which appear before the name are valid for
 | 
						|
/// consideration here.  That's specifically the type in the decl spec
 | 
						|
/// and the base type in any member-pointer chunks.
 | 
						|
static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
 | 
						|
                                                    DeclarationName Name) {
 | 
						|
  // The types we specifically need to rebuild are:
 | 
						|
  //   - typenames, typeofs, and decltypes
 | 
						|
  //   - types which will become injected class names
 | 
						|
  // Of course, we also need to rebuild any type referencing such a
 | 
						|
  // type.  It's safest to just say "dependent", but we call out a
 | 
						|
  // few cases here.
 | 
						|
 | 
						|
  DeclSpec &DS = D.getMutableDeclSpec();
 | 
						|
  switch (DS.getTypeSpecType()) {
 | 
						|
  case DeclSpec::TST_typename:
 | 
						|
  case DeclSpec::TST_typeofType:
 | 
						|
  case DeclSpec::TST_underlyingType:
 | 
						|
  case DeclSpec::TST_atomic: {
 | 
						|
    // Grab the type from the parser.
 | 
						|
    TypeSourceInfo *TSI = nullptr;
 | 
						|
    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
 | 
						|
    if (T.isNull() || !T->isDependentType()) break;
 | 
						|
 | 
						|
    // Make sure there's a type source info.  This isn't really much
 | 
						|
    // of a waste; most dependent types should have type source info
 | 
						|
    // attached already.
 | 
						|
    if (!TSI)
 | 
						|
      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
 | 
						|
 | 
						|
    // Rebuild the type in the current instantiation.
 | 
						|
    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
 | 
						|
    if (!TSI) return true;
 | 
						|
 | 
						|
    // Store the new type back in the decl spec.
 | 
						|
    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
 | 
						|
    DS.UpdateTypeRep(LocType);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case DeclSpec::TST_decltype:
 | 
						|
  case DeclSpec::TST_typeofExpr: {
 | 
						|
    Expr *E = DS.getRepAsExpr();
 | 
						|
    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
 | 
						|
    if (Result.isInvalid()) return true;
 | 
						|
    DS.UpdateExprRep(Result.get());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    // Nothing to do for these decl specs.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // It doesn't matter what order we do this in.
 | 
						|
  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
 | 
						|
    DeclaratorChunk &Chunk = D.getTypeObject(I);
 | 
						|
 | 
						|
    // The only type information in the declarator which can come
 | 
						|
    // before the declaration name is the base type of a member
 | 
						|
    // pointer.
 | 
						|
    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Rebuild the scope specifier in-place.
 | 
						|
    CXXScopeSpec &SS = Chunk.Mem.Scope();
 | 
						|
    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
 | 
						|
  D.setFunctionDefinitionKind(FDK_Declaration);
 | 
						|
  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
 | 
						|
 | 
						|
  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
 | 
						|
      Dcl && Dcl->getDeclContext()->isFileContext())
 | 
						|
    Dcl->setTopLevelDeclInObjCContainer();
 | 
						|
 | 
						|
  if (getLangOpts().OpenCL)
 | 
						|
    setCurrentOpenCLExtensionForDecl(Dcl);
 | 
						|
 | 
						|
  return Dcl;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
 | 
						|
///   If T is the name of a class, then each of the following shall have a
 | 
						|
///   name different from T:
 | 
						|
///     - every static data member of class T;
 | 
						|
///     - every member function of class T
 | 
						|
///     - every member of class T that is itself a type;
 | 
						|
/// \returns true if the declaration name violates these rules.
 | 
						|
bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
 | 
						|
                                   DeclarationNameInfo NameInfo) {
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
 | 
						|
  CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
 | 
						|
  while (Record && Record->isAnonymousStructOrUnion())
 | 
						|
    Record = dyn_cast<CXXRecordDecl>(Record->getParent());
 | 
						|
  if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
 | 
						|
    Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose a declaration whose declarator-id has the given
 | 
						|
/// nested-name-specifier.
 | 
						|
///
 | 
						|
/// \param SS The nested-name-specifier of the declarator-id.
 | 
						|
///
 | 
						|
/// \param DC The declaration context to which the nested-name-specifier
 | 
						|
/// resolves.
 | 
						|
///
 | 
						|
/// \param Name The name of the entity being declared.
 | 
						|
///
 | 
						|
/// \param Loc The location of the name of the entity being declared.
 | 
						|
///
 | 
						|
/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
 | 
						|
/// we're declaring an explicit / partial specialization / instantiation.
 | 
						|
///
 | 
						|
/// \returns true if we cannot safely recover from this error, false otherwise.
 | 
						|
bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
 | 
						|
                                        DeclarationName Name,
 | 
						|
                                        SourceLocation Loc, bool IsTemplateId) {
 | 
						|
  DeclContext *Cur = CurContext;
 | 
						|
  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
 | 
						|
    Cur = Cur->getParent();
 | 
						|
 | 
						|
  // If the user provided a superfluous scope specifier that refers back to the
 | 
						|
  // class in which the entity is already declared, diagnose and ignore it.
 | 
						|
  //
 | 
						|
  // class X {
 | 
						|
  //   void X::f();
 | 
						|
  // };
 | 
						|
  //
 | 
						|
  // Note, it was once ill-formed to give redundant qualification in all
 | 
						|
  // contexts, but that rule was removed by DR482.
 | 
						|
  if (Cur->Equals(DC)) {
 | 
						|
    if (Cur->isRecord()) {
 | 
						|
      Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
 | 
						|
                                      : diag::err_member_extra_qualification)
 | 
						|
        << Name << FixItHint::CreateRemoval(SS.getRange());
 | 
						|
      SS.clear();
 | 
						|
    } else {
 | 
						|
      Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the qualifying scope encloses the scope of the original
 | 
						|
  // declaration. For a template-id, we perform the checks in
 | 
						|
  // CheckTemplateSpecializationScope.
 | 
						|
  if (!Cur->Encloses(DC) && !IsTemplateId) {
 | 
						|
    if (Cur->isRecord())
 | 
						|
      Diag(Loc, diag::err_member_qualification)
 | 
						|
        << Name << SS.getRange();
 | 
						|
    else if (isa<TranslationUnitDecl>(DC))
 | 
						|
      Diag(Loc, diag::err_invalid_declarator_global_scope)
 | 
						|
        << Name << SS.getRange();
 | 
						|
    else if (isa<FunctionDecl>(Cur))
 | 
						|
      Diag(Loc, diag::err_invalid_declarator_in_function)
 | 
						|
        << Name << SS.getRange();
 | 
						|
    else if (isa<BlockDecl>(Cur))
 | 
						|
      Diag(Loc, diag::err_invalid_declarator_in_block)
 | 
						|
        << Name << SS.getRange();
 | 
						|
    else
 | 
						|
      Diag(Loc, diag::err_invalid_declarator_scope)
 | 
						|
      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Cur->isRecord()) {
 | 
						|
    // Cannot qualify members within a class.
 | 
						|
    Diag(Loc, diag::err_member_qualification)
 | 
						|
      << Name << SS.getRange();
 | 
						|
    SS.clear();
 | 
						|
 | 
						|
    // C++ constructors and destructors with incorrect scopes can break
 | 
						|
    // our AST invariants by having the wrong underlying types. If
 | 
						|
    // that's the case, then drop this declaration entirely.
 | 
						|
    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
 | 
						|
         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
 | 
						|
        !Context.hasSameType(Name.getCXXNameType(),
 | 
						|
                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [dcl.meaning]p1:
 | 
						|
  //   [...] "The nested-name-specifier of the qualified declarator-id shall
 | 
						|
  //   not begin with a decltype-specifer"
 | 
						|
  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
 | 
						|
  while (SpecLoc.getPrefix())
 | 
						|
    SpecLoc = SpecLoc.getPrefix();
 | 
						|
  if (dyn_cast_or_null<DecltypeType>(
 | 
						|
        SpecLoc.getNestedNameSpecifier()->getAsType()))
 | 
						|
    Diag(Loc, diag::err_decltype_in_declarator)
 | 
						|
      << SpecLoc.getTypeLoc().getSourceRange();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
 | 
						|
                                  MultiTemplateParamsArg TemplateParamLists) {
 | 
						|
  // TODO: consider using NameInfo for diagnostic.
 | 
						|
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
 | 
						|
  // All of these full declarators require an identifier.  If it doesn't have
 | 
						|
  // one, the ParsedFreeStandingDeclSpec action should be used.
 | 
						|
  if (D.isDecompositionDeclarator()) {
 | 
						|
    return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
 | 
						|
  } else if (!Name) {
 | 
						|
    if (!D.isInvalidType())  // Reject this if we think it is valid.
 | 
						|
      Diag(D.getDeclSpec().getLocStart(),
 | 
						|
           diag::err_declarator_need_ident)
 | 
						|
        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
 | 
						|
    return nullptr;
 | 
						|
  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
  if (D.getCXXScopeSpec().isInvalid())
 | 
						|
    D.setInvalidType();
 | 
						|
  else if (D.getCXXScopeSpec().isSet()) {
 | 
						|
    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
 | 
						|
                                        UPPC_DeclarationQualifier))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
 | 
						|
    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
 | 
						|
    if (!DC || isa<EnumDecl>(DC)) {
 | 
						|
      // If we could not compute the declaration context, it's because the
 | 
						|
      // declaration context is dependent but does not refer to a class,
 | 
						|
      // class template, or class template partial specialization. Complain
 | 
						|
      // and return early, to avoid the coming semantic disaster.
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_template_qualified_declarator_no_match)
 | 
						|
        << D.getCXXScopeSpec().getScopeRep()
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    bool IsDependentContext = DC->isDependentContext();
 | 
						|
 | 
						|
    if (!IsDependentContext &&
 | 
						|
        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If a class is incomplete, do not parse entities inside it.
 | 
						|
    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_member_def_undefined_record)
 | 
						|
        << Name << DC << D.getCXXScopeSpec().getRange();
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    if (!D.getDeclSpec().isFriendSpecified()) {
 | 
						|
      if (diagnoseQualifiedDeclaration(
 | 
						|
              D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
 | 
						|
              D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
 | 
						|
        if (DC->isRecord())
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        D.setInvalidType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check whether we need to rebuild the type of the given
 | 
						|
    // declaration in the current instantiation.
 | 
						|
    if (EnteringContext && IsDependentContext &&
 | 
						|
        TemplateParamLists.size() != 0) {
 | 
						|
      ContextRAII SavedContext(*this, DC);
 | 
						|
      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
 | 
						|
        D.setInvalidType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType R = TInfo->getType();
 | 
						|
 | 
						|
  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | 
						|
                                      UPPC_DeclarationType))
 | 
						|
    D.setInvalidType();
 | 
						|
 | 
						|
  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
 | 
						|
                        forRedeclarationInCurContext());
 | 
						|
 | 
						|
  // See if this is a redefinition of a variable in the same scope.
 | 
						|
  if (!D.getCXXScopeSpec().isSet()) {
 | 
						|
    bool IsLinkageLookup = false;
 | 
						|
    bool CreateBuiltins = false;
 | 
						|
 | 
						|
    // If the declaration we're planning to build will be a function
 | 
						|
    // or object with linkage, then look for another declaration with
 | 
						|
    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
 | 
						|
    //
 | 
						|
    // If the declaration we're planning to build will be declared with
 | 
						|
    // external linkage in the translation unit, create any builtin with
 | 
						|
    // the same name.
 | 
						|
    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
 | 
						|
      /* Do nothing*/;
 | 
						|
    else if (CurContext->isFunctionOrMethod() &&
 | 
						|
             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
 | 
						|
              R->isFunctionType())) {
 | 
						|
      IsLinkageLookup = true;
 | 
						|
      CreateBuiltins =
 | 
						|
          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
 | 
						|
    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
 | 
						|
               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
 | 
						|
      CreateBuiltins = true;
 | 
						|
 | 
						|
    if (IsLinkageLookup) {
 | 
						|
      Previous.clear(LookupRedeclarationWithLinkage);
 | 
						|
      Previous.setRedeclarationKind(ForExternalRedeclaration);
 | 
						|
    }
 | 
						|
 | 
						|
    LookupName(Previous, S, CreateBuiltins);
 | 
						|
  } else { // Something like "int foo::x;"
 | 
						|
    LookupQualifiedName(Previous, DC);
 | 
						|
 | 
						|
    // C++ [dcl.meaning]p1:
 | 
						|
    //   When the declarator-id is qualified, the declaration shall refer to a
 | 
						|
    //  previously declared member of the class or namespace to which the
 | 
						|
    //  qualifier refers (or, in the case of a namespace, of an element of the
 | 
						|
    //  inline namespace set of that namespace (7.3.1)) or to a specialization
 | 
						|
    //  thereof; [...]
 | 
						|
    //
 | 
						|
    // Note that we already checked the context above, and that we do not have
 | 
						|
    // enough information to make sure that Previous contains the declaration
 | 
						|
    // we want to match. For example, given:
 | 
						|
    //
 | 
						|
    //   class X {
 | 
						|
    //     void f();
 | 
						|
    //     void f(float);
 | 
						|
    //   };
 | 
						|
    //
 | 
						|
    //   void X::f(int) { } // ill-formed
 | 
						|
    //
 | 
						|
    // In this case, Previous will point to the overload set
 | 
						|
    // containing the two f's declared in X, but neither of them
 | 
						|
    // matches.
 | 
						|
 | 
						|
    // C++ [dcl.meaning]p1:
 | 
						|
    //   [...] the member shall not merely have been introduced by a
 | 
						|
    //   using-declaration in the scope of the class or namespace nominated by
 | 
						|
    //   the nested-name-specifier of the declarator-id.
 | 
						|
    RemoveUsingDecls(Previous);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.isSingleResult() &&
 | 
						|
      Previous.getFoundDecl()->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    if (!D.isInvalidType())
 | 
						|
      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
 | 
						|
                                      Previous.getFoundDecl());
 | 
						|
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    Previous.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
 | 
						|
    // Forget that the previous declaration is the injected-class-name.
 | 
						|
    Previous.clear();
 | 
						|
 | 
						|
  // In C++, the previous declaration we find might be a tag type
 | 
						|
  // (class or enum). In this case, the new declaration will hide the
 | 
						|
  // tag type. Note that this applies to functions, function templates, and
 | 
						|
  // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
 | 
						|
  if (Previous.isSingleTagDecl() &&
 | 
						|
      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
 | 
						|
      (TemplateParamLists.size() == 0 || R->isFunctionType()))
 | 
						|
    Previous.clear();
 | 
						|
 | 
						|
  // Check that there are no default arguments other than in the parameters
 | 
						|
  // of a function declaration (C++ only).
 | 
						|
  if (getLangOpts().CPlusPlus)
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
 | 
						|
  NamedDecl *New;
 | 
						|
 | 
						|
  bool AddToScope = true;
 | 
						|
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | 
						|
    if (TemplateParamLists.size()) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
 | 
						|
  } else if (R->isFunctionType()) {
 | 
						|
    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
 | 
						|
                                  TemplateParamLists,
 | 
						|
                                  AddToScope);
 | 
						|
  } else {
 | 
						|
    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
 | 
						|
                                  AddToScope);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!New)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this has an identifier and is not a function template specialization,
 | 
						|
  // add it to the scope stack.
 | 
						|
  if (New->getDeclName() && AddToScope) {
 | 
						|
    // Only make a locally-scoped extern declaration visible if it is the first
 | 
						|
    // declaration of this entity. Qualified lookup for such an entity should
 | 
						|
    // only find this declaration if there is no visible declaration of it.
 | 
						|
    bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
 | 
						|
    PushOnScopeChains(New, S, AddToContext);
 | 
						|
    if (!AddToContext)
 | 
						|
      CurContext->addHiddenDecl(New);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isInOpenMPDeclareTargetContext())
 | 
						|
    checkDeclIsAllowedInOpenMPTarget(nullptr, New);
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper method to turn variable array types into constant array
 | 
						|
/// types in certain situations which would otherwise be errors (for
 | 
						|
/// GCC compatibility).
 | 
						|
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
 | 
						|
                                                    ASTContext &Context,
 | 
						|
                                                    bool &SizeIsNegative,
 | 
						|
                                                    llvm::APSInt &Oversized) {
 | 
						|
  // This method tries to turn a variable array into a constant
 | 
						|
  // array even when the size isn't an ICE.  This is necessary
 | 
						|
  // for compatibility with code that depends on gcc's buggy
 | 
						|
  // constant expression folding, like struct {char x[(int)(char*)2];}
 | 
						|
  SizeIsNegative = false;
 | 
						|
  Oversized = 0;
 | 
						|
 | 
						|
  if (T->isDependentType())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  QualifierCollector Qs;
 | 
						|
  const Type *Ty = Qs.strip(T);
 | 
						|
 | 
						|
  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
 | 
						|
    QualType Pointee = PTy->getPointeeType();
 | 
						|
    QualType FixedType =
 | 
						|
        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
 | 
						|
                                            Oversized);
 | 
						|
    if (FixedType.isNull()) return FixedType;
 | 
						|
    FixedType = Context.getPointerType(FixedType);
 | 
						|
    return Qs.apply(Context, FixedType);
 | 
						|
  }
 | 
						|
  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
 | 
						|
    QualType Inner = PTy->getInnerType();
 | 
						|
    QualType FixedType =
 | 
						|
        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
 | 
						|
                                            Oversized);
 | 
						|
    if (FixedType.isNull()) return FixedType;
 | 
						|
    FixedType = Context.getParenType(FixedType);
 | 
						|
    return Qs.apply(Context, FixedType);
 | 
						|
  }
 | 
						|
 | 
						|
  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
 | 
						|
  if (!VLATy)
 | 
						|
    return QualType();
 | 
						|
  // FIXME: We should probably handle this case
 | 
						|
  if (VLATy->getElementType()->isVariablyModifiedType())
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  llvm::APSInt Res;
 | 
						|
  if (!VLATy->getSizeExpr() ||
 | 
						|
      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  // Check whether the array size is negative.
 | 
						|
  if (Res.isSigned() && Res.isNegative()) {
 | 
						|
    SizeIsNegative = true;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether the array is too large to be addressed.
 | 
						|
  unsigned ActiveSizeBits
 | 
						|
    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
 | 
						|
                                              Res);
 | 
						|
  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
 | 
						|
    Oversized = Res;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  return Context.getConstantArrayType(VLATy->getElementType(),
 | 
						|
                                      Res, ArrayType::Normal, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
 | 
						|
  SrcTL = SrcTL.getUnqualifiedLoc();
 | 
						|
  DstTL = DstTL.getUnqualifiedLoc();
 | 
						|
  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
 | 
						|
    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
 | 
						|
    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
 | 
						|
                                      DstPTL.getPointeeLoc());
 | 
						|
    DstPTL.setStarLoc(SrcPTL.getStarLoc());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
 | 
						|
    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
 | 
						|
    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
 | 
						|
                                      DstPTL.getInnerLoc());
 | 
						|
    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
 | 
						|
    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
 | 
						|
  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
 | 
						|
  TypeLoc SrcElemTL = SrcATL.getElementLoc();
 | 
						|
  TypeLoc DstElemTL = DstATL.getElementLoc();
 | 
						|
  DstElemTL.initializeFullCopy(SrcElemTL);
 | 
						|
  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
 | 
						|
  DstATL.setSizeExpr(SrcATL.getSizeExpr());
 | 
						|
  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// Helper method to turn variable array types into constant array
 | 
						|
/// types in certain situations which would otherwise be errors (for
 | 
						|
/// GCC compatibility).
 | 
						|
static TypeSourceInfo*
 | 
						|
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
 | 
						|
                                              ASTContext &Context,
 | 
						|
                                              bool &SizeIsNegative,
 | 
						|
                                              llvm::APSInt &Oversized) {
 | 
						|
  QualType FixedTy
 | 
						|
    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
 | 
						|
                                          SizeIsNegative, Oversized);
 | 
						|
  if (FixedTy.isNull())
 | 
						|
    return nullptr;
 | 
						|
  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
 | 
						|
  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
 | 
						|
                                    FixedTInfo->getTypeLoc());
 | 
						|
  return FixedTInfo;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Register the given locally-scoped extern "C" declaration so
 | 
						|
/// that it can be found later for redeclarations. We include any extern "C"
 | 
						|
/// declaration that is not visible in the translation unit here, not just
 | 
						|
/// function-scope declarations.
 | 
						|
void
 | 
						|
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
 | 
						|
  if (!getLangOpts().CPlusPlus &&
 | 
						|
      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
 | 
						|
    // Don't need to track declarations in the TU in C.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Note that we have a locally-scoped external with this name.
 | 
						|
  Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
 | 
						|
  // FIXME: We can have multiple results via __attribute__((overloadable)).
 | 
						|
  auto Result = Context.getExternCContextDecl()->lookup(Name);
 | 
						|
  return Result.empty() ? nullptr : *Result.begin();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose function specifiers on a declaration of an identifier that
 | 
						|
/// does not identify a function.
 | 
						|
void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
 | 
						|
  // FIXME: We should probably indicate the identifier in question to avoid
 | 
						|
  // confusion for constructs like "virtual int a(), b;"
 | 
						|
  if (DS.isVirtualSpecified())
 | 
						|
    Diag(DS.getVirtualSpecLoc(),
 | 
						|
         diag::err_virtual_non_function);
 | 
						|
 | 
						|
  if (DS.isExplicitSpecified())
 | 
						|
    Diag(DS.getExplicitSpecLoc(),
 | 
						|
         diag::err_explicit_non_function);
 | 
						|
 | 
						|
  if (DS.isNoreturnSpecified())
 | 
						|
    Diag(DS.getNoreturnSpecLoc(),
 | 
						|
         diag::err_noreturn_non_function);
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
 | 
						|
                             TypeSourceInfo *TInfo, LookupResult &Previous) {
 | 
						|
  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
 | 
						|
  if (D.getCXXScopeSpec().isSet()) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
 | 
						|
      << D.getCXXScopeSpec().getRange();
 | 
						|
    D.setInvalidType();
 | 
						|
    // Pretend we didn't see the scope specifier.
 | 
						|
    DC = CurContext;
 | 
						|
    Previous.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | 
						|
 | 
						|
  if (D.getDeclSpec().isInlineSpecified())
 | 
						|
    Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
 | 
						|
        << getLangOpts().CPlusPlus17;
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | 
						|
      << 1;
 | 
						|
 | 
						|
  if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
 | 
						|
    if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
 | 
						|
      Diag(D.getName().StartLocation,
 | 
						|
           diag::err_deduction_guide_invalid_specifier)
 | 
						|
          << "typedef";
 | 
						|
    else
 | 
						|
      Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
 | 
						|
          << D.getName().getSourceRange();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
 | 
						|
  if (!NewTD) return nullptr;
 | 
						|
 | 
						|
  // Handle attributes prior to checking for duplicates in MergeVarDecl
 | 
						|
  ProcessDeclAttributes(S, NewTD, D);
 | 
						|
 | 
						|
  CheckTypedefForVariablyModifiedType(S, NewTD);
 | 
						|
 | 
						|
  bool Redeclaration = D.isRedeclaration();
 | 
						|
  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
 | 
						|
  D.setRedeclaration(Redeclaration);
 | 
						|
  return ND;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
 | 
						|
  // C99 6.7.7p2: If a typedef name specifies a variably modified type
 | 
						|
  // then it shall have block scope.
 | 
						|
  // Note that variably modified types must be fixed before merging the decl so
 | 
						|
  // that redeclarations will match.
 | 
						|
  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
  if (T->isVariablyModifiedType()) {
 | 
						|
    setFunctionHasBranchProtectedScope();
 | 
						|
 | 
						|
    if (S->getFnParent() == nullptr) {
 | 
						|
      bool SizeIsNegative;
 | 
						|
      llvm::APSInt Oversized;
 | 
						|
      TypeSourceInfo *FixedTInfo =
 | 
						|
        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
 | 
						|
                                                      SizeIsNegative,
 | 
						|
                                                      Oversized);
 | 
						|
      if (FixedTInfo) {
 | 
						|
        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
 | 
						|
        NewTD->setTypeSourceInfo(FixedTInfo);
 | 
						|
      } else {
 | 
						|
        if (SizeIsNegative)
 | 
						|
          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
 | 
						|
        else if (T->isVariableArrayType())
 | 
						|
          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
 | 
						|
        else if (Oversized.getBoolValue())
 | 
						|
          Diag(NewTD->getLocation(), diag::err_array_too_large)
 | 
						|
            << Oversized.toString(10);
 | 
						|
        else
 | 
						|
          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
 | 
						|
        NewTD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
 | 
						|
/// declares a typedef-name, either using the 'typedef' type specifier or via
 | 
						|
/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
 | 
						|
                           LookupResult &Previous, bool &Redeclaration) {
 | 
						|
 | 
						|
  // Find the shadowed declaration before filtering for scope.
 | 
						|
  NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
 | 
						|
 | 
						|
  // Merge the decl with the existing one if appropriate. If the decl is
 | 
						|
  // in an outer scope, it isn't the same thing.
 | 
						|
  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
 | 
						|
                       /*AllowInlineNamespace*/false);
 | 
						|
  filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    Redeclaration = true;
 | 
						|
    MergeTypedefNameDecl(S, NewTD, Previous);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShadowedDecl && !Redeclaration)
 | 
						|
    CheckShadow(NewTD, ShadowedDecl, Previous);
 | 
						|
 | 
						|
  // If this is the C FILE type, notify the AST context.
 | 
						|
  if (IdentifierInfo *II = NewTD->getIdentifier())
 | 
						|
    if (!NewTD->isInvalidDecl() &&
 | 
						|
        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | 
						|
      if (II->isStr("FILE"))
 | 
						|
        Context.setFILEDecl(NewTD);
 | 
						|
      else if (II->isStr("jmp_buf"))
 | 
						|
        Context.setjmp_bufDecl(NewTD);
 | 
						|
      else if (II->isStr("sigjmp_buf"))
 | 
						|
        Context.setsigjmp_bufDecl(NewTD);
 | 
						|
      else if (II->isStr("ucontext_t"))
 | 
						|
        Context.setucontext_tDecl(NewTD);
 | 
						|
    }
 | 
						|
 | 
						|
  return NewTD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determines whether the given declaration is an out-of-scope
 | 
						|
/// previous declaration.
 | 
						|
///
 | 
						|
/// This routine should be invoked when name lookup has found a
 | 
						|
/// previous declaration (PrevDecl) that is not in the scope where a
 | 
						|
/// new declaration by the same name is being introduced. If the new
 | 
						|
/// declaration occurs in a local scope, previous declarations with
 | 
						|
/// linkage may still be considered previous declarations (C99
 | 
						|
/// 6.2.2p4-5, C++ [basic.link]p6).
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration found by name
 | 
						|
/// lookup
 | 
						|
///
 | 
						|
/// \param DC the context in which the new declaration is being
 | 
						|
/// declared.
 | 
						|
///
 | 
						|
/// \returns true if PrevDecl is an out-of-scope previous declaration
 | 
						|
/// for a new delcaration with the same name.
 | 
						|
static bool
 | 
						|
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
 | 
						|
                                ASTContext &Context) {
 | 
						|
  if (!PrevDecl)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!PrevDecl->hasLinkage())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Context.getLangOpts().CPlusPlus) {
 | 
						|
    // C++ [basic.link]p6:
 | 
						|
    //   If there is a visible declaration of an entity with linkage
 | 
						|
    //   having the same name and type, ignoring entities declared
 | 
						|
    //   outside the innermost enclosing namespace scope, the block
 | 
						|
    //   scope declaration declares that same entity and receives the
 | 
						|
    //   linkage of the previous declaration.
 | 
						|
    DeclContext *OuterContext = DC->getRedeclContext();
 | 
						|
    if (!OuterContext->isFunctionOrMethod())
 | 
						|
      // This rule only applies to block-scope declarations.
 | 
						|
      return false;
 | 
						|
 | 
						|
    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
 | 
						|
    if (PrevOuterContext->isRecord())
 | 
						|
      // We found a member function: ignore it.
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Find the innermost enclosing namespace for the new and
 | 
						|
    // previous declarations.
 | 
						|
    OuterContext = OuterContext->getEnclosingNamespaceContext();
 | 
						|
    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
 | 
						|
 | 
						|
    // The previous declaration is in a different namespace, so it
 | 
						|
    // isn't the same function.
 | 
						|
    if (!OuterContext->Equals(PrevOuterContext))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
 | 
						|
  CXXScopeSpec &SS = D.getCXXScopeSpec();
 | 
						|
  if (!SS.isSet()) return;
 | 
						|
  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
 | 
						|
  QualType type = decl->getType();
 | 
						|
  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
 | 
						|
  if (lifetime == Qualifiers::OCL_Autoreleasing) {
 | 
						|
    // Various kinds of declaration aren't allowed to be __autoreleasing.
 | 
						|
    unsigned kind = -1U;
 | 
						|
    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
 | 
						|
      if (var->hasAttr<BlocksAttr>())
 | 
						|
        kind = 0; // __block
 | 
						|
      else if (!var->hasLocalStorage())
 | 
						|
        kind = 1; // global
 | 
						|
    } else if (isa<ObjCIvarDecl>(decl)) {
 | 
						|
      kind = 3; // ivar
 | 
						|
    } else if (isa<FieldDecl>(decl)) {
 | 
						|
      kind = 2; // field
 | 
						|
    }
 | 
						|
 | 
						|
    if (kind != -1U) {
 | 
						|
      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
 | 
						|
        << kind;
 | 
						|
    }
 | 
						|
  } else if (lifetime == Qualifiers::OCL_None) {
 | 
						|
    // Try to infer lifetime.
 | 
						|
    if (!type->isObjCLifetimeType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    lifetime = type->getObjCARCImplicitLifetime();
 | 
						|
    type = Context.getLifetimeQualifiedType(type, lifetime);
 | 
						|
    decl->setType(type);
 | 
						|
  }
 | 
						|
 | 
						|
  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
 | 
						|
    // Thread-local variables cannot have lifetime.
 | 
						|
    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
 | 
						|
        var->getTLSKind()) {
 | 
						|
      Diag(var->getLocation(), diag::err_arc_thread_ownership)
 | 
						|
        << var->getType();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
 | 
						|
  // Ensure that an auto decl is deduced otherwise the checks below might cache
 | 
						|
  // the wrong linkage.
 | 
						|
  assert(S.ParsingInitForAutoVars.count(&ND) == 0);
 | 
						|
 | 
						|
  // 'weak' only applies to declarations with external linkage.
 | 
						|
  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
 | 
						|
    if (!ND.isExternallyVisible()) {
 | 
						|
      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
 | 
						|
      ND.dropAttr<WeakAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
 | 
						|
    if (ND.isExternallyVisible()) {
 | 
						|
      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
 | 
						|
      ND.dropAttr<WeakRefAttr>();
 | 
						|
      ND.dropAttr<AliasAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *VD = dyn_cast<VarDecl>(&ND)) {
 | 
						|
    if (VD->hasInit()) {
 | 
						|
      if (const auto *Attr = VD->getAttr<AliasAttr>()) {
 | 
						|
        assert(VD->isThisDeclarationADefinition() &&
 | 
						|
               !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
 | 
						|
        S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
 | 
						|
        VD->dropAttr<AliasAttr>();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // 'selectany' only applies to externally visible variable declarations.
 | 
						|
  // It does not apply to functions.
 | 
						|
  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
 | 
						|
    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
 | 
						|
      S.Diag(Attr->getLocation(),
 | 
						|
             diag::err_attribute_selectany_non_extern_data);
 | 
						|
      ND.dropAttr<SelectAnyAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
 | 
						|
    // dll attributes require external linkage. Static locals may have external
 | 
						|
    // linkage but still cannot be explicitly imported or exported.
 | 
						|
    auto *VD = dyn_cast<VarDecl>(&ND);
 | 
						|
    if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
 | 
						|
      S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
 | 
						|
        << &ND << Attr;
 | 
						|
      ND.setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Virtual functions cannot be marked as 'notail'.
 | 
						|
  if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
 | 
						|
    if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
 | 
						|
      if (MD->isVirtual()) {
 | 
						|
        S.Diag(ND.getLocation(),
 | 
						|
               diag::err_invalid_attribute_on_virtual_function)
 | 
						|
            << Attr;
 | 
						|
        ND.dropAttr<NotTailCalledAttr>();
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
 | 
						|
                                           NamedDecl *NewDecl,
 | 
						|
                                           bool IsSpecialization,
 | 
						|
                                           bool IsDefinition) {
 | 
						|
  if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  bool IsTemplate = false;
 | 
						|
  if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
 | 
						|
    OldDecl = OldTD->getTemplatedDecl();
 | 
						|
    IsTemplate = true;
 | 
						|
    if (!IsSpecialization)
 | 
						|
      IsDefinition = false;
 | 
						|
  }
 | 
						|
  if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
 | 
						|
    NewDecl = NewTD->getTemplatedDecl();
 | 
						|
    IsTemplate = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!OldDecl || !NewDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
 | 
						|
  const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
 | 
						|
  const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
 | 
						|
  const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
 | 
						|
 | 
						|
  // dllimport and dllexport are inheritable attributes so we have to exclude
 | 
						|
  // inherited attribute instances.
 | 
						|
  bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
 | 
						|
                    (NewExportAttr && !NewExportAttr->isInherited());
 | 
						|
 | 
						|
  // A redeclaration is not allowed to add a dllimport or dllexport attribute,
 | 
						|
  // the only exception being explicit specializations.
 | 
						|
  // Implicitly generated declarations are also excluded for now because there
 | 
						|
  // is no other way to switch these to use dllimport or dllexport.
 | 
						|
  bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
 | 
						|
 | 
						|
  if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
 | 
						|
    // Allow with a warning for free functions and global variables.
 | 
						|
    bool JustWarn = false;
 | 
						|
    if (!OldDecl->isCXXClassMember()) {
 | 
						|
      auto *VD = dyn_cast<VarDecl>(OldDecl);
 | 
						|
      if (VD && !VD->getDescribedVarTemplate())
 | 
						|
        JustWarn = true;
 | 
						|
      auto *FD = dyn_cast<FunctionDecl>(OldDecl);
 | 
						|
      if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
 | 
						|
        JustWarn = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We cannot change a declaration that's been used because IR has already
 | 
						|
    // been emitted. Dllimported functions will still work though (modulo
 | 
						|
    // address equality) as they can use the thunk.
 | 
						|
    if (OldDecl->isUsed())
 | 
						|
      if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
 | 
						|
        JustWarn = false;
 | 
						|
 | 
						|
    unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
 | 
						|
                               : diag::err_attribute_dll_redeclaration;
 | 
						|
    S.Diag(NewDecl->getLocation(), DiagID)
 | 
						|
        << NewDecl
 | 
						|
        << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
 | 
						|
    S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
    if (!JustWarn) {
 | 
						|
      NewDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // A redeclaration is not allowed to drop a dllimport attribute, the only
 | 
						|
  // exceptions being inline function definitions (except for function
 | 
						|
  // templates), local extern declarations, qualified friend declarations or
 | 
						|
  // special MSVC extension: in the last case, the declaration is treated as if
 | 
						|
  // it were marked dllexport.
 | 
						|
  bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
 | 
						|
  bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
 | 
						|
    // Ignore static data because out-of-line definitions are diagnosed
 | 
						|
    // separately.
 | 
						|
    IsStaticDataMember = VD->isStaticDataMember();
 | 
						|
    IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
 | 
						|
                   VarDecl::DeclarationOnly;
 | 
						|
  } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
 | 
						|
    IsInline = FD->isInlined();
 | 
						|
    IsQualifiedFriend = FD->getQualifier() &&
 | 
						|
                        FD->getFriendObjectKind() == Decl::FOK_Declared;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldImportAttr && !HasNewAttr &&
 | 
						|
      (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
 | 
						|
      !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
 | 
						|
    if (IsMicrosoft && IsDefinition) {
 | 
						|
      S.Diag(NewDecl->getLocation(),
 | 
						|
             diag::warn_redeclaration_without_import_attribute)
 | 
						|
          << NewDecl;
 | 
						|
      S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
      NewDecl->dropAttr<DLLImportAttr>();
 | 
						|
      NewDecl->addAttr(::new (S.Context) DLLExportAttr(
 | 
						|
          NewImportAttr->getRange(), S.Context,
 | 
						|
          NewImportAttr->getSpellingListIndex()));
 | 
						|
    } else {
 | 
						|
      S.Diag(NewDecl->getLocation(),
 | 
						|
             diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
 | 
						|
          << NewDecl << OldImportAttr;
 | 
						|
      S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
      S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
 | 
						|
      OldDecl->dropAttr<DLLImportAttr>();
 | 
						|
      NewDecl->dropAttr<DLLImportAttr>();
 | 
						|
    }
 | 
						|
  } else if (IsInline && OldImportAttr && !IsMicrosoft) {
 | 
						|
    // In MinGW, seeing a function declared inline drops the dllimport
 | 
						|
    // attribute.
 | 
						|
    OldDecl->dropAttr<DLLImportAttr>();
 | 
						|
    NewDecl->dropAttr<DLLImportAttr>();
 | 
						|
    S.Diag(NewDecl->getLocation(),
 | 
						|
           diag::warn_dllimport_dropped_from_inline_function)
 | 
						|
        << NewDecl << OldImportAttr;
 | 
						|
  }
 | 
						|
 | 
						|
  // A specialization of a class template member function is processed here
 | 
						|
  // since it's a redeclaration. If the parent class is dllexport, the
 | 
						|
  // specialization inherits that attribute. This doesn't happen automatically
 | 
						|
  // since the parent class isn't instantiated until later.
 | 
						|
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
 | 
						|
    if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
 | 
						|
        !NewImportAttr && !NewExportAttr) {
 | 
						|
      if (const DLLExportAttr *ParentExportAttr =
 | 
						|
              MD->getParent()->getAttr<DLLExportAttr>()) {
 | 
						|
        DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
 | 
						|
        NewAttr->setInherited(true);
 | 
						|
        NewDecl->addAttr(NewAttr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Given that we are within the definition of the given function,
 | 
						|
/// will that definition behave like C99's 'inline', where the
 | 
						|
/// definition is discarded except for optimization purposes?
 | 
						|
static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
 | 
						|
  // Try to avoid calling GetGVALinkageForFunction.
 | 
						|
 | 
						|
  // All cases of this require the 'inline' keyword.
 | 
						|
  if (!FD->isInlined()) return false;
 | 
						|
 | 
						|
  // This is only possible in C++ with the gnu_inline attribute.
 | 
						|
  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, go ahead and call the relatively-more-expensive function.
 | 
						|
  return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether a variable is extern "C" prior to attaching
 | 
						|
/// an initializer. We can't just call isExternC() here, because that
 | 
						|
/// will also compute and cache whether the declaration is externally
 | 
						|
/// visible, which might change when we attach the initializer.
 | 
						|
///
 | 
						|
/// This can only be used if the declaration is known to not be a
 | 
						|
/// redeclaration of an internal linkage declaration.
 | 
						|
///
 | 
						|
/// For instance:
 | 
						|
///
 | 
						|
///   auto x = []{};
 | 
						|
///
 | 
						|
/// Attaching the initializer here makes this declaration not externally
 | 
						|
/// visible, because its type has internal linkage.
 | 
						|
///
 | 
						|
/// FIXME: This is a hack.
 | 
						|
template<typename T>
 | 
						|
static bool isIncompleteDeclExternC(Sema &S, const T *D) {
 | 
						|
  if (S.getLangOpts().CPlusPlus) {
 | 
						|
    // In C++, the overloadable attribute negates the effects of extern "C".
 | 
						|
    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // So do CUDA's host/device attributes.
 | 
						|
    if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
 | 
						|
                                 D->template hasAttr<CUDAHostAttr>()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return D->isExternC();
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldConsiderLinkage(const VarDecl *VD) {
 | 
						|
  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
 | 
						|
  if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
 | 
						|
    return VD->hasExternalStorage();
 | 
						|
  if (DC->isFileContext())
 | 
						|
    return true;
 | 
						|
  if (DC->isRecord())
 | 
						|
    return false;
 | 
						|
  llvm_unreachable("Unexpected context");
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldConsiderLinkage(const FunctionDecl *FD) {
 | 
						|
  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
 | 
						|
  if (DC->isFileContext() || DC->isFunctionOrMethod() ||
 | 
						|
      isa<OMPDeclareReductionDecl>(DC))
 | 
						|
    return true;
 | 
						|
  if (DC->isRecord())
 | 
						|
    return false;
 | 
						|
  llvm_unreachable("Unexpected context");
 | 
						|
}
 | 
						|
 | 
						|
static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
 | 
						|
                          AttributeList::Kind Kind) {
 | 
						|
  for (const AttributeList *L = AttrList; L; L = L->getNext())
 | 
						|
    if (L->getKind() == Kind)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasParsedAttr(Scope *S, const Declarator &PD,
 | 
						|
                          AttributeList::Kind Kind) {
 | 
						|
  // Check decl attributes on the DeclSpec.
 | 
						|
  if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Walk the declarator structure, checking decl attributes that were in a type
 | 
						|
  // position to the decl itself.
 | 
						|
  for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
 | 
						|
    if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, check attributes on the decl itself.
 | 
						|
  return hasParsedAttr(S, PD.getAttributes(), Kind);
 | 
						|
}
 | 
						|
 | 
						|
/// Adjust the \c DeclContext for a function or variable that might be a
 | 
						|
/// function-local external declaration.
 | 
						|
bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
 | 
						|
  if (!DC->isFunctionOrMethod())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is a local extern function or variable declared within a function
 | 
						|
  // template, don't add it into the enclosing namespace scope until it is
 | 
						|
  // instantiated; it might have a dependent type right now.
 | 
						|
  if (DC->isDependentContext())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++11 [basic.link]p7:
 | 
						|
  //   When a block scope declaration of an entity with linkage is not found to
 | 
						|
  //   refer to some other declaration, then that entity is a member of the
 | 
						|
  //   innermost enclosing namespace.
 | 
						|
  //
 | 
						|
  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
 | 
						|
  // semantically-enclosing namespace, not a lexically-enclosing one.
 | 
						|
  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
 | 
						|
    DC = DC->getParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Returns true if given declaration has external C language linkage.
 | 
						|
static bool isDeclExternC(const Decl *D) {
 | 
						|
  if (const auto *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    return FD->isExternC();
 | 
						|
  if (const auto *VD = dyn_cast<VarDecl>(D))
 | 
						|
    return VD->isExternC();
 | 
						|
 | 
						|
  llvm_unreachable("Unknown type of decl!");
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *Sema::ActOnVariableDeclarator(
 | 
						|
    Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
 | 
						|
    LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
 | 
						|
    bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
 | 
						|
  QualType R = TInfo->getType();
 | 
						|
  DeclarationName Name = GetNameForDeclarator(D).getName();
 | 
						|
 | 
						|
  IdentifierInfo *II = Name.getAsIdentifierInfo();
 | 
						|
 | 
						|
  if (D.isDecompositionDeclarator()) {
 | 
						|
    // Take the name of the first declarator as our name for diagnostic
 | 
						|
    // purposes.
 | 
						|
    auto &Decomp = D.getDecompositionDeclarator();
 | 
						|
    if (!Decomp.bindings().empty()) {
 | 
						|
      II = Decomp.bindings()[0].Name;
 | 
						|
      Name = II;
 | 
						|
    }
 | 
						|
  } else if (!II) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().OpenCL) {
 | 
						|
    // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
 | 
						|
    // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
 | 
						|
    // argument.
 | 
						|
    if (R->isImageType() || R->isPipeType()) {
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_opencl_type_can_only_be_used_as_function_parameter)
 | 
						|
          << R;
 | 
						|
      D.setInvalidType();
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // OpenCL v1.2 s6.9.r:
 | 
						|
    // The event type cannot be used to declare a program scope variable.
 | 
						|
    // OpenCL v2.0 s6.9.q:
 | 
						|
    // The clk_event_t and reserve_id_t types cannot be declared in program scope.
 | 
						|
    if (NULL == S->getParent()) {
 | 
						|
      if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
 | 
						|
        Diag(D.getIdentifierLoc(),
 | 
						|
             diag::err_invalid_type_for_program_scope_var) << R;
 | 
						|
        D.setInvalidType();
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
 | 
						|
    QualType NR = R;
 | 
						|
    while (NR->isPointerType()) {
 | 
						|
      if (NR->isFunctionPointerType()) {
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
 | 
						|
        D.setInvalidType();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      NR = NR->getPointeeType();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
 | 
						|
      // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
 | 
						|
      // half array type (unless the cl_khr_fp16 extension is enabled).
 | 
						|
      if (Context.getBaseElementType(R)->isHalfType()) {
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
 | 
						|
        D.setInvalidType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (R->isSamplerT()) {
 | 
						|
      // OpenCL v1.2 s6.9.b p4:
 | 
						|
      // The sampler type cannot be used with the __local and __global address
 | 
						|
      // space qualifiers.
 | 
						|
      if (R.getAddressSpace() == LangAS::opencl_local ||
 | 
						|
          R.getAddressSpace() == LangAS::opencl_global) {
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
 | 
						|
      }
 | 
						|
 | 
						|
      // OpenCL v1.2 s6.12.14.1:
 | 
						|
      // A global sampler must be declared with either the constant address
 | 
						|
      // space qualifier or with the const qualifier.
 | 
						|
      if (DC->isTranslationUnit() &&
 | 
						|
          !(R.getAddressSpace() == LangAS::opencl_constant ||
 | 
						|
          R.isConstQualified())) {
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
 | 
						|
        D.setInvalidType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // OpenCL v1.2 s6.9.r:
 | 
						|
    // The event type cannot be used with the __local, __constant and __global
 | 
						|
    // address space qualifiers.
 | 
						|
    if (R->isEventT()) {
 | 
						|
      if (R.getAddressSpace() != LangAS::opencl_private) {
 | 
						|
        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
 | 
						|
        D.setInvalidType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
 | 
						|
  StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
 | 
						|
 | 
						|
  // dllimport globals without explicit storage class are treated as extern. We
 | 
						|
  // have to change the storage class this early to get the right DeclContext.
 | 
						|
  if (SC == SC_None && !DC->isRecord() &&
 | 
						|
      hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
 | 
						|
      !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
 | 
						|
    SC = SC_Extern;
 | 
						|
 | 
						|
  DeclContext *OriginalDC = DC;
 | 
						|
  bool IsLocalExternDecl = SC == SC_Extern &&
 | 
						|
                           adjustContextForLocalExternDecl(DC);
 | 
						|
 | 
						|
  if (SCSpec == DeclSpec::SCS_mutable) {
 | 
						|
    // mutable can only appear on non-static class members, so it's always
 | 
						|
    // an error here
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
 | 
						|
    D.setInvalidType();
 | 
						|
    SC = SC_None;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
 | 
						|
      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
 | 
						|
                              D.getDeclSpec().getStorageClassSpecLoc())) {
 | 
						|
    // In C++11, the 'register' storage class specifier is deprecated.
 | 
						|
    // Suppress the warning in system macros, it's used in macros in some
 | 
						|
    // popular C system headers, such as in glibc's htonl() macro.
 | 
						|
    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
         getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
 | 
						|
                                   : diag::warn_deprecated_register)
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | 
						|
 | 
						|
  if (!DC->isRecord() && S->getFnParent() == nullptr) {
 | 
						|
    // C99 6.9p2: The storage-class specifiers auto and register shall not
 | 
						|
    // appear in the declaration specifiers in an external declaration.
 | 
						|
    // Global Register+Asm is a GNU extension we support.
 | 
						|
    if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
 | 
						|
      D.setInvalidType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsMemberSpecialization = false;
 | 
						|
  bool IsVariableTemplateSpecialization = false;
 | 
						|
  bool IsPartialSpecialization = false;
 | 
						|
  bool IsVariableTemplate = false;
 | 
						|
  VarDecl *NewVD = nullptr;
 | 
						|
  VarTemplateDecl *NewTemplate = nullptr;
 | 
						|
  TemplateParameterList *TemplateParams = nullptr;
 | 
						|
  if (!getLangOpts().CPlusPlus) {
 | 
						|
    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
 | 
						|
                            D.getIdentifierLoc(), II,
 | 
						|
                            R, TInfo, SC);
 | 
						|
 | 
						|
    if (R->getContainedDeducedType())
 | 
						|
      ParsingInitForAutoVars.insert(NewVD);
 | 
						|
 | 
						|
    if (D.isInvalidType())
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
  } else {
 | 
						|
    bool Invalid = false;
 | 
						|
 | 
						|
    if (DC->isRecord() && !CurContext->isRecord()) {
 | 
						|
      // This is an out-of-line definition of a static data member.
 | 
						|
      switch (SC) {
 | 
						|
      case SC_None:
 | 
						|
        break;
 | 
						|
      case SC_Static:
 | 
						|
        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
             diag::err_static_out_of_line)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
        break;
 | 
						|
      case SC_Auto:
 | 
						|
      case SC_Register:
 | 
						|
      case SC_Extern:
 | 
						|
        // [dcl.stc] p2: The auto or register specifiers shall be applied only
 | 
						|
        // to names of variables declared in a block or to function parameters.
 | 
						|
        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
 | 
						|
        // of class members
 | 
						|
 | 
						|
        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
             diag::err_storage_class_for_static_member)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
        break;
 | 
						|
      case SC_PrivateExtern:
 | 
						|
        llvm_unreachable("C storage class in c++!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (SC == SC_Static && CurContext->isRecord()) {
 | 
						|
      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
 | 
						|
        if (RD->isLocalClass())
 | 
						|
          Diag(D.getIdentifierLoc(),
 | 
						|
               diag::err_static_data_member_not_allowed_in_local_class)
 | 
						|
            << Name << RD->getDeclName();
 | 
						|
 | 
						|
        // C++98 [class.union]p1: If a union contains a static data member,
 | 
						|
        // the program is ill-formed. C++11 drops this restriction.
 | 
						|
        if (RD->isUnion())
 | 
						|
          Diag(D.getIdentifierLoc(),
 | 
						|
               getLangOpts().CPlusPlus11
 | 
						|
                 ? diag::warn_cxx98_compat_static_data_member_in_union
 | 
						|
                 : diag::ext_static_data_member_in_union) << Name;
 | 
						|
        // We conservatively disallow static data members in anonymous structs.
 | 
						|
        else if (!RD->getDeclName())
 | 
						|
          Diag(D.getIdentifierLoc(),
 | 
						|
               diag::err_static_data_member_not_allowed_in_anon_struct)
 | 
						|
            << Name << RD->isUnion();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Match up the template parameter lists with the scope specifier, then
 | 
						|
    // determine whether we have a template or a template specialization.
 | 
						|
    TemplateParams = MatchTemplateParametersToScopeSpecifier(
 | 
						|
        D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
 | 
						|
        D.getCXXScopeSpec(),
 | 
						|
        D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
 | 
						|
            ? D.getName().TemplateId
 | 
						|
            : nullptr,
 | 
						|
        TemplateParamLists,
 | 
						|
        /*never a friend*/ false, IsMemberSpecialization, Invalid);
 | 
						|
 | 
						|
    if (TemplateParams) {
 | 
						|
      if (!TemplateParams->size() &&
 | 
						|
          D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
 | 
						|
        // There is an extraneous 'template<>' for this variable. Complain
 | 
						|
        // about it, but allow the declaration of the variable.
 | 
						|
        Diag(TemplateParams->getTemplateLoc(),
 | 
						|
             diag::err_template_variable_noparams)
 | 
						|
          << II
 | 
						|
          << SourceRange(TemplateParams->getTemplateLoc(),
 | 
						|
                         TemplateParams->getRAngleLoc());
 | 
						|
        TemplateParams = nullptr;
 | 
						|
      } else {
 | 
						|
        if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
 | 
						|
          // This is an explicit specialization or a partial specialization.
 | 
						|
          // FIXME: Check that we can declare a specialization here.
 | 
						|
          IsVariableTemplateSpecialization = true;
 | 
						|
          IsPartialSpecialization = TemplateParams->size() > 0;
 | 
						|
        } else { // if (TemplateParams->size() > 0)
 | 
						|
          // This is a template declaration.
 | 
						|
          IsVariableTemplate = true;
 | 
						|
 | 
						|
          // Check that we can declare a template here.
 | 
						|
          if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
            return nullptr;
 | 
						|
 | 
						|
          // Only C++1y supports variable templates (N3651).
 | 
						|
          Diag(D.getIdentifierLoc(),
 | 
						|
               getLangOpts().CPlusPlus14
 | 
						|
                   ? diag::warn_cxx11_compat_variable_template
 | 
						|
                   : diag::ext_variable_template);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert((Invalid ||
 | 
						|
              D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
 | 
						|
             "should have a 'template<>' for this decl");
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsVariableTemplateSpecialization) {
 | 
						|
      SourceLocation TemplateKWLoc =
 | 
						|
          TemplateParamLists.size() > 0
 | 
						|
              ? TemplateParamLists[0]->getTemplateLoc()
 | 
						|
              : SourceLocation();
 | 
						|
      DeclResult Res = ActOnVarTemplateSpecialization(
 | 
						|
          S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
 | 
						|
          IsPartialSpecialization);
 | 
						|
      if (Res.isInvalid())
 | 
						|
        return nullptr;
 | 
						|
      NewVD = cast<VarDecl>(Res.get());
 | 
						|
      AddToScope = false;
 | 
						|
    } else if (D.isDecompositionDeclarator()) {
 | 
						|
      NewVD = DecompositionDecl::Create(Context, DC, D.getLocStart(),
 | 
						|
                                        D.getIdentifierLoc(), R, TInfo, SC,
 | 
						|
                                        Bindings);
 | 
						|
    } else
 | 
						|
      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
 | 
						|
                              D.getIdentifierLoc(), II, R, TInfo, SC);
 | 
						|
 | 
						|
    // If this is supposed to be a variable template, create it as such.
 | 
						|
    if (IsVariableTemplate) {
 | 
						|
      NewTemplate =
 | 
						|
          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
 | 
						|
                                  TemplateParams, NewVD);
 | 
						|
      NewVD->setDescribedVarTemplate(NewTemplate);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this decl has an auto type in need of deduction, make a note of the
 | 
						|
    // Decl so we can diagnose uses of it in its own initializer.
 | 
						|
    if (R->getContainedDeducedType())
 | 
						|
      ParsingInitForAutoVars.insert(NewVD);
 | 
						|
 | 
						|
    if (D.isInvalidType() || Invalid) {
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
      if (NewTemplate)
 | 
						|
        NewTemplate->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    SetNestedNameSpecifier(NewVD, D);
 | 
						|
 | 
						|
    // If we have any template parameter lists that don't directly belong to
 | 
						|
    // the variable (matching the scope specifier), store them.
 | 
						|
    unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
 | 
						|
    if (TemplateParamLists.size() > VDTemplateParamLists)
 | 
						|
      NewVD->setTemplateParameterListsInfo(
 | 
						|
          Context, TemplateParamLists.drop_back(VDTemplateParamLists));
 | 
						|
 | 
						|
    if (D.getDeclSpec().isConstexprSpecified()) {
 | 
						|
      NewVD->setConstexpr(true);
 | 
						|
      // C++1z [dcl.spec.constexpr]p1:
 | 
						|
      //   A static data member declared with the constexpr specifier is
 | 
						|
      //   implicitly an inline variable.
 | 
						|
      if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
 | 
						|
        NewVD->setImplicitlyInline();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getDeclSpec().isInlineSpecified()) {
 | 
						|
    if (!getLangOpts().CPlusPlus) {
 | 
						|
      Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
 | 
						|
          << 0;
 | 
						|
    } else if (CurContext->isFunctionOrMethod()) {
 | 
						|
      // 'inline' is not allowed on block scope variable declaration.
 | 
						|
      Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
           diag::err_inline_declaration_block_scope) << Name
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | 
						|
    } else {
 | 
						|
      Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
           getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
 | 
						|
                                     : diag::ext_inline_variable);
 | 
						|
      NewVD->setInlineSpecified();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the lexical context. If the declarator has a C++ scope specifier, the
 | 
						|
  // lexical context will be different from the semantic context.
 | 
						|
  NewVD->setLexicalDeclContext(CurContext);
 | 
						|
  if (NewTemplate)
 | 
						|
    NewTemplate->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (IsLocalExternDecl) {
 | 
						|
    if (D.isDecompositionDeclarator())
 | 
						|
      for (auto *B : Bindings)
 | 
						|
        B->setLocalExternDecl();
 | 
						|
    else
 | 
						|
      NewVD->setLocalExternDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  bool EmitTLSUnsupportedError = false;
 | 
						|
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
 | 
						|
    // C++11 [dcl.stc]p4:
 | 
						|
    //   When thread_local is applied to a variable of block scope the
 | 
						|
    //   storage-class-specifier static is implied if it does not appear
 | 
						|
    //   explicitly.
 | 
						|
    // Core issue: 'static' is not implied if the variable is declared
 | 
						|
    //   'extern'.
 | 
						|
    if (NewVD->hasLocalStorage() &&
 | 
						|
        (SCSpec != DeclSpec::SCS_unspecified ||
 | 
						|
         TSCS != DeclSpec::TSCS_thread_local ||
 | 
						|
         !DC->isFunctionOrMethod()))
 | 
						|
      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | 
						|
           diag::err_thread_non_global)
 | 
						|
        << DeclSpec::getSpecifierName(TSCS);
 | 
						|
    else if (!Context.getTargetInfo().isTLSSupported()) {
 | 
						|
      if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
 | 
						|
        // Postpone error emission until we've collected attributes required to
 | 
						|
        // figure out whether it's a host or device variable and whether the
 | 
						|
        // error should be ignored.
 | 
						|
        EmitTLSUnsupportedError = true;
 | 
						|
        // We still need to mark the variable as TLS so it shows up in AST with
 | 
						|
        // proper storage class for other tools to use even if we're not going
 | 
						|
        // to emit any code for it.
 | 
						|
        NewVD->setTSCSpec(TSCS);
 | 
						|
      } else
 | 
						|
        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | 
						|
             diag::err_thread_unsupported);
 | 
						|
    } else
 | 
						|
      NewVD->setTSCSpec(TSCS);
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.7.4p3
 | 
						|
  //   An inline definition of a function with external linkage shall
 | 
						|
  //   not contain a definition of a modifiable object with static or
 | 
						|
  //   thread storage duration...
 | 
						|
  // We only apply this when the function is required to be defined
 | 
						|
  // elsewhere, i.e. when the function is not 'extern inline'.  Note
 | 
						|
  // that a local variable with thread storage duration still has to
 | 
						|
  // be marked 'static'.  Also note that it's possible to get these
 | 
						|
  // semantics in C++ using __attribute__((gnu_inline)).
 | 
						|
  if (SC == SC_Static && S->getFnParent() != nullptr &&
 | 
						|
      !NewVD->getType().isConstQualified()) {
 | 
						|
    FunctionDecl *CurFD = getCurFunctionDecl();
 | 
						|
    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
 | 
						|
      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
           diag::warn_static_local_in_extern_inline);
 | 
						|
      MaybeSuggestAddingStaticToDecl(CurFD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified()) {
 | 
						|
    if (IsVariableTemplateSpecialization)
 | 
						|
      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
 | 
						|
          << (IsPartialSpecialization ? 1 : 0)
 | 
						|
          << FixItHint::CreateRemoval(
 | 
						|
                 D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else if (IsMemberSpecialization)
 | 
						|
      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
 | 
						|
        << 2
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else if (NewVD->hasLocalStorage())
 | 
						|
      Diag(NewVD->getLocation(), diag::err_module_private_local)
 | 
						|
        << 0 << NewVD->getDeclName()
 | 
						|
        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else {
 | 
						|
      NewVD->setModulePrivate();
 | 
						|
      if (NewTemplate)
 | 
						|
        NewTemplate->setModulePrivate();
 | 
						|
      for (auto *B : Bindings)
 | 
						|
        B->setModulePrivate();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle attributes prior to checking for duplicates in MergeVarDecl
 | 
						|
  ProcessDeclAttributes(S, NewVD, D);
 | 
						|
 | 
						|
  if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
 | 
						|
    if (EmitTLSUnsupportedError &&
 | 
						|
        ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
 | 
						|
         (getLangOpts().OpenMPIsDevice &&
 | 
						|
          NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
 | 
						|
      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | 
						|
           diag::err_thread_unsupported);
 | 
						|
    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
 | 
						|
    // storage [duration]."
 | 
						|
    if (SC == SC_None && S->getFnParent() != nullptr &&
 | 
						|
        (NewVD->hasAttr<CUDASharedAttr>() ||
 | 
						|
         NewVD->hasAttr<CUDAConstantAttr>())) {
 | 
						|
      NewVD->setStorageClass(SC_Static);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure that dllimport globals without explicit storage class are treated as
 | 
						|
  // extern. The storage class is set above using parsed attributes. Now we can
 | 
						|
  // check the VarDecl itself.
 | 
						|
  assert(!NewVD->hasAttr<DLLImportAttr>() ||
 | 
						|
         NewVD->getAttr<DLLImportAttr>()->isInherited() ||
 | 
						|
         NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
 | 
						|
 | 
						|
  // In auto-retain/release, infer strong retension for variables of
 | 
						|
  // retainable type.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
 | 
						|
  // Handle GNU asm-label extension (encoded as an attribute).
 | 
						|
  if (Expr *E = (Expr*)D.getAsmLabel()) {
 | 
						|
    // The parser guarantees this is a string.
 | 
						|
    StringLiteral *SE = cast<StringLiteral>(E);
 | 
						|
    StringRef Label = SE->getString();
 | 
						|
    if (S->getFnParent() != nullptr) {
 | 
						|
      switch (SC) {
 | 
						|
      case SC_None:
 | 
						|
      case SC_Auto:
 | 
						|
        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
 | 
						|
        break;
 | 
						|
      case SC_Register:
 | 
						|
        // Local Named register
 | 
						|
        if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
 | 
						|
            DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
 | 
						|
          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
 | 
						|
        break;
 | 
						|
      case SC_Static:
 | 
						|
      case SC_Extern:
 | 
						|
      case SC_PrivateExtern:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else if (SC == SC_Register) {
 | 
						|
      // Global Named register
 | 
						|
      if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
 | 
						|
        const auto &TI = Context.getTargetInfo();
 | 
						|
        bool HasSizeMismatch;
 | 
						|
 | 
						|
        if (!TI.isValidGCCRegisterName(Label))
 | 
						|
          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
 | 
						|
        else if (!TI.validateGlobalRegisterVariable(Label,
 | 
						|
                                                    Context.getTypeSize(R),
 | 
						|
                                                    HasSizeMismatch))
 | 
						|
          Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
 | 
						|
        else if (HasSizeMismatch)
 | 
						|
          Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!R->isIntegralType(Context) && !R->isPointerType()) {
 | 
						|
        Diag(D.getLocStart(), diag::err_asm_bad_register_type);
 | 
						|
        NewVD->setInvalidDecl(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
 | 
						|
                                                Context, Label, 0));
 | 
						|
  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
 | 
						|
    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
 | 
						|
      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
 | 
						|
    if (I != ExtnameUndeclaredIdentifiers.end()) {
 | 
						|
      if (isDeclExternC(NewVD)) {
 | 
						|
        NewVD->addAttr(I->second);
 | 
						|
        ExtnameUndeclaredIdentifiers.erase(I);
 | 
						|
      } else
 | 
						|
        Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
 | 
						|
            << /*Variable*/1 << NewVD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the shadowed declaration before filtering for scope.
 | 
						|
  NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
 | 
						|
                                ? getShadowedDeclaration(NewVD, Previous)
 | 
						|
                                : nullptr;
 | 
						|
 | 
						|
  // Don't consider existing declarations that are in a different
 | 
						|
  // scope and are out-of-semantic-context declarations (if the new
 | 
						|
  // declaration has linkage).
 | 
						|
  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
 | 
						|
                       D.getCXXScopeSpec().isNotEmpty() ||
 | 
						|
                       IsMemberSpecialization ||
 | 
						|
                       IsVariableTemplateSpecialization);
 | 
						|
 | 
						|
  // Check whether the previous declaration is in the same block scope. This
 | 
						|
  // affects whether we merge types with it, per C++11 [dcl.array]p3.
 | 
						|
  if (getLangOpts().CPlusPlus &&
 | 
						|
      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
 | 
						|
    NewVD->setPreviousDeclInSameBlockScope(
 | 
						|
        Previous.isSingleResult() && !Previous.isShadowed() &&
 | 
						|
        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
 | 
						|
 | 
						|
  if (!getLangOpts().CPlusPlus) {
 | 
						|
    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
 | 
						|
  } else {
 | 
						|
    // If this is an explicit specialization of a static data member, check it.
 | 
						|
    if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
 | 
						|
        CheckMemberSpecialization(NewVD, Previous))
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
 | 
						|
    // Merge the decl with the existing one if appropriate.
 | 
						|
    if (!Previous.empty()) {
 | 
						|
      if (Previous.isSingleResult() &&
 | 
						|
          isa<FieldDecl>(Previous.getFoundDecl()) &&
 | 
						|
          D.getCXXScopeSpec().isSet()) {
 | 
						|
        // The user tried to define a non-static data member
 | 
						|
        // out-of-line (C++ [dcl.meaning]p1).
 | 
						|
        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
 | 
						|
          << D.getCXXScopeSpec().getRange();
 | 
						|
        Previous.clear();
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    } else if (D.getCXXScopeSpec().isSet()) {
 | 
						|
      // No previous declaration in the qualifying scope.
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_no_member)
 | 
						|
        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsVariableTemplateSpecialization)
 | 
						|
      D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
 | 
						|
 | 
						|
    if (NewTemplate) {
 | 
						|
      VarTemplateDecl *PrevVarTemplate =
 | 
						|
          NewVD->getPreviousDecl()
 | 
						|
              ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
 | 
						|
              : nullptr;
 | 
						|
 | 
						|
      // Check the template parameter list of this declaration, possibly
 | 
						|
      // merging in the template parameter list from the previous variable
 | 
						|
      // template declaration.
 | 
						|
      if (CheckTemplateParameterList(
 | 
						|
              TemplateParams,
 | 
						|
              PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
 | 
						|
                              : nullptr,
 | 
						|
              (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
 | 
						|
               DC->isDependentContext())
 | 
						|
                  ? TPC_ClassTemplateMember
 | 
						|
                  : TPC_VarTemplate))
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
 | 
						|
      // If we are providing an explicit specialization of a static variable
 | 
						|
      // template, make a note of that.
 | 
						|
      if (PrevVarTemplate &&
 | 
						|
          PrevVarTemplate->getInstantiatedFromMemberTemplate())
 | 
						|
        PrevVarTemplate->setMemberSpecialization();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Diagnose shadowed variables iff this isn't a redeclaration.
 | 
						|
  if (ShadowedDecl && !D.isRedeclaration())
 | 
						|
    CheckShadow(NewVD, ShadowedDecl, Previous);
 | 
						|
 | 
						|
  ProcessPragmaWeak(S, NewVD);
 | 
						|
 | 
						|
  // If this is the first declaration of an extern C variable, update
 | 
						|
  // the map of such variables.
 | 
						|
  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
 | 
						|
      isIncompleteDeclExternC(*this, NewVD))
 | 
						|
    RegisterLocallyScopedExternCDecl(NewVD, S);
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
 | 
						|
    Decl *ManglingContextDecl;
 | 
						|
    if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
 | 
						|
            NewVD->getDeclContext(), ManglingContextDecl)) {
 | 
						|
      Context.setManglingNumber(
 | 
						|
          NewVD, MCtx->getManglingNumber(
 | 
						|
                     NewVD, getMSManglingNumber(getLangOpts(), S)));
 | 
						|
      Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Special handling of variable named 'main'.
 | 
						|
  if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
 | 
						|
      NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
 | 
						|
      !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
 | 
						|
 | 
						|
    // C++ [basic.start.main]p3
 | 
						|
    // A program that declares a variable main at global scope is ill-formed.
 | 
						|
    if (getLangOpts().CPlusPlus)
 | 
						|
      Diag(D.getLocStart(), diag::err_main_global_variable);
 | 
						|
 | 
						|
    // In C, and external-linkage variable named main results in undefined
 | 
						|
    // behavior.
 | 
						|
    else if (NewVD->hasExternalFormalLinkage())
 | 
						|
      Diag(D.getLocStart(), diag::warn_main_redefined);
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.isRedeclaration() && !Previous.empty()) {
 | 
						|
    NamedDecl *Prev = Previous.getRepresentativeDecl();
 | 
						|
    checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
 | 
						|
                                   D.isFunctionDefinition());
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewTemplate) {
 | 
						|
    if (NewVD->isInvalidDecl())
 | 
						|
      NewTemplate->setInvalidDecl();
 | 
						|
    ActOnDocumentableDecl(NewTemplate);
 | 
						|
    return NewTemplate;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsMemberSpecialization && !NewVD->isInvalidDecl())
 | 
						|
    CompleteMemberSpecialization(NewVD, Previous);
 | 
						|
 | 
						|
  return NewVD;
 | 
						|
}
 | 
						|
 | 
						|
/// Enum describing the %select options in diag::warn_decl_shadow.
 | 
						|
enum ShadowedDeclKind {
 | 
						|
  SDK_Local,
 | 
						|
  SDK_Global,
 | 
						|
  SDK_StaticMember,
 | 
						|
  SDK_Field,
 | 
						|
  SDK_Typedef,
 | 
						|
  SDK_Using
 | 
						|
};
 | 
						|
 | 
						|
/// Determine what kind of declaration we're shadowing.
 | 
						|
static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
 | 
						|
                                                const DeclContext *OldDC) {
 | 
						|
  if (isa<TypeAliasDecl>(ShadowedDecl))
 | 
						|
    return SDK_Using;
 | 
						|
  else if (isa<TypedefDecl>(ShadowedDecl))
 | 
						|
    return SDK_Typedef;
 | 
						|
  else if (isa<RecordDecl>(OldDC))
 | 
						|
    return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
 | 
						|
 | 
						|
  return OldDC->isFileContext() ? SDK_Global : SDK_Local;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the location of the capture if the given lambda captures the given
 | 
						|
/// variable \p VD, or an invalid source location otherwise.
 | 
						|
static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
 | 
						|
                                         const VarDecl *VD) {
 | 
						|
  for (const Capture &Capture : LSI->Captures) {
 | 
						|
    if (Capture.isVariableCapture() && Capture.getVariable() == VD)
 | 
						|
      return Capture.getLocation();
 | 
						|
  }
 | 
						|
  return SourceLocation();
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
 | 
						|
                                     const LookupResult &R) {
 | 
						|
  // Only diagnose if we're shadowing an unambiguous field or variable.
 | 
						|
  if (R.getResultKind() != LookupResult::Found)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Return false if warning is ignored.
 | 
						|
  return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return the declaration shadowed by the given variable \p D, or null
 | 
						|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
 | 
						|
NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
 | 
						|
                                        const LookupResult &R) {
 | 
						|
  if (!shouldWarnIfShadowedDecl(Diags, R))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Don't diagnose declarations at file scope.
 | 
						|
  if (D->hasGlobalStorage())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  NamedDecl *ShadowedDecl = R.getFoundDecl();
 | 
						|
  return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
 | 
						|
             ? ShadowedDecl
 | 
						|
             : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return the declaration shadowed by the given typedef \p D, or null
 | 
						|
/// if it doesn't shadow any declaration or shadowing warnings are disabled.
 | 
						|
NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
 | 
						|
                                        const LookupResult &R) {
 | 
						|
  // Don't warn if typedef declaration is part of a class
 | 
						|
  if (D->getDeclContext()->isRecord())
 | 
						|
    return nullptr;
 | 
						|
  
 | 
						|
  if (!shouldWarnIfShadowedDecl(Diags, R))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  NamedDecl *ShadowedDecl = R.getFoundDecl();
 | 
						|
  return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose variable or built-in function shadowing.  Implements
 | 
						|
/// -Wshadow.
 | 
						|
///
 | 
						|
/// This method is called whenever a VarDecl is added to a "useful"
 | 
						|
/// scope.
 | 
						|
///
 | 
						|
/// \param ShadowedDecl the declaration that is shadowed by the given variable
 | 
						|
/// \param R the lookup of the name
 | 
						|
///
 | 
						|
void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
 | 
						|
                       const LookupResult &R) {
 | 
						|
  DeclContext *NewDC = D->getDeclContext();
 | 
						|
 | 
						|
  if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
 | 
						|
    // Fields are not shadowed by variables in C++ static methods.
 | 
						|
    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
 | 
						|
      if (MD->isStatic())
 | 
						|
        return;
 | 
						|
 | 
						|
    // Fields shadowed by constructor parameters are a special case. Usually
 | 
						|
    // the constructor initializes the field with the parameter.
 | 
						|
    if (isa<CXXConstructorDecl>(NewDC))
 | 
						|
      if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
 | 
						|
        // Remember that this was shadowed so we can either warn about its
 | 
						|
        // modification or its existence depending on warning settings.
 | 
						|
        ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
 | 
						|
        return;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
 | 
						|
    if (shadowedVar->isExternC()) {
 | 
						|
      // For shadowing external vars, make sure that we point to the global
 | 
						|
      // declaration, not a locally scoped extern declaration.
 | 
						|
      for (auto I : shadowedVar->redecls())
 | 
						|
        if (I->isFileVarDecl()) {
 | 
						|
          ShadowedDecl = I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
  DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
 | 
						|
 | 
						|
  unsigned WarningDiag = diag::warn_decl_shadow;
 | 
						|
  SourceLocation CaptureLoc;
 | 
						|
  if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
 | 
						|
      isa<CXXMethodDecl>(NewDC)) {
 | 
						|
    if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
 | 
						|
      if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
 | 
						|
        if (RD->getLambdaCaptureDefault() == LCD_None) {
 | 
						|
          // Try to avoid warnings for lambdas with an explicit capture list.
 | 
						|
          const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
 | 
						|
          // Warn only when the lambda captures the shadowed decl explicitly.
 | 
						|
          CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
 | 
						|
          if (CaptureLoc.isInvalid())
 | 
						|
            WarningDiag = diag::warn_decl_shadow_uncaptured_local;
 | 
						|
        } else {
 | 
						|
          // Remember that this was shadowed so we can avoid the warning if the
 | 
						|
          // shadowed decl isn't captured and the warning settings allow it.
 | 
						|
          cast<LambdaScopeInfo>(getCurFunction())
 | 
						|
              ->ShadowingDecls.push_back(
 | 
						|
                  {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
 | 
						|
        // A variable can't shadow a local variable in an enclosing scope, if
 | 
						|
        // they are separated by a non-capturing declaration context.
 | 
						|
        for (DeclContext *ParentDC = NewDC;
 | 
						|
             ParentDC && !ParentDC->Equals(OldDC);
 | 
						|
             ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
 | 
						|
          // Only block literals, captured statements, and lambda expressions
 | 
						|
          // can capture; other scopes don't.
 | 
						|
          if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
 | 
						|
              !isLambdaCallOperator(ParentDC)) {
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Only warn about certain kinds of shadowing for class members.
 | 
						|
  if (NewDC && NewDC->isRecord()) {
 | 
						|
    // In particular, don't warn about shadowing non-class members.
 | 
						|
    if (!OldDC->isRecord())
 | 
						|
      return;
 | 
						|
 | 
						|
    // TODO: should we warn about static data members shadowing
 | 
						|
    // static data members from base classes?
 | 
						|
 | 
						|
    // TODO: don't diagnose for inaccessible shadowed members.
 | 
						|
    // This is hard to do perfectly because we might friend the
 | 
						|
    // shadowing context, but that's just a false negative.
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  DeclarationName Name = R.getLookupName();
 | 
						|
 | 
						|
  // Emit warning and note.
 | 
						|
  if (getSourceManager().isInSystemMacro(R.getNameLoc()))
 | 
						|
    return;
 | 
						|
  ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
 | 
						|
  Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
 | 
						|
  if (!CaptureLoc.isInvalid())
 | 
						|
    Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
 | 
						|
        << Name << /*explicitly*/ 1;
 | 
						|
  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
 | 
						|
/// when these variables are captured by the lambda.
 | 
						|
void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
 | 
						|
  for (const auto &Shadow : LSI->ShadowingDecls) {
 | 
						|
    const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
 | 
						|
    // Try to avoid the warning when the shadowed decl isn't captured.
 | 
						|
    SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
 | 
						|
    const DeclContext *OldDC = ShadowedDecl->getDeclContext();
 | 
						|
    Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
 | 
						|
                                       ? diag::warn_decl_shadow_uncaptured_local
 | 
						|
                                       : diag::warn_decl_shadow)
 | 
						|
        << Shadow.VD->getDeclName()
 | 
						|
        << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
 | 
						|
    if (!CaptureLoc.isInvalid())
 | 
						|
      Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
 | 
						|
          << Shadow.VD->getDeclName() << /*explicitly*/ 0;
 | 
						|
    Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check -Wshadow without the advantage of a previous lookup.
 | 
						|
void Sema::CheckShadow(Scope *S, VarDecl *D) {
 | 
						|
  if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
 | 
						|
    return;
 | 
						|
 | 
						|
  LookupResult R(*this, D->getDeclName(), D->getLocation(),
 | 
						|
                 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
 | 
						|
  LookupName(R, S);
 | 
						|
  if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
 | 
						|
    CheckShadow(D, ShadowedDecl, R);
 | 
						|
}
 | 
						|
 | 
						|
/// Check if 'E', which is an expression that is about to be modified, refers
 | 
						|
/// to a constructor parameter that shadows a field.
 | 
						|
void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
 | 
						|
  // Quickly ignore expressions that can't be shadowing ctor parameters.
 | 
						|
  if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
 | 
						|
    return;
 | 
						|
  E = E->IgnoreParenImpCasts();
 | 
						|
  auto *DRE = dyn_cast<DeclRefExpr>(E);
 | 
						|
  if (!DRE)
 | 
						|
    return;
 | 
						|
  const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
 | 
						|
  auto I = ShadowingDecls.find(D);
 | 
						|
  if (I == ShadowingDecls.end())
 | 
						|
    return;
 | 
						|
  const NamedDecl *ShadowedDecl = I->second;
 | 
						|
  const DeclContext *OldDC = ShadowedDecl->getDeclContext();
 | 
						|
  Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
 | 
						|
  Diag(D->getLocation(), diag::note_var_declared_here) << D;
 | 
						|
  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
 | 
						|
  // Avoid issuing multiple warnings about the same decl.
 | 
						|
  ShadowingDecls.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
/// Check for conflict between this global or extern "C" declaration and
 | 
						|
/// previous global or extern "C" declarations. This is only used in C++.
 | 
						|
template<typename T>
 | 
						|
static bool checkGlobalOrExternCConflict(
 | 
						|
    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
 | 
						|
  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
 | 
						|
  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
 | 
						|
 | 
						|
  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
 | 
						|
    // The common case: this global doesn't conflict with any extern "C"
 | 
						|
    // declaration.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Prev) {
 | 
						|
    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
 | 
						|
      // Both the old and new declarations have C language linkage. This is a
 | 
						|
      // redeclaration.
 | 
						|
      Previous.clear();
 | 
						|
      Previous.addDecl(Prev);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // This is a global, non-extern "C" declaration, and there is a previous
 | 
						|
    // non-global extern "C" declaration. Diagnose if this is a variable
 | 
						|
    // declaration.
 | 
						|
    if (!isa<VarDecl>(ND))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    // The declaration is extern "C". Check for any declaration in the
 | 
						|
    // translation unit which might conflict.
 | 
						|
    if (IsGlobal) {
 | 
						|
      // We have already performed the lookup into the translation unit.
 | 
						|
      IsGlobal = false;
 | 
						|
      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (isa<VarDecl>(*I)) {
 | 
						|
          Prev = *I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      DeclContext::lookup_result R =
 | 
						|
          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
 | 
						|
      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        if (isa<VarDecl>(*I)) {
 | 
						|
          Prev = *I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        // FIXME: If we have any other entity with this name in global scope,
 | 
						|
        // the declaration is ill-formed, but that is a defect: it breaks the
 | 
						|
        // 'stat' hack, for instance. Only variables can have mangled name
 | 
						|
        // clashes with extern "C" declarations, so only they deserve a
 | 
						|
        // diagnostic.
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Prev)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Use the first declaration's location to ensure we point at something which
 | 
						|
  // is lexically inside an extern "C" linkage-spec.
 | 
						|
  assert(Prev && "should have found a previous declaration to diagnose");
 | 
						|
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
 | 
						|
    Prev = FD->getFirstDecl();
 | 
						|
  else
 | 
						|
    Prev = cast<VarDecl>(Prev)->getFirstDecl();
 | 
						|
 | 
						|
  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
 | 
						|
    << IsGlobal << ND;
 | 
						|
  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
 | 
						|
    << IsGlobal;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Apply special rules for handling extern "C" declarations. Returns \c true
 | 
						|
/// if we have found that this is a redeclaration of some prior entity.
 | 
						|
///
 | 
						|
/// Per C++ [dcl.link]p6:
 | 
						|
///   Two declarations [for a function or variable] with C language linkage
 | 
						|
///   with the same name that appear in different scopes refer to the same
 | 
						|
///   [entity]. An entity with C language linkage shall not be declared with
 | 
						|
///   the same name as an entity in global scope.
 | 
						|
template<typename T>
 | 
						|
static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
 | 
						|
                                                  LookupResult &Previous) {
 | 
						|
  if (!S.getLangOpts().CPlusPlus) {
 | 
						|
    // In C, when declaring a global variable, look for a corresponding 'extern'
 | 
						|
    // variable declared in function scope. We don't need this in C++, because
 | 
						|
    // we find local extern decls in the surrounding file-scope DeclContext.
 | 
						|
    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | 
						|
      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
 | 
						|
        Previous.clear();
 | 
						|
        Previous.addDecl(Prev);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // A declaration in the translation unit can conflict with an extern "C"
 | 
						|
  // declaration.
 | 
						|
  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
 | 
						|
    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
 | 
						|
 | 
						|
  // An extern "C" declaration can conflict with a declaration in the
 | 
						|
  // translation unit or can be a redeclaration of an extern "C" declaration
 | 
						|
  // in another scope.
 | 
						|
  if (isIncompleteDeclExternC(S,ND))
 | 
						|
    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
 | 
						|
 | 
						|
  // Neither global nor extern "C": nothing to do.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
 | 
						|
  // If the decl is already known invalid, don't check it.
 | 
						|
  if (NewVD->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
 | 
						|
  // Defer checking an 'auto' type until its initializer is attached.
 | 
						|
  if (T->isUndeducedType())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (NewVD->hasAttrs())
 | 
						|
    CheckAlignasUnderalignment(NewVD);
 | 
						|
 | 
						|
  if (T->isObjCObjectType()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
 | 
						|
      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
 | 
						|
    T = Context.getObjCObjectPointerType(T);
 | 
						|
    NewVD->setType(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit an error if an address space was applied to decl with local storage.
 | 
						|
  // This includes arrays of objects with address space qualifiers, but not
 | 
						|
  // automatic variables that point to other address spaces.
 | 
						|
  // ISO/IEC TR 18037 S5.1.2
 | 
						|
  if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
 | 
						|
      T.getAddressSpace() != LangAS::Default) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
 | 
						|
  // scope.
 | 
						|
  if (getLangOpts().OpenCLVersion == 120 &&
 | 
						|
      !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
 | 
						|
      NewVD->isStaticLocal()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_static_function_scope);
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().OpenCL) {
 | 
						|
    // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
 | 
						|
    if (NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
      Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (T->isBlockPointerType()) {
 | 
						|
      // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
 | 
						|
      // can't use 'extern' storage class.
 | 
						|
      if (!T.isConstQualified()) {
 | 
						|
        Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
 | 
						|
            << 0 /*const*/;
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (NewVD->hasExternalStorage()) {
 | 
						|
        Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
 | 
						|
    // __constant address space.
 | 
						|
    // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
 | 
						|
    // variables inside a function can also be declared in the global
 | 
						|
    // address space.
 | 
						|
    if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
 | 
						|
        NewVD->hasExternalStorage()) {
 | 
						|
      if (!T->isSamplerT() &&
 | 
						|
          !(T.getAddressSpace() == LangAS::opencl_constant ||
 | 
						|
            (T.getAddressSpace() == LangAS::opencl_global &&
 | 
						|
             getLangOpts().OpenCLVersion == 200))) {
 | 
						|
        int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
 | 
						|
        if (getLangOpts().OpenCLVersion == 200)
 | 
						|
          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
 | 
						|
              << Scope << "global or constant";
 | 
						|
        else
 | 
						|
          Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
 | 
						|
              << Scope << "constant";
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      if (T.getAddressSpace() == LangAS::opencl_global) {
 | 
						|
        Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
 | 
						|
            << 1 /*is any function*/ << "global";
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      if (T.getAddressSpace() == LangAS::opencl_constant ||
 | 
						|
          T.getAddressSpace() == LangAS::opencl_local) {
 | 
						|
        FunctionDecl *FD = getCurFunctionDecl();
 | 
						|
        // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
 | 
						|
        // in functions.
 | 
						|
        if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
 | 
						|
          if (T.getAddressSpace() == LangAS::opencl_constant)
 | 
						|
            Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
 | 
						|
                << 0 /*non-kernel only*/ << "constant";
 | 
						|
          else
 | 
						|
            Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
 | 
						|
                << 0 /*non-kernel only*/ << "local";
 | 
						|
          NewVD->setInvalidDecl();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
        // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
 | 
						|
        // in the outermost scope of a kernel function.
 | 
						|
        if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
 | 
						|
          if (!getCurScope()->isFunctionScope()) {
 | 
						|
            if (T.getAddressSpace() == LangAS::opencl_constant)
 | 
						|
              Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
 | 
						|
                  << "constant";
 | 
						|
            else
 | 
						|
              Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
 | 
						|
                  << "local";
 | 
						|
            NewVD->setInvalidDecl();
 | 
						|
            return;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (T.getAddressSpace() != LangAS::opencl_private) {
 | 
						|
        // Do not allow other address spaces on automatic variable.
 | 
						|
        Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
 | 
						|
        NewVD->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
 | 
						|
      && !NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
    if (getLangOpts().getGC() != LangOptions::NonGC)
 | 
						|
      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
 | 
						|
    else {
 | 
						|
      assert(!getLangOpts().ObjCAutoRefCount);
 | 
						|
      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool isVM = T->isVariablyModifiedType();
 | 
						|
  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
 | 
						|
      NewVD->hasAttr<BlocksAttr>())
 | 
						|
    setFunctionHasBranchProtectedScope();
 | 
						|
 | 
						|
  if ((isVM && NewVD->hasLinkage()) ||
 | 
						|
      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
 | 
						|
    bool SizeIsNegative;
 | 
						|
    llvm::APSInt Oversized;
 | 
						|
    TypeSourceInfo *FixedTInfo =
 | 
						|
      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
 | 
						|
                                                    SizeIsNegative, Oversized);
 | 
						|
    if (!FixedTInfo && T->isVariableArrayType()) {
 | 
						|
      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
 | 
						|
      // FIXME: This won't give the correct result for
 | 
						|
      // int a[10][n];
 | 
						|
      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
 | 
						|
 | 
						|
      if (NewVD->isFileVarDecl())
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
 | 
						|
        << SizeRange;
 | 
						|
      else if (NewVD->isStaticLocal())
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
 | 
						|
        << SizeRange;
 | 
						|
      else
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
 | 
						|
        << SizeRange;
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!FixedTInfo) {
 | 
						|
      if (NewVD->isFileVarDecl())
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
 | 
						|
      else
 | 
						|
        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
 | 
						|
    NewVD->setType(FixedTInfo->getType());
 | 
						|
    NewVD->setTypeSourceInfo(FixedTInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  if (T->isVoidType()) {
 | 
						|
    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
 | 
						|
    //                    of objects and functions.
 | 
						|
    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
 | 
						|
      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
 | 
						|
        << T;
 | 
						|
      NewVD->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
 | 
						|
    Diag(NewVD->getLocation(), diag::err_block_on_vm);
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewVD->isConstexpr() && !T->isDependentType() &&
 | 
						|
      RequireLiteralType(NewVD->getLocation(), T,
 | 
						|
                         diag::err_constexpr_var_non_literal)) {
 | 
						|
    NewVD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic checking on a newly-created variable
 | 
						|
/// declaration.
 | 
						|
///
 | 
						|
/// This routine performs all of the type-checking required for a
 | 
						|
/// variable declaration once it has been built. It is used both to
 | 
						|
/// check variables after they have been parsed and their declarators
 | 
						|
/// have been translated into a declaration, and to check variables
 | 
						|
/// that have been instantiated from a template.
 | 
						|
///
 | 
						|
/// Sets NewVD->isInvalidDecl() if an error was encountered.
 | 
						|
///
 | 
						|
/// Returns true if the variable declaration is a redeclaration.
 | 
						|
bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
 | 
						|
  CheckVariableDeclarationType(NewVD);
 | 
						|
 | 
						|
  // If the decl is already known invalid, don't check it.
 | 
						|
  if (NewVD->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we did not find anything by this name, look for a non-visible
 | 
						|
  // extern "C" declaration with the same name.
 | 
						|
  if (Previous.empty() &&
 | 
						|
      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
 | 
						|
    Previous.setShadowed();
 | 
						|
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    MergeVarDecl(NewVD, Previous);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct FindOverriddenMethod {
 | 
						|
  Sema *S;
 | 
						|
  CXXMethodDecl *Method;
 | 
						|
 | 
						|
  /// Member lookup function that determines whether a given C++
 | 
						|
  /// method overrides a method in a base class, to be used with
 | 
						|
  /// CXXRecordDecl::lookupInBases().
 | 
						|
  bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
 | 
						|
    RecordDecl *BaseRecord =
 | 
						|
        Specifier->getType()->getAs<RecordType>()->getDecl();
 | 
						|
 | 
						|
    DeclarationName Name = Method->getDeclName();
 | 
						|
 | 
						|
    // FIXME: Do we care about other names here too?
 | 
						|
    if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | 
						|
      // We really want to find the base class destructor here.
 | 
						|
      QualType T = S->Context.getTypeDeclType(BaseRecord);
 | 
						|
      CanQualType CT = S->Context.getCanonicalType(T);
 | 
						|
 | 
						|
      Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
 | 
						|
    }
 | 
						|
 | 
						|
    for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
 | 
						|
         Path.Decls = Path.Decls.slice(1)) {
 | 
						|
      NamedDecl *D = Path.Decls.front();
 | 
						|
      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
        if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// \brief Report an error regarding overriding, along with any relevant
 | 
						|
/// overridden methods.
 | 
						|
///
 | 
						|
/// \param DiagID the primary error to report.
 | 
						|
/// \param MD the overriding method.
 | 
						|
/// \param OEK which overrides to include as notes.
 | 
						|
static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
 | 
						|
                            OverrideErrorKind OEK = OEK_All) {
 | 
						|
  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
 | 
						|
  for (const CXXMethodDecl *O : MD->overridden_methods()) {
 | 
						|
    // This check (& the OEK parameter) could be replaced by a predicate, but
 | 
						|
    // without lambdas that would be overkill. This is still nicer than writing
 | 
						|
    // out the diag loop 3 times.
 | 
						|
    if ((OEK == OEK_All) ||
 | 
						|
        (OEK == OEK_NonDeleted && !O->isDeleted()) ||
 | 
						|
        (OEK == OEK_Deleted && O->isDeleted()))
 | 
						|
      S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddOverriddenMethods - See if a method overrides any in the base classes,
 | 
						|
/// and if so, check that it's a valid override and remember it.
 | 
						|
bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
 | 
						|
  // Look for methods in base classes that this method might override.
 | 
						|
  CXXBasePaths Paths;
 | 
						|
  FindOverriddenMethod FOM;
 | 
						|
  FOM.Method = MD;
 | 
						|
  FOM.S = this;
 | 
						|
  bool hasDeletedOverridenMethods = false;
 | 
						|
  bool hasNonDeletedOverridenMethods = false;
 | 
						|
  bool AddedAny = false;
 | 
						|
  if (DC->lookupInBases(FOM, Paths)) {
 | 
						|
    for (auto *I : Paths.found_decls()) {
 | 
						|
      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
 | 
						|
        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
 | 
						|
        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
 | 
						|
            !CheckOverridingFunctionAttributes(MD, OldMD) &&
 | 
						|
            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
 | 
						|
            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
 | 
						|
          hasDeletedOverridenMethods |= OldMD->isDeleted();
 | 
						|
          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
 | 
						|
          AddedAny = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
 | 
						|
    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
 | 
						|
  }
 | 
						|
  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
 | 
						|
    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
 | 
						|
  }
 | 
						|
 | 
						|
  return AddedAny;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Struct for holding all of the extra arguments needed by
 | 
						|
  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
 | 
						|
  struct ActOnFDArgs {
 | 
						|
    Scope *S;
 | 
						|
    Declarator &D;
 | 
						|
    MultiTemplateParamsArg TemplateParamLists;
 | 
						|
    bool AddToScope;
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Callback to only accept typo corrections that have a non-zero edit distance.
 | 
						|
// Also only accept corrections that have the same parent decl.
 | 
						|
class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
 | 
						|
 public:
 | 
						|
  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
 | 
						|
                            CXXRecordDecl *Parent)
 | 
						|
      : Context(Context), OriginalFD(TypoFD),
 | 
						|
        ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
 | 
						|
 | 
						|
  bool ValidateCandidate(const TypoCorrection &candidate) override {
 | 
						|
    if (candidate.getEditDistance() == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SmallVector<unsigned, 1> MismatchedParams;
 | 
						|
    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
 | 
						|
                                          CDeclEnd = candidate.end();
 | 
						|
         CDecl != CDeclEnd; ++CDecl) {
 | 
						|
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
 | 
						|
 | 
						|
      if (FD && !FD->hasBody() &&
 | 
						|
          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
 | 
						|
        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
          CXXRecordDecl *Parent = MD->getParent();
 | 
						|
          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
 | 
						|
            return true;
 | 
						|
        } else if (!ExpectedParent) {
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  ASTContext &Context;
 | 
						|
  FunctionDecl *OriginalFD;
 | 
						|
  CXXRecordDecl *ExpectedParent;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
 | 
						|
  TypoCorrectedFunctionDefinitions.insert(F);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Generate diagnostics for an invalid function redeclaration.
 | 
						|
///
 | 
						|
/// This routine handles generating the diagnostic messages for an invalid
 | 
						|
/// function redeclaration, including finding possible similar declarations
 | 
						|
/// or performing typo correction if there are no previous declarations with
 | 
						|
/// the same name.
 | 
						|
///
 | 
						|
/// Returns a NamedDecl iff typo correction was performed and substituting in
 | 
						|
/// the new declaration name does not cause new errors.
 | 
						|
static NamedDecl *DiagnoseInvalidRedeclaration(
 | 
						|
    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
 | 
						|
    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
 | 
						|
  DeclarationName Name = NewFD->getDeclName();
 | 
						|
  DeclContext *NewDC = NewFD->getDeclContext();
 | 
						|
  SmallVector<unsigned, 1> MismatchedParams;
 | 
						|
  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
 | 
						|
  TypoCorrection Correction;
 | 
						|
  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
 | 
						|
  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
 | 
						|
                                   : diag::err_member_decl_does_not_match;
 | 
						|
  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
 | 
						|
                    IsLocalFriend ? Sema::LookupLocalFriendName
 | 
						|
                                  : Sema::LookupOrdinaryName,
 | 
						|
                    Sema::ForVisibleRedeclaration);
 | 
						|
 | 
						|
  NewFD->setInvalidDecl();
 | 
						|
  if (IsLocalFriend)
 | 
						|
    SemaRef.LookupName(Prev, S);
 | 
						|
  else
 | 
						|
    SemaRef.LookupQualifiedName(Prev, NewDC);
 | 
						|
  assert(!Prev.isAmbiguous() &&
 | 
						|
         "Cannot have an ambiguity in previous-declaration lookup");
 | 
						|
  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
 | 
						|
  if (!Prev.empty()) {
 | 
						|
    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
 | 
						|
         Func != FuncEnd; ++Func) {
 | 
						|
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
 | 
						|
      if (FD &&
 | 
						|
          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
 | 
						|
        // Add 1 to the index so that 0 can mean the mismatch didn't
 | 
						|
        // involve a parameter
 | 
						|
        unsigned ParamNum =
 | 
						|
            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
 | 
						|
        NearMatches.push_back(std::make_pair(FD, ParamNum));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  // If the qualified name lookup yielded nothing, try typo correction
 | 
						|
  } else if ((Correction = SemaRef.CorrectTypo(
 | 
						|
                  Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
 | 
						|
                  &ExtraArgs.D.getCXXScopeSpec(),
 | 
						|
                  llvm::make_unique<DifferentNameValidatorCCC>(
 | 
						|
                      SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
 | 
						|
                  Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
 | 
						|
    // Set up everything for the call to ActOnFunctionDeclarator
 | 
						|
    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
 | 
						|
                              ExtraArgs.D.getIdentifierLoc());
 | 
						|
    Previous.clear();
 | 
						|
    Previous.setLookupName(Correction.getCorrection());
 | 
						|
    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
 | 
						|
                                    CDeclEnd = Correction.end();
 | 
						|
         CDecl != CDeclEnd; ++CDecl) {
 | 
						|
      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
 | 
						|
      if (FD && !FD->hasBody() &&
 | 
						|
          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
 | 
						|
        Previous.addDecl(FD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
 | 
						|
 | 
						|
    NamedDecl *Result;
 | 
						|
    // Retry building the function declaration with the new previous
 | 
						|
    // declarations, and with errors suppressed.
 | 
						|
    {
 | 
						|
      // Trap errors.
 | 
						|
      Sema::SFINAETrap Trap(SemaRef);
 | 
						|
 | 
						|
      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
 | 
						|
      // pieces need to verify the typo-corrected C++ declaration and hopefully
 | 
						|
      // eliminate the need for the parameter pack ExtraArgs.
 | 
						|
      Result = SemaRef.ActOnFunctionDeclarator(
 | 
						|
          ExtraArgs.S, ExtraArgs.D,
 | 
						|
          Correction.getCorrectionDecl()->getDeclContext(),
 | 
						|
          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
 | 
						|
          ExtraArgs.AddToScope);
 | 
						|
 | 
						|
      if (Trap.hasErrorOccurred())
 | 
						|
        Result = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Result) {
 | 
						|
      // Determine which correction we picked.
 | 
						|
      Decl *Canonical = Result->getCanonicalDecl();
 | 
						|
      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
           I != E; ++I)
 | 
						|
        if ((*I)->getCanonicalDecl() == Canonical)
 | 
						|
          Correction.setCorrectionDecl(*I);
 | 
						|
 | 
						|
      // Let Sema know about the correction.
 | 
						|
      SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
 | 
						|
      SemaRef.diagnoseTypo(
 | 
						|
          Correction,
 | 
						|
          SemaRef.PDiag(IsLocalFriend
 | 
						|
                          ? diag::err_no_matching_local_friend_suggest
 | 
						|
                          : diag::err_member_decl_does_not_match_suggest)
 | 
						|
            << Name << NewDC << IsDefinition);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    // Pretend the typo correction never occurred
 | 
						|
    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
 | 
						|
                              ExtraArgs.D.getIdentifierLoc());
 | 
						|
    ExtraArgs.D.setRedeclaration(wasRedeclaration);
 | 
						|
    Previous.clear();
 | 
						|
    Previous.setLookupName(Name);
 | 
						|
  }
 | 
						|
 | 
						|
  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
 | 
						|
      << Name << NewDC << IsDefinition << NewFD->getLocation();
 | 
						|
 | 
						|
  bool NewFDisConst = false;
 | 
						|
  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
 | 
						|
    NewFDisConst = NewMD->isConst();
 | 
						|
 | 
						|
  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
 | 
						|
       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
 | 
						|
       NearMatch != NearMatchEnd; ++NearMatch) {
 | 
						|
    FunctionDecl *FD = NearMatch->first;
 | 
						|
    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
 | 
						|
    bool FDisConst = MD && MD->isConst();
 | 
						|
    bool IsMember = MD || !IsLocalFriend;
 | 
						|
 | 
						|
    // FIXME: These notes are poorly worded for the local friend case.
 | 
						|
    if (unsigned Idx = NearMatch->second) {
 | 
						|
      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
 | 
						|
      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
 | 
						|
      if (Loc.isInvalid()) Loc = FD->getLocation();
 | 
						|
      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
 | 
						|
                                 : diag::note_local_decl_close_param_match)
 | 
						|
        << Idx << FDParam->getType()
 | 
						|
        << NewFD->getParamDecl(Idx - 1)->getType();
 | 
						|
    } else if (FDisConst != NewFDisConst) {
 | 
						|
      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
 | 
						|
          << NewFDisConst << FD->getSourceRange().getEnd();
 | 
						|
    } else
 | 
						|
      SemaRef.Diag(FD->getLocation(),
 | 
						|
                   IsMember ? diag::note_member_def_close_match
 | 
						|
                            : diag::note_local_decl_close_match);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
 | 
						|
  switch (D.getDeclSpec().getStorageClassSpec()) {
 | 
						|
  default: llvm_unreachable("Unknown storage class!");
 | 
						|
  case DeclSpec::SCS_auto:
 | 
						|
  case DeclSpec::SCS_register:
 | 
						|
  case DeclSpec::SCS_mutable:
 | 
						|
    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
                 diag::err_typecheck_sclass_func);
 | 
						|
    D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
    D.setInvalidType();
 | 
						|
    break;
 | 
						|
  case DeclSpec::SCS_unspecified: break;
 | 
						|
  case DeclSpec::SCS_extern:
 | 
						|
    if (D.getDeclSpec().isExternInLinkageSpec())
 | 
						|
      return SC_None;
 | 
						|
    return SC_Extern;
 | 
						|
  case DeclSpec::SCS_static: {
 | 
						|
    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | 
						|
      // C99 6.7.1p5:
 | 
						|
      //   The declaration of an identifier for a function that has
 | 
						|
      //   block scope shall have no explicit storage-class specifier
 | 
						|
      //   other than extern
 | 
						|
      // See also (C++ [dcl.stc]p4).
 | 
						|
      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
                   diag::err_static_block_func);
 | 
						|
      break;
 | 
						|
    } else
 | 
						|
      return SC_Static;
 | 
						|
  }
 | 
						|
  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
 | 
						|
  }
 | 
						|
 | 
						|
  // No explicit storage class has already been returned
 | 
						|
  return SC_None;
 | 
						|
}
 | 
						|
 | 
						|
static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
 | 
						|
                                           DeclContext *DC, QualType &R,
 | 
						|
                                           TypeSourceInfo *TInfo,
 | 
						|
                                           StorageClass SC,
 | 
						|
                                           bool &IsVirtualOkay) {
 | 
						|
  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
 | 
						|
  FunctionDecl *NewFD = nullptr;
 | 
						|
  bool isInline = D.getDeclSpec().isInlineSpecified();
 | 
						|
 | 
						|
  if (!SemaRef.getLangOpts().CPlusPlus) {
 | 
						|
    // Determine whether the function was written with a
 | 
						|
    // prototype. This true when:
 | 
						|
    //   - there is a prototype in the declarator, or
 | 
						|
    //   - the type R of the function is some kind of typedef or other non-
 | 
						|
    //     attributed reference to a type name (which eventually refers to a
 | 
						|
    //     function type).
 | 
						|
    bool HasPrototype =
 | 
						|
      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
 | 
						|
      (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
 | 
						|
 | 
						|
    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
 | 
						|
                                 D.getLocStart(), NameInfo, R,
 | 
						|
                                 TInfo, SC, isInline,
 | 
						|
                                 HasPrototype, false);
 | 
						|
    if (D.isInvalidType())
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
 | 
						|
    return NewFD;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | 
						|
  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
 | 
						|
 | 
						|
  // Check that the return type is not an abstract class type.
 | 
						|
  // For record types, this is done by the AbstractClassUsageDiagnoser once
 | 
						|
  // the class has been completely parsed.
 | 
						|
  if (!DC->isRecord() &&
 | 
						|
      SemaRef.RequireNonAbstractType(
 | 
						|
          D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
 | 
						|
          diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
 | 
						|
    D.setInvalidType();
 | 
						|
 | 
						|
  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
 | 
						|
    // This is a C++ constructor declaration.
 | 
						|
    assert(DC->isRecord() &&
 | 
						|
           "Constructors can only be declared in a member context");
 | 
						|
 | 
						|
    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
 | 
						|
    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | 
						|
                                      D.getLocStart(), NameInfo,
 | 
						|
                                      R, TInfo, isExplicit, isInline,
 | 
						|
                                      /*isImplicitlyDeclared=*/false,
 | 
						|
                                      isConstexpr);
 | 
						|
 | 
						|
  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | 
						|
    // This is a C++ destructor declaration.
 | 
						|
    if (DC->isRecord()) {
 | 
						|
      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
 | 
						|
      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
 | 
						|
      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
 | 
						|
                                        SemaRef.Context, Record,
 | 
						|
                                        D.getLocStart(),
 | 
						|
                                        NameInfo, R, TInfo, isInline,
 | 
						|
                                        /*isImplicitlyDeclared=*/false);
 | 
						|
 | 
						|
      // If the class is complete, then we now create the implicit exception
 | 
						|
      // specification. If the class is incomplete or dependent, we can't do
 | 
						|
      // it yet.
 | 
						|
      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
 | 
						|
          Record->getDefinition() && !Record->isBeingDefined() &&
 | 
						|
          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
 | 
						|
        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
 | 
						|
      }
 | 
						|
 | 
						|
      IsVirtualOkay = true;
 | 
						|
      return NewDD;
 | 
						|
 | 
						|
    } else {
 | 
						|
      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
 | 
						|
      D.setInvalidType();
 | 
						|
 | 
						|
      // Create a FunctionDecl to satisfy the function definition parsing
 | 
						|
      // code path.
 | 
						|
      return FunctionDecl::Create(SemaRef.Context, DC,
 | 
						|
                                  D.getLocStart(),
 | 
						|
                                  D.getIdentifierLoc(), Name, R, TInfo,
 | 
						|
                                  SC, isInline,
 | 
						|
                                  /*hasPrototype=*/true, isConstexpr);
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
 | 
						|
    if (!DC->isRecord()) {
 | 
						|
      SemaRef.Diag(D.getIdentifierLoc(),
 | 
						|
           diag::err_conv_function_not_member);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    SemaRef.CheckConversionDeclarator(D, R, SC);
 | 
						|
    IsVirtualOkay = true;
 | 
						|
    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
 | 
						|
                                     D.getLocStart(), NameInfo,
 | 
						|
                                     R, TInfo, isInline, isExplicit,
 | 
						|
                                     isConstexpr, SourceLocation());
 | 
						|
 | 
						|
  } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
 | 
						|
    SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
 | 
						|
 | 
						|
    return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getLocStart(),
 | 
						|
                                         isExplicit, NameInfo, R, TInfo,
 | 
						|
                                         D.getLocEnd());
 | 
						|
  } else if (DC->isRecord()) {
 | 
						|
    // If the name of the function is the same as the name of the record,
 | 
						|
    // then this must be an invalid constructor that has a return type.
 | 
						|
    // (The parser checks for a return type and makes the declarator a
 | 
						|
    // constructor if it has no return type).
 | 
						|
    if (Name.getAsIdentifierInfo() &&
 | 
						|
        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
 | 
						|
      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
 | 
						|
        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
 | 
						|
        << SourceRange(D.getIdentifierLoc());
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // This is a C++ method declaration.
 | 
						|
    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
 | 
						|
                                               cast<CXXRecordDecl>(DC),
 | 
						|
                                               D.getLocStart(), NameInfo, R,
 | 
						|
                                               TInfo, SC, isInline,
 | 
						|
                                               isConstexpr, SourceLocation());
 | 
						|
    IsVirtualOkay = !Ret->isStatic();
 | 
						|
    return Ret;
 | 
						|
  } else {
 | 
						|
    bool isFriend =
 | 
						|
        SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
 | 
						|
    if (!isFriend && SemaRef.CurContext->isRecord())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Determine whether the function was written with a
 | 
						|
    // prototype. This true when:
 | 
						|
    //   - we're in C++ (where every function has a prototype),
 | 
						|
    return FunctionDecl::Create(SemaRef.Context, DC,
 | 
						|
                                D.getLocStart(),
 | 
						|
                                NameInfo, R, TInfo, SC, isInline,
 | 
						|
                                true/*HasPrototype*/, isConstexpr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
enum OpenCLParamType {
 | 
						|
  ValidKernelParam,
 | 
						|
  PtrPtrKernelParam,
 | 
						|
  PtrKernelParam,
 | 
						|
  InvalidAddrSpacePtrKernelParam,
 | 
						|
  InvalidKernelParam,
 | 
						|
  RecordKernelParam
 | 
						|
};
 | 
						|
 | 
						|
static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
 | 
						|
  if (PT->isPointerType()) {
 | 
						|
    QualType PointeeType = PT->getPointeeType();
 | 
						|
    if (PointeeType->isPointerType())
 | 
						|
      return PtrPtrKernelParam;
 | 
						|
    if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
 | 
						|
        PointeeType.getAddressSpace() == LangAS::opencl_private ||
 | 
						|
        PointeeType.getAddressSpace() == LangAS::Default)
 | 
						|
      return InvalidAddrSpacePtrKernelParam;
 | 
						|
    return PtrKernelParam;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
 | 
						|
  // be used as builtin types.
 | 
						|
 | 
						|
  if (PT->isImageType())
 | 
						|
    return PtrKernelParam;
 | 
						|
 | 
						|
  if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
 | 
						|
    return InvalidKernelParam;
 | 
						|
 | 
						|
  // OpenCL extension spec v1.2 s9.5:
 | 
						|
  // This extension adds support for half scalar and vector types as built-in
 | 
						|
  // types that can be used for arithmetic operations, conversions etc.
 | 
						|
  if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
 | 
						|
    return InvalidKernelParam;
 | 
						|
 | 
						|
  if (PT->isRecordType())
 | 
						|
    return RecordKernelParam;
 | 
						|
 | 
						|
  return ValidKernelParam;
 | 
						|
}
 | 
						|
 | 
						|
static void checkIsValidOpenCLKernelParameter(
 | 
						|
  Sema &S,
 | 
						|
  Declarator &D,
 | 
						|
  ParmVarDecl *Param,
 | 
						|
  llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
 | 
						|
  QualType PT = Param->getType();
 | 
						|
 | 
						|
  // Cache the valid types we encounter to avoid rechecking structs that are
 | 
						|
  // used again
 | 
						|
  if (ValidTypes.count(PT.getTypePtr()))
 | 
						|
    return;
 | 
						|
 | 
						|
  switch (getOpenCLKernelParameterType(S, PT)) {
 | 
						|
  case PtrPtrKernelParam:
 | 
						|
    // OpenCL v1.2 s6.9.a:
 | 
						|
    // A kernel function argument cannot be declared as a
 | 
						|
    // pointer to a pointer type.
 | 
						|
    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
 | 
						|
    D.setInvalidType();
 | 
						|
    return;
 | 
						|
 | 
						|
  case InvalidAddrSpacePtrKernelParam:
 | 
						|
    // OpenCL v1.0 s6.5:
 | 
						|
    // __kernel function arguments declared to be a pointer of a type can point
 | 
						|
    // to one of the following address spaces only : __global, __local or
 | 
						|
    // __constant.
 | 
						|
    S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
 | 
						|
    D.setInvalidType();
 | 
						|
    return;
 | 
						|
 | 
						|
    // OpenCL v1.2 s6.9.k:
 | 
						|
    // Arguments to kernel functions in a program cannot be declared with the
 | 
						|
    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
 | 
						|
    // uintptr_t or a struct and/or union that contain fields declared to be
 | 
						|
    // one of these built-in scalar types.
 | 
						|
 | 
						|
  case InvalidKernelParam:
 | 
						|
    // OpenCL v1.2 s6.8 n:
 | 
						|
    // A kernel function argument cannot be declared
 | 
						|
    // of event_t type.
 | 
						|
    // Do not diagnose half type since it is diagnosed as invalid argument
 | 
						|
    // type for any function elsewhere.
 | 
						|
    if (!PT->isHalfType())
 | 
						|
      S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
 | 
						|
    D.setInvalidType();
 | 
						|
    return;
 | 
						|
 | 
						|
  case PtrKernelParam:
 | 
						|
  case ValidKernelParam:
 | 
						|
    ValidTypes.insert(PT.getTypePtr());
 | 
						|
    return;
 | 
						|
 | 
						|
  case RecordKernelParam:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Track nested structs we will inspect
 | 
						|
  SmallVector<const Decl *, 4> VisitStack;
 | 
						|
 | 
						|
  // Track where we are in the nested structs. Items will migrate from
 | 
						|
  // VisitStack to HistoryStack as we do the DFS for bad field.
 | 
						|
  SmallVector<const FieldDecl *, 4> HistoryStack;
 | 
						|
  HistoryStack.push_back(nullptr);
 | 
						|
 | 
						|
  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
 | 
						|
  VisitStack.push_back(PD);
 | 
						|
 | 
						|
  assert(VisitStack.back() && "First decl null?");
 | 
						|
 | 
						|
  do {
 | 
						|
    const Decl *Next = VisitStack.pop_back_val();
 | 
						|
    if (!Next) {
 | 
						|
      assert(!HistoryStack.empty());
 | 
						|
      // Found a marker, we have gone up a level
 | 
						|
      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
 | 
						|
        ValidTypes.insert(Hist->getType().getTypePtr());
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Adds everything except the original parameter declaration (which is not a
 | 
						|
    // field itself) to the history stack.
 | 
						|
    const RecordDecl *RD;
 | 
						|
    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
 | 
						|
      HistoryStack.push_back(Field);
 | 
						|
      RD = Field->getType()->castAs<RecordType>()->getDecl();
 | 
						|
    } else {
 | 
						|
      RD = cast<RecordDecl>(Next);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add a null marker so we know when we've gone back up a level
 | 
						|
    VisitStack.push_back(nullptr);
 | 
						|
 | 
						|
    for (const auto *FD : RD->fields()) {
 | 
						|
      QualType QT = FD->getType();
 | 
						|
 | 
						|
      if (ValidTypes.count(QT.getTypePtr()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
 | 
						|
      if (ParamType == ValidKernelParam)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (ParamType == RecordKernelParam) {
 | 
						|
        VisitStack.push_back(FD);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // OpenCL v1.2 s6.9.p:
 | 
						|
      // Arguments to kernel functions that are declared to be a struct or union
 | 
						|
      // do not allow OpenCL objects to be passed as elements of the struct or
 | 
						|
      // union.
 | 
						|
      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
 | 
						|
          ParamType == InvalidAddrSpacePtrKernelParam) {
 | 
						|
        S.Diag(Param->getLocation(),
 | 
						|
               diag::err_record_with_pointers_kernel_param)
 | 
						|
          << PT->isUnionType()
 | 
						|
          << PT;
 | 
						|
      } else {
 | 
						|
        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
 | 
						|
      }
 | 
						|
 | 
						|
      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
 | 
						|
        << PD->getDeclName();
 | 
						|
 | 
						|
      // We have an error, now let's go back up through history and show where
 | 
						|
      // the offending field came from
 | 
						|
      for (ArrayRef<const FieldDecl *>::const_iterator
 | 
						|
               I = HistoryStack.begin() + 1,
 | 
						|
               E = HistoryStack.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        const FieldDecl *OuterField = *I;
 | 
						|
        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
 | 
						|
          << OuterField->getType();
 | 
						|
      }
 | 
						|
 | 
						|
      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
 | 
						|
        << QT->isPointerType()
 | 
						|
        << QT;
 | 
						|
      D.setInvalidType();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } while (!VisitStack.empty());
 | 
						|
}
 | 
						|
 | 
						|
/// Find the DeclContext in which a tag is implicitly declared if we see an
 | 
						|
/// elaborated type specifier in the specified context, and lookup finds
 | 
						|
/// nothing.
 | 
						|
static DeclContext *getTagInjectionContext(DeclContext *DC) {
 | 
						|
  while (!DC->isFileContext() && !DC->isFunctionOrMethod())
 | 
						|
    DC = DC->getParent();
 | 
						|
  return DC;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the Scope in which a tag is implicitly declared if we see an
 | 
						|
/// elaborated type specifier in the specified context, and lookup finds
 | 
						|
/// nothing.
 | 
						|
static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
 | 
						|
  while (S->isClassScope() ||
 | 
						|
         (LangOpts.CPlusPlus &&
 | 
						|
          S->isFunctionPrototypeScope()) ||
 | 
						|
         ((S->getFlags() & Scope::DeclScope) == 0) ||
 | 
						|
         (S->getEntity() && S->getEntity()->isTransparentContext()))
 | 
						|
    S = S->getParent();
 | 
						|
  return S;
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl*
 | 
						|
Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
 | 
						|
                              TypeSourceInfo *TInfo, LookupResult &Previous,
 | 
						|
                              MultiTemplateParamsArg TemplateParamLists,
 | 
						|
                              bool &AddToScope) {
 | 
						|
  QualType R = TInfo->getType();
 | 
						|
 | 
						|
  assert(R.getTypePtr()->isFunctionType());
 | 
						|
 | 
						|
  // TODO: consider using NameInfo for diagnostic.
 | 
						|
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  StorageClass SC = getFunctionStorageClass(*this, D);
 | 
						|
 | 
						|
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | 
						|
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | 
						|
         diag::err_invalid_thread)
 | 
						|
      << DeclSpec::getSpecifierName(TSCS);
 | 
						|
 | 
						|
  if (D.isFirstDeclarationOfMember())
 | 
						|
    adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
 | 
						|
                           D.getIdentifierLoc());
 | 
						|
 | 
						|
  bool isFriend = false;
 | 
						|
  FunctionTemplateDecl *FunctionTemplate = nullptr;
 | 
						|
  bool isMemberSpecialization = false;
 | 
						|
  bool isFunctionTemplateSpecialization = false;
 | 
						|
 | 
						|
  bool isDependentClassScopeExplicitSpecialization = false;
 | 
						|
  bool HasExplicitTemplateArgs = false;
 | 
						|
  TemplateArgumentListInfo TemplateArgs;
 | 
						|
 | 
						|
  bool isVirtualOkay = false;
 | 
						|
 | 
						|
  DeclContext *OriginalDC = DC;
 | 
						|
  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
 | 
						|
 | 
						|
  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
 | 
						|
                                              isVirtualOkay);
 | 
						|
  if (!NewFD) return nullptr;
 | 
						|
 | 
						|
  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
 | 
						|
    NewFD->setTopLevelDeclInObjCContainer();
 | 
						|
 | 
						|
  // Set the lexical context. If this is a function-scope declaration, or has a
 | 
						|
  // C++ scope specifier, or is the object of a friend declaration, the lexical
 | 
						|
  // context will be different from the semantic context.
 | 
						|
  NewFD->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (IsLocalExternDecl)
 | 
						|
    NewFD->setLocalExternDecl();
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    bool isInline = D.getDeclSpec().isInlineSpecified();
 | 
						|
    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
 | 
						|
    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
 | 
						|
    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
 | 
						|
    isFriend = D.getDeclSpec().isFriendSpecified();
 | 
						|
    if (isFriend && !isInline && D.isFunctionDefinition()) {
 | 
						|
      // C++ [class.friend]p5
 | 
						|
      //   A function can be defined in a friend declaration of a
 | 
						|
      //   class . . . . Such a function is implicitly inline.
 | 
						|
      NewFD->setImplicitlyInline();
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a method defined in an __interface, and is not a constructor
 | 
						|
    // or an overloaded operator, then set the pure flag (isVirtual will already
 | 
						|
    // return true).
 | 
						|
    if (const CXXRecordDecl *Parent =
 | 
						|
          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
 | 
						|
      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
 | 
						|
        NewFD->setPure(true);
 | 
						|
 | 
						|
      // C++ [class.union]p2
 | 
						|
      //   A union can have member functions, but not virtual functions.
 | 
						|
      if (isVirtual && Parent->isUnion())
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
 | 
						|
    }
 | 
						|
 | 
						|
    SetNestedNameSpecifier(NewFD, D);
 | 
						|
    isMemberSpecialization = false;
 | 
						|
    isFunctionTemplateSpecialization = false;
 | 
						|
    if (D.isInvalidType())
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
 | 
						|
    // Match up the template parameter lists with the scope specifier, then
 | 
						|
    // determine whether we have a template or a template specialization.
 | 
						|
    bool Invalid = false;
 | 
						|
    if (TemplateParameterList *TemplateParams =
 | 
						|
            MatchTemplateParametersToScopeSpecifier(
 | 
						|
                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
 | 
						|
                D.getCXXScopeSpec(),
 | 
						|
                D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
 | 
						|
                    ? D.getName().TemplateId
 | 
						|
                    : nullptr,
 | 
						|
                TemplateParamLists, isFriend, isMemberSpecialization,
 | 
						|
                Invalid)) {
 | 
						|
      if (TemplateParams->size() > 0) {
 | 
						|
        // This is a function template
 | 
						|
 | 
						|
        // Check that we can declare a template here.
 | 
						|
        if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
 | 
						|
        // A destructor cannot be a template.
 | 
						|
        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
 | 
						|
          Diag(NewFD->getLocation(), diag::err_destructor_template);
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
        }
 | 
						|
 | 
						|
        // If we're adding a template to a dependent context, we may need to
 | 
						|
        // rebuilding some of the types used within the template parameter list,
 | 
						|
        // now that we know what the current instantiation is.
 | 
						|
        if (DC->isDependentContext()) {
 | 
						|
          ContextRAII SavedContext(*this, DC);
 | 
						|
          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
 | 
						|
            Invalid = true;
 | 
						|
        }
 | 
						|
 | 
						|
        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
 | 
						|
                                                        NewFD->getLocation(),
 | 
						|
                                                        Name, TemplateParams,
 | 
						|
                                                        NewFD);
 | 
						|
        FunctionTemplate->setLexicalDeclContext(CurContext);
 | 
						|
        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
 | 
						|
 | 
						|
        // For source fidelity, store the other template param lists.
 | 
						|
        if (TemplateParamLists.size() > 1) {
 | 
						|
          NewFD->setTemplateParameterListsInfo(Context,
 | 
						|
                                               TemplateParamLists.drop_back(1));
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // This is a function template specialization.
 | 
						|
        isFunctionTemplateSpecialization = true;
 | 
						|
        // For source fidelity, store all the template param lists.
 | 
						|
        if (TemplateParamLists.size() > 0)
 | 
						|
          NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
 | 
						|
 | 
						|
        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
 | 
						|
        if (isFriend) {
 | 
						|
          // We want to remove the "template<>", found here.
 | 
						|
          SourceRange RemoveRange = TemplateParams->getSourceRange();
 | 
						|
 | 
						|
          // If we remove the template<> and the name is not a
 | 
						|
          // template-id, we're actually silently creating a problem:
 | 
						|
          // the friend declaration will refer to an untemplated decl,
 | 
						|
          // and clearly the user wants a template specialization.  So
 | 
						|
          // we need to insert '<>' after the name.
 | 
						|
          SourceLocation InsertLoc;
 | 
						|
          if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
 | 
						|
            InsertLoc = D.getName().getSourceRange().getEnd();
 | 
						|
            InsertLoc = getLocForEndOfToken(InsertLoc);
 | 
						|
          }
 | 
						|
 | 
						|
          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
 | 
						|
            << Name << RemoveRange
 | 
						|
            << FixItHint::CreateRemoval(RemoveRange)
 | 
						|
            << FixItHint::CreateInsertion(InsertLoc, "<>");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // All template param lists were matched against the scope specifier:
 | 
						|
      // this is NOT (an explicit specialization of) a template.
 | 
						|
      if (TemplateParamLists.size() > 0)
 | 
						|
        // For source fidelity, store all the template param lists.
 | 
						|
        NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Invalid) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      if (FunctionTemplate)
 | 
						|
        FunctionTemplate->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.fct.spec]p5:
 | 
						|
    //   The virtual specifier shall only be used in declarations of
 | 
						|
    //   nonstatic class member functions that appear within a
 | 
						|
    //   member-specification of a class declaration; see 10.3.
 | 
						|
    //
 | 
						|
    if (isVirtual && !NewFD->isInvalidDecl()) {
 | 
						|
      if (!isVirtualOkay) {
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | 
						|
             diag::err_virtual_non_function);
 | 
						|
      } else if (!CurContext->isRecord()) {
 | 
						|
        // 'virtual' was specified outside of the class.
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | 
						|
             diag::err_virtual_out_of_class)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | 
						|
      } else if (NewFD->getDescribedFunctionTemplate()) {
 | 
						|
        // C++ [temp.mem]p3:
 | 
						|
        //  A member function template shall not be virtual.
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(),
 | 
						|
             diag::err_virtual_member_function_template)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
 | 
						|
      } else {
 | 
						|
        // Okay: Add virtual to the method.
 | 
						|
        NewFD->setVirtualAsWritten(true);
 | 
						|
      }
 | 
						|
 | 
						|
      if (getLangOpts().CPlusPlus14 &&
 | 
						|
          NewFD->getReturnType()->isUndeducedType())
 | 
						|
        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
 | 
						|
    }
 | 
						|
 | 
						|
    if (getLangOpts().CPlusPlus14 &&
 | 
						|
        (NewFD->isDependentContext() ||
 | 
						|
         (isFriend && CurContext->isDependentContext())) &&
 | 
						|
        NewFD->getReturnType()->isUndeducedType()) {
 | 
						|
      // If the function template is referenced directly (for instance, as a
 | 
						|
      // member of the current instantiation), pretend it has a dependent type.
 | 
						|
      // This is not really justified by the standard, but is the only sane
 | 
						|
      // thing to do.
 | 
						|
      // FIXME: For a friend function, we have not marked the function as being
 | 
						|
      // a friend yet, so 'isDependentContext' on the FD doesn't work.
 | 
						|
      const FunctionProtoType *FPT =
 | 
						|
          NewFD->getType()->castAs<FunctionProtoType>();
 | 
						|
      QualType Result =
 | 
						|
          SubstAutoType(FPT->getReturnType(), Context.DependentTy);
 | 
						|
      NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
 | 
						|
                                             FPT->getExtProtoInfo()));
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.fct.spec]p3:
 | 
						|
    //  The inline specifier shall not appear on a block scope function
 | 
						|
    //  declaration.
 | 
						|
    if (isInline && !NewFD->isInvalidDecl()) {
 | 
						|
      if (CurContext->isFunctionOrMethod()) {
 | 
						|
        // 'inline' is not allowed on block scope function declaration.
 | 
						|
        Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
             diag::err_inline_declaration_block_scope) << Name
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.fct.spec]p6:
 | 
						|
    //  The explicit specifier shall be used only in the declaration of a
 | 
						|
    //  constructor or conversion function within its class definition;
 | 
						|
    //  see 12.3.1 and 12.3.2.
 | 
						|
    if (isExplicit && !NewFD->isInvalidDecl() &&
 | 
						|
        !isa<CXXDeductionGuideDecl>(NewFD)) {
 | 
						|
      if (!CurContext->isRecord()) {
 | 
						|
        // 'explicit' was specified outside of the class.
 | 
						|
        Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | 
						|
             diag::err_explicit_out_of_class)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | 
						|
      } else if (!isa<CXXConstructorDecl>(NewFD) &&
 | 
						|
                 !isa<CXXConversionDecl>(NewFD)) {
 | 
						|
        // 'explicit' was specified on a function that wasn't a constructor
 | 
						|
        // or conversion function.
 | 
						|
        Diag(D.getDeclSpec().getExplicitSpecLoc(),
 | 
						|
             diag::err_explicit_non_ctor_or_conv_function)
 | 
						|
          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isConstexpr) {
 | 
						|
      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
 | 
						|
      // are implicitly inline.
 | 
						|
      NewFD->setImplicitlyInline();
 | 
						|
 | 
						|
      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
 | 
						|
      // be either constructors or to return a literal type. Therefore,
 | 
						|
      // destructors cannot be declared constexpr.
 | 
						|
      if (isa<CXXDestructorDecl>(NewFD))
 | 
						|
        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
 | 
						|
    }
 | 
						|
 | 
						|
    // If __module_private__ was specified, mark the function accordingly.
 | 
						|
    if (D.getDeclSpec().isModulePrivateSpecified()) {
 | 
						|
      if (isFunctionTemplateSpecialization) {
 | 
						|
        SourceLocation ModulePrivateLoc
 | 
						|
          = D.getDeclSpec().getModulePrivateSpecLoc();
 | 
						|
        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
 | 
						|
          << 0
 | 
						|
          << FixItHint::CreateRemoval(ModulePrivateLoc);
 | 
						|
      } else {
 | 
						|
        NewFD->setModulePrivate();
 | 
						|
        if (FunctionTemplate)
 | 
						|
          FunctionTemplate->setModulePrivate();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFriend) {
 | 
						|
      if (FunctionTemplate) {
 | 
						|
        FunctionTemplate->setObjectOfFriendDecl();
 | 
						|
        FunctionTemplate->setAccess(AS_public);
 | 
						|
      }
 | 
						|
      NewFD->setObjectOfFriendDecl();
 | 
						|
      NewFD->setAccess(AS_public);
 | 
						|
    }
 | 
						|
 | 
						|
    // If a function is defined as defaulted or deleted, mark it as such now.
 | 
						|
    // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
 | 
						|
    // definition kind to FDK_Definition.
 | 
						|
    switch (D.getFunctionDefinitionKind()) {
 | 
						|
      case FDK_Declaration:
 | 
						|
      case FDK_Definition:
 | 
						|
        break;
 | 
						|
 | 
						|
      case FDK_Defaulted:
 | 
						|
        NewFD->setDefaulted();
 | 
						|
        break;
 | 
						|
 | 
						|
      case FDK_Deleted:
 | 
						|
        NewFD->setDeletedAsWritten();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
 | 
						|
        D.isFunctionDefinition()) {
 | 
						|
      // C++ [class.mfct]p2:
 | 
						|
      //   A member function may be defined (8.4) in its class definition, in
 | 
						|
      //   which case it is an inline member function (7.1.2)
 | 
						|
      NewFD->setImplicitlyInline();
 | 
						|
    }
 | 
						|
 | 
						|
    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
 | 
						|
        !CurContext->isRecord()) {
 | 
						|
      // C++ [class.static]p1:
 | 
						|
      //   A data or function member of a class may be declared static
 | 
						|
      //   in a class definition, in which case it is a static member of
 | 
						|
      //   the class.
 | 
						|
 | 
						|
      // Complain about the 'static' specifier if it's on an out-of-line
 | 
						|
      // member function definition.
 | 
						|
      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
 | 
						|
           diag::err_static_out_of_line)
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [except.spec]p15:
 | 
						|
    //   A deallocation function with no exception-specification is treated
 | 
						|
    //   as if it were specified with noexcept(true).
 | 
						|
    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
 | 
						|
    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
 | 
						|
         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
 | 
						|
        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
 | 
						|
      NewFD->setType(Context.getFunctionType(
 | 
						|
          FPT->getReturnType(), FPT->getParamTypes(),
 | 
						|
          FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
 | 
						|
  }
 | 
						|
 | 
						|
  // Filter out previous declarations that don't match the scope.
 | 
						|
  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
 | 
						|
                       D.getCXXScopeSpec().isNotEmpty() ||
 | 
						|
                       isMemberSpecialization ||
 | 
						|
                       isFunctionTemplateSpecialization);
 | 
						|
 | 
						|
  // Handle GNU asm-label extension (encoded as an attribute).
 | 
						|
  if (Expr *E = (Expr*) D.getAsmLabel()) {
 | 
						|
    // The parser guarantees this is a string.
 | 
						|
    StringLiteral *SE = cast<StringLiteral>(E);
 | 
						|
    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
 | 
						|
                                                SE->getString(), 0));
 | 
						|
  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
 | 
						|
    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
 | 
						|
      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
 | 
						|
    if (I != ExtnameUndeclaredIdentifiers.end()) {
 | 
						|
      if (isDeclExternC(NewFD)) {
 | 
						|
        NewFD->addAttr(I->second);
 | 
						|
        ExtnameUndeclaredIdentifiers.erase(I);
 | 
						|
      } else
 | 
						|
        Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
 | 
						|
            << /*Variable*/0 << NewFD;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the parameter declarations from the declarator D to the function
 | 
						|
  // declaration NewFD, if they are available.  First scavenge them into Params.
 | 
						|
  SmallVector<ParmVarDecl*, 16> Params;
 | 
						|
  unsigned FTIIdx;
 | 
						|
  if (D.isFunctionDeclarator(FTIIdx)) {
 | 
						|
    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
 | 
						|
 | 
						|
    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
 | 
						|
    // function that takes no arguments, not a function that takes a
 | 
						|
    // single void argument.
 | 
						|
    // We let through "const void" here because Sema::GetTypeForDeclarator
 | 
						|
    // already checks for that case.
 | 
						|
    if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
 | 
						|
      for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
 | 
						|
        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
 | 
						|
        assert(Param->getDeclContext() != NewFD && "Was set before ?");
 | 
						|
        Param->setDeclContext(NewFD);
 | 
						|
        Params.push_back(Param);
 | 
						|
 | 
						|
        if (Param->isInvalidDecl())
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!getLangOpts().CPlusPlus) {
 | 
						|
      // In C, find all the tag declarations from the prototype and move them
 | 
						|
      // into the function DeclContext. Remove them from the surrounding tag
 | 
						|
      // injection context of the function, which is typically but not always
 | 
						|
      // the TU.
 | 
						|
      DeclContext *PrototypeTagContext =
 | 
						|
          getTagInjectionContext(NewFD->getLexicalDeclContext());
 | 
						|
      for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
 | 
						|
        auto *TD = dyn_cast<TagDecl>(NonParmDecl);
 | 
						|
 | 
						|
        // We don't want to reparent enumerators. Look at their parent enum
 | 
						|
        // instead.
 | 
						|
        if (!TD) {
 | 
						|
          if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
 | 
						|
            TD = cast<EnumDecl>(ECD->getDeclContext());
 | 
						|
        }
 | 
						|
        if (!TD)
 | 
						|
          continue;
 | 
						|
        DeclContext *TagDC = TD->getLexicalDeclContext();
 | 
						|
        if (!TagDC->containsDecl(TD))
 | 
						|
          continue;
 | 
						|
        TagDC->removeDecl(TD);
 | 
						|
        TD->setDeclContext(NewFD);
 | 
						|
        NewFD->addDecl(TD);
 | 
						|
 | 
						|
        // Preserve the lexical DeclContext if it is not the surrounding tag
 | 
						|
        // injection context of the FD. In this example, the semantic context of
 | 
						|
        // E will be f and the lexical context will be S, while both the
 | 
						|
        // semantic and lexical contexts of S will be f:
 | 
						|
        //   void f(struct S { enum E { a } f; } s);
 | 
						|
        if (TagDC != PrototypeTagContext)
 | 
						|
          TD->setLexicalDeclContext(TagDC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
 | 
						|
    // When we're declaring a function with a typedef, typeof, etc as in the
 | 
						|
    // following example, we'll need to synthesize (unnamed)
 | 
						|
    // parameters for use in the declaration.
 | 
						|
    //
 | 
						|
    // @code
 | 
						|
    // typedef void fn(int);
 | 
						|
    // fn f;
 | 
						|
    // @endcode
 | 
						|
 | 
						|
    // Synthesize a parameter for each argument type.
 | 
						|
    for (const auto &AI : FT->param_types()) {
 | 
						|
      ParmVarDecl *Param =
 | 
						|
          BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
 | 
						|
      Param->setScopeInfo(0, Params.size());
 | 
						|
      Params.push_back(Param);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
 | 
						|
           "Should not need args for typedef of non-prototype fn");
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, we know we have the right number of parameters, install them.
 | 
						|
  NewFD->setParams(Params);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isNoreturnSpecified())
 | 
						|
    NewFD->addAttr(
 | 
						|
        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
 | 
						|
                                       Context, 0));
 | 
						|
 | 
						|
  // Functions returning a variably modified type violate C99 6.7.5.2p2
 | 
						|
  // because all functions have linkage.
 | 
						|
  if (!NewFD->isInvalidDecl() &&
 | 
						|
      NewFD->getReturnType()->isVariablyModifiedType()) {
 | 
						|
    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply an implicit SectionAttr if '#pragma clang section text' is active
 | 
						|
  if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
 | 
						|
      !NewFD->hasAttr<SectionAttr>()) {
 | 
						|
    NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
 | 
						|
                                                 PragmaClangTextSection.SectionName,
 | 
						|
                                                 PragmaClangTextSection.PragmaLocation));
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply an implicit SectionAttr if #pragma code_seg is active.
 | 
						|
  if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
 | 
						|
      !NewFD->hasAttr<SectionAttr>()) {
 | 
						|
    NewFD->addAttr(
 | 
						|
        SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
 | 
						|
                                    CodeSegStack.CurrentValue->getString(),
 | 
						|
                                    CodeSegStack.CurrentPragmaLocation));
 | 
						|
    if (UnifySection(CodeSegStack.CurrentValue->getString(),
 | 
						|
                     ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
 | 
						|
                         ASTContext::PSF_Read,
 | 
						|
                     NewFD))
 | 
						|
      NewFD->dropAttr<SectionAttr>();
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle attributes.
 | 
						|
  ProcessDeclAttributes(S, NewFD, D);
 | 
						|
 | 
						|
  if (getLangOpts().OpenCL) {
 | 
						|
    // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
 | 
						|
    // type declaration will generate a compilation error.
 | 
						|
    LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
 | 
						|
    if (AddressSpace != LangAS::Default) {
 | 
						|
      Diag(NewFD->getLocation(),
 | 
						|
           diag::err_opencl_return_value_with_address_space);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!getLangOpts().CPlusPlus) {
 | 
						|
    // Perform semantic checking on the function declaration.
 | 
						|
    if (!NewFD->isInvalidDecl() && NewFD->isMain())
 | 
						|
      CheckMain(NewFD, D.getDeclSpec());
 | 
						|
 | 
						|
    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
 | 
						|
      CheckMSVCRTEntryPoint(NewFD);
 | 
						|
 | 
						|
    if (!NewFD->isInvalidDecl())
 | 
						|
      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
 | 
						|
                                                  isMemberSpecialization));
 | 
						|
    else if (!Previous.empty())
 | 
						|
      // Recover gracefully from an invalid redeclaration.
 | 
						|
      D.setRedeclaration(true);
 | 
						|
    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
 | 
						|
            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | 
						|
           "previous declaration set still overloaded");
 | 
						|
 | 
						|
    // Diagnose no-prototype function declarations with calling conventions that
 | 
						|
    // don't support variadic calls. Only do this in C and do it after merging
 | 
						|
    // possibly prototyped redeclarations.
 | 
						|
    const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
 | 
						|
    if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
 | 
						|
      CallingConv CC = FT->getExtInfo().getCC();
 | 
						|
      if (!supportsVariadicCall(CC)) {
 | 
						|
        // Windows system headers sometimes accidentally use stdcall without
 | 
						|
        // (void) parameters, so we relax this to a warning.
 | 
						|
        int DiagID =
 | 
						|
            CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
 | 
						|
        Diag(NewFD->getLocation(), DiagID)
 | 
						|
            << FunctionType::getNameForCallConv(CC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // C++11 [replacement.functions]p3:
 | 
						|
    //  The program's definitions shall not be specified as inline.
 | 
						|
    //
 | 
						|
    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
 | 
						|
    //
 | 
						|
    // Suppress the diagnostic if the function is __attribute__((used)), since
 | 
						|
    // that forces an external definition to be emitted.
 | 
						|
    if (D.getDeclSpec().isInlineSpecified() &&
 | 
						|
        NewFD->isReplaceableGlobalAllocationFunction() &&
 | 
						|
        !NewFD->hasAttr<UsedAttr>())
 | 
						|
      Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
           diag::ext_operator_new_delete_declared_inline)
 | 
						|
        << NewFD->getDeclName();
 | 
						|
 | 
						|
    // If the declarator is a template-id, translate the parser's template
 | 
						|
    // argument list into our AST format.
 | 
						|
    if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
 | 
						|
      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | 
						|
      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
 | 
						|
      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
 | 
						|
      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
 | 
						|
                                         TemplateId->NumArgs);
 | 
						|
      translateTemplateArguments(TemplateArgsPtr,
 | 
						|
                                 TemplateArgs);
 | 
						|
 | 
						|
      HasExplicitTemplateArgs = true;
 | 
						|
 | 
						|
      if (NewFD->isInvalidDecl()) {
 | 
						|
        HasExplicitTemplateArgs = false;
 | 
						|
      } else if (FunctionTemplate) {
 | 
						|
        // Function template with explicit template arguments.
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
 | 
						|
          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
 | 
						|
 | 
						|
        HasExplicitTemplateArgs = false;
 | 
						|
      } else {
 | 
						|
        assert((isFunctionTemplateSpecialization ||
 | 
						|
                D.getDeclSpec().isFriendSpecified()) &&
 | 
						|
               "should have a 'template<>' for this decl");
 | 
						|
        // "friend void foo<>(int);" is an implicit specialization decl.
 | 
						|
        isFunctionTemplateSpecialization = true;
 | 
						|
      }
 | 
						|
    } else if (isFriend && isFunctionTemplateSpecialization) {
 | 
						|
      // This combination is only possible in a recovery case;  the user
 | 
						|
      // wrote something like:
 | 
						|
      //   template <> friend void foo(int);
 | 
						|
      // which we're recovering from as if the user had written:
 | 
						|
      //   friend void foo<>(int);
 | 
						|
      // Go ahead and fake up a template id.
 | 
						|
      HasExplicitTemplateArgs = true;
 | 
						|
      TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
 | 
						|
      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // We do not add HD attributes to specializations here because
 | 
						|
    // they may have different constexpr-ness compared to their
 | 
						|
    // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
 | 
						|
    // may end up with different effective targets. Instead, a
 | 
						|
    // specialization inherits its target attributes from its template
 | 
						|
    // in the CheckFunctionTemplateSpecialization() call below.
 | 
						|
    if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
 | 
						|
      maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
 | 
						|
 | 
						|
    // If it's a friend (and only if it's a friend), it's possible
 | 
						|
    // that either the specialized function type or the specialized
 | 
						|
    // template is dependent, and therefore matching will fail.  In
 | 
						|
    // this case, don't check the specialization yet.
 | 
						|
    bool InstantiationDependent = false;
 | 
						|
    if (isFunctionTemplateSpecialization && isFriend &&
 | 
						|
        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
 | 
						|
         TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
            TemplateArgs,
 | 
						|
            InstantiationDependent))) {
 | 
						|
      assert(HasExplicitTemplateArgs &&
 | 
						|
             "friend function specialization without template args");
 | 
						|
      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
 | 
						|
                                                       Previous))
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
    } else if (isFunctionTemplateSpecialization) {
 | 
						|
      if (CurContext->isDependentContext() && CurContext->isRecord()
 | 
						|
          && !isFriend) {
 | 
						|
        isDependentClassScopeExplicitSpecialization = true;
 | 
						|
      } else if (!NewFD->isInvalidDecl() &&
 | 
						|
                 CheckFunctionTemplateSpecialization(
 | 
						|
                     NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
 | 
						|
                     Previous))
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
 | 
						|
      // C++ [dcl.stc]p1:
 | 
						|
      //   A storage-class-specifier shall not be specified in an explicit
 | 
						|
      //   specialization (14.7.3)
 | 
						|
      FunctionTemplateSpecializationInfo *Info =
 | 
						|
          NewFD->getTemplateSpecializationInfo();
 | 
						|
      if (Info && SC != SC_None) {
 | 
						|
        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
 | 
						|
          Diag(NewFD->getLocation(),
 | 
						|
               diag::err_explicit_specialization_inconsistent_storage_class)
 | 
						|
            << SC
 | 
						|
            << FixItHint::CreateRemoval(
 | 
						|
                                      D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
 | 
						|
        else
 | 
						|
          Diag(NewFD->getLocation(),
 | 
						|
               diag::ext_explicit_specialization_storage_class)
 | 
						|
            << FixItHint::CreateRemoval(
 | 
						|
                                      D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
      }
 | 
						|
    } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
 | 
						|
      if (CheckMemberSpecialization(NewFD, Previous))
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
    }
 | 
						|
 | 
						|
    // Perform semantic checking on the function declaration.
 | 
						|
    if (!isDependentClassScopeExplicitSpecialization) {
 | 
						|
      if (!NewFD->isInvalidDecl() && NewFD->isMain())
 | 
						|
        CheckMain(NewFD, D.getDeclSpec());
 | 
						|
 | 
						|
      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
 | 
						|
        CheckMSVCRTEntryPoint(NewFD);
 | 
						|
 | 
						|
      if (!NewFD->isInvalidDecl())
 | 
						|
        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
 | 
						|
                                                    isMemberSpecialization));
 | 
						|
      else if (!Previous.empty())
 | 
						|
        // Recover gracefully from an invalid redeclaration.
 | 
						|
        D.setRedeclaration(true);
 | 
						|
    }
 | 
						|
 | 
						|
    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
 | 
						|
            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
 | 
						|
           "previous declaration set still overloaded");
 | 
						|
 | 
						|
    NamedDecl *PrincipalDecl = (FunctionTemplate
 | 
						|
                                ? cast<NamedDecl>(FunctionTemplate)
 | 
						|
                                : NewFD);
 | 
						|
 | 
						|
    if (isFriend && NewFD->getPreviousDecl()) {
 | 
						|
      AccessSpecifier Access = AS_public;
 | 
						|
      if (!NewFD->isInvalidDecl())
 | 
						|
        Access = NewFD->getPreviousDecl()->getAccess();
 | 
						|
 | 
						|
      NewFD->setAccess(Access);
 | 
						|
      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
 | 
						|
        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
 | 
						|
      PrincipalDecl->setNonMemberOperator();
 | 
						|
 | 
						|
    // If we have a function template, check the template parameter
 | 
						|
    // list. This will check and merge default template arguments.
 | 
						|
    if (FunctionTemplate) {
 | 
						|
      FunctionTemplateDecl *PrevTemplate =
 | 
						|
                                     FunctionTemplate->getPreviousDecl();
 | 
						|
      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
 | 
						|
                       PrevTemplate ? PrevTemplate->getTemplateParameters()
 | 
						|
                                    : nullptr,
 | 
						|
                            D.getDeclSpec().isFriendSpecified()
 | 
						|
                              ? (D.isFunctionDefinition()
 | 
						|
                                   ? TPC_FriendFunctionTemplateDefinition
 | 
						|
                                   : TPC_FriendFunctionTemplate)
 | 
						|
                              : (D.getCXXScopeSpec().isSet() &&
 | 
						|
                                 DC && DC->isRecord() &&
 | 
						|
                                 DC->isDependentContext())
 | 
						|
                                  ? TPC_ClassTemplateMember
 | 
						|
                                  : TPC_FunctionTemplate);
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewFD->isInvalidDecl()) {
 | 
						|
      // Ignore all the rest of this.
 | 
						|
    } else if (!D.isRedeclaration()) {
 | 
						|
      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
 | 
						|
                                       AddToScope };
 | 
						|
      // Fake up an access specifier if it's supposed to be a class member.
 | 
						|
      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
 | 
						|
        NewFD->setAccess(AS_public);
 | 
						|
 | 
						|
      // Qualified decls generally require a previous declaration.
 | 
						|
      if (D.getCXXScopeSpec().isSet()) {
 | 
						|
        // ...with the major exception of templated-scope or
 | 
						|
        // dependent-scope friend declarations.
 | 
						|
 | 
						|
        // TODO: we currently also suppress this check in dependent
 | 
						|
        // contexts because (1) the parameter depth will be off when
 | 
						|
        // matching friend templates and (2) we might actually be
 | 
						|
        // selecting a friend based on a dependent factor.  But there
 | 
						|
        // are situations where these conditions don't apply and we
 | 
						|
        // can actually do this check immediately.
 | 
						|
        if (isFriend &&
 | 
						|
            (TemplateParamLists.size() ||
 | 
						|
             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
 | 
						|
             CurContext->isDependentContext())) {
 | 
						|
          // ignore these
 | 
						|
        } else {
 | 
						|
          // The user tried to provide an out-of-line definition for a
 | 
						|
          // function that is a member of a class or namespace, but there
 | 
						|
          // was no such member function declared (C++ [class.mfct]p2,
 | 
						|
          // C++ [namespace.memdef]p2). For example:
 | 
						|
          //
 | 
						|
          // class X {
 | 
						|
          //   void f() const;
 | 
						|
          // };
 | 
						|
          //
 | 
						|
          // void X::f() { } // ill-formed
 | 
						|
          //
 | 
						|
          // Complain about this problem, and attempt to suggest close
 | 
						|
          // matches (e.g., those that differ only in cv-qualifiers and
 | 
						|
          // whether the parameter types are references).
 | 
						|
 | 
						|
          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
 | 
						|
                  *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
 | 
						|
            AddToScope = ExtraArgs.AddToScope;
 | 
						|
            return Result;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Unqualified local friend declarations are required to resolve
 | 
						|
        // to something.
 | 
						|
      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
 | 
						|
        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
 | 
						|
                *this, Previous, NewFD, ExtraArgs, true, S)) {
 | 
						|
          AddToScope = ExtraArgs.AddToScope;
 | 
						|
          return Result;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (!D.isFunctionDefinition() &&
 | 
						|
               isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
 | 
						|
               !isFriend && !isFunctionTemplateSpecialization &&
 | 
						|
               !isMemberSpecialization) {
 | 
						|
      // An out-of-line member function declaration must also be a
 | 
						|
      // definition (C++ [class.mfct]p2).
 | 
						|
      // Note that this is not the case for explicit specializations of
 | 
						|
      // function templates or member functions of class templates, per
 | 
						|
      // C++ [temp.expl.spec]p2. We also allow these declarations as an
 | 
						|
      // extension for compatibility with old SWIG code which likes to
 | 
						|
      // generate them.
 | 
						|
      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ProcessPragmaWeak(S, NewFD);
 | 
						|
  checkAttributesAfterMerging(*this, *NewFD);
 | 
						|
 | 
						|
  AddKnownFunctionAttributes(NewFD);
 | 
						|
 | 
						|
  if (NewFD->hasAttr<OverloadableAttr>() &&
 | 
						|
      !NewFD->getType()->getAs<FunctionProtoType>()) {
 | 
						|
    Diag(NewFD->getLocation(),
 | 
						|
         diag::err_attribute_overloadable_no_prototype)
 | 
						|
      << NewFD;
 | 
						|
 | 
						|
    // Turn this into a variadic function with no parameters.
 | 
						|
    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI(
 | 
						|
        Context.getDefaultCallingConvention(true, false));
 | 
						|
    EPI.Variadic = true;
 | 
						|
    EPI.ExtInfo = FT->getExtInfo();
 | 
						|
 | 
						|
    QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
 | 
						|
    NewFD->setType(R);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's a #pragma GCC visibility in scope, and this isn't a class
 | 
						|
  // member, set the visibility of this function.
 | 
						|
  if (!DC->isRecord() && NewFD->isExternallyVisible())
 | 
						|
    AddPushedVisibilityAttribute(NewFD);
 | 
						|
 | 
						|
  // If there's a #pragma clang arc_cf_code_audited in scope, consider
 | 
						|
  // marking the function.
 | 
						|
  AddCFAuditedAttribute(NewFD);
 | 
						|
 | 
						|
  // If this is a function definition, check if we have to apply optnone due to
 | 
						|
  // a pragma.
 | 
						|
  if(D.isFunctionDefinition())
 | 
						|
    AddRangeBasedOptnone(NewFD);
 | 
						|
 | 
						|
  // If this is the first declaration of an extern C variable, update
 | 
						|
  // the map of such variables.
 | 
						|
  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
 | 
						|
      isIncompleteDeclExternC(*this, NewFD))
 | 
						|
    RegisterLocallyScopedExternCDecl(NewFD, S);
 | 
						|
 | 
						|
  // Set this FunctionDecl's range up to the right paren.
 | 
						|
  NewFD->setRangeEnd(D.getSourceRange().getEnd());
 | 
						|
 | 
						|
  if (D.isRedeclaration() && !Previous.empty()) {
 | 
						|
    NamedDecl *Prev = Previous.getRepresentativeDecl();
 | 
						|
    checkDLLAttributeRedeclaration(*this, Prev, NewFD,
 | 
						|
                                   isMemberSpecialization ||
 | 
						|
                                       isFunctionTemplateSpecialization,
 | 
						|
                                   D.isFunctionDefinition());
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CUDA) {
 | 
						|
    IdentifierInfo *II = NewFD->getIdentifier();
 | 
						|
    if (II && II->isStr("cudaConfigureCall") && !NewFD->isInvalidDecl() &&
 | 
						|
        NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
 | 
						|
      if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
 | 
						|
        Diag(NewFD->getLocation(), diag::err_config_scalar_return);
 | 
						|
 | 
						|
      Context.setcudaConfigureCallDecl(NewFD);
 | 
						|
    }
 | 
						|
 | 
						|
    // Variadic functions, other than a *declaration* of printf, are not allowed
 | 
						|
    // in device-side CUDA code, unless someone passed
 | 
						|
    // -fcuda-allow-variadic-functions.
 | 
						|
    if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
 | 
						|
        (NewFD->hasAttr<CUDADeviceAttr>() ||
 | 
						|
         NewFD->hasAttr<CUDAGlobalAttr>()) &&
 | 
						|
        !(II && II->isStr("printf") && NewFD->isExternC() &&
 | 
						|
          !D.isFunctionDefinition())) {
 | 
						|
      Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MarkUnusedFileScopedDecl(NewFD);
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    if (FunctionTemplate) {
 | 
						|
      if (NewFD->isInvalidDecl())
 | 
						|
        FunctionTemplate->setInvalidDecl();
 | 
						|
      return FunctionTemplate;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isMemberSpecialization && !NewFD->isInvalidDecl())
 | 
						|
      CompleteMemberSpecialization(NewFD, Previous);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
 | 
						|
    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
 | 
						|
    if ((getLangOpts().OpenCLVersion >= 120)
 | 
						|
        && (SC == SC_Static)) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
 | 
						|
      D.setInvalidType();
 | 
						|
    }
 | 
						|
 | 
						|
    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
 | 
						|
    if (!NewFD->getReturnType()->isVoidType()) {
 | 
						|
      SourceRange RTRange = NewFD->getReturnTypeSourceRange();
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
 | 
						|
          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
 | 
						|
                                : FixItHint());
 | 
						|
      D.setInvalidType();
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
 | 
						|
    for (auto Param : NewFD->parameters())
 | 
						|
      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
 | 
						|
  }
 | 
						|
  for (const ParmVarDecl *Param : NewFD->parameters()) {
 | 
						|
    QualType PT = Param->getType();
 | 
						|
 | 
						|
    // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
 | 
						|
    // types.
 | 
						|
    if (getLangOpts().OpenCLVersion >= 200) {
 | 
						|
      if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
 | 
						|
        QualType ElemTy = PipeTy->getElementType();
 | 
						|
          if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
 | 
						|
            Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
 | 
						|
            D.setInvalidType();
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Here we have an function template explicit specialization at class scope.
 | 
						|
  // The actual specialization will be postponed to template instatiation
 | 
						|
  // time via the ClassScopeFunctionSpecializationDecl node.
 | 
						|
  if (isDependentClassScopeExplicitSpecialization) {
 | 
						|
    ClassScopeFunctionSpecializationDecl *NewSpec =
 | 
						|
                         ClassScopeFunctionSpecializationDecl::Create(
 | 
						|
                                Context, CurContext, NewFD->getLocation(),
 | 
						|
                                cast<CXXMethodDecl>(NewFD),
 | 
						|
                                HasExplicitTemplateArgs, TemplateArgs);
 | 
						|
    CurContext->addDecl(NewSpec);
 | 
						|
    AddToScope = false;
 | 
						|
  }
 | 
						|
 | 
						|
  return NewFD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks if the new declaration declared in dependent context must be
 | 
						|
/// put in the same redeclaration chain as the specified declaration.
 | 
						|
///
 | 
						|
/// \param D Declaration that is checked.
 | 
						|
/// \param PrevDecl Previous declaration found with proper lookup method for the
 | 
						|
///                 same declaration name.
 | 
						|
/// \returns True if D must be added to the redeclaration chain which PrevDecl
 | 
						|
///          belongs to.
 | 
						|
///
 | 
						|
bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
 | 
						|
  // Any declarations should be put into redeclaration chains except for
 | 
						|
  // friend declaration in a dependent context that names a function in
 | 
						|
  // namespace scope.
 | 
						|
  //
 | 
						|
  // This allows to compile code like:
 | 
						|
  //
 | 
						|
  //       void func();
 | 
						|
  //       template<typename T> class C1 { friend void func() { } };
 | 
						|
  //       template<typename T> class C2 { friend void func() { } };
 | 
						|
  //
 | 
						|
  // This code snippet is a valid code unless both templates are instantiated.
 | 
						|
  return !(D->getLexicalDeclContext()->isDependentContext() &&
 | 
						|
           D->getDeclContext()->isFileContext() &&
 | 
						|
           D->getFriendObjectKind() != Decl::FOK_None);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the target attribute of the function for MultiVersion
 | 
						|
/// validity.
 | 
						|
///
 | 
						|
/// Returns true if there was an error, false otherwise.
 | 
						|
static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
 | 
						|
  const auto *TA = FD->getAttr<TargetAttr>();
 | 
						|
  assert(TA && "MultiVersion Candidate requires a target attribute");
 | 
						|
  TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
 | 
						|
  const TargetInfo &TargetInfo = S.Context.getTargetInfo();
 | 
						|
  enum ErrType { Feature = 0, Architecture = 1 };
 | 
						|
 | 
						|
  if (!ParseInfo.Architecture.empty() &&
 | 
						|
      !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
 | 
						|
    S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
 | 
						|
        << Architecture << ParseInfo.Architecture;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &Feat : ParseInfo.Features) {
 | 
						|
    auto BareFeat = StringRef{Feat}.substr(1);
 | 
						|
    if (Feat[0] == '-') {
 | 
						|
      S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
 | 
						|
          << Feature << ("no-" + BareFeat).str();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!TargetInfo.validateCpuSupports(BareFeat) ||
 | 
						|
        !TargetInfo.isValidFeatureName(BareFeat)) {
 | 
						|
      S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
 | 
						|
          << Feature << BareFeat;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
 | 
						|
                                             const FunctionDecl *NewFD,
 | 
						|
                                             bool CausesMV) {
 | 
						|
  enum DoesntSupport {
 | 
						|
    FuncTemplates = 0,
 | 
						|
    VirtFuncs = 1,
 | 
						|
    DeducedReturn = 2,
 | 
						|
    Constructors = 3,
 | 
						|
    Destructors = 4,
 | 
						|
    DeletedFuncs = 5,
 | 
						|
    DefaultedFuncs = 6
 | 
						|
  };
 | 
						|
  enum Different {
 | 
						|
    CallingConv = 0,
 | 
						|
    ReturnType = 1,
 | 
						|
    ConstexprSpec = 2,
 | 
						|
    InlineSpec = 3,
 | 
						|
    StorageClass = 4,
 | 
						|
    Linkage = 5
 | 
						|
  };
 | 
						|
 | 
						|
  // For now, disallow all other attributes.  These should be opt-in, but
 | 
						|
  // an analysis of all of them is a future FIXME.
 | 
						|
  if (CausesMV && OldFD &&
 | 
						|
      std::distance(OldFD->attr_begin(), OldFD->attr_end()) != 1) {
 | 
						|
    S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs);
 | 
						|
    S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (std::distance(NewFD->attr_begin(), NewFD->attr_end()) != 1)
 | 
						|
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs);
 | 
						|
 | 
						|
  if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
 | 
						|
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
 | 
						|
           << FuncTemplates;
 | 
						|
 | 
						|
  if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
 | 
						|
    if (NewCXXFD->isVirtual())
 | 
						|
      return S.Diag(NewCXXFD->getLocation(),
 | 
						|
                    diag::err_multiversion_doesnt_support)
 | 
						|
             << VirtFuncs;
 | 
						|
 | 
						|
    if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
 | 
						|
      return S.Diag(NewCXXCtor->getLocation(),
 | 
						|
                    diag::err_multiversion_doesnt_support)
 | 
						|
             << Constructors;
 | 
						|
 | 
						|
    if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
 | 
						|
      return S.Diag(NewCXXDtor->getLocation(),
 | 
						|
                    diag::err_multiversion_doesnt_support)
 | 
						|
             << Destructors;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewFD->isDeleted())
 | 
						|
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
 | 
						|
           << DeletedFuncs;
 | 
						|
 | 
						|
  if (NewFD->isDefaulted())
 | 
						|
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
 | 
						|
           << DefaultedFuncs;
 | 
						|
 | 
						|
  QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
 | 
						|
  const auto *NewType = cast<FunctionType>(NewQType);
 | 
						|
  QualType NewReturnType = NewType->getReturnType();
 | 
						|
 | 
						|
  if (NewReturnType->isUndeducedType())
 | 
						|
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
 | 
						|
           << DeducedReturn;
 | 
						|
 | 
						|
  // Only allow transition to MultiVersion if it hasn't been used.
 | 
						|
  if (OldFD && CausesMV && OldFD->isUsed(false))
 | 
						|
    return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
 | 
						|
 | 
						|
  // Ensure the return type is identical.
 | 
						|
  if (OldFD) {
 | 
						|
    QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
 | 
						|
    const auto *OldType = cast<FunctionType>(OldQType);
 | 
						|
    FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
 | 
						|
    FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
 | 
						|
 | 
						|
    if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
 | 
						|
      return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
 | 
						|
             << CallingConv;
 | 
						|
 | 
						|
    QualType OldReturnType = OldType->getReturnType();
 | 
						|
 | 
						|
    if (OldReturnType != NewReturnType)
 | 
						|
      return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
 | 
						|
             << ReturnType;
 | 
						|
 | 
						|
    if (OldFD->isConstexpr() != NewFD->isConstexpr())
 | 
						|
      return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
 | 
						|
             << ConstexprSpec;
 | 
						|
 | 
						|
    if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
 | 
						|
      return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
 | 
						|
             << InlineSpec;
 | 
						|
 | 
						|
    if (OldFD->getStorageClass() != NewFD->getStorageClass())
 | 
						|
      return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
 | 
						|
             << StorageClass;
 | 
						|
 | 
						|
    if (OldFD->isExternC() != NewFD->isExternC())
 | 
						|
      return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
 | 
						|
             << Linkage;
 | 
						|
 | 
						|
    if (S.CheckEquivalentExceptionSpec(
 | 
						|
            OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
 | 
						|
            NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the validity of a mulitversion function declaration.
 | 
						|
/// Also sets the multiversion'ness' of the function itself.
 | 
						|
///
 | 
						|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
 | 
						|
///
 | 
						|
/// Returns true if there was an error, false otherwise.
 | 
						|
static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
 | 
						|
                                      bool &Redeclaration, NamedDecl *&OldDecl,
 | 
						|
                                      bool &MergeTypeWithPrevious,
 | 
						|
                                      LookupResult &Previous) {
 | 
						|
  const auto *NewTA = NewFD->getAttr<TargetAttr>();
 | 
						|
  if (NewFD->isMain()) {
 | 
						|
    if (NewTA && NewTA->isDefaultVersion()) {
 | 
						|
      S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is no matching previous decl, only 'default' can
 | 
						|
  // cause MultiVersioning.
 | 
						|
  if (!OldDecl) {
 | 
						|
    if (NewTA && NewTA->isDefaultVersion()) {
 | 
						|
      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
 | 
						|
        S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (CheckMultiVersionAdditionalRules(S, nullptr, NewFD, true)) {
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
 | 
						|
        S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      NewFD->setIsMultiVersion();
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OldDecl->getDeclContext()->getRedeclContext() !=
 | 
						|
      NewFD->getDeclContext()->getRedeclContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  FunctionDecl *OldFD = OldDecl->getAsFunction();
 | 
						|
  // Unresolved 'using' statements (the other way OldDecl can be not a function)
 | 
						|
  // likely cannot cause a problem here.
 | 
						|
  if (!OldFD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!OldFD->isMultiVersion() && !NewTA)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (OldFD->isMultiVersion() && !NewTA) {
 | 
						|
    S.Diag(NewFD->getLocation(), diag::err_target_required_in_redecl);
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
 | 
						|
  // Sort order doesn't matter, it just needs to be consistent.
 | 
						|
  llvm::sort(NewParsed.Features.begin(), NewParsed.Features.end());
 | 
						|
 | 
						|
  const auto *OldTA = OldFD->getAttr<TargetAttr>();
 | 
						|
  if (!OldFD->isMultiVersion()) {
 | 
						|
    // If the old decl is NOT MultiVersioned yet, and we don't cause that
 | 
						|
    // to change, this is a simple redeclaration.
 | 
						|
    if (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Otherwise, this decl causes MultiVersioning.
 | 
						|
    if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
 | 
						|
      S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
 | 
						|
      S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!OldFD->getType()->getAs<FunctionProtoType>()) {
 | 
						|
      S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
 | 
						|
      S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckMultiVersionValue(S, NewFD)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckMultiVersionValue(S, OldFD)) {
 | 
						|
      S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    TargetAttr::ParsedTargetAttr OldParsed =
 | 
						|
        OldTA->parse(std::less<std::string>());
 | 
						|
 | 
						|
    if (OldParsed == NewParsed) {
 | 
						|
      S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
 | 
						|
      S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    for (const auto *FD : OldFD->redecls()) {
 | 
						|
      const auto *CurTA = FD->getAttr<TargetAttr>();
 | 
						|
      if (!CurTA || CurTA->isInherited()) {
 | 
						|
        S.Diag(FD->getLocation(), diag::err_target_required_in_redecl);
 | 
						|
        S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
 | 
						|
        NewFD->setInvalidDecl();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    OldFD->setIsMultiVersion();
 | 
						|
    NewFD->setIsMultiVersion();
 | 
						|
    Redeclaration = false;
 | 
						|
    MergeTypeWithPrevious = false;
 | 
						|
    OldDecl = nullptr;
 | 
						|
    Previous.clear();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool UseMemberUsingDeclRules =
 | 
						|
      S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
 | 
						|
 | 
						|
  // Next, check ALL non-overloads to see if this is a redeclaration of a
 | 
						|
  // previous member of the MultiVersion set.
 | 
						|
  for (NamedDecl *ND : Previous) {
 | 
						|
    FunctionDecl *CurFD = ND->getAsFunction();
 | 
						|
    if (!CurFD)
 | 
						|
      continue;
 | 
						|
    if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const auto *CurTA = CurFD->getAttr<TargetAttr>();
 | 
						|
    if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
 | 
						|
      NewFD->setIsMultiVersion();
 | 
						|
      Redeclaration = true;
 | 
						|
      OldDecl = ND;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    TargetAttr::ParsedTargetAttr CurParsed =
 | 
						|
        CurTA->parse(std::less<std::string>());
 | 
						|
 | 
						|
    if (CurParsed == NewParsed) {
 | 
						|
      S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
 | 
						|
      S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Else, this is simply a non-redecl case.
 | 
						|
  if (CheckMultiVersionValue(S, NewFD)) {
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, false)) {
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  NewFD->setIsMultiVersion();
 | 
						|
  Redeclaration = false;
 | 
						|
  MergeTypeWithPrevious = false;
 | 
						|
  OldDecl = nullptr;
 | 
						|
  Previous.clear();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic checking of a new function declaration.
 | 
						|
///
 | 
						|
/// Performs semantic analysis of the new function declaration
 | 
						|
/// NewFD. This routine performs all semantic checking that does not
 | 
						|
/// require the actual declarator involved in the declaration, and is
 | 
						|
/// used both for the declaration of functions as they are parsed
 | 
						|
/// (called via ActOnDeclarator) and for the declaration of functions
 | 
						|
/// that have been instantiated via C++ template instantiation (called
 | 
						|
/// via InstantiateDecl).
 | 
						|
///
 | 
						|
/// \param IsMemberSpecialization whether this new function declaration is
 | 
						|
/// a member specialization (that replaces any definition provided by the
 | 
						|
/// previous declaration).
 | 
						|
///
 | 
						|
/// This sets NewFD->isInvalidDecl() to true if there was an error.
 | 
						|
///
 | 
						|
/// \returns true if the function declaration is a redeclaration.
 | 
						|
bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
 | 
						|
                                    LookupResult &Previous,
 | 
						|
                                    bool IsMemberSpecialization) {
 | 
						|
  assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
 | 
						|
         "Variably modified return types are not handled here");
 | 
						|
 | 
						|
  // Determine whether the type of this function should be merged with
 | 
						|
  // a previous visible declaration. This never happens for functions in C++,
 | 
						|
  // and always happens in C if the previous declaration was visible.
 | 
						|
  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
 | 
						|
                               !Previous.isShadowed();
 | 
						|
 | 
						|
  bool Redeclaration = false;
 | 
						|
  NamedDecl *OldDecl = nullptr;
 | 
						|
  bool MayNeedOverloadableChecks = false;
 | 
						|
 | 
						|
  // Merge or overload the declaration with an existing declaration of
 | 
						|
  // the same name, if appropriate.
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    // Determine whether NewFD is an overload of PrevDecl or
 | 
						|
    // a declaration that requires merging. If it's an overload,
 | 
						|
    // there's no more work to do here; we'll just add the new
 | 
						|
    // function to the scope.
 | 
						|
    if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
 | 
						|
      NamedDecl *Candidate = Previous.getRepresentativeDecl();
 | 
						|
      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
 | 
						|
        Redeclaration = true;
 | 
						|
        OldDecl = Candidate;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      MayNeedOverloadableChecks = true;
 | 
						|
      switch (CheckOverload(S, NewFD, Previous, OldDecl,
 | 
						|
                            /*NewIsUsingDecl*/ false)) {
 | 
						|
      case Ovl_Match:
 | 
						|
        Redeclaration = true;
 | 
						|
        break;
 | 
						|
 | 
						|
      case Ovl_NonFunction:
 | 
						|
        Redeclaration = true;
 | 
						|
        break;
 | 
						|
 | 
						|
      case Ovl_Overload:
 | 
						|
        Redeclaration = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for a previous extern "C" declaration with this name.
 | 
						|
  if (!Redeclaration &&
 | 
						|
      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
 | 
						|
    if (!Previous.empty()) {
 | 
						|
      // This is an extern "C" declaration with the same name as a previous
 | 
						|
      // declaration, and thus redeclares that entity...
 | 
						|
      Redeclaration = true;
 | 
						|
      OldDecl = Previous.getFoundDecl();
 | 
						|
      MergeTypeWithPrevious = false;
 | 
						|
 | 
						|
      // ... except in the presence of __attribute__((overloadable)).
 | 
						|
      if (OldDecl->hasAttr<OverloadableAttr>() ||
 | 
						|
          NewFD->hasAttr<OverloadableAttr>()) {
 | 
						|
        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
 | 
						|
          MayNeedOverloadableChecks = true;
 | 
						|
          Redeclaration = false;
 | 
						|
          OldDecl = nullptr;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
 | 
						|
                                MergeTypeWithPrevious, Previous))
 | 
						|
    return Redeclaration;
 | 
						|
 | 
						|
  // C++11 [dcl.constexpr]p8:
 | 
						|
  //   A constexpr specifier for a non-static member function that is not
 | 
						|
  //   a constructor declares that member function to be const.
 | 
						|
  //
 | 
						|
  // This needs to be delayed until we know whether this is an out-of-line
 | 
						|
  // definition of a static member function.
 | 
						|
  //
 | 
						|
  // This rule is not present in C++1y, so we produce a backwards
 | 
						|
  // compatibility warning whenever it happens in C++11.
 | 
						|
  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
 | 
						|
  if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
 | 
						|
      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
 | 
						|
      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
 | 
						|
    CXXMethodDecl *OldMD = nullptr;
 | 
						|
    if (OldDecl)
 | 
						|
      OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
 | 
						|
    if (!OldMD || !OldMD->isStatic()) {
 | 
						|
      const FunctionProtoType *FPT =
 | 
						|
        MD->getType()->castAs<FunctionProtoType>();
 | 
						|
      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | 
						|
      EPI.TypeQuals |= Qualifiers::Const;
 | 
						|
      MD->setType(Context.getFunctionType(FPT->getReturnType(),
 | 
						|
                                          FPT->getParamTypes(), EPI));
 | 
						|
 | 
						|
      // Warn that we did this, if we're not performing template instantiation.
 | 
						|
      // In that case, we'll have warned already when the template was defined.
 | 
						|
      if (!inTemplateInstantiation()) {
 | 
						|
        SourceLocation AddConstLoc;
 | 
						|
        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
 | 
						|
                .IgnoreParens().getAs<FunctionTypeLoc>())
 | 
						|
          AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
 | 
						|
 | 
						|
        Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
 | 
						|
          << FixItHint::CreateInsertion(AddConstLoc, " const");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Redeclaration) {
 | 
						|
    // NewFD and OldDecl represent declarations that need to be
 | 
						|
    // merged.
 | 
						|
    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return Redeclaration;
 | 
						|
    }
 | 
						|
 | 
						|
    Previous.clear();
 | 
						|
    Previous.addDecl(OldDecl);
 | 
						|
 | 
						|
    if (FunctionTemplateDecl *OldTemplateDecl =
 | 
						|
            dyn_cast<FunctionTemplateDecl>(OldDecl)) {
 | 
						|
      auto *OldFD = OldTemplateDecl->getTemplatedDecl();
 | 
						|
      NewFD->setPreviousDeclaration(OldFD);
 | 
						|
      adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
 | 
						|
      FunctionTemplateDecl *NewTemplateDecl
 | 
						|
        = NewFD->getDescribedFunctionTemplate();
 | 
						|
      assert(NewTemplateDecl && "Template/non-template mismatch");
 | 
						|
      if (NewFD->isCXXClassMember()) {
 | 
						|
        NewFD->setAccess(OldTemplateDecl->getAccess());
 | 
						|
        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
 | 
						|
      }
 | 
						|
 | 
						|
      // If this is an explicit specialization of a member that is a function
 | 
						|
      // template, mark it as a member specialization.
 | 
						|
      if (IsMemberSpecialization &&
 | 
						|
          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
 | 
						|
        NewTemplateDecl->setMemberSpecialization();
 | 
						|
        assert(OldTemplateDecl->isMemberSpecialization());
 | 
						|
        // Explicit specializations of a member template do not inherit deleted
 | 
						|
        // status from the parent member template that they are specializing.
 | 
						|
        if (OldFD->isDeleted()) {
 | 
						|
          // FIXME: This assert will not hold in the presence of modules.
 | 
						|
          assert(OldFD->getCanonicalDecl() == OldFD);
 | 
						|
          // FIXME: We need an update record for this AST mutation.
 | 
						|
          OldFD->setDeletedAsWritten(false);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    } else {
 | 
						|
      if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
 | 
						|
        auto *OldFD = cast<FunctionDecl>(OldDecl);
 | 
						|
        // This needs to happen first so that 'inline' propagates.
 | 
						|
        NewFD->setPreviousDeclaration(OldFD);
 | 
						|
        adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
 | 
						|
        if (NewFD->isCXXClassMember())
 | 
						|
          NewFD->setAccess(OldFD->getAccess());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
 | 
						|
             !NewFD->getAttr<OverloadableAttr>()) {
 | 
						|
    assert((Previous.empty() ||
 | 
						|
            llvm::any_of(Previous,
 | 
						|
                         [](const NamedDecl *ND) {
 | 
						|
                           return ND->hasAttr<OverloadableAttr>();
 | 
						|
                         })) &&
 | 
						|
           "Non-redecls shouldn't happen without overloadable present");
 | 
						|
 | 
						|
    auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
 | 
						|
      const auto *FD = dyn_cast<FunctionDecl>(ND);
 | 
						|
      return FD && !FD->hasAttr<OverloadableAttr>();
 | 
						|
    });
 | 
						|
 | 
						|
    if (OtherUnmarkedIter != Previous.end()) {
 | 
						|
      Diag(NewFD->getLocation(),
 | 
						|
           diag::err_attribute_overloadable_multiple_unmarked_overloads);
 | 
						|
      Diag((*OtherUnmarkedIter)->getLocation(),
 | 
						|
           diag::note_attribute_overloadable_prev_overload)
 | 
						|
          << false;
 | 
						|
 | 
						|
      NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Semantic checking for this function declaration (in isolation).
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    // C++-specific checks.
 | 
						|
    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
 | 
						|
      CheckConstructor(Constructor);
 | 
						|
    } else if (CXXDestructorDecl *Destructor =
 | 
						|
                dyn_cast<CXXDestructorDecl>(NewFD)) {
 | 
						|
      CXXRecordDecl *Record = Destructor->getParent();
 | 
						|
      QualType ClassType = Context.getTypeDeclType(Record);
 | 
						|
 | 
						|
      // FIXME: Shouldn't we be able to perform this check even when the class
 | 
						|
      // type is dependent? Both gcc and edg can handle that.
 | 
						|
      if (!ClassType->isDependentType()) {
 | 
						|
        DeclarationName Name
 | 
						|
          = Context.DeclarationNames.getCXXDestructorName(
 | 
						|
                                        Context.getCanonicalType(ClassType));
 | 
						|
        if (NewFD->getDeclName() != Name) {
 | 
						|
          Diag(NewFD->getLocation(), diag::err_destructor_name);
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
          return Redeclaration;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (CXXConversionDecl *Conversion
 | 
						|
               = dyn_cast<CXXConversionDecl>(NewFD)) {
 | 
						|
      ActOnConversionDeclarator(Conversion);
 | 
						|
    } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
 | 
						|
      if (auto *TD = Guide->getDescribedFunctionTemplate())
 | 
						|
        CheckDeductionGuideTemplate(TD);
 | 
						|
 | 
						|
      // A deduction guide is not on the list of entities that can be
 | 
						|
      // explicitly specialized.
 | 
						|
      if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
 | 
						|
        Diag(Guide->getLocStart(), diag::err_deduction_guide_specialized)
 | 
						|
            << /*explicit specialization*/ 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Find any virtual functions that this function overrides.
 | 
						|
    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
 | 
						|
      if (!Method->isFunctionTemplateSpecialization() &&
 | 
						|
          !Method->getDescribedFunctionTemplate() &&
 | 
						|
          Method->isCanonicalDecl()) {
 | 
						|
        if (AddOverriddenMethods(Method->getParent(), Method)) {
 | 
						|
          // If the function was marked as "static", we have a problem.
 | 
						|
          if (NewFD->getStorageClass() == SC_Static) {
 | 
						|
            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (Method->isStatic())
 | 
						|
        checkThisInStaticMemberFunctionType(Method);
 | 
						|
    }
 | 
						|
 | 
						|
    // Extra checking for C++ overloaded operators (C++ [over.oper]).
 | 
						|
    if (NewFD->isOverloadedOperator() &&
 | 
						|
        CheckOverloadedOperatorDeclaration(NewFD)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return Redeclaration;
 | 
						|
    }
 | 
						|
 | 
						|
    // Extra checking for C++0x literal operators (C++0x [over.literal]).
 | 
						|
    if (NewFD->getLiteralIdentifier() &&
 | 
						|
        CheckLiteralOperatorDeclaration(NewFD)) {
 | 
						|
      NewFD->setInvalidDecl();
 | 
						|
      return Redeclaration;
 | 
						|
    }
 | 
						|
 | 
						|
    // In C++, check default arguments now that we have merged decls. Unless
 | 
						|
    // the lexical context is the class, because in this case this is done
 | 
						|
    // during delayed parsing anyway.
 | 
						|
    if (!CurContext->isRecord())
 | 
						|
      CheckCXXDefaultArguments(NewFD);
 | 
						|
 | 
						|
    // If this function declares a builtin function, check the type of this
 | 
						|
    // declaration against the expected type for the builtin.
 | 
						|
    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
 | 
						|
      ASTContext::GetBuiltinTypeError Error;
 | 
						|
      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
 | 
						|
      QualType T = Context.GetBuiltinType(BuiltinID, Error);
 | 
						|
      // If the type of the builtin differs only in its exception
 | 
						|
      // specification, that's OK.
 | 
						|
      // FIXME: If the types do differ in this way, it would be better to
 | 
						|
      // retain the 'noexcept' form of the type.
 | 
						|
      if (!T.isNull() &&
 | 
						|
          !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
 | 
						|
                                                            NewFD->getType()))
 | 
						|
        // The type of this function differs from the type of the builtin,
 | 
						|
        // so forget about the builtin entirely.
 | 
						|
        Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this function is declared as being extern "C", then check to see if
 | 
						|
    // the function returns a UDT (class, struct, or union type) that is not C
 | 
						|
    // compatible, and if it does, warn the user.
 | 
						|
    // But, issue any diagnostic on the first declaration only.
 | 
						|
    if (Previous.empty() && NewFD->isExternC()) {
 | 
						|
      QualType R = NewFD->getReturnType();
 | 
						|
      if (R->isIncompleteType() && !R->isVoidType())
 | 
						|
        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
 | 
						|
            << NewFD << R;
 | 
						|
      else if (!R.isPODType(Context) && !R->isVoidType() &&
 | 
						|
               !R->isObjCObjectPointerType())
 | 
						|
        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++1z [dcl.fct]p6:
 | 
						|
    //   [...] whether the function has a non-throwing exception-specification
 | 
						|
    //   [is] part of the function type
 | 
						|
    //
 | 
						|
    // This results in an ABI break between C++14 and C++17 for functions whose
 | 
						|
    // declared type includes an exception-specification in a parameter or
 | 
						|
    // return type. (Exception specifications on the function itself are OK in
 | 
						|
    // most cases, and exception specifications are not permitted in most other
 | 
						|
    // contexts where they could make it into a mangling.)
 | 
						|
    if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
 | 
						|
      auto HasNoexcept = [&](QualType T) -> bool {
 | 
						|
        // Strip off declarator chunks that could be between us and a function
 | 
						|
        // type. We don't need to look far, exception specifications are very
 | 
						|
        // restricted prior to C++17.
 | 
						|
        if (auto *RT = T->getAs<ReferenceType>())
 | 
						|
          T = RT->getPointeeType();
 | 
						|
        else if (T->isAnyPointerType())
 | 
						|
          T = T->getPointeeType();
 | 
						|
        else if (auto *MPT = T->getAs<MemberPointerType>())
 | 
						|
          T = MPT->getPointeeType();
 | 
						|
        if (auto *FPT = T->getAs<FunctionProtoType>())
 | 
						|
          if (FPT->isNothrow(Context))
 | 
						|
            return true;
 | 
						|
        return false;
 | 
						|
      };
 | 
						|
 | 
						|
      auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
 | 
						|
      bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
 | 
						|
      for (QualType T : FPT->param_types())
 | 
						|
        AnyNoexcept |= HasNoexcept(T);
 | 
						|
      if (AnyNoexcept)
 | 
						|
        Diag(NewFD->getLocation(),
 | 
						|
             diag::warn_cxx17_compat_exception_spec_in_signature)
 | 
						|
            << NewFD;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Redeclaration && LangOpts.CUDA)
 | 
						|
      checkCUDATargetOverload(NewFD, Previous);
 | 
						|
  }
 | 
						|
  return Redeclaration;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
 | 
						|
  // C++11 [basic.start.main]p3:
 | 
						|
  //   A program that [...] declares main to be inline, static or
 | 
						|
  //   constexpr is ill-formed.
 | 
						|
  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
 | 
						|
  //   appear in a declaration of main.
 | 
						|
  // static main is not an error under C99, but we should warn about it.
 | 
						|
  // We accept _Noreturn main as an extension.
 | 
						|
  if (FD->getStorageClass() == SC_Static)
 | 
						|
    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
 | 
						|
         ? diag::err_static_main : diag::warn_static_main)
 | 
						|
      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | 
						|
  if (FD->isInlineSpecified())
 | 
						|
    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
 | 
						|
      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
 | 
						|
  if (DS.isNoreturnSpecified()) {
 | 
						|
    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
 | 
						|
    SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
 | 
						|
    Diag(NoreturnLoc, diag::ext_noreturn_main);
 | 
						|
    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
 | 
						|
      << FixItHint::CreateRemoval(NoreturnRange);
 | 
						|
  }
 | 
						|
  if (FD->isConstexpr()) {
 | 
						|
    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
 | 
						|
      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
 | 
						|
    FD->setConstexpr(false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().OpenCL) {
 | 
						|
    Diag(FD->getLocation(), diag::err_opencl_no_main)
 | 
						|
        << FD->hasAttr<OpenCLKernelAttr>();
 | 
						|
    FD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = FD->getType();
 | 
						|
  assert(T->isFunctionType() && "function decl is not of function type");
 | 
						|
  const FunctionType* FT = T->castAs<FunctionType>();
 | 
						|
 | 
						|
  // Set default calling convention for main()
 | 
						|
  if (FT->getCallConv() != CC_C) {
 | 
						|
    FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
 | 
						|
    FD->setType(QualType(FT, 0));
 | 
						|
    T = Context.getCanonicalType(FD->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
 | 
						|
    // In C with GNU extensions we allow main() to have non-integer return
 | 
						|
    // type, but we should warn about the extension, and we disable the
 | 
						|
    // implicit-return-zero rule.
 | 
						|
 | 
						|
    // GCC in C mode accepts qualified 'int'.
 | 
						|
    if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
 | 
						|
      FD->setHasImplicitReturnZero(true);
 | 
						|
    else {
 | 
						|
      Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
 | 
						|
      SourceRange RTRange = FD->getReturnTypeSourceRange();
 | 
						|
      if (RTRange.isValid())
 | 
						|
        Diag(RTRange.getBegin(), diag::note_main_change_return_type)
 | 
						|
            << FixItHint::CreateReplacement(RTRange, "int");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // In C and C++, main magically returns 0 if you fall off the end;
 | 
						|
    // set the flag which tells us that.
 | 
						|
    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
 | 
						|
 | 
						|
    // All the standards say that main() should return 'int'.
 | 
						|
    if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
 | 
						|
      FD->setHasImplicitReturnZero(true);
 | 
						|
    else {
 | 
						|
      // Otherwise, this is just a flat-out error.
 | 
						|
      SourceRange RTRange = FD->getReturnTypeSourceRange();
 | 
						|
      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
 | 
						|
          << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
 | 
						|
                                : FixItHint());
 | 
						|
      FD->setInvalidDecl(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Treat protoless main() as nullary.
 | 
						|
  if (isa<FunctionNoProtoType>(FT)) return;
 | 
						|
 | 
						|
  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
 | 
						|
  unsigned nparams = FTP->getNumParams();
 | 
						|
  assert(FD->getNumParams() == nparams);
 | 
						|
 | 
						|
  bool HasExtraParameters = (nparams > 3);
 | 
						|
 | 
						|
  if (FTP->isVariadic()) {
 | 
						|
    Diag(FD->getLocation(), diag::ext_variadic_main);
 | 
						|
    // FIXME: if we had information about the location of the ellipsis, we
 | 
						|
    // could add a FixIt hint to remove it as a parameter.
 | 
						|
  }
 | 
						|
 | 
						|
  // Darwin passes an undocumented fourth argument of type char**.  If
 | 
						|
  // other platforms start sprouting these, the logic below will start
 | 
						|
  // getting shifty.
 | 
						|
  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
 | 
						|
    HasExtraParameters = false;
 | 
						|
 | 
						|
  if (HasExtraParameters) {
 | 
						|
    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
 | 
						|
    FD->setInvalidDecl(true);
 | 
						|
    nparams = 3;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: a lot of the following diagnostics would be improved
 | 
						|
  // if we had some location information about types.
 | 
						|
 | 
						|
  QualType CharPP =
 | 
						|
    Context.getPointerType(Context.getPointerType(Context.CharTy));
 | 
						|
  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
 | 
						|
 | 
						|
  for (unsigned i = 0; i < nparams; ++i) {
 | 
						|
    QualType AT = FTP->getParamType(i);
 | 
						|
 | 
						|
    bool mismatch = true;
 | 
						|
 | 
						|
    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
 | 
						|
      mismatch = false;
 | 
						|
    else if (Expected[i] == CharPP) {
 | 
						|
      // As an extension, the following forms are okay:
 | 
						|
      //   char const **
 | 
						|
      //   char const * const *
 | 
						|
      //   char * const *
 | 
						|
 | 
						|
      QualifierCollector qs;
 | 
						|
      const PointerType* PT;
 | 
						|
      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
 | 
						|
          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
 | 
						|
          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
 | 
						|
                              Context.CharTy)) {
 | 
						|
        qs.removeConst();
 | 
						|
        mismatch = !qs.empty();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (mismatch) {
 | 
						|
      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
 | 
						|
      // TODO: suggest replacing given type with expected type
 | 
						|
      FD->setInvalidDecl(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (nparams == 1 && !FD->isInvalidDecl()) {
 | 
						|
    Diag(FD->getLocation(), diag::warn_main_one_arg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
 | 
						|
    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
 | 
						|
    FD->setInvalidDecl();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
 | 
						|
  QualType T = FD->getType();
 | 
						|
  assert(T->isFunctionType() && "function decl is not of function type");
 | 
						|
  const FunctionType *FT = T->castAs<FunctionType>();
 | 
						|
 | 
						|
  // Set an implicit return of 'zero' if the function can return some integral,
 | 
						|
  // enumeration, pointer or nullptr type.
 | 
						|
  if (FT->getReturnType()->isIntegralOrEnumerationType() ||
 | 
						|
      FT->getReturnType()->isAnyPointerType() ||
 | 
						|
      FT->getReturnType()->isNullPtrType())
 | 
						|
    // DllMain is exempt because a return value of zero means it failed.
 | 
						|
    if (FD->getName() != "DllMain")
 | 
						|
      FD->setHasImplicitReturnZero(true);
 | 
						|
 | 
						|
  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
 | 
						|
    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
 | 
						|
    FD->setInvalidDecl();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
 | 
						|
  // FIXME: Need strict checking.  In C89, we need to check for
 | 
						|
  // any assignment, increment, decrement, function-calls, or
 | 
						|
  // commas outside of a sizeof.  In C99, it's the same list,
 | 
						|
  // except that the aforementioned are allowed in unevaluated
 | 
						|
  // expressions.  Everything else falls under the
 | 
						|
  // "may accept other forms of constant expressions" exception.
 | 
						|
  // (We never end up here for C++, so the constant expression
 | 
						|
  // rules there don't matter.)
 | 
						|
  const Expr *Culprit;
 | 
						|
  if (Init->isConstantInitializer(Context, false, &Culprit))
 | 
						|
    return false;
 | 
						|
  Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
 | 
						|
    << Culprit->getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Visits an initialization expression to see if OrigDecl is evaluated in
 | 
						|
  // its own initialization and throws a warning if it does.
 | 
						|
  class SelfReferenceChecker
 | 
						|
      : public EvaluatedExprVisitor<SelfReferenceChecker> {
 | 
						|
    Sema &S;
 | 
						|
    Decl *OrigDecl;
 | 
						|
    bool isRecordType;
 | 
						|
    bool isPODType;
 | 
						|
    bool isReferenceType;
 | 
						|
 | 
						|
    bool isInitList;
 | 
						|
    llvm::SmallVector<unsigned, 4> InitFieldIndex;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
 | 
						|
 | 
						|
    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
 | 
						|
                                                    S(S), OrigDecl(OrigDecl) {
 | 
						|
      isPODType = false;
 | 
						|
      isRecordType = false;
 | 
						|
      isReferenceType = false;
 | 
						|
      isInitList = false;
 | 
						|
      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
 | 
						|
        isPODType = VD->getType().isPODType(S.Context);
 | 
						|
        isRecordType = VD->getType()->isRecordType();
 | 
						|
        isReferenceType = VD->getType()->isReferenceType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // For most expressions, just call the visitor.  For initializer lists,
 | 
						|
    // track the index of the field being initialized since fields are
 | 
						|
    // initialized in order allowing use of previously initialized fields.
 | 
						|
    void CheckExpr(Expr *E) {
 | 
						|
      InitListExpr *InitList = dyn_cast<InitListExpr>(E);
 | 
						|
      if (!InitList) {
 | 
						|
        Visit(E);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Track and increment the index here.
 | 
						|
      isInitList = true;
 | 
						|
      InitFieldIndex.push_back(0);
 | 
						|
      for (auto Child : InitList->children()) {
 | 
						|
        CheckExpr(cast<Expr>(Child));
 | 
						|
        ++InitFieldIndex.back();
 | 
						|
      }
 | 
						|
      InitFieldIndex.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
    // Returns true if MemberExpr is checked and no further checking is needed.
 | 
						|
    // Returns false if additional checking is required.
 | 
						|
    bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
 | 
						|
      llvm::SmallVector<FieldDecl*, 4> Fields;
 | 
						|
      Expr *Base = E;
 | 
						|
      bool ReferenceField = false;
 | 
						|
 | 
						|
      // Get the field memebers used.
 | 
						|
      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
 | 
						|
        FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
 | 
						|
        if (!FD)
 | 
						|
          return false;
 | 
						|
        Fields.push_back(FD);
 | 
						|
        if (FD->getType()->isReferenceType())
 | 
						|
          ReferenceField = true;
 | 
						|
        Base = ME->getBase()->IgnoreParenImpCasts();
 | 
						|
      }
 | 
						|
 | 
						|
      // Keep checking only if the base Decl is the same.
 | 
						|
      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
 | 
						|
      if (!DRE || DRE->getDecl() != OrigDecl)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // A reference field can be bound to an unininitialized field.
 | 
						|
      if (CheckReference && !ReferenceField)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Convert FieldDecls to their index number.
 | 
						|
      llvm::SmallVector<unsigned, 4> UsedFieldIndex;
 | 
						|
      for (const FieldDecl *I : llvm::reverse(Fields))
 | 
						|
        UsedFieldIndex.push_back(I->getFieldIndex());
 | 
						|
 | 
						|
      // See if a warning is needed by checking the first difference in index
 | 
						|
      // numbers.  If field being used has index less than the field being
 | 
						|
      // initialized, then the use is safe.
 | 
						|
      for (auto UsedIter = UsedFieldIndex.begin(),
 | 
						|
                UsedEnd = UsedFieldIndex.end(),
 | 
						|
                OrigIter = InitFieldIndex.begin(),
 | 
						|
                OrigEnd = InitFieldIndex.end();
 | 
						|
           UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
 | 
						|
        if (*UsedIter < *OrigIter)
 | 
						|
          return true;
 | 
						|
        if (*UsedIter > *OrigIter)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      // TODO: Add a different warning which will print the field names.
 | 
						|
      HandleDeclRefExpr(DRE);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // For most expressions, the cast is directly above the DeclRefExpr.
 | 
						|
    // For conditional operators, the cast can be outside the conditional
 | 
						|
    // operator if both expressions are DeclRefExpr's.
 | 
						|
    void HandleValue(Expr *E) {
 | 
						|
      E = E->IgnoreParens();
 | 
						|
      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
        HandleDeclRefExpr(DRE);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
 | 
						|
        Visit(CO->getCond());
 | 
						|
        HandleValue(CO->getTrueExpr());
 | 
						|
        HandleValue(CO->getFalseExpr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (BinaryConditionalOperator *BCO =
 | 
						|
              dyn_cast<BinaryConditionalOperator>(E)) {
 | 
						|
        Visit(BCO->getCond());
 | 
						|
        HandleValue(BCO->getFalseExpr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
 | 
						|
        HandleValue(OVE->getSourceExpr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
        if (BO->getOpcode() == BO_Comma) {
 | 
						|
          Visit(BO->getLHS());
 | 
						|
          HandleValue(BO->getRHS());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (isa<MemberExpr>(E)) {
 | 
						|
        if (isInitList) {
 | 
						|
          if (CheckInitListMemberExpr(cast<MemberExpr>(E),
 | 
						|
                                      false /*CheckReference*/))
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        Expr *Base = E->IgnoreParenImpCasts();
 | 
						|
        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
 | 
						|
          // Check for static member variables and don't warn on them.
 | 
						|
          if (!isa<FieldDecl>(ME->getMemberDecl()))
 | 
						|
            return;
 | 
						|
          Base = ME->getBase()->IgnoreParenImpCasts();
 | 
						|
        }
 | 
						|
        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
 | 
						|
          HandleDeclRefExpr(DRE);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      Visit(E);
 | 
						|
    }
 | 
						|
 | 
						|
    // Reference types not handled in HandleValue are handled here since all
 | 
						|
    // uses of references are bad, not just r-value uses.
 | 
						|
    void VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
      if (isReferenceType)
 | 
						|
        HandleDeclRefExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
 | 
						|
      if (E->getCastKind() == CK_LValueToRValue) {
 | 
						|
        HandleValue(E->getSubExpr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      Inherited::VisitImplicitCastExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitMemberExpr(MemberExpr *E) {
 | 
						|
      if (isInitList) {
 | 
						|
        if (CheckInitListMemberExpr(E, true /*CheckReference*/))
 | 
						|
          return;
 | 
						|
      }
 | 
						|
 | 
						|
      // Don't warn on arrays since they can be treated as pointers.
 | 
						|
      if (E->getType()->canDecayToPointerType()) return;
 | 
						|
 | 
						|
      // Warn when a non-static method call is followed by non-static member
 | 
						|
      // field accesses, which is followed by a DeclRefExpr.
 | 
						|
      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
 | 
						|
      bool Warn = (MD && !MD->isStatic());
 | 
						|
      Expr *Base = E->getBase()->IgnoreParenImpCasts();
 | 
						|
      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
 | 
						|
        if (!isa<FieldDecl>(ME->getMemberDecl()))
 | 
						|
          Warn = false;
 | 
						|
        Base = ME->getBase()->IgnoreParenImpCasts();
 | 
						|
      }
 | 
						|
 | 
						|
      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
 | 
						|
        if (Warn)
 | 
						|
          HandleDeclRefExpr(DRE);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
 | 
						|
      // Visit that expression.
 | 
						|
      Visit(Base);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
 | 
						|
      Expr *Callee = E->getCallee();
 | 
						|
 | 
						|
      if (isa<UnresolvedLookupExpr>(Callee))
 | 
						|
        return Inherited::VisitCXXOperatorCallExpr(E);
 | 
						|
 | 
						|
      Visit(Callee);
 | 
						|
      for (auto Arg: E->arguments())
 | 
						|
        HandleValue(Arg->IgnoreParenImpCasts());
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitUnaryOperator(UnaryOperator *E) {
 | 
						|
      // For POD record types, addresses of its own members are well-defined.
 | 
						|
      if (E->getOpcode() == UO_AddrOf && isRecordType &&
 | 
						|
          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
 | 
						|
        if (!isPODType)
 | 
						|
          HandleValue(E->getSubExpr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (E->isIncrementDecrementOp()) {
 | 
						|
        HandleValue(E->getSubExpr());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      Inherited::VisitUnaryOperator(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
 | 
						|
 | 
						|
    void VisitCXXConstructExpr(CXXConstructExpr *E) {
 | 
						|
      if (E->getConstructor()->isCopyConstructor()) {
 | 
						|
        Expr *ArgExpr = E->getArg(0);
 | 
						|
        if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
 | 
						|
          if (ILE->getNumInits() == 1)
 | 
						|
            ArgExpr = ILE->getInit(0);
 | 
						|
        if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
 | 
						|
          if (ICE->getCastKind() == CK_NoOp)
 | 
						|
            ArgExpr = ICE->getSubExpr();
 | 
						|
        HandleValue(ArgExpr);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      Inherited::VisitCXXConstructExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitCallExpr(CallExpr *E) {
 | 
						|
      // Treat std::move as a use.
 | 
						|
      if (E->isCallToStdMove()) {
 | 
						|
        HandleValue(E->getArg(0));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      Inherited::VisitCallExpr(E);
 | 
						|
    }
 | 
						|
 | 
						|
    void VisitBinaryOperator(BinaryOperator *E) {
 | 
						|
      if (E->isCompoundAssignmentOp()) {
 | 
						|
        HandleValue(E->getLHS());
 | 
						|
        Visit(E->getRHS());
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      Inherited::VisitBinaryOperator(E);
 | 
						|
    }
 | 
						|
 | 
						|
    // A custom visitor for BinaryConditionalOperator is needed because the
 | 
						|
    // regular visitor would check the condition and true expression separately
 | 
						|
    // but both point to the same place giving duplicate diagnostics.
 | 
						|
    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
 | 
						|
      Visit(E->getCond());
 | 
						|
      Visit(E->getFalseExpr());
 | 
						|
    }
 | 
						|
 | 
						|
    void HandleDeclRefExpr(DeclRefExpr *DRE) {
 | 
						|
      Decl* ReferenceDecl = DRE->getDecl();
 | 
						|
      if (OrigDecl != ReferenceDecl) return;
 | 
						|
      unsigned diag;
 | 
						|
      if (isReferenceType) {
 | 
						|
        diag = diag::warn_uninit_self_reference_in_reference_init;
 | 
						|
      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
 | 
						|
        diag = diag::warn_static_self_reference_in_init;
 | 
						|
      } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
 | 
						|
                 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
 | 
						|
                 DRE->getDecl()->getType()->isRecordType()) {
 | 
						|
        diag = diag::warn_uninit_self_reference_in_init;
 | 
						|
      } else {
 | 
						|
        // Local variables will be handled by the CFG analysis.
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
 | 
						|
                            S.PDiag(diag)
 | 
						|
                              << DRE->getDecl()
 | 
						|
                              << OrigDecl->getLocation()
 | 
						|
                              << DRE->getSourceRange());
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
 | 
						|
  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
 | 
						|
                                 bool DirectInit) {
 | 
						|
    // Parameters arguments are occassionially constructed with itself,
 | 
						|
    // for instance, in recursive functions.  Skip them.
 | 
						|
    if (isa<ParmVarDecl>(OrigDecl))
 | 
						|
      return;
 | 
						|
 | 
						|
    E = E->IgnoreParens();
 | 
						|
 | 
						|
    // Skip checking T a = a where T is not a record or reference type.
 | 
						|
    // Doing so is a way to silence uninitialized warnings.
 | 
						|
    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
 | 
						|
      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
 | 
						|
        if (ICE->getCastKind() == CK_LValueToRValue)
 | 
						|
          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
 | 
						|
            if (DRE->getDecl() == OrigDecl)
 | 
						|
              return;
 | 
						|
 | 
						|
    SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
 | 
						|
  }
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
  // Simple wrapper to add the name of a variable or (if no variable is
 | 
						|
  // available) a DeclarationName into a diagnostic.
 | 
						|
  struct VarDeclOrName {
 | 
						|
    VarDecl *VDecl;
 | 
						|
    DeclarationName Name;
 | 
						|
 | 
						|
    friend const Sema::SemaDiagnosticBuilder &
 | 
						|
    operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
 | 
						|
      return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
 | 
						|
                                            DeclarationName Name, QualType Type,
 | 
						|
                                            TypeSourceInfo *TSI,
 | 
						|
                                            SourceRange Range, bool DirectInit,
 | 
						|
                                            Expr *Init) {
 | 
						|
  bool IsInitCapture = !VDecl;
 | 
						|
  assert((!VDecl || !VDecl->isInitCapture()) &&
 | 
						|
         "init captures are expected to be deduced prior to initialization");
 | 
						|
 | 
						|
  VarDeclOrName VN{VDecl, Name};
 | 
						|
 | 
						|
  DeducedType *Deduced = Type->getContainedDeducedType();
 | 
						|
  assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
 | 
						|
 | 
						|
  // C++11 [dcl.spec.auto]p3
 | 
						|
  if (!Init) {
 | 
						|
    assert(VDecl && "no init for init capture deduction?");
 | 
						|
 | 
						|
    // Except for class argument deduction, and then for an initializing
 | 
						|
    // declaration only, i.e. no static at class scope or extern.
 | 
						|
    if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
 | 
						|
        VDecl->hasExternalStorage() ||
 | 
						|
        VDecl->isStaticDataMember()) {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
 | 
						|
        << VDecl->getDeclName() << Type;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ArrayRef<Expr*> DeduceInits;
 | 
						|
  if (Init)
 | 
						|
    DeduceInits = Init;
 | 
						|
 | 
						|
  if (DirectInit) {
 | 
						|
    if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
 | 
						|
      DeduceInits = PL->exprs();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<DeducedTemplateSpecializationType>(Deduced)) {
 | 
						|
    assert(VDecl && "non-auto type for init capture deduction?");
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
 | 
						|
    InitializationKind Kind = InitializationKind::CreateForInit(
 | 
						|
        VDecl->getLocation(), DirectInit, Init);
 | 
						|
    // FIXME: Initialization should not be taking a mutable list of inits. 
 | 
						|
    SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
 | 
						|
    return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
 | 
						|
                                                       InitsCopy);
 | 
						|
  }
 | 
						|
 | 
						|
  if (DirectInit) {
 | 
						|
    if (auto *IL = dyn_cast<InitListExpr>(Init))
 | 
						|
      DeduceInits = IL->inits();
 | 
						|
  }
 | 
						|
 | 
						|
  // Deduction only works if we have exactly one source expression.
 | 
						|
  if (DeduceInits.empty()) {
 | 
						|
    // It isn't possible to write this directly, but it is possible to
 | 
						|
    // end up in this situation with "auto x(some_pack...);"
 | 
						|
    Diag(Init->getLocStart(), IsInitCapture
 | 
						|
                                  ? diag::err_init_capture_no_expression
 | 
						|
                                  : diag::err_auto_var_init_no_expression)
 | 
						|
        << VN << Type << Range;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeduceInits.size() > 1) {
 | 
						|
    Diag(DeduceInits[1]->getLocStart(),
 | 
						|
         IsInitCapture ? diag::err_init_capture_multiple_expressions
 | 
						|
                       : diag::err_auto_var_init_multiple_expressions)
 | 
						|
        << VN << Type << Range;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *DeduceInit = DeduceInits[0];
 | 
						|
  if (DirectInit && isa<InitListExpr>(DeduceInit)) {
 | 
						|
    Diag(Init->getLocStart(), IsInitCapture
 | 
						|
                                  ? diag::err_init_capture_paren_braces
 | 
						|
                                  : diag::err_auto_var_init_paren_braces)
 | 
						|
        << isa<InitListExpr>(Init) << VN << Type << Range;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Expressions default to 'id' when we're in a debugger.
 | 
						|
  bool DefaultedAnyToId = false;
 | 
						|
  if (getLangOpts().DebuggerCastResultToId &&
 | 
						|
      Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
 | 
						|
    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
 | 
						|
    if (Result.isInvalid()) {
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
    Init = Result.get();
 | 
						|
    DefaultedAnyToId = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [dcl.decomp]p1:
 | 
						|
  //   If the assignment-expression [...] has array type A and no ref-qualifier
 | 
						|
  //   is present, e has type cv A
 | 
						|
  if (VDecl && isa<DecompositionDecl>(VDecl) &&
 | 
						|
      Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
 | 
						|
      DeduceInit->getType()->isConstantArrayType())
 | 
						|
    return Context.getQualifiedType(DeduceInit->getType(),
 | 
						|
                                    Type.getQualifiers());
 | 
						|
 | 
						|
  QualType DeducedType;
 | 
						|
  if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
 | 
						|
    if (!IsInitCapture)
 | 
						|
      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
 | 
						|
    else if (isa<InitListExpr>(Init))
 | 
						|
      Diag(Range.getBegin(),
 | 
						|
           diag::err_init_capture_deduction_failure_from_init_list)
 | 
						|
          << VN
 | 
						|
          << (DeduceInit->getType().isNull() ? TSI->getType()
 | 
						|
                                             : DeduceInit->getType())
 | 
						|
          << DeduceInit->getSourceRange();
 | 
						|
    else
 | 
						|
      Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
 | 
						|
          << VN << TSI->getType()
 | 
						|
          << (DeduceInit->getType().isNull() ? TSI->getType()
 | 
						|
                                             : DeduceInit->getType())
 | 
						|
          << DeduceInit->getSourceRange();
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
 | 
						|
  // 'id' instead of a specific object type prevents most of our usual
 | 
						|
  // checks.
 | 
						|
  // We only want to warn outside of template instantiations, though:
 | 
						|
  // inside a template, the 'id' could have come from a parameter.
 | 
						|
  if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
 | 
						|
      !DeducedType.isNull() && DeducedType->isObjCIdType()) {
 | 
						|
    SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
 | 
						|
    Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
 | 
						|
  }
 | 
						|
 | 
						|
  return DeducedType;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
 | 
						|
                                         Expr *Init) {
 | 
						|
  QualType DeducedType = deduceVarTypeFromInitializer(
 | 
						|
      VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
 | 
						|
      VDecl->getSourceRange(), DirectInit, Init);
 | 
						|
  if (DeducedType.isNull()) {
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  VDecl->setType(DeducedType);
 | 
						|
  assert(VDecl->isLinkageValid());
 | 
						|
 | 
						|
  // In ARC, infer lifetime.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
 | 
						|
  // If this is a redeclaration, check that the type we just deduced matches
 | 
						|
  // the previously declared type.
 | 
						|
  if (VarDecl *Old = VDecl->getPreviousDecl()) {
 | 
						|
    // We never need to merge the type, because we cannot form an incomplete
 | 
						|
    // array of auto, nor deduce such a type.
 | 
						|
    MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the deduced type is valid for a variable declaration.
 | 
						|
  CheckVariableDeclarationType(VDecl);
 | 
						|
  return VDecl->isInvalidDecl();
 | 
						|
}
 | 
						|
 | 
						|
/// AddInitializerToDecl - Adds the initializer Init to the
 | 
						|
/// declaration dcl. If DirectInit is true, this is C++ direct
 | 
						|
/// initialization rather than copy initialization.
 | 
						|
void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
 | 
						|
  // If there is no declaration, there was an error parsing it.  Just ignore
 | 
						|
  // the initializer.
 | 
						|
  if (!RealDecl || RealDecl->isInvalidDecl()) {
 | 
						|
    CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
 | 
						|
    // Pure-specifiers are handled in ActOnPureSpecifier.
 | 
						|
    Diag(Method->getLocation(), diag::err_member_function_initialization)
 | 
						|
      << Method->getDeclName() << Init->getSourceRange();
 | 
						|
    Method->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
 | 
						|
  if (!VDecl) {
 | 
						|
    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
 | 
						|
    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
 | 
						|
    RealDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
 | 
						|
  if (VDecl->getType()->isUndeducedType()) {
 | 
						|
    // Attempt typo correction early so that the type of the init expression can
 | 
						|
    // be deduced based on the chosen correction if the original init contains a
 | 
						|
    // TypoExpr.
 | 
						|
    ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
 | 
						|
    if (!Res.isUsable()) {
 | 
						|
      RealDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Init = Res.get();
 | 
						|
 | 
						|
    if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // dllimport cannot be used on variable definitions.
 | 
						|
  if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
 | 
						|
    Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
 | 
						|
    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
 | 
						|
    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!VDecl->getType()->isDependentType()) {
 | 
						|
    // A definition must end up with a complete type, which means it must be
 | 
						|
    // complete with the restriction that an array type might be completed by
 | 
						|
    // the initializer; note that later code assumes this restriction.
 | 
						|
    QualType BaseDeclType = VDecl->getType();
 | 
						|
    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
 | 
						|
      BaseDeclType = Array->getElementType();
 | 
						|
    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
 | 
						|
                            diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
      RealDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // The variable can not have an abstract class type.
 | 
						|
    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
 | 
						|
                               diag::err_abstract_type_in_decl,
 | 
						|
                               AbstractVariableType))
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // If adding the initializer will turn this declaration into a definition,
 | 
						|
  // and we already have a definition for this variable, diagnose or otherwise
 | 
						|
  // handle the situation.
 | 
						|
  VarDecl *Def;
 | 
						|
  if ((Def = VDecl->getDefinition()) && Def != VDecl &&
 | 
						|
      (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
 | 
						|
      !VDecl->isThisDeclarationADemotedDefinition() &&
 | 
						|
      checkVarDeclRedefinition(Def, VDecl))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    // C++ [class.static.data]p4
 | 
						|
    //   If a static data member is of const integral or const
 | 
						|
    //   enumeration type, its declaration in the class definition can
 | 
						|
    //   specify a constant-initializer which shall be an integral
 | 
						|
    //   constant expression (5.19). In that case, the member can appear
 | 
						|
    //   in integral constant expressions. The member shall still be
 | 
						|
    //   defined in a namespace scope if it is used in the program and the
 | 
						|
    //   namespace scope definition shall not contain an initializer.
 | 
						|
    //
 | 
						|
    // We already performed a redefinition check above, but for static
 | 
						|
    // data members we also need to check whether there was an in-class
 | 
						|
    // declaration with an initializer.
 | 
						|
    if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
 | 
						|
      Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
 | 
						|
          << VDecl->getDeclName();
 | 
						|
      Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
 | 
						|
           diag::note_previous_initializer)
 | 
						|
          << 0;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VDecl->hasLocalStorage())
 | 
						|
      setFunctionHasBranchProtectedScope();
 | 
						|
 | 
						|
    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
 | 
						|
  // a kernel function cannot be initialized."
 | 
						|
  if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
 | 
						|
    Diag(VDecl->getLocation(), diag::err_local_cant_init);
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the decls type and save a reference for later, since
 | 
						|
  // CheckInitializerTypes may change it.
 | 
						|
  QualType DclT = VDecl->getType(), SavT = DclT;
 | 
						|
 | 
						|
  // Expressions default to 'id' when we're in a debugger
 | 
						|
  // and we are assigning it to a variable of Objective-C pointer type.
 | 
						|
  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
 | 
						|
      Init->getType() == Context.UnknownAnyTy) {
 | 
						|
    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
 | 
						|
    if (Result.isInvalid()) {
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Init = Result.get();
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the initialization.
 | 
						|
  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
 | 
						|
  if (!VDecl->isInvalidDecl()) {
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
 | 
						|
    InitializationKind Kind = InitializationKind::CreateForInit(
 | 
						|
        VDecl->getLocation(), DirectInit, Init);
 | 
						|
 | 
						|
    MultiExprArg Args = Init;
 | 
						|
    if (CXXDirectInit)
 | 
						|
      Args = MultiExprArg(CXXDirectInit->getExprs(),
 | 
						|
                          CXXDirectInit->getNumExprs());
 | 
						|
 | 
						|
    // Try to correct any TypoExprs in the initialization arguments.
 | 
						|
    for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
 | 
						|
      ExprResult Res = CorrectDelayedTyposInExpr(
 | 
						|
          Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
 | 
						|
            InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
 | 
						|
            return Init.Failed() ? ExprError() : E;
 | 
						|
          });
 | 
						|
      if (Res.isInvalid()) {
 | 
						|
        VDecl->setInvalidDecl();
 | 
						|
      } else if (Res.get() != Args[Idx]) {
 | 
						|
        Args[Idx] = Res.get();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (VDecl->isInvalidDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, Args,
 | 
						|
                                   /*TopLevelOfInitList=*/false,
 | 
						|
                                   /*TreatUnavailableAsInvalid=*/false);
 | 
						|
    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
 | 
						|
    if (Result.isInvalid()) {
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Init = Result.getAs<Expr>();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for self-references within variable initializers.
 | 
						|
  // Variables declared within a function/method body (except for references)
 | 
						|
  // are handled by a dataflow analysis.
 | 
						|
  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
 | 
						|
      VDecl->getType()->isReferenceType()) {
 | 
						|
    CheckSelfReference(*this, RealDecl, Init, DirectInit);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the type changed, it means we had an incomplete type that was
 | 
						|
  // completed by the initializer. For example:
 | 
						|
  //   int ary[] = { 1, 3, 5 };
 | 
						|
  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
 | 
						|
  if (!VDecl->isInvalidDecl() && (DclT != SavT))
 | 
						|
    VDecl->setType(DclT);
 | 
						|
 | 
						|
  if (!VDecl->isInvalidDecl()) {
 | 
						|
    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
 | 
						|
 | 
						|
    if (VDecl->hasAttr<BlocksAttr>())
 | 
						|
      checkRetainCycles(VDecl, Init);
 | 
						|
 | 
						|
    // It is safe to assign a weak reference into a strong variable.
 | 
						|
    // Although this code can still have problems:
 | 
						|
    //   id x = self.weakProp;
 | 
						|
    //   id y = self.weakProp;
 | 
						|
    // we do not warn to warn spuriously when 'x' and 'y' are on separate
 | 
						|
    // paths through the function. This should be revisited if
 | 
						|
    // -Wrepeated-use-of-weak is made flow-sensitive.
 | 
						|
    if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
 | 
						|
         VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
 | 
						|
        !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
 | 
						|
                         Init->getLocStart()))
 | 
						|
      getCurFunction()->markSafeWeakUse(Init);
 | 
						|
  }
 | 
						|
 | 
						|
  // The initialization is usually a full-expression.
 | 
						|
  //
 | 
						|
  // FIXME: If this is a braced initialization of an aggregate, it is not
 | 
						|
  // an expression, and each individual field initializer is a separate
 | 
						|
  // full-expression. For instance, in:
 | 
						|
  //
 | 
						|
  //   struct Temp { ~Temp(); };
 | 
						|
  //   struct S { S(Temp); };
 | 
						|
  //   struct T { S a, b; } t = { Temp(), Temp() }
 | 
						|
  //
 | 
						|
  // we should destroy the first Temp before constructing the second.
 | 
						|
  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
 | 
						|
                                          false,
 | 
						|
                                          VDecl->isConstexpr());
 | 
						|
  if (Result.isInvalid()) {
 | 
						|
    VDecl->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  Init = Result.get();
 | 
						|
 | 
						|
  // Attach the initializer to the decl.
 | 
						|
  VDecl->setInit(Init);
 | 
						|
 | 
						|
  if (VDecl->isLocalVarDecl()) {
 | 
						|
    // Don't check the initializer if the declaration is malformed.
 | 
						|
    if (VDecl->isInvalidDecl()) {
 | 
						|
      // do nothing
 | 
						|
 | 
						|
    // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
 | 
						|
    // This is true even in OpenCL C++.
 | 
						|
    } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
 | 
						|
      CheckForConstantInitializer(Init, DclT);
 | 
						|
 | 
						|
    // Otherwise, C++ does not restrict the initializer.
 | 
						|
    } else if (getLangOpts().CPlusPlus) {
 | 
						|
      // do nothing
 | 
						|
 | 
						|
    // C99 6.7.8p4: All the expressions in an initializer for an object that has
 | 
						|
    // static storage duration shall be constant expressions or string literals.
 | 
						|
    } else if (VDecl->getStorageClass() == SC_Static) {
 | 
						|
      CheckForConstantInitializer(Init, DclT);
 | 
						|
 | 
						|
    // C89 is stricter than C99 for aggregate initializers.
 | 
						|
    // C89 6.5.7p3: All the expressions [...] in an initializer list
 | 
						|
    // for an object that has aggregate or union type shall be
 | 
						|
    // constant expressions.
 | 
						|
    } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
 | 
						|
               isa<InitListExpr>(Init)) {
 | 
						|
      const Expr *Culprit;
 | 
						|
      if (!Init->isConstantInitializer(Context, false, &Culprit)) {
 | 
						|
        Diag(Culprit->getExprLoc(),
 | 
						|
             diag::ext_aggregate_init_not_constant)
 | 
						|
          << Culprit->getSourceRange();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
 | 
						|
             VDecl->getLexicalDeclContext()->isRecord()) {
 | 
						|
    // This is an in-class initialization for a static data member, e.g.,
 | 
						|
    //
 | 
						|
    // struct S {
 | 
						|
    //   static const int value = 17;
 | 
						|
    // };
 | 
						|
 | 
						|
    // C++ [class.mem]p4:
 | 
						|
    //   A member-declarator can contain a constant-initializer only
 | 
						|
    //   if it declares a static member (9.4) of const integral or
 | 
						|
    //   const enumeration type, see 9.4.2.
 | 
						|
    //
 | 
						|
    // C++11 [class.static.data]p3:
 | 
						|
    //   If a non-volatile non-inline const static data member is of integral
 | 
						|
    //   or enumeration type, its declaration in the class definition can
 | 
						|
    //   specify a brace-or-equal-initializer in which every initializer-clause
 | 
						|
    //   that is an assignment-expression is a constant expression. A static
 | 
						|
    //   data member of literal type can be declared in the class definition
 | 
						|
    //   with the constexpr specifier; if so, its declaration shall specify a
 | 
						|
    //   brace-or-equal-initializer in which every initializer-clause that is
 | 
						|
    //   an assignment-expression is a constant expression.
 | 
						|
 | 
						|
    // Do nothing on dependent types.
 | 
						|
    if (DclT->isDependentType()) {
 | 
						|
 | 
						|
    // Allow any 'static constexpr' members, whether or not they are of literal
 | 
						|
    // type. We separately check that every constexpr variable is of literal
 | 
						|
    // type.
 | 
						|
    } else if (VDecl->isConstexpr()) {
 | 
						|
 | 
						|
    // Require constness.
 | 
						|
    } else if (!DclT.isConstQualified()) {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
 | 
						|
        << Init->getSourceRange();
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
 | 
						|
    // We allow integer constant expressions in all cases.
 | 
						|
    } else if (DclT->isIntegralOrEnumerationType()) {
 | 
						|
      // Check whether the expression is a constant expression.
 | 
						|
      SourceLocation Loc;
 | 
						|
      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
 | 
						|
        // In C++11, a non-constexpr const static data member with an
 | 
						|
        // in-class initializer cannot be volatile.
 | 
						|
        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
 | 
						|
      else if (Init->isValueDependent())
 | 
						|
        ; // Nothing to check.
 | 
						|
      else if (Init->isIntegerConstantExpr(Context, &Loc))
 | 
						|
        ; // Ok, it's an ICE!
 | 
						|
      else if (Init->isEvaluatable(Context)) {
 | 
						|
        // If we can constant fold the initializer through heroics, accept it,
 | 
						|
        // but report this as a use of an extension for -pedantic.
 | 
						|
        Diag(Loc, diag::ext_in_class_initializer_non_constant)
 | 
						|
          << Init->getSourceRange();
 | 
						|
      } else {
 | 
						|
        // Otherwise, this is some crazy unknown case.  Report the issue at the
 | 
						|
        // location provided by the isIntegerConstantExpr failed check.
 | 
						|
        Diag(Loc, diag::err_in_class_initializer_non_constant)
 | 
						|
          << Init->getSourceRange();
 | 
						|
        VDecl->setInvalidDecl();
 | 
						|
      }
 | 
						|
 | 
						|
    // We allow foldable floating-point constants as an extension.
 | 
						|
    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
 | 
						|
      // In C++98, this is a GNU extension. In C++11, it is not, but we support
 | 
						|
      // it anyway and provide a fixit to add the 'constexpr'.
 | 
						|
      if (getLangOpts().CPlusPlus11) {
 | 
						|
        Diag(VDecl->getLocation(),
 | 
						|
             diag::ext_in_class_initializer_float_type_cxx11)
 | 
						|
            << DclT << Init->getSourceRange();
 | 
						|
        Diag(VDecl->getLocStart(),
 | 
						|
             diag::note_in_class_initializer_float_type_cxx11)
 | 
						|
            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
 | 
						|
      } else {
 | 
						|
        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
 | 
						|
          << DclT << Init->getSourceRange();
 | 
						|
 | 
						|
        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
 | 
						|
          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
 | 
						|
            << Init->getSourceRange();
 | 
						|
          VDecl->setInvalidDecl();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Suggest adding 'constexpr' in C++11 for literal types.
 | 
						|
    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
 | 
						|
        << DclT << Init->getSourceRange()
 | 
						|
        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
 | 
						|
      VDecl->setConstexpr(true);
 | 
						|
 | 
						|
    } else {
 | 
						|
      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
 | 
						|
        << DclT << Init->getSourceRange();
 | 
						|
      VDecl->setInvalidDecl();
 | 
						|
    }
 | 
						|
  } else if (VDecl->isFileVarDecl()) {
 | 
						|
    // In C, extern is typically used to avoid tentative definitions when
 | 
						|
    // declaring variables in headers, but adding an intializer makes it a
 | 
						|
    // definition. This is somewhat confusing, so GCC and Clang both warn on it.
 | 
						|
    // In C++, extern is often used to give implictly static const variables
 | 
						|
    // external linkage, so don't warn in that case. If selectany is present,
 | 
						|
    // this might be header code intended for C and C++ inclusion, so apply the
 | 
						|
    // C++ rules.
 | 
						|
    if (VDecl->getStorageClass() == SC_Extern &&
 | 
						|
        ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
 | 
						|
         !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
 | 
						|
        !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
 | 
						|
        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
 | 
						|
      Diag(VDecl->getLocation(), diag::warn_extern_init);
 | 
						|
 | 
						|
    // C99 6.7.8p4. All file scoped initializers need to be constant.
 | 
						|
    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
 | 
						|
      CheckForConstantInitializer(Init, DclT);
 | 
						|
  }
 | 
						|
 | 
						|
  // We will represent direct-initialization similarly to copy-initialization:
 | 
						|
  //    int x(1);  -as-> int x = 1;
 | 
						|
  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
 | 
						|
  //
 | 
						|
  // Clients that want to distinguish between the two forms, can check for
 | 
						|
  // direct initializer using VarDecl::getInitStyle().
 | 
						|
  // A major benefit is that clients that don't particularly care about which
 | 
						|
  // exactly form was it (like the CodeGen) can handle both cases without
 | 
						|
  // special case code.
 | 
						|
 | 
						|
  // C++ 8.5p11:
 | 
						|
  // The form of initialization (using parentheses or '=') is generally
 | 
						|
  // insignificant, but does matter when the entity being initialized has a
 | 
						|
  // class type.
 | 
						|
  if (CXXDirectInit) {
 | 
						|
    assert(DirectInit && "Call-style initializer must be direct init.");
 | 
						|
    VDecl->setInitStyle(VarDecl::CallInit);
 | 
						|
  } else if (DirectInit) {
 | 
						|
    // This must be list-initialization. No other way is direct-initialization.
 | 
						|
    VDecl->setInitStyle(VarDecl::ListInit);
 | 
						|
  }
 | 
						|
 | 
						|
  CheckCompleteVariableDeclaration(VDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnInitializerError - Given that there was an error parsing an
 | 
						|
/// initializer for the given declaration, try to return to some form
 | 
						|
/// of sanity.
 | 
						|
void Sema::ActOnInitializerError(Decl *D) {
 | 
						|
  // Our main concern here is re-establishing invariants like "a
 | 
						|
  // variable's type is either dependent or complete".
 | 
						|
  if (!D || D->isInvalidDecl()) return;
 | 
						|
 | 
						|
  VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
  if (!VD) return;
 | 
						|
 | 
						|
  // Bindings are not usable if we can't make sense of the initializer.
 | 
						|
  if (auto *DD = dyn_cast<DecompositionDecl>(D))
 | 
						|
    for (auto *BD : DD->bindings())
 | 
						|
      BD->setInvalidDecl();
 | 
						|
 | 
						|
  // Auto types are meaningless if we can't make sense of the initializer.
 | 
						|
  if (ParsingInitForAutoVars.count(D)) {
 | 
						|
    D->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Ty = VD->getType();
 | 
						|
  if (Ty->isDependentType()) return;
 | 
						|
 | 
						|
  // Require a complete type.
 | 
						|
  if (RequireCompleteType(VD->getLocation(),
 | 
						|
                          Context.getBaseElementType(Ty),
 | 
						|
                          diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
    VD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Require a non-abstract type.
 | 
						|
  if (RequireNonAbstractType(VD->getLocation(), Ty,
 | 
						|
                             diag::err_abstract_type_in_decl,
 | 
						|
                             AbstractVariableType)) {
 | 
						|
    VD->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't bother complaining about constructors or destructors,
 | 
						|
  // though.
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
 | 
						|
  // If there is no declaration, there was an error parsing it. Just ignore it.
 | 
						|
  if (!RealDecl)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
 | 
						|
    QualType Type = Var->getType();
 | 
						|
 | 
						|
    // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
 | 
						|
    if (isa<DecompositionDecl>(RealDecl)) {
 | 
						|
      Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Type->isUndeducedType() &&
 | 
						|
        DeduceVariableDeclarationType(Var, false, nullptr))
 | 
						|
      return;
 | 
						|
 | 
						|
    // C++11 [class.static.data]p3: A static data member can be declared with
 | 
						|
    // the constexpr specifier; if so, its declaration shall specify
 | 
						|
    // a brace-or-equal-initializer.
 | 
						|
    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
 | 
						|
    // the definition of a variable [...] or the declaration of a static data
 | 
						|
    // member.
 | 
						|
    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
 | 
						|
        !Var->isThisDeclarationADemotedDefinition()) {
 | 
						|
      if (Var->isStaticDataMember()) {
 | 
						|
        // C++1z removes the relevant rule; the in-class declaration is always
 | 
						|
        // a definition there.
 | 
						|
        if (!getLangOpts().CPlusPlus17) {
 | 
						|
          Diag(Var->getLocation(),
 | 
						|
               diag::err_constexpr_static_mem_var_requires_init)
 | 
						|
            << Var->getDeclName();
 | 
						|
          Var->setInvalidDecl();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
 | 
						|
        Var->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
 | 
						|
    // be initialized.
 | 
						|
    if (!Var->isInvalidDecl() &&
 | 
						|
        Var->getType().getAddressSpace() == LangAS::opencl_constant &&
 | 
						|
        Var->getStorageClass() != SC_Extern && !Var->getInit()) {
 | 
						|
      Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Var->isThisDeclarationADefinition()) {
 | 
						|
    case VarDecl::Definition:
 | 
						|
      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
 | 
						|
        break;
 | 
						|
 | 
						|
      // We have an out-of-line definition of a static data member
 | 
						|
      // that has an in-class initializer, so we type-check this like
 | 
						|
      // a declaration.
 | 
						|
      //
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
    case VarDecl::DeclarationOnly:
 | 
						|
      // It's only a declaration.
 | 
						|
 | 
						|
      // Block scope. C99 6.7p7: If an identifier for an object is
 | 
						|
      // declared with no linkage (C99 6.2.2p6), the type for the
 | 
						|
      // object shall be complete.
 | 
						|
      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
 | 
						|
          !Var->hasLinkage() && !Var->isInvalidDecl() &&
 | 
						|
          RequireCompleteType(Var->getLocation(), Type,
 | 
						|
                              diag::err_typecheck_decl_incomplete_type))
 | 
						|
        Var->setInvalidDecl();
 | 
						|
 | 
						|
      // Make sure that the type is not abstract.
 | 
						|
      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
 | 
						|
          RequireNonAbstractType(Var->getLocation(), Type,
 | 
						|
                                 diag::err_abstract_type_in_decl,
 | 
						|
                                 AbstractVariableType))
 | 
						|
        Var->setInvalidDecl();
 | 
						|
      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
 | 
						|
          Var->getStorageClass() == SC_PrivateExtern) {
 | 
						|
        Diag(Var->getLocation(), diag::warn_private_extern);
 | 
						|
        Diag(Var->getLocation(), diag::note_private_extern);
 | 
						|
      }
 | 
						|
 | 
						|
      return;
 | 
						|
 | 
						|
    case VarDecl::TentativeDefinition:
 | 
						|
      // File scope. C99 6.9.2p2: A declaration of an identifier for an
 | 
						|
      // object that has file scope without an initializer, and without a
 | 
						|
      // storage-class specifier or with the storage-class specifier "static",
 | 
						|
      // constitutes a tentative definition. Note: A tentative definition with
 | 
						|
      // external linkage is valid (C99 6.2.2p5).
 | 
						|
      if (!Var->isInvalidDecl()) {
 | 
						|
        if (const IncompleteArrayType *ArrayT
 | 
						|
                                    = Context.getAsIncompleteArrayType(Type)) {
 | 
						|
          if (RequireCompleteType(Var->getLocation(),
 | 
						|
                                  ArrayT->getElementType(),
 | 
						|
                                  diag::err_illegal_decl_array_incomplete_type))
 | 
						|
            Var->setInvalidDecl();
 | 
						|
        } else if (Var->getStorageClass() == SC_Static) {
 | 
						|
          // C99 6.9.2p3: If the declaration of an identifier for an object is
 | 
						|
          // a tentative definition and has internal linkage (C99 6.2.2p3), the
 | 
						|
          // declared type shall not be an incomplete type.
 | 
						|
          // NOTE: code such as the following
 | 
						|
          //     static struct s;
 | 
						|
          //     struct s { int a; };
 | 
						|
          // is accepted by gcc. Hence here we issue a warning instead of
 | 
						|
          // an error and we do not invalidate the static declaration.
 | 
						|
          // NOTE: to avoid multiple warnings, only check the first declaration.
 | 
						|
          if (Var->isFirstDecl())
 | 
						|
            RequireCompleteType(Var->getLocation(), Type,
 | 
						|
                                diag::ext_typecheck_decl_incomplete_type);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Record the tentative definition; we're done.
 | 
						|
      if (!Var->isInvalidDecl())
 | 
						|
        TentativeDefinitions.push_back(Var);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Provide a specific diagnostic for uninitialized variable
 | 
						|
    // definitions with incomplete array type.
 | 
						|
    if (Type->isIncompleteArrayType()) {
 | 
						|
      Diag(Var->getLocation(),
 | 
						|
           diag::err_typecheck_incomplete_array_needs_initializer);
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Provide a specific diagnostic for uninitialized variable
 | 
						|
    // definitions with reference type.
 | 
						|
    if (Type->isReferenceType()) {
 | 
						|
      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
 | 
						|
        << Var->getDeclName()
 | 
						|
        << SourceRange(Var->getLocation(), Var->getLocation());
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Do not attempt to type-check the default initializer for a
 | 
						|
    // variable with dependent type.
 | 
						|
    if (Type->isDependentType())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (Var->isInvalidDecl())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (!Var->hasAttr<AliasAttr>()) {
 | 
						|
      if (RequireCompleteType(Var->getLocation(),
 | 
						|
                              Context.getBaseElementType(Type),
 | 
						|
                              diag::err_typecheck_decl_incomplete_type)) {
 | 
						|
        Var->setInvalidDecl();
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // The variable can not have an abstract class type.
 | 
						|
    if (RequireNonAbstractType(Var->getLocation(), Type,
 | 
						|
                               diag::err_abstract_type_in_decl,
 | 
						|
                               AbstractVariableType)) {
 | 
						|
      Var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for jumps past the implicit initializer.  C++0x
 | 
						|
    // clarifies that this applies to a "variable with automatic
 | 
						|
    // storage duration", not a "local variable".
 | 
						|
    // C++11 [stmt.dcl]p3
 | 
						|
    //   A program that jumps from a point where a variable with automatic
 | 
						|
    //   storage duration is not in scope to a point where it is in scope is
 | 
						|
    //   ill-formed unless the variable has scalar type, class type with a
 | 
						|
    //   trivial default constructor and a trivial destructor, a cv-qualified
 | 
						|
    //   version of one of these types, or an array of one of the preceding
 | 
						|
    //   types and is declared without an initializer.
 | 
						|
    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
 | 
						|
      if (const RecordType *Record
 | 
						|
            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
 | 
						|
        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
        // Mark the function (if we're in one) for further checking even if the
 | 
						|
        // looser rules of C++11 do not require such checks, so that we can
 | 
						|
        // diagnose incompatibilities with C++98.
 | 
						|
        if (!CXXRecord->isPOD())
 | 
						|
          setFunctionHasBranchProtectedScope();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // C++03 [dcl.init]p9:
 | 
						|
    //   If no initializer is specified for an object, and the
 | 
						|
    //   object is of (possibly cv-qualified) non-POD class type (or
 | 
						|
    //   array thereof), the object shall be default-initialized; if
 | 
						|
    //   the object is of const-qualified type, the underlying class
 | 
						|
    //   type shall have a user-declared default
 | 
						|
    //   constructor. Otherwise, if no initializer is specified for
 | 
						|
    //   a non- static object, the object and its subobjects, if
 | 
						|
    //   any, have an indeterminate initial value); if the object
 | 
						|
    //   or any of its subobjects are of const-qualified type, the
 | 
						|
    //   program is ill-formed.
 | 
						|
    // C++0x [dcl.init]p11:
 | 
						|
    //   If no initializer is specified for an object, the object is
 | 
						|
    //   default-initialized; [...].
 | 
						|
    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
 | 
						|
    InitializationKind Kind
 | 
						|
      = InitializationKind::CreateDefault(Var->getLocation());
 | 
						|
 | 
						|
    InitializationSequence InitSeq(*this, Entity, Kind, None);
 | 
						|
    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
 | 
						|
    if (Init.isInvalid())
 | 
						|
      Var->setInvalidDecl();
 | 
						|
    else if (Init.get()) {
 | 
						|
      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
 | 
						|
      // This is important for template substitution.
 | 
						|
      Var->setInitStyle(VarDecl::CallInit);
 | 
						|
    }
 | 
						|
 | 
						|
    CheckCompleteVariableDeclaration(Var);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnCXXForRangeDecl(Decl *D) {
 | 
						|
  // If there is no declaration, there was an error parsing it. Ignore it.
 | 
						|
  if (!D)
 | 
						|
    return;
 | 
						|
 | 
						|
  VarDecl *VD = dyn_cast<VarDecl>(D);
 | 
						|
  if (!VD) {
 | 
						|
    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
 | 
						|
    D->setInvalidDecl();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  VD->setCXXForRangeDecl(true);
 | 
						|
 | 
						|
  // for-range-declaration cannot be given a storage class specifier.
 | 
						|
  int Error = -1;
 | 
						|
  switch (VD->getStorageClass()) {
 | 
						|
  case SC_None:
 | 
						|
    break;
 | 
						|
  case SC_Extern:
 | 
						|
    Error = 0;
 | 
						|
    break;
 | 
						|
  case SC_Static:
 | 
						|
    Error = 1;
 | 
						|
    break;
 | 
						|
  case SC_PrivateExtern:
 | 
						|
    Error = 2;
 | 
						|
    break;
 | 
						|
  case SC_Auto:
 | 
						|
    Error = 3;
 | 
						|
    break;
 | 
						|
  case SC_Register:
 | 
						|
    Error = 4;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  if (Error != -1) {
 | 
						|
    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
 | 
						|
      << VD->getDeclName() << Error;
 | 
						|
    D->setInvalidDecl();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
StmtResult
 | 
						|
Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
 | 
						|
                                 IdentifierInfo *Ident,
 | 
						|
                                 ParsedAttributes &Attrs,
 | 
						|
                                 SourceLocation AttrEnd) {
 | 
						|
  // C++1y [stmt.iter]p1:
 | 
						|
  //   A range-based for statement of the form
 | 
						|
  //      for ( for-range-identifier : for-range-initializer ) statement
 | 
						|
  //   is equivalent to
 | 
						|
  //      for ( auto&& for-range-identifier : for-range-initializer ) statement
 | 
						|
  DeclSpec DS(Attrs.getPool().getFactory());
 | 
						|
 | 
						|
  const char *PrevSpec;
 | 
						|
  unsigned DiagID;
 | 
						|
  DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
 | 
						|
                     getPrintingPolicy());
 | 
						|
 | 
						|
  Declarator D(DS, DeclaratorContext::ForContext);
 | 
						|
  D.SetIdentifier(Ident, IdentLoc);
 | 
						|
  D.takeAttributes(Attrs, AttrEnd);
 | 
						|
 | 
						|
  ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
 | 
						|
  D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
 | 
						|
                EmptyAttrs, IdentLoc);
 | 
						|
  Decl *Var = ActOnDeclarator(S, D);
 | 
						|
  cast<VarDecl>(Var)->setCXXForRangeDecl(true);
 | 
						|
  FinalizeDeclaration(Var);
 | 
						|
  return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
 | 
						|
                       AttrEnd.isValid() ? AttrEnd : IdentLoc);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
 | 
						|
  if (var->isInvalidDecl()) return;
 | 
						|
 | 
						|
  if (getLangOpts().OpenCL) {
 | 
						|
    // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
 | 
						|
    // initialiser
 | 
						|
    if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
 | 
						|
        !var->hasInit()) {
 | 
						|
      Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
 | 
						|
          << 1 /*Init*/;
 | 
						|
      var->setInvalidDecl();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In Objective-C, don't allow jumps past the implicit initialization of a
 | 
						|
  // local retaining variable.
 | 
						|
  if (getLangOpts().ObjC1 &&
 | 
						|
      var->hasLocalStorage()) {
 | 
						|
    switch (var->getType().getObjCLifetime()) {
 | 
						|
    case Qualifiers::OCL_None:
 | 
						|
    case Qualifiers::OCL_ExplicitNone:
 | 
						|
    case Qualifiers::OCL_Autoreleasing:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Qualifiers::OCL_Weak:
 | 
						|
    case Qualifiers::OCL_Strong:
 | 
						|
      setFunctionHasBranchProtectedScope();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (var->hasLocalStorage() &&
 | 
						|
      var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
 | 
						|
    setFunctionHasBranchProtectedScope();
 | 
						|
 | 
						|
  // Warn about externally-visible variables being defined without a
 | 
						|
  // prior declaration.  We only want to do this for global
 | 
						|
  // declarations, but we also specifically need to avoid doing it for
 | 
						|
  // class members because the linkage of an anonymous class can
 | 
						|
  // change if it's later given a typedef name.
 | 
						|
  if (var->isThisDeclarationADefinition() &&
 | 
						|
      var->getDeclContext()->getRedeclContext()->isFileContext() &&
 | 
						|
      var->isExternallyVisible() && var->hasLinkage() &&
 | 
						|
      !var->isInline() && !var->getDescribedVarTemplate() &&
 | 
						|
      !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
 | 
						|
      !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
 | 
						|
                                  var->getLocation())) {
 | 
						|
    // Find a previous declaration that's not a definition.
 | 
						|
    VarDecl *prev = var->getPreviousDecl();
 | 
						|
    while (prev && prev->isThisDeclarationADefinition())
 | 
						|
      prev = prev->getPreviousDecl();
 | 
						|
 | 
						|
    if (!prev)
 | 
						|
      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cache the result of checking for constant initialization.
 | 
						|
  Optional<bool> CacheHasConstInit;
 | 
						|
  const Expr *CacheCulprit;
 | 
						|
  auto checkConstInit = [&]() mutable {
 | 
						|
    if (!CacheHasConstInit)
 | 
						|
      CacheHasConstInit = var->getInit()->isConstantInitializer(
 | 
						|
            Context, var->getType()->isReferenceType(), &CacheCulprit);
 | 
						|
    return *CacheHasConstInit;
 | 
						|
  };
 | 
						|
 | 
						|
  if (var->getTLSKind() == VarDecl::TLS_Static) {
 | 
						|
    if (var->getType().isDestructedType()) {
 | 
						|
      // GNU C++98 edits for __thread, [basic.start.term]p3:
 | 
						|
      //   The type of an object with thread storage duration shall not
 | 
						|
      //   have a non-trivial destructor.
 | 
						|
      Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
 | 
						|
      if (getLangOpts().CPlusPlus11)
 | 
						|
        Diag(var->getLocation(), diag::note_use_thread_local);
 | 
						|
    } else if (getLangOpts().CPlusPlus && var->hasInit()) {
 | 
						|
      if (!checkConstInit()) {
 | 
						|
        // GNU C++98 edits for __thread, [basic.start.init]p4:
 | 
						|
        //   An object of thread storage duration shall not require dynamic
 | 
						|
        //   initialization.
 | 
						|
        // FIXME: Need strict checking here.
 | 
						|
        Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
 | 
						|
          << CacheCulprit->getSourceRange();
 | 
						|
        if (getLangOpts().CPlusPlus11)
 | 
						|
          Diag(var->getLocation(), diag::note_use_thread_local);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Apply section attributes and pragmas to global variables.
 | 
						|
  bool GlobalStorage = var->hasGlobalStorage();
 | 
						|
  if (GlobalStorage && var->isThisDeclarationADefinition() &&
 | 
						|
      !inTemplateInstantiation()) {
 | 
						|
    PragmaStack<StringLiteral *> *Stack = nullptr;
 | 
						|
    int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
 | 
						|
    if (var->getType().isConstQualified())
 | 
						|
      Stack = &ConstSegStack;
 | 
						|
    else if (!var->getInit()) {
 | 
						|
      Stack = &BSSSegStack;
 | 
						|
      SectionFlags |= ASTContext::PSF_Write;
 | 
						|
    } else {
 | 
						|
      Stack = &DataSegStack;
 | 
						|
      SectionFlags |= ASTContext::PSF_Write;
 | 
						|
    }
 | 
						|
    if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
 | 
						|
      var->addAttr(SectionAttr::CreateImplicit(
 | 
						|
          Context, SectionAttr::Declspec_allocate,
 | 
						|
          Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
 | 
						|
    }
 | 
						|
    if (const SectionAttr *SA = var->getAttr<SectionAttr>())
 | 
						|
      if (UnifySection(SA->getName(), SectionFlags, var))
 | 
						|
        var->dropAttr<SectionAttr>();
 | 
						|
 | 
						|
    // Apply the init_seg attribute if this has an initializer.  If the
 | 
						|
    // initializer turns out to not be dynamic, we'll end up ignoring this
 | 
						|
    // attribute.
 | 
						|
    if (CurInitSeg && var->getInit())
 | 
						|
      var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
 | 
						|
                                               CurInitSegLoc));
 | 
						|
  }
 | 
						|
 | 
						|
  // All the following checks are C++ only.
 | 
						|
  if (!getLangOpts().CPlusPlus) {
 | 
						|
      // If this variable must be emitted, add it as an initializer for the
 | 
						|
      // current module.
 | 
						|
     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
 | 
						|
       Context.addModuleInitializer(ModuleScopes.back().Module, var);
 | 
						|
     return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *DD = dyn_cast<DecompositionDecl>(var))
 | 
						|
    CheckCompleteDecompositionDeclaration(DD);
 | 
						|
 | 
						|
  QualType type = var->getType();
 | 
						|
  if (type->isDependentType()) return;
 | 
						|
 | 
						|
  // __block variables might require us to capture a copy-initializer.
 | 
						|
  if (var->hasAttr<BlocksAttr>()) {
 | 
						|
    // It's currently invalid to ever have a __block variable with an
 | 
						|
    // array type; should we diagnose that here?
 | 
						|
 | 
						|
    // Regardless, we don't want to ignore array nesting when
 | 
						|
    // constructing this copy.
 | 
						|
    if (type->isStructureOrClassType()) {
 | 
						|
      EnterExpressionEvaluationContext scope(
 | 
						|
          *this, ExpressionEvaluationContext::PotentiallyEvaluated);
 | 
						|
      SourceLocation poi = var->getLocation();
 | 
						|
      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
 | 
						|
      ExprResult result
 | 
						|
        = PerformMoveOrCopyInitialization(
 | 
						|
            InitializedEntity::InitializeBlock(poi, type, false),
 | 
						|
            var, var->getType(), varRef, /*AllowNRVO=*/true);
 | 
						|
      if (!result.isInvalid()) {
 | 
						|
        result = MaybeCreateExprWithCleanups(result);
 | 
						|
        Expr *init = result.getAs<Expr>();
 | 
						|
        Context.setBlockVarCopyInits(var, init);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Expr *Init = var->getInit();
 | 
						|
  bool IsGlobal = GlobalStorage && !var->isStaticLocal();
 | 
						|
  QualType baseType = Context.getBaseElementType(type);
 | 
						|
 | 
						|
  if (Init && !Init->isValueDependent()) {
 | 
						|
    if (var->isConstexpr()) {
 | 
						|
      SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
 | 
						|
        SourceLocation DiagLoc = var->getLocation();
 | 
						|
        // If the note doesn't add any useful information other than a source
 | 
						|
        // location, fold it into the primary diagnostic.
 | 
						|
        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
 | 
						|
              diag::note_invalid_subexpr_in_const_expr) {
 | 
						|
          DiagLoc = Notes[0].first;
 | 
						|
          Notes.clear();
 | 
						|
        }
 | 
						|
        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
 | 
						|
          << var << Init->getSourceRange();
 | 
						|
        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
 | 
						|
          Diag(Notes[I].first, Notes[I].second);
 | 
						|
      }
 | 
						|
    } else if (var->isUsableInConstantExpressions(Context)) {
 | 
						|
      // Check whether the initializer of a const variable of integral or
 | 
						|
      // enumeration type is an ICE now, since we can't tell whether it was
 | 
						|
      // initialized by a constant expression if we check later.
 | 
						|
      var->checkInitIsICE();
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't emit further diagnostics about constexpr globals since they
 | 
						|
    // were just diagnosed.
 | 
						|
    if (!var->isConstexpr() && GlobalStorage &&
 | 
						|
            var->hasAttr<RequireConstantInitAttr>()) {
 | 
						|
      // FIXME: Need strict checking in C++03 here.
 | 
						|
      bool DiagErr = getLangOpts().CPlusPlus11
 | 
						|
          ? !var->checkInitIsICE() : !checkConstInit();
 | 
						|
      if (DiagErr) {
 | 
						|
        auto attr = var->getAttr<RequireConstantInitAttr>();
 | 
						|
        Diag(var->getLocation(), diag::err_require_constant_init_failed)
 | 
						|
          << Init->getSourceRange();
 | 
						|
        Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
 | 
						|
          << attr->getRange();
 | 
						|
        if (getLangOpts().CPlusPlus11) {
 | 
						|
          APValue Value;
 | 
						|
          SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
          Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
 | 
						|
          for (auto &it : Notes)
 | 
						|
            Diag(it.first, it.second);
 | 
						|
        } else {
 | 
						|
          Diag(CacheCulprit->getExprLoc(),
 | 
						|
               diag::note_invalid_subexpr_in_const_expr)
 | 
						|
              << CacheCulprit->getSourceRange();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else if (!var->isConstexpr() && IsGlobal &&
 | 
						|
             !getDiagnostics().isIgnored(diag::warn_global_constructor,
 | 
						|
                                    var->getLocation())) {
 | 
						|
      // Warn about globals which don't have a constant initializer.  Don't
 | 
						|
      // warn about globals with a non-trivial destructor because we already
 | 
						|
      // warned about them.
 | 
						|
      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
 | 
						|
      if (!(RD && !RD->hasTrivialDestructor())) {
 | 
						|
        if (!checkConstInit())
 | 
						|
          Diag(var->getLocation(), diag::warn_global_constructor)
 | 
						|
            << Init->getSourceRange();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Require the destructor.
 | 
						|
  if (const RecordType *recordType = baseType->getAs<RecordType>())
 | 
						|
    FinalizeVarWithDestructor(var, recordType);
 | 
						|
 | 
						|
  // If this variable must be emitted, add it as an initializer for the current
 | 
						|
  // module.
 | 
						|
  if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
 | 
						|
    Context.addModuleInitializer(ModuleScopes.back().Module, var);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determines if a variable's alignment is dependent.
 | 
						|
static bool hasDependentAlignment(VarDecl *VD) {
 | 
						|
  if (VD->getType()->isDependentType())
 | 
						|
    return true;
 | 
						|
  for (auto *I : VD->specific_attrs<AlignedAttr>())
 | 
						|
    if (I->isAlignmentDependent())
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
 | 
						|
/// any semantic actions necessary after any initializer has been attached.
 | 
						|
void Sema::FinalizeDeclaration(Decl *ThisDecl) {
 | 
						|
  // Note that we are no longer parsing the initializer for this declaration.
 | 
						|
  ParsingInitForAutoVars.erase(ThisDecl);
 | 
						|
 | 
						|
  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
 | 
						|
  if (!VD)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
 | 
						|
  if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
 | 
						|
      !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
 | 
						|
    if (PragmaClangBSSSection.Valid)
 | 
						|
      VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
 | 
						|
                                                            PragmaClangBSSSection.SectionName,
 | 
						|
                                                            PragmaClangBSSSection.PragmaLocation));
 | 
						|
    if (PragmaClangDataSection.Valid)
 | 
						|
      VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
 | 
						|
                                                             PragmaClangDataSection.SectionName,
 | 
						|
                                                             PragmaClangDataSection.PragmaLocation));
 | 
						|
    if (PragmaClangRodataSection.Valid)
 | 
						|
      VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
 | 
						|
                                                               PragmaClangRodataSection.SectionName,
 | 
						|
                                                               PragmaClangRodataSection.PragmaLocation));
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
 | 
						|
    for (auto *BD : DD->bindings()) {
 | 
						|
      FinalizeDeclaration(BD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  checkAttributesAfterMerging(*this, *VD);
 | 
						|
 | 
						|
  // Perform TLS alignment check here after attributes attached to the variable
 | 
						|
  // which may affect the alignment have been processed. Only perform the check
 | 
						|
  // if the target has a maximum TLS alignment (zero means no constraints).
 | 
						|
  if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
 | 
						|
    // Protect the check so that it's not performed on dependent types and
 | 
						|
    // dependent alignments (we can't determine the alignment in that case).
 | 
						|
    if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
 | 
						|
        !VD->isInvalidDecl()) {
 | 
						|
      CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
 | 
						|
      if (Context.getDeclAlign(VD) > MaxAlignChars) {
 | 
						|
        Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
 | 
						|
          << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
 | 
						|
          << (unsigned)MaxAlignChars.getQuantity();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (VD->isStaticLocal()) {
 | 
						|
    if (FunctionDecl *FD =
 | 
						|
            dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
 | 
						|
      // Static locals inherit dll attributes from their function.
 | 
						|
      if (Attr *A = getDLLAttr(FD)) {
 | 
						|
        auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
 | 
						|
        NewAttr->setInherited(true);
 | 
						|
        VD->addAttr(NewAttr);
 | 
						|
      }
 | 
						|
      // CUDA E.2.9.4: Within the body of a __device__ or __global__
 | 
						|
      // function, only __shared__ variables may be declared with
 | 
						|
      // static storage class.
 | 
						|
      if (getLangOpts().CUDA && !VD->hasAttr<CUDASharedAttr>() &&
 | 
						|
          CUDADiagIfDeviceCode(VD->getLocation(),
 | 
						|
                               diag::err_device_static_local_var)
 | 
						|
              << CurrentCUDATarget())
 | 
						|
        VD->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform check for initializers of device-side global variables.
 | 
						|
  // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
 | 
						|
  // 7.5). We must also apply the same checks to all __shared__
 | 
						|
  // variables whether they are local or not. CUDA also allows
 | 
						|
  // constant initializers for __constant__ and __device__ variables.
 | 
						|
  if (getLangOpts().CUDA) {
 | 
						|
    const Expr *Init = VD->getInit();
 | 
						|
    if (Init && VD->hasGlobalStorage()) {
 | 
						|
      if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
 | 
						|
          VD->hasAttr<CUDASharedAttr>()) {
 | 
						|
        assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
 | 
						|
        bool AllowedInit = false;
 | 
						|
        if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
 | 
						|
          AllowedInit =
 | 
						|
              isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
 | 
						|
        // We'll allow constant initializers even if it's a non-empty
 | 
						|
        // constructor according to CUDA rules. This deviates from NVCC,
 | 
						|
        // but allows us to handle things like constexpr constructors.
 | 
						|
        if (!AllowedInit &&
 | 
						|
            (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
 | 
						|
          AllowedInit = VD->getInit()->isConstantInitializer(
 | 
						|
              Context, VD->getType()->isReferenceType());
 | 
						|
 | 
						|
        // Also make sure that destructor, if there is one, is empty.
 | 
						|
        if (AllowedInit)
 | 
						|
          if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
 | 
						|
            AllowedInit =
 | 
						|
                isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
 | 
						|
 | 
						|
        if (!AllowedInit) {
 | 
						|
          Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
 | 
						|
                                      ? diag::err_shared_var_init
 | 
						|
                                      : diag::err_dynamic_var_init)
 | 
						|
              << Init->getSourceRange();
 | 
						|
          VD->setInvalidDecl();
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // This is a host-side global variable.  Check that the initializer is
 | 
						|
        // callable from the host side.
 | 
						|
        const FunctionDecl *InitFn = nullptr;
 | 
						|
        if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
 | 
						|
          InitFn = CE->getConstructor();
 | 
						|
        } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
 | 
						|
          InitFn = CE->getDirectCallee();
 | 
						|
        }
 | 
						|
        if (InitFn) {
 | 
						|
          CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
 | 
						|
          if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
 | 
						|
            Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
 | 
						|
                << InitFnTarget << InitFn;
 | 
						|
            Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
 | 
						|
            VD->setInvalidDecl();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Grab the dllimport or dllexport attribute off of the VarDecl.
 | 
						|
  const InheritableAttr *DLLAttr = getDLLAttr(VD);
 | 
						|
 | 
						|
  // Imported static data members cannot be defined out-of-line.
 | 
						|
  if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
 | 
						|
    if (VD->isStaticDataMember() && VD->isOutOfLine() &&
 | 
						|
        VD->isThisDeclarationADefinition()) {
 | 
						|
      // We allow definitions of dllimport class template static data members
 | 
						|
      // with a warning.
 | 
						|
      CXXRecordDecl *Context =
 | 
						|
        cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
 | 
						|
      bool IsClassTemplateMember =
 | 
						|
          isa<ClassTemplatePartialSpecializationDecl>(Context) ||
 | 
						|
          Context->getDescribedClassTemplate();
 | 
						|
 | 
						|
      Diag(VD->getLocation(),
 | 
						|
           IsClassTemplateMember
 | 
						|
               ? diag::warn_attribute_dllimport_static_field_definition
 | 
						|
               : diag::err_attribute_dllimport_static_field_definition);
 | 
						|
      Diag(IA->getLocation(), diag::note_attribute);
 | 
						|
      if (!IsClassTemplateMember)
 | 
						|
        VD->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // dllimport/dllexport variables cannot be thread local, their TLS index
 | 
						|
  // isn't exported with the variable.
 | 
						|
  if (DLLAttr && VD->getTLSKind()) {
 | 
						|
    auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
 | 
						|
    if (F && getDLLAttr(F)) {
 | 
						|
      assert(VD->isStaticLocal());
 | 
						|
      // But if this is a static local in a dlimport/dllexport function, the
 | 
						|
      // function will never be inlined, which means the var would never be
 | 
						|
      // imported, so having it marked import/export is safe.
 | 
						|
    } else {
 | 
						|
      Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
 | 
						|
                                                                    << DLLAttr;
 | 
						|
      VD->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
 | 
						|
    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
 | 
						|
      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
 | 
						|
      VD->dropAttr<UsedAttr>();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const DeclContext *DC = VD->getDeclContext();
 | 
						|
  // If there's a #pragma GCC visibility in scope, and this isn't a class
 | 
						|
  // member, set the visibility of this variable.
 | 
						|
  if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
 | 
						|
    AddPushedVisibilityAttribute(VD);
 | 
						|
 | 
						|
  // FIXME: Warn on unused var template partial specializations.
 | 
						|
  if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
 | 
						|
    MarkUnusedFileScopedDecl(VD);
 | 
						|
 | 
						|
  // Now we have parsed the initializer and can update the table of magic
 | 
						|
  // tag values.
 | 
						|
  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
 | 
						|
      !VD->getType()->isIntegralOrEnumerationType())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
 | 
						|
    const Expr *MagicValueExpr = VD->getInit();
 | 
						|
    if (!MagicValueExpr) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    llvm::APSInt MagicValueInt;
 | 
						|
    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
 | 
						|
      Diag(I->getRange().getBegin(),
 | 
						|
           diag::err_type_tag_for_datatype_not_ice)
 | 
						|
        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (MagicValueInt.getActiveBits() > 64) {
 | 
						|
      Diag(I->getRange().getBegin(),
 | 
						|
           diag::err_type_tag_for_datatype_too_large)
 | 
						|
        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    uint64_t MagicValue = MagicValueInt.getZExtValue();
 | 
						|
    RegisterTypeTagForDatatype(I->getArgumentKind(),
 | 
						|
                               MagicValue,
 | 
						|
                               I->getMatchingCType(),
 | 
						|
                               I->getLayoutCompatible(),
 | 
						|
                               I->getMustBeNull());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool hasDeducedAuto(DeclaratorDecl *DD) {
 | 
						|
  auto *VD = dyn_cast<VarDecl>(DD);
 | 
						|
  return VD && !VD->getType()->hasAutoForTrailingReturnType();
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
 | 
						|
                                                   ArrayRef<Decl *> Group) {
 | 
						|
  SmallVector<Decl*, 8> Decls;
 | 
						|
 | 
						|
  if (DS.isTypeSpecOwned())
 | 
						|
    Decls.push_back(DS.getRepAsDecl());
 | 
						|
 | 
						|
  DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
 | 
						|
  DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
 | 
						|
  bool DiagnosedMultipleDecomps = false;
 | 
						|
  DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
 | 
						|
  bool DiagnosedNonDeducedAuto = false;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Group.size(); i != e; ++i) {
 | 
						|
    if (Decl *D = Group[i]) {
 | 
						|
      // For declarators, there are some additional syntactic-ish checks we need
 | 
						|
      // to perform.
 | 
						|
      if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
 | 
						|
        if (!FirstDeclaratorInGroup)
 | 
						|
          FirstDeclaratorInGroup = DD;
 | 
						|
        if (!FirstDecompDeclaratorInGroup)
 | 
						|
          FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
 | 
						|
        if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
 | 
						|
            !hasDeducedAuto(DD))
 | 
						|
          FirstNonDeducedAutoInGroup = DD;
 | 
						|
 | 
						|
        if (FirstDeclaratorInGroup != DD) {
 | 
						|
          // A decomposition declaration cannot be combined with any other
 | 
						|
          // declaration in the same group.
 | 
						|
          if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
 | 
						|
            Diag(FirstDecompDeclaratorInGroup->getLocation(),
 | 
						|
                 diag::err_decomp_decl_not_alone)
 | 
						|
                << FirstDeclaratorInGroup->getSourceRange()
 | 
						|
                << DD->getSourceRange();
 | 
						|
            DiagnosedMultipleDecomps = true;
 | 
						|
          }
 | 
						|
 | 
						|
          // A declarator that uses 'auto' in any way other than to declare a
 | 
						|
          // variable with a deduced type cannot be combined with any other
 | 
						|
          // declarator in the same group.
 | 
						|
          if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
 | 
						|
            Diag(FirstNonDeducedAutoInGroup->getLocation(),
 | 
						|
                 diag::err_auto_non_deduced_not_alone)
 | 
						|
                << FirstNonDeducedAutoInGroup->getType()
 | 
						|
                       ->hasAutoForTrailingReturnType()
 | 
						|
                << FirstDeclaratorInGroup->getSourceRange()
 | 
						|
                << DD->getSourceRange();
 | 
						|
            DiagnosedNonDeducedAuto = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      Decls.push_back(D);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
 | 
						|
    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
 | 
						|
      handleTagNumbering(Tag, S);
 | 
						|
      if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
 | 
						|
          getLangOpts().CPlusPlus)
 | 
						|
        Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclaratorGroup(Decls);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildDeclaratorGroup - convert a list of declarations into a declaration
 | 
						|
/// group, performing any necessary semantic checking.
 | 
						|
Sema::DeclGroupPtrTy
 | 
						|
Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
 | 
						|
  // C++14 [dcl.spec.auto]p7: (DR1347)
 | 
						|
  //   If the type that replaces the placeholder type is not the same in each
 | 
						|
  //   deduction, the program is ill-formed.
 | 
						|
  if (Group.size() > 1) {
 | 
						|
    QualType Deduced;
 | 
						|
    VarDecl *DeducedDecl = nullptr;
 | 
						|
    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
 | 
						|
      VarDecl *D = dyn_cast<VarDecl>(Group[i]);
 | 
						|
      if (!D || D->isInvalidDecl())
 | 
						|
        break;
 | 
						|
      DeducedType *DT = D->getType()->getContainedDeducedType();
 | 
						|
      if (!DT || DT->getDeducedType().isNull())
 | 
						|
        continue;
 | 
						|
      if (Deduced.isNull()) {
 | 
						|
        Deduced = DT->getDeducedType();
 | 
						|
        DeducedDecl = D;
 | 
						|
      } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
 | 
						|
        auto *AT = dyn_cast<AutoType>(DT);
 | 
						|
        Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
 | 
						|
             diag::err_auto_different_deductions)
 | 
						|
          << (AT ? (unsigned)AT->getKeyword() : 3)
 | 
						|
          << Deduced << DeducedDecl->getDeclName()
 | 
						|
          << DT->getDeducedType() << D->getDeclName()
 | 
						|
          << DeducedDecl->getInit()->getSourceRange()
 | 
						|
          << D->getInit()->getSourceRange();
 | 
						|
        D->setInvalidDecl();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnDocumentableDecls(Group);
 | 
						|
 | 
						|
  return DeclGroupPtrTy::make(
 | 
						|
      DeclGroupRef::Create(Context, Group.data(), Group.size()));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnDocumentableDecl(Decl *D) {
 | 
						|
  ActOnDocumentableDecls(D);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
 | 
						|
  // Don't parse the comment if Doxygen diagnostics are ignored.
 | 
						|
  if (Group.empty() || !Group[0])
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Diags.isIgnored(diag::warn_doc_param_not_found,
 | 
						|
                      Group[0]->getLocation()) &&
 | 
						|
      Diags.isIgnored(diag::warn_unknown_comment_command_name,
 | 
						|
                      Group[0]->getLocation()))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Group.size() >= 2) {
 | 
						|
    // This is a decl group.  Normally it will contain only declarations
 | 
						|
    // produced from declarator list.  But in case we have any definitions or
 | 
						|
    // additional declaration references:
 | 
						|
    //   'typedef struct S {} S;'
 | 
						|
    //   'typedef struct S *S;'
 | 
						|
    //   'struct S *pS;'
 | 
						|
    // FinalizeDeclaratorGroup adds these as separate declarations.
 | 
						|
    Decl *MaybeTagDecl = Group[0];
 | 
						|
    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
 | 
						|
      Group = Group.slice(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // See if there are any new comments that are not attached to a decl.
 | 
						|
  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
 | 
						|
  if (!Comments.empty() &&
 | 
						|
      !Comments.back()->isAttached()) {
 | 
						|
    // There is at least one comment that not attached to a decl.
 | 
						|
    // Maybe it should be attached to one of these decls?
 | 
						|
    //
 | 
						|
    // Note that this way we pick up not only comments that precede the
 | 
						|
    // declaration, but also comments that *follow* the declaration -- thanks to
 | 
						|
    // the lookahead in the lexer: we've consumed the semicolon and looked
 | 
						|
    // ahead through comments.
 | 
						|
    for (unsigned i = 0, e = Group.size(); i != e; ++i)
 | 
						|
      Context.getCommentForDecl(Group[i], &PP);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
 | 
						|
/// to introduce parameters into function prototype scope.
 | 
						|
Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
 | 
						|
  const DeclSpec &DS = D.getDeclSpec();
 | 
						|
 | 
						|
  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
 | 
						|
 | 
						|
  // C++03 [dcl.stc]p2 also permits 'auto'.
 | 
						|
  StorageClass SC = SC_None;
 | 
						|
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
 | 
						|
    SC = SC_Register;
 | 
						|
    // In C++11, the 'register' storage class specifier is deprecated.
 | 
						|
    // In C++17, it is not allowed, but we tolerate it as an extension.
 | 
						|
    if (getLangOpts().CPlusPlus11) {
 | 
						|
      Diag(DS.getStorageClassSpecLoc(),
 | 
						|
           getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
 | 
						|
                                     : diag::warn_deprecated_register)
 | 
						|
        << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
 | 
						|
    }
 | 
						|
  } else if (getLangOpts().CPlusPlus &&
 | 
						|
             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
 | 
						|
    SC = SC_Auto;
 | 
						|
  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
 | 
						|
    Diag(DS.getStorageClassSpecLoc(),
 | 
						|
         diag::err_invalid_storage_class_in_func_decl);
 | 
						|
    D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
  }
 | 
						|
 | 
						|
  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
 | 
						|
    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
 | 
						|
      << DeclSpec::getSpecifierName(TSCS);
 | 
						|
  if (DS.isInlineSpecified())
 | 
						|
    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
 | 
						|
        << getLangOpts().CPlusPlus17;
 | 
						|
  if (DS.isConstexprSpecified())
 | 
						|
    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
 | 
						|
      << 0;
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(DS);
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType parmDeclType = TInfo->getType();
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    // Check that there are no default arguments inside the type of this
 | 
						|
    // parameter.
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
 | 
						|
    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
 | 
						|
    if (D.getCXXScopeSpec().isSet()) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
 | 
						|
        << D.getCXXScopeSpec().getRange();
 | 
						|
      D.getCXXScopeSpec().clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure we have a valid name
 | 
						|
  IdentifierInfo *II = nullptr;
 | 
						|
  if (D.hasName()) {
 | 
						|
    II = D.getIdentifier();
 | 
						|
    if (!II) {
 | 
						|
      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
 | 
						|
        << GetNameForDeclarator(D).getName();
 | 
						|
      D.setInvalidType(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
 | 
						|
  if (II) {
 | 
						|
    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
 | 
						|
                   ForVisibleRedeclaration);
 | 
						|
    LookupName(R, S);
 | 
						|
    if (R.isSingleResult()) {
 | 
						|
      NamedDecl *PrevDecl = R.getFoundDecl();
 | 
						|
      if (PrevDecl->isTemplateParameter()) {
 | 
						|
        // Maybe we will complain about the shadowed template parameter.
 | 
						|
        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | 
						|
        // Just pretend that we didn't see the previous declaration.
 | 
						|
        PrevDecl = nullptr;
 | 
						|
      } else if (S->isDeclScope(PrevDecl)) {
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
 | 
						|
        // Recover by removing the name
 | 
						|
        II = nullptr;
 | 
						|
        D.SetIdentifier(nullptr, D.getIdentifierLoc());
 | 
						|
        D.setInvalidType(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Temporarily put parameter variables in the translation unit, not
 | 
						|
  // the enclosing context.  This prevents them from accidentally
 | 
						|
  // looking like class members in C++.
 | 
						|
  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
 | 
						|
                                    D.getLocStart(),
 | 
						|
                                    D.getIdentifierLoc(), II,
 | 
						|
                                    parmDeclType, TInfo,
 | 
						|
                                    SC);
 | 
						|
 | 
						|
  if (D.isInvalidType())
 | 
						|
    New->setInvalidDecl();
 | 
						|
 | 
						|
  assert(S->isFunctionPrototypeScope());
 | 
						|
  assert(S->getFunctionPrototypeDepth() >= 1);
 | 
						|
  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
 | 
						|
                    S->getNextFunctionPrototypeIndex());
 | 
						|
 | 
						|
  // Add the parameter declaration into this scope.
 | 
						|
  S->AddDecl(New);
 | 
						|
  if (II)
 | 
						|
    IdResolver.AddDecl(New);
 | 
						|
 | 
						|
  ProcessDeclAttributes(S, New, D);
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified())
 | 
						|
    Diag(New->getLocation(), diag::err_module_private_local)
 | 
						|
      << 1 << New->getDeclName()
 | 
						|
      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
 | 
						|
  if (New->hasAttr<BlocksAttr>()) {
 | 
						|
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
 | 
						|
  }
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Synthesizes a variable for a parameter arising from a
 | 
						|
/// typedef.
 | 
						|
ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
 | 
						|
                                              SourceLocation Loc,
 | 
						|
                                              QualType T) {
 | 
						|
  /* FIXME: setting StartLoc == Loc.
 | 
						|
     Would it be worth to modify callers so as to provide proper source
 | 
						|
     location for the unnamed parameters, embedding the parameter's type? */
 | 
						|
  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
 | 
						|
                                T, Context.getTrivialTypeSourceInfo(T, Loc),
 | 
						|
                                           SC_None, nullptr);
 | 
						|
  Param->setImplicit();
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
 | 
						|
  // Don't diagnose unused-parameter errors in template instantiations; we
 | 
						|
  // will already have done so in the template itself.
 | 
						|
  if (inTemplateInstantiation())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const ParmVarDecl *Parameter : Parameters) {
 | 
						|
    if (!Parameter->isReferenced() && Parameter->getDeclName() &&
 | 
						|
        !Parameter->hasAttr<UnusedAttr>()) {
 | 
						|
      Diag(Parameter->getLocation(), diag::warn_unused_parameter)
 | 
						|
        << Parameter->getDeclName();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DiagnoseSizeOfParametersAndReturnValue(
 | 
						|
    ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
 | 
						|
  if (LangOpts.NumLargeByValueCopy == 0) // No check.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Warn if the return value is pass-by-value and larger than the specified
 | 
						|
  // threshold.
 | 
						|
  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
 | 
						|
    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
 | 
						|
    if (Size > LangOpts.NumLargeByValueCopy)
 | 
						|
      Diag(D->getLocation(), diag::warn_return_value_size)
 | 
						|
          << D->getDeclName() << Size;
 | 
						|
  }
 | 
						|
 | 
						|
  // Warn if any parameter is pass-by-value and larger than the specified
 | 
						|
  // threshold.
 | 
						|
  for (const ParmVarDecl *Parameter : Parameters) {
 | 
						|
    QualType T = Parameter->getType();
 | 
						|
    if (T->isDependentType() || !T.isPODType(Context))
 | 
						|
      continue;
 | 
						|
    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
 | 
						|
    if (Size > LangOpts.NumLargeByValueCopy)
 | 
						|
      Diag(Parameter->getLocation(), diag::warn_parameter_size)
 | 
						|
          << Parameter->getDeclName() << Size;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
 | 
						|
                                  SourceLocation NameLoc, IdentifierInfo *Name,
 | 
						|
                                  QualType T, TypeSourceInfo *TSInfo,
 | 
						|
                                  StorageClass SC) {
 | 
						|
  // In ARC, infer a lifetime qualifier for appropriate parameter types.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      T.getObjCLifetime() == Qualifiers::OCL_None &&
 | 
						|
      T->isObjCLifetimeType()) {
 | 
						|
 | 
						|
    Qualifiers::ObjCLifetime lifetime;
 | 
						|
 | 
						|
    // Special cases for arrays:
 | 
						|
    //   - if it's const, use __unsafe_unretained
 | 
						|
    //   - otherwise, it's an error
 | 
						|
    if (T->isArrayType()) {
 | 
						|
      if (!T.isConstQualified()) {
 | 
						|
        DelayedDiagnostics.add(
 | 
						|
            sema::DelayedDiagnostic::makeForbiddenType(
 | 
						|
            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
 | 
						|
      }
 | 
						|
      lifetime = Qualifiers::OCL_ExplicitNone;
 | 
						|
    } else {
 | 
						|
      lifetime = T->getObjCARCImplicitLifetime();
 | 
						|
    }
 | 
						|
    T = Context.getLifetimeQualifiedType(T, lifetime);
 | 
						|
  }
 | 
						|
 | 
						|
  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
 | 
						|
                                         Context.getAdjustedParameterType(T),
 | 
						|
                                         TSInfo, SC, nullptr);
 | 
						|
 | 
						|
  // Parameters can not be abstract class types.
 | 
						|
  // For record types, this is done by the AbstractClassUsageDiagnoser once
 | 
						|
  // the class has been completely parsed.
 | 
						|
  if (!CurContext->isRecord() &&
 | 
						|
      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
 | 
						|
                             AbstractParamType))
 | 
						|
    New->setInvalidDecl();
 | 
						|
 | 
						|
  // Parameter declarators cannot be interface types. All ObjC objects are
 | 
						|
  // passed by reference.
 | 
						|
  if (T->isObjCObjectType()) {
 | 
						|
    SourceLocation TypeEndLoc =
 | 
						|
        getLocForEndOfToken(TSInfo->getTypeLoc().getLocEnd());
 | 
						|
    Diag(NameLoc,
 | 
						|
         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
 | 
						|
      << FixItHint::CreateInsertion(TypeEndLoc, "*");
 | 
						|
    T = Context.getObjCObjectPointerType(T);
 | 
						|
    New->setType(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
 | 
						|
  // duration shall not be qualified by an address-space qualifier."
 | 
						|
  // Since all parameters have automatic store duration, they can not have
 | 
						|
  // an address space.
 | 
						|
  if (T.getAddressSpace() != LangAS::Default &&
 | 
						|
      // OpenCL allows function arguments declared to be an array of a type
 | 
						|
      // to be qualified with an address space.
 | 
						|
      !(getLangOpts().OpenCL &&
 | 
						|
        (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
 | 
						|
    Diag(NameLoc, diag::err_arg_with_address_space);
 | 
						|
    New->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
 | 
						|
                                           SourceLocation LocAfterDecls) {
 | 
						|
  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
 | 
						|
 | 
						|
  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
 | 
						|
  // for a K&R function.
 | 
						|
  if (!FTI.hasPrototype) {
 | 
						|
    for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
 | 
						|
      --i;
 | 
						|
      if (FTI.Params[i].Param == nullptr) {
 | 
						|
        SmallString<256> Code;
 | 
						|
        llvm::raw_svector_ostream(Code)
 | 
						|
            << "  int " << FTI.Params[i].Ident->getName() << ";\n";
 | 
						|
        Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
 | 
						|
            << FTI.Params[i].Ident
 | 
						|
            << FixItHint::CreateInsertion(LocAfterDecls, Code);
 | 
						|
 | 
						|
        // Implicitly declare the argument as type 'int' for lack of a better
 | 
						|
        // type.
 | 
						|
        AttributeFactory attrs;
 | 
						|
        DeclSpec DS(attrs);
 | 
						|
        const char* PrevSpec; // unused
 | 
						|
        unsigned DiagID; // unused
 | 
						|
        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
 | 
						|
                           DiagID, Context.getPrintingPolicy());
 | 
						|
        // Use the identifier location for the type source range.
 | 
						|
        DS.SetRangeStart(FTI.Params[i].IdentLoc);
 | 
						|
        DS.SetRangeEnd(FTI.Params[i].IdentLoc);
 | 
						|
        Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
 | 
						|
        ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
 | 
						|
        FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *
 | 
						|
Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
 | 
						|
                              MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                              SkipBodyInfo *SkipBody) {
 | 
						|
  assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
 | 
						|
  assert(D.isFunctionDeclarator() && "Not a function declarator!");
 | 
						|
  Scope *ParentScope = FnBodyScope->getParent();
 | 
						|
 | 
						|
  D.setFunctionDefinitionKind(FDK_Definition);
 | 
						|
  Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
 | 
						|
  return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
 | 
						|
  Consumer.HandleInlineFunctionDefinition(D);
 | 
						|
}
 | 
						|
 | 
						|
static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
 | 
						|
                             const FunctionDecl*& PossibleZeroParamPrototype) {
 | 
						|
  // Don't warn about invalid declarations.
 | 
						|
  if (FD->isInvalidDecl())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Or declarations that aren't global.
 | 
						|
  if (!FD->isGlobal())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about C++ member functions.
 | 
						|
  if (isa<CXXMethodDecl>(FD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about 'main'.
 | 
						|
  if (FD->isMain())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about inline functions.
 | 
						|
  if (FD->isInlined())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about function templates.
 | 
						|
  if (FD->getDescribedFunctionTemplate())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn about function template specializations.
 | 
						|
  if (FD->isFunctionTemplateSpecialization())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn for OpenCL kernels.
 | 
						|
  if (FD->hasAttr<OpenCLKernelAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't warn on explicitly deleted functions.
 | 
						|
  if (FD->isDeleted())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool MissingPrototype = true;
 | 
						|
  for (const FunctionDecl *Prev = FD->getPreviousDecl();
 | 
						|
       Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
    // Ignore any declarations that occur in function or method
 | 
						|
    // scope, because they aren't visible from the header.
 | 
						|
    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
 | 
						|
      continue;
 | 
						|
 | 
						|
    MissingPrototype = !Prev->getType()->isFunctionProtoType();
 | 
						|
    if (FD->getNumParams() == 0)
 | 
						|
      PossibleZeroParamPrototype = Prev;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return MissingPrototype;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
 | 
						|
                                   const FunctionDecl *EffectiveDefinition,
 | 
						|
                                   SkipBodyInfo *SkipBody) {
 | 
						|
  const FunctionDecl *Definition = EffectiveDefinition;
 | 
						|
  if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
 | 
						|
    // If this is a friend function defined in a class template, it does not
 | 
						|
    // have a body until it is used, nevertheless it is a definition, see
 | 
						|
    // [temp.inst]p2:
 | 
						|
    //
 | 
						|
    // ... for the purpose of determining whether an instantiated redeclaration
 | 
						|
    // is valid according to [basic.def.odr] and [class.mem], a declaration that
 | 
						|
    // corresponds to a definition in the template is considered to be a
 | 
						|
    // definition.
 | 
						|
    //
 | 
						|
    // The following code must produce redefinition error:
 | 
						|
    //
 | 
						|
    //     template<typename T> struct C20 { friend void func_20() {} };
 | 
						|
    //     C20<int> c20i;
 | 
						|
    //     void func_20() {}
 | 
						|
    //
 | 
						|
    for (auto I : FD->redecls()) {
 | 
						|
      if (I != FD && !I->isInvalidDecl() &&
 | 
						|
          I->getFriendObjectKind() != Decl::FOK_None) {
 | 
						|
        if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
 | 
						|
          if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
 | 
						|
            // A merged copy of the same function, instantiated as a member of
 | 
						|
            // the same class, is OK.
 | 
						|
            if (declaresSameEntity(OrigFD, Original) &&
 | 
						|
                declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
 | 
						|
                                   cast<Decl>(FD->getLexicalDeclContext())))
 | 
						|
              continue;
 | 
						|
          }
 | 
						|
 | 
						|
          if (Original->isThisDeclarationADefinition()) {
 | 
						|
            Definition = I;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Definition)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (canRedefineFunction(Definition, getLangOpts()))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Don't emit an error when this is redefinition of a typo-corrected
 | 
						|
  // definition.
 | 
						|
  if (TypoCorrectedFunctionDefinitions.count(Definition))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we don't have a visible definition of the function, and it's inline or
 | 
						|
  // a template, skip the new definition.
 | 
						|
  if (SkipBody && !hasVisibleDefinition(Definition) &&
 | 
						|
      (Definition->getFormalLinkage() == InternalLinkage ||
 | 
						|
       Definition->isInlined() ||
 | 
						|
       Definition->getDescribedFunctionTemplate() ||
 | 
						|
       Definition->getNumTemplateParameterLists())) {
 | 
						|
    SkipBody->ShouldSkip = true;
 | 
						|
    if (auto *TD = Definition->getDescribedFunctionTemplate())
 | 
						|
      makeMergedDefinitionVisible(TD);
 | 
						|
    makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
 | 
						|
      Definition->getStorageClass() == SC_Extern)
 | 
						|
    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
 | 
						|
        << FD->getDeclName() << getLangOpts().CPlusPlus;
 | 
						|
  else
 | 
						|
    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
 | 
						|
 | 
						|
  Diag(Definition->getLocation(), diag::note_previous_definition);
 | 
						|
  FD->setInvalidDecl();
 | 
						|
}
 | 
						|
 | 
						|
static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
 | 
						|
                                   Sema &S) {
 | 
						|
  CXXRecordDecl *const LambdaClass = CallOperator->getParent();
 | 
						|
 | 
						|
  LambdaScopeInfo *LSI = S.PushLambdaScope();
 | 
						|
  LSI->CallOperator = CallOperator;
 | 
						|
  LSI->Lambda = LambdaClass;
 | 
						|
  LSI->ReturnType = CallOperator->getReturnType();
 | 
						|
  const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
 | 
						|
 | 
						|
  if (LCD == LCD_None)
 | 
						|
    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
 | 
						|
  else if (LCD == LCD_ByCopy)
 | 
						|
    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
 | 
						|
  else if (LCD == LCD_ByRef)
 | 
						|
    LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
 | 
						|
  DeclarationNameInfo DNI = CallOperator->getNameInfo();
 | 
						|
 | 
						|
  LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
 | 
						|
  LSI->Mutable = !CallOperator->isConst();
 | 
						|
 | 
						|
  // Add the captures to the LSI so they can be noted as already
 | 
						|
  // captured within tryCaptureVar.
 | 
						|
  auto I = LambdaClass->field_begin();
 | 
						|
  for (const auto &C : LambdaClass->captures()) {
 | 
						|
    if (C.capturesVariable()) {
 | 
						|
      VarDecl *VD = C.getCapturedVar();
 | 
						|
      if (VD->isInitCapture())
 | 
						|
        S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
 | 
						|
      QualType CaptureType = VD->getType();
 | 
						|
      const bool ByRef = C.getCaptureKind() == LCK_ByRef;
 | 
						|
      LSI->addCapture(VD, /*IsBlock*/false, ByRef,
 | 
						|
          /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
 | 
						|
          /*EllipsisLoc*/C.isPackExpansion()
 | 
						|
                         ? C.getEllipsisLoc() : SourceLocation(),
 | 
						|
          CaptureType, /*Expr*/ nullptr);
 | 
						|
 | 
						|
    } else if (C.capturesThis()) {
 | 
						|
      LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
 | 
						|
                              /*Expr*/ nullptr,
 | 
						|
                              C.getCaptureKind() == LCK_StarThis);
 | 
						|
    } else {
 | 
						|
      LSI->addVLATypeCapture(C.getLocation(), I->getType());
 | 
						|
    }
 | 
						|
    ++I;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
 | 
						|
                                    SkipBodyInfo *SkipBody) {
 | 
						|
  if (!D) {
 | 
						|
    // Parsing the function declaration failed in some way. Push on a fake scope
 | 
						|
    // anyway so we can try to parse the function body.
 | 
						|
    PushFunctionScope();
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *FD = nullptr;
 | 
						|
 | 
						|
  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
 | 
						|
    FD = FunTmpl->getTemplatedDecl();
 | 
						|
  else
 | 
						|
    FD = cast<FunctionDecl>(D);
 | 
						|
 | 
						|
  // Check for defining attributes before the check for redefinition.
 | 
						|
  if (const auto *Attr = FD->getAttr<AliasAttr>()) {
 | 
						|
    Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
 | 
						|
    FD->dropAttr<AliasAttr>();
 | 
						|
    FD->setInvalidDecl();
 | 
						|
  }
 | 
						|
  if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
 | 
						|
    Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
 | 
						|
    FD->dropAttr<IFuncAttr>();
 | 
						|
    FD->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // See if this is a redefinition. If 'will have body' is already set, then
 | 
						|
  // these checks were already performed when it was set.
 | 
						|
  if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
 | 
						|
    CheckForFunctionRedefinition(FD, nullptr, SkipBody);
 | 
						|
 | 
						|
    // If we're skipping the body, we're done. Don't enter the scope.
 | 
						|
    if (SkipBody && SkipBody->ShouldSkip)
 | 
						|
      return D;
 | 
						|
  }
 | 
						|
 | 
						|
  // Mark this function as "will have a body eventually".  This lets users to
 | 
						|
  // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
 | 
						|
  // this function.
 | 
						|
  FD->setWillHaveBody();
 | 
						|
 | 
						|
  // If we are instantiating a generic lambda call operator, push
 | 
						|
  // a LambdaScopeInfo onto the function stack.  But use the information
 | 
						|
  // that's already been calculated (ActOnLambdaExpr) to prime the current
 | 
						|
  // LambdaScopeInfo.
 | 
						|
  // When the template operator is being specialized, the LambdaScopeInfo,
 | 
						|
  // has to be properly restored so that tryCaptureVariable doesn't try
 | 
						|
  // and capture any new variables. In addition when calculating potential
 | 
						|
  // captures during transformation of nested lambdas, it is necessary to
 | 
						|
  // have the LSI properly restored.
 | 
						|
  if (isGenericLambdaCallOperatorSpecialization(FD)) {
 | 
						|
    assert(inTemplateInstantiation() &&
 | 
						|
           "There should be an active template instantiation on the stack "
 | 
						|
           "when instantiating a generic lambda!");
 | 
						|
    RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
 | 
						|
  } else {
 | 
						|
    // Enter a new function scope
 | 
						|
    PushFunctionScope();
 | 
						|
  }
 | 
						|
 | 
						|
  // Builtin functions cannot be defined.
 | 
						|
  if (unsigned BuiltinID = FD->getBuiltinID()) {
 | 
						|
    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
 | 
						|
        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
 | 
						|
      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
 | 
						|
      FD->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The return type of a function definition must be complete
 | 
						|
  // (C99 6.9.1p3, C++ [dcl.fct]p6).
 | 
						|
  QualType ResultType = FD->getReturnType();
 | 
						|
  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
 | 
						|
      !FD->isInvalidDecl() &&
 | 
						|
      RequireCompleteType(FD->getLocation(), ResultType,
 | 
						|
                          diag::err_func_def_incomplete_result))
 | 
						|
    FD->setInvalidDecl();
 | 
						|
 | 
						|
  if (FnBodyScope)
 | 
						|
    PushDeclContext(FnBodyScope, FD);
 | 
						|
 | 
						|
  // Check the validity of our function parameters
 | 
						|
  CheckParmsForFunctionDef(FD->parameters(),
 | 
						|
                           /*CheckParameterNames=*/true);
 | 
						|
 | 
						|
  // Add non-parameter declarations already in the function to the current
 | 
						|
  // scope.
 | 
						|
  if (FnBodyScope) {
 | 
						|
    for (Decl *NPD : FD->decls()) {
 | 
						|
      auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
 | 
						|
      if (!NonParmDecl)
 | 
						|
        continue;
 | 
						|
      assert(!isa<ParmVarDecl>(NonParmDecl) &&
 | 
						|
             "parameters should not be in newly created FD yet");
 | 
						|
 | 
						|
      // If the decl has a name, make it accessible in the current scope.
 | 
						|
      if (NonParmDecl->getDeclName())
 | 
						|
        PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
 | 
						|
 | 
						|
      // Similarly, dive into enums and fish their constants out, making them
 | 
						|
      // accessible in this scope.
 | 
						|
      if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
 | 
						|
        for (auto *EI : ED->enumerators())
 | 
						|
          PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Introduce our parameters into the function scope
 | 
						|
  for (auto Param : FD->parameters()) {
 | 
						|
    Param->setOwningFunction(FD);
 | 
						|
 | 
						|
    // If this has an identifier, add it to the scope stack.
 | 
						|
    if (Param->getIdentifier() && FnBodyScope) {
 | 
						|
      CheckShadow(FnBodyScope, Param);
 | 
						|
 | 
						|
      PushOnScopeChains(Param, FnBodyScope);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure that the function's exception specification is instantiated.
 | 
						|
  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
 | 
						|
    ResolveExceptionSpec(D->getLocation(), FPT);
 | 
						|
 | 
						|
  // dllimport cannot be applied to non-inline function definitions.
 | 
						|
  if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
 | 
						|
      !FD->isTemplateInstantiation()) {
 | 
						|
    assert(!FD->hasAttr<DLLExportAttr>());
 | 
						|
    Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
 | 
						|
    FD->setInvalidDecl();
 | 
						|
    return D;
 | 
						|
  }
 | 
						|
  // We want to attach documentation to original Decl (which might be
 | 
						|
  // a function template).
 | 
						|
  ActOnDocumentableDecl(D);
 | 
						|
  if (getCurLexicalContext()->isObjCContainer() &&
 | 
						|
      getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
 | 
						|
      getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
 | 
						|
    Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
 | 
						|
 | 
						|
  return D;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given the set of return statements within a function body,
 | 
						|
/// compute the variables that are subject to the named return value
 | 
						|
/// optimization.
 | 
						|
///
 | 
						|
/// Each of the variables that is subject to the named return value
 | 
						|
/// optimization will be marked as NRVO variables in the AST, and any
 | 
						|
/// return statement that has a marked NRVO variable as its NRVO candidate can
 | 
						|
/// use the named return value optimization.
 | 
						|
///
 | 
						|
/// This function applies a very simplistic algorithm for NRVO: if every return
 | 
						|
/// statement in the scope of a variable has the same NRVO candidate, that
 | 
						|
/// candidate is an NRVO variable.
 | 
						|
void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
 | 
						|
  ReturnStmt **Returns = Scope->Returns.data();
 | 
						|
 | 
						|
  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
 | 
						|
    if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
 | 
						|
      if (!NRVOCandidate->isNRVOVariable())
 | 
						|
        Returns[I]->setNRVOCandidate(nullptr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::canDelayFunctionBody(const Declarator &D) {
 | 
						|
  // We can't delay parsing the body of a constexpr function template (yet).
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can't delay parsing the body of a function template with a deduced
 | 
						|
  // return type (yet).
 | 
						|
  if (D.getDeclSpec().hasAutoTypeSpec()) {
 | 
						|
    // If the placeholder introduces a non-deduced trailing return type,
 | 
						|
    // we can still delay parsing it.
 | 
						|
    if (D.getNumTypeObjects()) {
 | 
						|
      const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
 | 
						|
      if (Outer.Kind == DeclaratorChunk::Function &&
 | 
						|
          Outer.Fun.hasTrailingReturnType()) {
 | 
						|
        QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
 | 
						|
        return Ty.isNull() || !Ty->isUndeducedType();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::canSkipFunctionBody(Decl *D) {
 | 
						|
  // We cannot skip the body of a function (or function template) which is
 | 
						|
  // constexpr, since we may need to evaluate its body in order to parse the
 | 
						|
  // rest of the file.
 | 
						|
  // We cannot skip the body of a function with an undeduced return type,
 | 
						|
  // because any callers of that function need to know the type.
 | 
						|
  if (const FunctionDecl *FD = D->getAsFunction())
 | 
						|
    if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
 | 
						|
      return false;
 | 
						|
  return Consumer.shouldSkipFunctionBody(D);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
 | 
						|
  if (!Decl)
 | 
						|
    return nullptr;
 | 
						|
  if (FunctionDecl *FD = Decl->getAsFunction())
 | 
						|
    FD->setHasSkippedBody();
 | 
						|
  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
 | 
						|
    MD->setHasSkippedBody();
 | 
						|
  return Decl;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
 | 
						|
  return ActOnFinishFunctionBody(D, BodyArg, false);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
 | 
						|
                                    bool IsInstantiation) {
 | 
						|
  FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
 | 
						|
 | 
						|
  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
 | 
						|
  sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
 | 
						|
 | 
						|
  if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine())
 | 
						|
    CheckCompletedCoroutineBody(FD, Body);
 | 
						|
 | 
						|
  if (FD) {
 | 
						|
    FD->setBody(Body);
 | 
						|
    FD->setWillHaveBody(false);
 | 
						|
 | 
						|
    if (getLangOpts().CPlusPlus14) {
 | 
						|
      if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
 | 
						|
          FD->getReturnType()->isUndeducedType()) {
 | 
						|
        // If the function has a deduced result type but contains no 'return'
 | 
						|
        // statements, the result type as written must be exactly 'auto', and
 | 
						|
        // the deduced result type is 'void'.
 | 
						|
        if (!FD->getReturnType()->getAs<AutoType>()) {
 | 
						|
          Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
 | 
						|
              << FD->getReturnType();
 | 
						|
          FD->setInvalidDecl();
 | 
						|
        } else {
 | 
						|
          // Substitute 'void' for the 'auto' in the type.
 | 
						|
          TypeLoc ResultType = getReturnTypeLoc(FD);
 | 
						|
          Context.adjustDeducedFunctionResultType(
 | 
						|
              FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
 | 
						|
      // In C++11, we don't use 'auto' deduction rules for lambda call
 | 
						|
      // operators because we don't support return type deduction.
 | 
						|
      auto *LSI = getCurLambda();
 | 
						|
      if (LSI->HasImplicitReturnType) {
 | 
						|
        deduceClosureReturnType(*LSI);
 | 
						|
 | 
						|
        // C++11 [expr.prim.lambda]p4:
 | 
						|
        //   [...] if there are no return statements in the compound-statement
 | 
						|
        //   [the deduced type is] the type void
 | 
						|
        QualType RetType =
 | 
						|
            LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
 | 
						|
 | 
						|
        // Update the return type to the deduced type.
 | 
						|
        const FunctionProtoType *Proto =
 | 
						|
            FD->getType()->getAs<FunctionProtoType>();
 | 
						|
        FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
 | 
						|
                                            Proto->getExtProtoInfo()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the function implicitly returns zero (like 'main') or is naked,
 | 
						|
    // don't complain about missing return statements.
 | 
						|
    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
 | 
						|
      WP.disableCheckFallThrough();
 | 
						|
 | 
						|
    // MSVC permits the use of pure specifier (=0) on function definition,
 | 
						|
    // defined at class scope, warn about this non-standard construct.
 | 
						|
    if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
 | 
						|
      Diag(FD->getLocation(), diag::ext_pure_function_definition);
 | 
						|
 | 
						|
    if (!FD->isInvalidDecl()) {
 | 
						|
      // Don't diagnose unused parameters of defaulted or deleted functions.
 | 
						|
      if (!FD->isDeleted() && !FD->isDefaulted())
 | 
						|
        DiagnoseUnusedParameters(FD->parameters());
 | 
						|
      DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
 | 
						|
                                             FD->getReturnType(), FD);
 | 
						|
 | 
						|
      // If this is a structor, we need a vtable.
 | 
						|
      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
 | 
						|
        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
 | 
						|
      else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
 | 
						|
        MarkVTableUsed(FD->getLocation(), Destructor->getParent());
 | 
						|
 | 
						|
      // Try to apply the named return value optimization. We have to check
 | 
						|
      // if we can do this here because lambdas keep return statements around
 | 
						|
      // to deduce an implicit return type.
 | 
						|
      if (FD->getReturnType()->isRecordType() &&
 | 
						|
          (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
 | 
						|
        computeNRVO(Body, getCurFunction());
 | 
						|
    }
 | 
						|
 | 
						|
    // GNU warning -Wmissing-prototypes:
 | 
						|
    //   Warn if a global function is defined without a previous
 | 
						|
    //   prototype declaration. This warning is issued even if the
 | 
						|
    //   definition itself provides a prototype. The aim is to detect
 | 
						|
    //   global functions that fail to be declared in header files.
 | 
						|
    const FunctionDecl *PossibleZeroParamPrototype = nullptr;
 | 
						|
    if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
 | 
						|
      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
 | 
						|
 | 
						|
      if (PossibleZeroParamPrototype) {
 | 
						|
        // We found a declaration that is not a prototype,
 | 
						|
        // but that could be a zero-parameter prototype
 | 
						|
        if (TypeSourceInfo *TI =
 | 
						|
                PossibleZeroParamPrototype->getTypeSourceInfo()) {
 | 
						|
          TypeLoc TL = TI->getTypeLoc();
 | 
						|
          if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
 | 
						|
            Diag(PossibleZeroParamPrototype->getLocation(),
 | 
						|
                 diag::note_declaration_not_a_prototype)
 | 
						|
                << PossibleZeroParamPrototype
 | 
						|
                << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // GNU warning -Wstrict-prototypes
 | 
						|
      //   Warn if K&R function is defined without a previous declaration.
 | 
						|
      //   This warning is issued only if the definition itself does not provide
 | 
						|
      //   a prototype. Only K&R definitions do not provide a prototype.
 | 
						|
      //   An empty list in a function declarator that is part of a definition
 | 
						|
      //   of that function specifies that the function has no parameters
 | 
						|
      //   (C99 6.7.5.3p14)
 | 
						|
      if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
 | 
						|
          !LangOpts.CPlusPlus) {
 | 
						|
        TypeSourceInfo *TI = FD->getTypeSourceInfo();
 | 
						|
        TypeLoc TL = TI->getTypeLoc();
 | 
						|
        FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
 | 
						|
        Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
 | 
						|
      const CXXMethodDecl *KeyFunction;
 | 
						|
      if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
 | 
						|
          MD->isVirtual() &&
 | 
						|
          (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
 | 
						|
          MD == KeyFunction->getCanonicalDecl()) {
 | 
						|
        // Update the key-function state if necessary for this ABI.
 | 
						|
        if (FD->isInlined() &&
 | 
						|
            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
 | 
						|
          Context.setNonKeyFunction(MD);
 | 
						|
 | 
						|
          // If the newly-chosen key function is already defined, then we
 | 
						|
          // need to mark the vtable as used retroactively.
 | 
						|
          KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
 | 
						|
          const FunctionDecl *Definition;
 | 
						|
          if (KeyFunction && KeyFunction->isDefined(Definition))
 | 
						|
            MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
 | 
						|
        } else {
 | 
						|
          // We just defined they key function; mark the vtable as used.
 | 
						|
          MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
 | 
						|
           "Function parsing confused");
 | 
						|
  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
 | 
						|
    assert(MD == getCurMethodDecl() && "Method parsing confused");
 | 
						|
    MD->setBody(Body);
 | 
						|
    if (!MD->isInvalidDecl()) {
 | 
						|
      DiagnoseUnusedParameters(MD->parameters());
 | 
						|
      DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
 | 
						|
                                             MD->getReturnType(), MD);
 | 
						|
 | 
						|
      if (Body)
 | 
						|
        computeNRVO(Body, getCurFunction());
 | 
						|
    }
 | 
						|
    if (getCurFunction()->ObjCShouldCallSuper) {
 | 
						|
      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
 | 
						|
        << MD->getSelector().getAsString();
 | 
						|
      getCurFunction()->ObjCShouldCallSuper = false;
 | 
						|
    }
 | 
						|
    if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
 | 
						|
      const ObjCMethodDecl *InitMethod = nullptr;
 | 
						|
      bool isDesignated =
 | 
						|
          MD->isDesignatedInitializerForTheInterface(&InitMethod);
 | 
						|
      assert(isDesignated && InitMethod);
 | 
						|
      (void)isDesignated;
 | 
						|
 | 
						|
      auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
 | 
						|
        auto IFace = MD->getClassInterface();
 | 
						|
        if (!IFace)
 | 
						|
          return false;
 | 
						|
        auto SuperD = IFace->getSuperClass();
 | 
						|
        if (!SuperD)
 | 
						|
          return false;
 | 
						|
        return SuperD->getIdentifier() ==
 | 
						|
            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
 | 
						|
      };
 | 
						|
      // Don't issue this warning for unavailable inits or direct subclasses
 | 
						|
      // of NSObject.
 | 
						|
      if (!MD->isUnavailable() && !superIsNSObject(MD)) {
 | 
						|
        Diag(MD->getLocation(),
 | 
						|
             diag::warn_objc_designated_init_missing_super_call);
 | 
						|
        Diag(InitMethod->getLocation(),
 | 
						|
             diag::note_objc_designated_init_marked_here);
 | 
						|
      }
 | 
						|
      getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
 | 
						|
    }
 | 
						|
    if (getCurFunction()->ObjCWarnForNoInitDelegation) {
 | 
						|
      // Don't issue this warning for unavaialable inits.
 | 
						|
      if (!MD->isUnavailable())
 | 
						|
        Diag(MD->getLocation(),
 | 
						|
             diag::warn_objc_secondary_init_missing_init_call);
 | 
						|
      getCurFunction()->ObjCWarnForNoInitDelegation = false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Parsing the function declaration failed in some way. Pop the fake scope
 | 
						|
    // we pushed on.
 | 
						|
    PopFunctionScopeInfo(ActivePolicy, dcl);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
 | 
						|
    DiagnoseUnguardedAvailabilityViolations(dcl);
 | 
						|
 | 
						|
  assert(!getCurFunction()->ObjCShouldCallSuper &&
 | 
						|
         "This should only be set for ObjC methods, which should have been "
 | 
						|
         "handled in the block above.");
 | 
						|
 | 
						|
  // Verify and clean out per-function state.
 | 
						|
  if (Body && (!FD || !FD->isDefaulted())) {
 | 
						|
    // C++ constructors that have function-try-blocks can't have return
 | 
						|
    // statements in the handlers of that block. (C++ [except.handle]p14)
 | 
						|
    // Verify this.
 | 
						|
    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
 | 
						|
      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
 | 
						|
 | 
						|
    // Verify that gotos and switch cases don't jump into scopes illegally.
 | 
						|
    if (getCurFunction()->NeedsScopeChecking() &&
 | 
						|
        !PP.isCodeCompletionEnabled())
 | 
						|
      DiagnoseInvalidJumps(Body);
 | 
						|
 | 
						|
    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
 | 
						|
      if (!Destructor->getParent()->isDependentType())
 | 
						|
        CheckDestructor(Destructor);
 | 
						|
 | 
						|
      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
 | 
						|
                                             Destructor->getParent());
 | 
						|
    }
 | 
						|
 | 
						|
    // If any errors have occurred, clear out any temporaries that may have
 | 
						|
    // been leftover. This ensures that these temporaries won't be picked up for
 | 
						|
    // deletion in some later function.
 | 
						|
    if (getDiagnostics().hasErrorOccurred() ||
 | 
						|
        getDiagnostics().getSuppressAllDiagnostics()) {
 | 
						|
      DiscardCleanupsInEvaluationContext();
 | 
						|
    }
 | 
						|
    if (!getDiagnostics().hasUncompilableErrorOccurred() &&
 | 
						|
        !isa<FunctionTemplateDecl>(dcl)) {
 | 
						|
      // Since the body is valid, issue any analysis-based warnings that are
 | 
						|
      // enabled.
 | 
						|
      ActivePolicy = &WP;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
 | 
						|
        (!CheckConstexprFunctionDecl(FD) ||
 | 
						|
         !CheckConstexprFunctionBody(FD, Body)))
 | 
						|
      FD->setInvalidDecl();
 | 
						|
 | 
						|
    if (FD && FD->hasAttr<NakedAttr>()) {
 | 
						|
      for (const Stmt *S : Body->children()) {
 | 
						|
        // Allow local register variables without initializer as they don't
 | 
						|
        // require prologue.
 | 
						|
        bool RegisterVariables = false;
 | 
						|
        if (auto *DS = dyn_cast<DeclStmt>(S)) {
 | 
						|
          for (const auto *Decl : DS->decls()) {
 | 
						|
            if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
 | 
						|
              RegisterVariables =
 | 
						|
                  Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
 | 
						|
              if (!RegisterVariables)
 | 
						|
                break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (RegisterVariables)
 | 
						|
          continue;
 | 
						|
        if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
 | 
						|
          Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
 | 
						|
          Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
 | 
						|
          FD->setInvalidDecl();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ExprCleanupObjects.size() ==
 | 
						|
               ExprEvalContexts.back().NumCleanupObjects &&
 | 
						|
           "Leftover temporaries in function");
 | 
						|
    assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
 | 
						|
    assert(MaybeODRUseExprs.empty() &&
 | 
						|
           "Leftover expressions for odr-use checking");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsInstantiation)
 | 
						|
    PopDeclContext();
 | 
						|
 | 
						|
  PopFunctionScopeInfo(ActivePolicy, dcl);
 | 
						|
  // If any errors have occurred, clear out any temporaries that may have
 | 
						|
  // been leftover. This ensures that these temporaries won't be picked up for
 | 
						|
  // deletion in some later function.
 | 
						|
  if (getDiagnostics().hasErrorOccurred()) {
 | 
						|
    DiscardCleanupsInEvaluationContext();
 | 
						|
  }
 | 
						|
 | 
						|
  return dcl;
 | 
						|
}
 | 
						|
 | 
						|
/// When we finish delayed parsing of an attribute, we must attach it to the
 | 
						|
/// relevant Decl.
 | 
						|
void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
 | 
						|
                                       ParsedAttributes &Attrs) {
 | 
						|
  // Always attach attributes to the underlying decl.
 | 
						|
  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
 | 
						|
    D = TD->getTemplatedDecl();
 | 
						|
  ProcessDeclAttributeList(S, D, Attrs.getList());
 | 
						|
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
 | 
						|
    if (Method->isStatic())
 | 
						|
      checkThisInStaticMemberFunctionAttributes(Method);
 | 
						|
}
 | 
						|
 | 
						|
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
 | 
						|
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
 | 
						|
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
 | 
						|
                                          IdentifierInfo &II, Scope *S) {
 | 
						|
  // Find the scope in which the identifier is injected and the corresponding
 | 
						|
  // DeclContext.
 | 
						|
  // FIXME: C89 does not say what happens if there is no enclosing block scope.
 | 
						|
  // In that case, we inject the declaration into the translation unit scope
 | 
						|
  // instead.
 | 
						|
  Scope *BlockScope = S;
 | 
						|
  while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
 | 
						|
    BlockScope = BlockScope->getParent();
 | 
						|
 | 
						|
  Scope *ContextScope = BlockScope;
 | 
						|
  while (!ContextScope->getEntity())
 | 
						|
    ContextScope = ContextScope->getParent();
 | 
						|
  ContextRAII SavedContext(*this, ContextScope->getEntity());
 | 
						|
 | 
						|
  // Before we produce a declaration for an implicitly defined
 | 
						|
  // function, see whether there was a locally-scoped declaration of
 | 
						|
  // this name as a function or variable. If so, use that
 | 
						|
  // (non-visible) declaration, and complain about it.
 | 
						|
  NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
 | 
						|
  if (ExternCPrev) {
 | 
						|
    // We still need to inject the function into the enclosing block scope so
 | 
						|
    // that later (non-call) uses can see it.
 | 
						|
    PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
 | 
						|
 | 
						|
    // C89 footnote 38:
 | 
						|
    //   If in fact it is not defined as having type "function returning int",
 | 
						|
    //   the behavior is undefined.
 | 
						|
    if (!isa<FunctionDecl>(ExternCPrev) ||
 | 
						|
        !Context.typesAreCompatible(
 | 
						|
            cast<FunctionDecl>(ExternCPrev)->getType(),
 | 
						|
            Context.getFunctionNoProtoType(Context.IntTy))) {
 | 
						|
      Diag(Loc, diag::ext_use_out_of_scope_declaration)
 | 
						|
          << ExternCPrev << !getLangOpts().C99;
 | 
						|
      Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
 | 
						|
      return ExternCPrev;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Extension in C99.  Legal in C90, but warn about it.
 | 
						|
  // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
 | 
						|
  unsigned diag_id;
 | 
						|
  if (II.getName().startswith("__builtin_"))
 | 
						|
    diag_id = diag::warn_builtin_unknown;
 | 
						|
  else if (getLangOpts().C99 || getLangOpts().OpenCL)
 | 
						|
    diag_id = diag::ext_implicit_function_decl;
 | 
						|
  else
 | 
						|
    diag_id = diag::warn_implicit_function_decl;
 | 
						|
  Diag(Loc, diag_id) << &II << getLangOpts().OpenCL;
 | 
						|
 | 
						|
  // If we found a prior declaration of this function, don't bother building
 | 
						|
  // another one. We've already pushed that one into scope, so there's nothing
 | 
						|
  // more to do.
 | 
						|
  if (ExternCPrev)
 | 
						|
    return ExternCPrev;
 | 
						|
 | 
						|
  // Because typo correction is expensive, only do it if the implicit
 | 
						|
  // function declaration is going to be treated as an error.
 | 
						|
  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
 | 
						|
    TypoCorrection Corrected;
 | 
						|
    if (S &&
 | 
						|
        (Corrected = CorrectTypo(
 | 
						|
             DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
 | 
						|
             llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
 | 
						|
      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
 | 
						|
                   /*ErrorRecovery*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Set a Declarator for the implicit definition: int foo();
 | 
						|
  const char *Dummy;
 | 
						|
  AttributeFactory attrFactory;
 | 
						|
  DeclSpec DS(attrFactory);
 | 
						|
  unsigned DiagID;
 | 
						|
  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
 | 
						|
                                  Context.getPrintingPolicy());
 | 
						|
  (void)Error; // Silence warning.
 | 
						|
  assert(!Error && "Error setting up implicit decl!");
 | 
						|
  SourceLocation NoLoc;
 | 
						|
  Declarator D(DS, DeclaratorContext::BlockContext);
 | 
						|
  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
 | 
						|
                                             /*IsAmbiguous=*/false,
 | 
						|
                                             /*LParenLoc=*/NoLoc,
 | 
						|
                                             /*Params=*/nullptr,
 | 
						|
                                             /*NumParams=*/0,
 | 
						|
                                             /*EllipsisLoc=*/NoLoc,
 | 
						|
                                             /*RParenLoc=*/NoLoc,
 | 
						|
                                             /*TypeQuals=*/0,
 | 
						|
                                             /*RefQualifierIsLvalueRef=*/true,
 | 
						|
                                             /*RefQualifierLoc=*/NoLoc,
 | 
						|
                                             /*ConstQualifierLoc=*/NoLoc,
 | 
						|
                                             /*VolatileQualifierLoc=*/NoLoc,
 | 
						|
                                             /*RestrictQualifierLoc=*/NoLoc,
 | 
						|
                                             /*MutableLoc=*/NoLoc,
 | 
						|
                                             EST_None,
 | 
						|
                                             /*ESpecRange=*/SourceRange(),
 | 
						|
                                             /*Exceptions=*/nullptr,
 | 
						|
                                             /*ExceptionRanges=*/nullptr,
 | 
						|
                                             /*NumExceptions=*/0,
 | 
						|
                                             /*NoexceptExpr=*/nullptr,
 | 
						|
                                             /*ExceptionSpecTokens=*/nullptr,
 | 
						|
                                             /*DeclsInPrototype=*/None,
 | 
						|
                                             Loc, Loc, D),
 | 
						|
                DS.getAttributes(),
 | 
						|
                SourceLocation());
 | 
						|
  D.SetIdentifier(&II, Loc);
 | 
						|
 | 
						|
  // Insert this function into the enclosing block scope.
 | 
						|
  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
 | 
						|
  FD->setImplicit();
 | 
						|
 | 
						|
  AddKnownFunctionAttributes(FD);
 | 
						|
 | 
						|
  return FD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Adds any function attributes that we know a priori based on
 | 
						|
/// the declaration of this function.
 | 
						|
///
 | 
						|
/// These attributes can apply both to implicitly-declared builtins
 | 
						|
/// (like __builtin___printf_chk) or to library-declared functions
 | 
						|
/// like NSLog or printf.
 | 
						|
///
 | 
						|
/// We need to check for duplicate attributes both here and where user-written
 | 
						|
/// attributes are applied to declarations.
 | 
						|
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
 | 
						|
  if (FD->isInvalidDecl())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is a built-in function, map its builtin attributes to
 | 
						|
  // actual attributes.
 | 
						|
  if (unsigned BuiltinID = FD->getBuiltinID()) {
 | 
						|
    // Handle printf-formatting attributes.
 | 
						|
    unsigned FormatIdx;
 | 
						|
    bool HasVAListArg;
 | 
						|
    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
 | 
						|
      if (!FD->hasAttr<FormatAttr>()) {
 | 
						|
        const char *fmt = "printf";
 | 
						|
        unsigned int NumParams = FD->getNumParams();
 | 
						|
        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
 | 
						|
            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
 | 
						|
          fmt = "NSString";
 | 
						|
        FD->addAttr(FormatAttr::CreateImplicit(Context,
 | 
						|
                                               &Context.Idents.get(fmt),
 | 
						|
                                               FormatIdx+1,
 | 
						|
                                               HasVAListArg ? 0 : FormatIdx+2,
 | 
						|
                                               FD->getLocation()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
 | 
						|
                                             HasVAListArg)) {
 | 
						|
     if (!FD->hasAttr<FormatAttr>())
 | 
						|
       FD->addAttr(FormatAttr::CreateImplicit(Context,
 | 
						|
                                              &Context.Idents.get("scanf"),
 | 
						|
                                              FormatIdx+1,
 | 
						|
                                              HasVAListArg ? 0 : FormatIdx+2,
 | 
						|
                                              FD->getLocation()));
 | 
						|
    }
 | 
						|
 | 
						|
    // Mark const if we don't care about errno and that is the only thing
 | 
						|
    // preventing the function from being const. This allows IRgen to use LLVM
 | 
						|
    // intrinsics for such functions.
 | 
						|
    if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
 | 
						|
        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
 | 
						|
      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
 | 
						|
    // We make "fma" on some platforms const because we know it does not set
 | 
						|
    // errno in those environments even though it could set errno based on the
 | 
						|
    // C standard.
 | 
						|
    const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
 | 
						|
    if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
 | 
						|
        !FD->hasAttr<ConstAttr>()) {
 | 
						|
      switch (BuiltinID) {
 | 
						|
      case Builtin::BI__builtin_fma:
 | 
						|
      case Builtin::BI__builtin_fmaf:
 | 
						|
      case Builtin::BI__builtin_fmal:
 | 
						|
      case Builtin::BIfma:
 | 
						|
      case Builtin::BIfmaf:
 | 
						|
      case Builtin::BIfmal:
 | 
						|
        FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
 | 
						|
        !FD->hasAttr<ReturnsTwiceAttr>())
 | 
						|
      FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
 | 
						|
                                         FD->getLocation()));
 | 
						|
    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
 | 
						|
      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
    if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
 | 
						|
      FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
 | 
						|
      FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
    if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
 | 
						|
        !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
 | 
						|
      // Add the appropriate attribute, depending on the CUDA compilation mode
 | 
						|
      // and which target the builtin belongs to. For example, during host
 | 
						|
      // compilation, aux builtins are __device__, while the rest are __host__.
 | 
						|
      if (getLangOpts().CUDAIsDevice !=
 | 
						|
          Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
 | 
						|
        FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
      else
 | 
						|
        FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If C++ exceptions are enabled but we are told extern "C" functions cannot
 | 
						|
  // throw, add an implicit nothrow attribute to any extern "C" function we come
 | 
						|
  // across.
 | 
						|
  if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
 | 
						|
      FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
 | 
						|
    const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
 | 
						|
    if (!FPT || FPT->getExceptionSpecType() == EST_None)
 | 
						|
      FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *Name = FD->getIdentifier();
 | 
						|
  if (!Name)
 | 
						|
    return;
 | 
						|
  if ((!getLangOpts().CPlusPlus &&
 | 
						|
       FD->getDeclContext()->isTranslationUnit()) ||
 | 
						|
      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
 | 
						|
       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
 | 
						|
       LinkageSpecDecl::lang_c)) {
 | 
						|
    // Okay: this could be a libc/libm/Objective-C function we know
 | 
						|
    // about.
 | 
						|
  } else
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
 | 
						|
    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
 | 
						|
    // target-specific builtins, perhaps?
 | 
						|
    if (!FD->hasAttr<FormatAttr>())
 | 
						|
      FD->addAttr(FormatAttr::CreateImplicit(Context,
 | 
						|
                                             &Context.Idents.get("printf"), 2,
 | 
						|
                                             Name->isStr("vasprintf") ? 0 : 3,
 | 
						|
                                             FD->getLocation()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Name->isStr("__CFStringMakeConstantString")) {
 | 
						|
    // We already have a __builtin___CFStringMakeConstantString,
 | 
						|
    // but builds that use -fno-constant-cfstrings don't go through that.
 | 
						|
    if (!FD->hasAttr<FormatArgAttr>())
 | 
						|
      FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
 | 
						|
                                                FD->getLocation()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
 | 
						|
                                    TypeSourceInfo *TInfo) {
 | 
						|
  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
 | 
						|
  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
 | 
						|
 | 
						|
  if (!TInfo) {
 | 
						|
    assert(D.isInvalidType() && "no declarator info for valid type");
 | 
						|
    TInfo = Context.getTrivialTypeSourceInfo(T);
 | 
						|
  }
 | 
						|
 | 
						|
  // Scope manipulation handled by caller.
 | 
						|
  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
 | 
						|
                                           D.getLocStart(),
 | 
						|
                                           D.getIdentifierLoc(),
 | 
						|
                                           D.getIdentifier(),
 | 
						|
                                           TInfo);
 | 
						|
 | 
						|
  // Bail out immediately if we have an invalid declaration.
 | 
						|
  if (D.isInvalidType()) {
 | 
						|
    NewTD->setInvalidDecl();
 | 
						|
    return NewTD;
 | 
						|
  }
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified()) {
 | 
						|
    if (CurContext->isFunctionOrMethod())
 | 
						|
      Diag(NewTD->getLocation(), diag::err_module_private_local)
 | 
						|
        << 2 << NewTD->getDeclName()
 | 
						|
        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
 | 
						|
        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
 | 
						|
    else
 | 
						|
      NewTD->setModulePrivate();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [dcl.typedef]p8:
 | 
						|
  //   If the typedef declaration defines an unnamed class (or
 | 
						|
  //   enum), the first typedef-name declared by the declaration
 | 
						|
  //   to be that class type (or enum type) is used to denote the
 | 
						|
  //   class type (or enum type) for linkage purposes only.
 | 
						|
  // We need to check whether the type was declared in the declaration.
 | 
						|
  switch (D.getDeclSpec().getTypeSpecType()) {
 | 
						|
  case TST_enum:
 | 
						|
  case TST_struct:
 | 
						|
  case TST_interface:
 | 
						|
  case TST_union:
 | 
						|
  case TST_class: {
 | 
						|
    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
 | 
						|
    setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return NewTD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that this is a valid underlying type for an enum declaration.
 | 
						|
bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
 | 
						|
  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
 | 
						|
  QualType T = TI->getType();
 | 
						|
 | 
						|
  if (T->isDependentType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (const BuiltinType *BT = T->getAs<BuiltinType>())
 | 
						|
    if (BT->isInteger())
 | 
						|
      return false;
 | 
						|
 | 
						|
  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether this is a valid redeclaration of a previous enumeration.
 | 
						|
/// \return true if the redeclaration was invalid.
 | 
						|
bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
 | 
						|
                                  QualType EnumUnderlyingTy, bool IsFixed,
 | 
						|
                                  const EnumDecl *Prev) {
 | 
						|
  if (IsScoped != Prev->isScoped()) {
 | 
						|
    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
 | 
						|
      << Prev->isScoped();
 | 
						|
    Diag(Prev->getLocation(), diag::note_previous_declaration);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsFixed && Prev->isFixed()) {
 | 
						|
    if (!EnumUnderlyingTy->isDependentType() &&
 | 
						|
        !Prev->getIntegerType()->isDependentType() &&
 | 
						|
        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
 | 
						|
                                        Prev->getIntegerType())) {
 | 
						|
      // TODO: Highlight the underlying type of the redeclaration.
 | 
						|
      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
 | 
						|
        << EnumUnderlyingTy << Prev->getIntegerType();
 | 
						|
      Diag(Prev->getLocation(), diag::note_previous_declaration)
 | 
						|
          << Prev->getIntegerTypeRange();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (IsFixed != Prev->isFixed()) {
 | 
						|
    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
 | 
						|
      << Prev->isFixed();
 | 
						|
    Diag(Prev->getLocation(), diag::note_previous_declaration);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Get diagnostic %select index for tag kind for
 | 
						|
/// redeclaration diagnostic message.
 | 
						|
/// WARNING: Indexes apply to particular diagnostics only!
 | 
						|
///
 | 
						|
/// \returns diagnostic %select index.
 | 
						|
static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
 | 
						|
  switch (Tag) {
 | 
						|
  case TTK_Struct: return 0;
 | 
						|
  case TTK_Interface: return 1;
 | 
						|
  case TTK_Class:  return 2;
 | 
						|
  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine if tag kind is a class-key compatible with
 | 
						|
/// class for redeclaration (class, struct, or __interface).
 | 
						|
///
 | 
						|
/// \returns true iff the tag kind is compatible.
 | 
						|
static bool isClassCompatTagKind(TagTypeKind Tag)
 | 
						|
{
 | 
						|
  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
 | 
						|
}
 | 
						|
 | 
						|
Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
 | 
						|
                                             TagTypeKind TTK) {
 | 
						|
  if (isa<TypedefDecl>(PrevDecl))
 | 
						|
    return NTK_Typedef;
 | 
						|
  else if (isa<TypeAliasDecl>(PrevDecl))
 | 
						|
    return NTK_TypeAlias;
 | 
						|
  else if (isa<ClassTemplateDecl>(PrevDecl))
 | 
						|
    return NTK_Template;
 | 
						|
  else if (isa<TypeAliasTemplateDecl>(PrevDecl))
 | 
						|
    return NTK_TypeAliasTemplate;
 | 
						|
  else if (isa<TemplateTemplateParmDecl>(PrevDecl))
 | 
						|
    return NTK_TemplateTemplateArgument;
 | 
						|
  switch (TTK) {
 | 
						|
  case TTK_Struct:
 | 
						|
  case TTK_Interface:
 | 
						|
  case TTK_Class:
 | 
						|
    return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
 | 
						|
  case TTK_Union:
 | 
						|
    return NTK_NonUnion;
 | 
						|
  case TTK_Enum:
 | 
						|
    return NTK_NonEnum;
 | 
						|
  }
 | 
						|
  llvm_unreachable("invalid TTK");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether a tag with a given kind is acceptable
 | 
						|
/// as a redeclaration of the given tag declaration.
 | 
						|
///
 | 
						|
/// \returns true if the new tag kind is acceptable, false otherwise.
 | 
						|
bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
 | 
						|
                                        TagTypeKind NewTag, bool isDefinition,
 | 
						|
                                        SourceLocation NewTagLoc,
 | 
						|
                                        const IdentifierInfo *Name) {
 | 
						|
  // C++ [dcl.type.elab]p3:
 | 
						|
  //   The class-key or enum keyword present in the
 | 
						|
  //   elaborated-type-specifier shall agree in kind with the
 | 
						|
  //   declaration to which the name in the elaborated-type-specifier
 | 
						|
  //   refers. This rule also applies to the form of
 | 
						|
  //   elaborated-type-specifier that declares a class-name or
 | 
						|
  //   friend class since it can be construed as referring to the
 | 
						|
  //   definition of the class. Thus, in any
 | 
						|
  //   elaborated-type-specifier, the enum keyword shall be used to
 | 
						|
  //   refer to an enumeration (7.2), the union class-key shall be
 | 
						|
  //   used to refer to a union (clause 9), and either the class or
 | 
						|
  //   struct class-key shall be used to refer to a class (clause 9)
 | 
						|
  //   declared using the class or struct class-key.
 | 
						|
  TagTypeKind OldTag = Previous->getTagKind();
 | 
						|
  if (!isDefinition || !isClassCompatTagKind(NewTag))
 | 
						|
    if (OldTag == NewTag)
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
 | 
						|
    // Warn about the struct/class tag mismatch.
 | 
						|
    bool isTemplate = false;
 | 
						|
    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
 | 
						|
      isTemplate = Record->getDescribedClassTemplate();
 | 
						|
 | 
						|
    if (inTemplateInstantiation()) {
 | 
						|
      // In a template instantiation, do not offer fix-its for tag mismatches
 | 
						|
      // since they usually mess up the template instead of fixing the problem.
 | 
						|
      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | 
						|
        << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
 | 
						|
        << getRedeclDiagFromTagKind(OldTag);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isDefinition) {
 | 
						|
      // On definitions, check previous tags and issue a fix-it for each
 | 
						|
      // one that doesn't match the current tag.
 | 
						|
      if (Previous->getDefinition()) {
 | 
						|
        // Don't suggest fix-its for redefinitions.
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      bool previousMismatch = false;
 | 
						|
      for (auto I : Previous->redecls()) {
 | 
						|
        if (I->getTagKind() != NewTag) {
 | 
						|
          if (!previousMismatch) {
 | 
						|
            previousMismatch = true;
 | 
						|
            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
 | 
						|
              << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
 | 
						|
              << getRedeclDiagFromTagKind(I->getTagKind());
 | 
						|
          }
 | 
						|
          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
 | 
						|
            << getRedeclDiagFromTagKind(NewTag)
 | 
						|
            << FixItHint::CreateReplacement(I->getInnerLocStart(),
 | 
						|
                 TypeWithKeyword::getTagTypeKindName(NewTag));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for a previous definition.  If current tag and definition
 | 
						|
    // are same type, do nothing.  If no definition, but disagree with
 | 
						|
    // with previous tag type, give a warning, but no fix-it.
 | 
						|
    const TagDecl *Redecl = Previous->getDefinition() ?
 | 
						|
                            Previous->getDefinition() : Previous;
 | 
						|
    if (Redecl->getTagKind() == NewTag) {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
 | 
						|
      << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
 | 
						|
      << getRedeclDiagFromTagKind(OldTag);
 | 
						|
    Diag(Redecl->getLocation(), diag::note_previous_use);
 | 
						|
 | 
						|
    // If there is a previous definition, suggest a fix-it.
 | 
						|
    if (Previous->getDefinition()) {
 | 
						|
        Diag(NewTagLoc, diag::note_struct_class_suggestion)
 | 
						|
          << getRedeclDiagFromTagKind(Redecl->getTagKind())
 | 
						|
          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
 | 
						|
               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
 | 
						|
/// from an outer enclosing namespace or file scope inside a friend declaration.
 | 
						|
/// This should provide the commented out code in the following snippet:
 | 
						|
///   namespace N {
 | 
						|
///     struct X;
 | 
						|
///     namespace M {
 | 
						|
///       struct Y { friend struct /*N::*/ X; };
 | 
						|
///     }
 | 
						|
///   }
 | 
						|
static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
 | 
						|
                                         SourceLocation NameLoc) {
 | 
						|
  // While the decl is in a namespace, do repeated lookup of that name and see
 | 
						|
  // if we get the same namespace back.  If we do not, continue until
 | 
						|
  // translation unit scope, at which point we have a fully qualified NNS.
 | 
						|
  SmallVector<IdentifierInfo *, 4> Namespaces;
 | 
						|
  DeclContext *DC = ND->getDeclContext()->getRedeclContext();
 | 
						|
  for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
 | 
						|
    // This tag should be declared in a namespace, which can only be enclosed by
 | 
						|
    // other namespaces.  Bail if there's an anonymous namespace in the chain.
 | 
						|
    NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
 | 
						|
    if (!Namespace || Namespace->isAnonymousNamespace())
 | 
						|
      return FixItHint();
 | 
						|
    IdentifierInfo *II = Namespace->getIdentifier();
 | 
						|
    Namespaces.push_back(II);
 | 
						|
    NamedDecl *Lookup = SemaRef.LookupSingleName(
 | 
						|
        S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
 | 
						|
    if (Lookup == Namespace)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Once we have all the namespaces, reverse them to go outermost first, and
 | 
						|
  // build an NNS.
 | 
						|
  SmallString<64> Insertion;
 | 
						|
  llvm::raw_svector_ostream OS(Insertion);
 | 
						|
  if (DC->isTranslationUnit())
 | 
						|
    OS << "::";
 | 
						|
  std::reverse(Namespaces.begin(), Namespaces.end());
 | 
						|
  for (auto *II : Namespaces)
 | 
						|
    OS << II->getName() << "::";
 | 
						|
  return FixItHint::CreateInsertion(NameLoc, Insertion);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether a tag originally declared in context \p OldDC can
 | 
						|
/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
 | 
						|
/// found a declaration in \p OldDC as a previous decl, perhaps through a
 | 
						|
/// using-declaration).
 | 
						|
static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
 | 
						|
                                         DeclContext *NewDC) {
 | 
						|
  OldDC = OldDC->getRedeclContext();
 | 
						|
  NewDC = NewDC->getRedeclContext();
 | 
						|
 | 
						|
  if (OldDC->Equals(NewDC))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // In MSVC mode, we allow a redeclaration if the contexts are related (either
 | 
						|
  // encloses the other).
 | 
						|
  if (S.getLangOpts().MSVCCompat &&
 | 
						|
      (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
 | 
						|
/// former case, Name will be non-null.  In the later case, Name will be null.
 | 
						|
/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
 | 
						|
/// reference/declaration/definition of a tag.
 | 
						|
///
 | 
						|
/// \param IsTypeSpecifier \c true if this is a type-specifier (or
 | 
						|
/// trailing-type-specifier) other than one in an alias-declaration.
 | 
						|
///
 | 
						|
/// \param SkipBody If non-null, will be set to indicate if the caller should
 | 
						|
/// skip the definition of this tag and treat it as if it were a declaration.
 | 
						|
Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                     SourceLocation KWLoc, CXXScopeSpec &SS,
 | 
						|
                     IdentifierInfo *Name, SourceLocation NameLoc,
 | 
						|
                     AttributeList *Attr, AccessSpecifier AS,
 | 
						|
                     SourceLocation ModulePrivateLoc,
 | 
						|
                     MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                     bool &OwnedDecl, bool &IsDependent,
 | 
						|
                     SourceLocation ScopedEnumKWLoc,
 | 
						|
                     bool ScopedEnumUsesClassTag,
 | 
						|
                     TypeResult UnderlyingType,
 | 
						|
                     bool IsTypeSpecifier, bool IsTemplateParamOrArg,
 | 
						|
                     SkipBodyInfo *SkipBody) {
 | 
						|
  // If this is not a definition, it must have a name.
 | 
						|
  IdentifierInfo *OrigName = Name;
 | 
						|
  assert((Name != nullptr || TUK == TUK_Definition) &&
 | 
						|
         "Nameless record must be a definition!");
 | 
						|
  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
 | 
						|
 | 
						|
  OwnedDecl = false;
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  bool ScopedEnum = ScopedEnumKWLoc.isValid();
 | 
						|
 | 
						|
  // FIXME: Check member specializations more carefully.
 | 
						|
  bool isMemberSpecialization = false;
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // We only need to do this matching if we have template parameters
 | 
						|
  // or a scope specifier, which also conveniently avoids this work
 | 
						|
  // for non-C++ cases.
 | 
						|
  if (TemplateParameterLists.size() > 0 ||
 | 
						|
      (SS.isNotEmpty() && TUK != TUK_Reference)) {
 | 
						|
    if (TemplateParameterList *TemplateParams =
 | 
						|
            MatchTemplateParametersToScopeSpecifier(
 | 
						|
                KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
 | 
						|
                TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
 | 
						|
      if (Kind == TTK_Enum) {
 | 
						|
        Diag(KWLoc, diag::err_enum_template);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      if (TemplateParams->size() > 0) {
 | 
						|
        // This is a declaration or definition of a class template (which may
 | 
						|
        // be a member of another template).
 | 
						|
 | 
						|
        if (Invalid)
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        OwnedDecl = false;
 | 
						|
        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
 | 
						|
                                               SS, Name, NameLoc, Attr,
 | 
						|
                                               TemplateParams, AS,
 | 
						|
                                               ModulePrivateLoc,
 | 
						|
                                               /*FriendLoc*/SourceLocation(),
 | 
						|
                                               TemplateParameterLists.size()-1,
 | 
						|
                                               TemplateParameterLists.data(),
 | 
						|
                                               SkipBody);
 | 
						|
        return Result.get();
 | 
						|
      } else {
 | 
						|
        // The "template<>" header is extraneous.
 | 
						|
        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
 | 
						|
          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
 | 
						|
        isMemberSpecialization = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out the underlying type if this a enum declaration. We need to do
 | 
						|
  // this early, because it's needed to detect if this is an incompatible
 | 
						|
  // redeclaration.
 | 
						|
  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
 | 
						|
  bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
 | 
						|
 | 
						|
  if (Kind == TTK_Enum) {
 | 
						|
    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
 | 
						|
      // No underlying type explicitly specified, or we failed to parse the
 | 
						|
      // type, default to int.
 | 
						|
      EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
    } else if (UnderlyingType.get()) {
 | 
						|
      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
 | 
						|
      // integral type; any cv-qualification is ignored.
 | 
						|
      TypeSourceInfo *TI = nullptr;
 | 
						|
      GetTypeFromParser(UnderlyingType.get(), &TI);
 | 
						|
      EnumUnderlying = TI;
 | 
						|
 | 
						|
      if (CheckEnumUnderlyingType(TI))
 | 
						|
        // Recover by falling back to int.
 | 
						|
        EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
 | 
						|
      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
 | 
						|
                                          UPPC_FixedUnderlyingType))
 | 
						|
        EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
 | 
						|
    } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | 
						|
      // For MSVC ABI compatibility, unfixed enums must use an underlying type
 | 
						|
      // of 'int'. However, if this is an unfixed forward declaration, don't set
 | 
						|
      // the underlying type unless the user enables -fms-compatibility. This
 | 
						|
      // makes unfixed forward declared enums incomplete and is more conforming.
 | 
						|
      if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
 | 
						|
        EnumUnderlying = Context.IntTy.getTypePtr();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DeclContext *SearchDC = CurContext;
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
  bool isStdBadAlloc = false;
 | 
						|
  bool isStdAlignValT = false;
 | 
						|
 | 
						|
  RedeclarationKind Redecl = forRedeclarationInCurContext();
 | 
						|
  if (TUK == TUK_Friend || TUK == TUK_Reference)
 | 
						|
    Redecl = NotForRedeclaration;
 | 
						|
 | 
						|
  /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
 | 
						|
  /// implemented asks for structural equivalence checking, the returned decl
 | 
						|
  /// here is passed back to the parser, allowing the tag body to be parsed.
 | 
						|
  auto createTagFromNewDecl = [&]() -> TagDecl * {
 | 
						|
    assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
 | 
						|
    // If there is an identifier, use the location of the identifier as the
 | 
						|
    // location of the decl, otherwise use the location of the struct/union
 | 
						|
    // keyword.
 | 
						|
    SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
 | 
						|
    TagDecl *New = nullptr;
 | 
						|
 | 
						|
    if (Kind == TTK_Enum) {
 | 
						|
      New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
 | 
						|
                             ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
 | 
						|
      // If this is an undefined enum, bail.
 | 
						|
      if (TUK != TUK_Definition && !Invalid)
 | 
						|
        return nullptr;
 | 
						|
      if (EnumUnderlying) {
 | 
						|
        EnumDecl *ED = cast<EnumDecl>(New);
 | 
						|
        if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
 | 
						|
          ED->setIntegerTypeSourceInfo(TI);
 | 
						|
        else
 | 
						|
          ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
 | 
						|
        ED->setPromotionType(ED->getIntegerType());
 | 
						|
      }
 | 
						|
    } else { // struct/union
 | 
						|
      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | 
						|
                               nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
 | 
						|
      // Add alignment attributes if necessary; these attributes are checked
 | 
						|
      // when the ASTContext lays out the structure.
 | 
						|
      //
 | 
						|
      // It is important for implementing the correct semantics that this
 | 
						|
      // happen here (in ActOnTag). The #pragma pack stack is
 | 
						|
      // maintained as a result of parser callbacks which can occur at
 | 
						|
      // many points during the parsing of a struct declaration (because
 | 
						|
      // the #pragma tokens are effectively skipped over during the
 | 
						|
      // parsing of the struct).
 | 
						|
      if (TUK == TUK_Definition) {
 | 
						|
        AddAlignmentAttributesForRecord(RD);
 | 
						|
        AddMsStructLayoutForRecord(RD);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    New->setLexicalDeclContext(CurContext);
 | 
						|
    return New;
 | 
						|
  };
 | 
						|
 | 
						|
  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
 | 
						|
  if (Name && SS.isNotEmpty()) {
 | 
						|
    // We have a nested-name tag ('struct foo::bar').
 | 
						|
 | 
						|
    // Check for invalid 'foo::'.
 | 
						|
    if (SS.isInvalid()) {
 | 
						|
      Name = nullptr;
 | 
						|
      goto CreateNewDecl;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a friend or a reference to a class in a dependent
 | 
						|
    // context, don't try to make a decl for it.
 | 
						|
    if (TUK == TUK_Friend || TUK == TUK_Reference) {
 | 
						|
      DC = computeDeclContext(SS, false);
 | 
						|
      if (!DC) {
 | 
						|
        IsDependent = true;
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      DC = computeDeclContext(SS, true);
 | 
						|
      if (!DC) {
 | 
						|
        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
 | 
						|
          << SS.getRange();
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (RequireCompleteDeclContext(SS, DC))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    SearchDC = DC;
 | 
						|
    // Look-up name inside 'foo::'.
 | 
						|
    LookupQualifiedName(Previous, DC);
 | 
						|
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (Previous.empty()) {
 | 
						|
      // Name lookup did not find anything. However, if the
 | 
						|
      // nested-name-specifier refers to the current instantiation,
 | 
						|
      // and that current instantiation has any dependent base
 | 
						|
      // classes, we might find something at instantiation time: treat
 | 
						|
      // this as a dependent elaborated-type-specifier.
 | 
						|
      // But this only makes any sense for reference-like lookups.
 | 
						|
      if (Previous.wasNotFoundInCurrentInstantiation() &&
 | 
						|
          (TUK == TUK_Reference || TUK == TUK_Friend)) {
 | 
						|
        IsDependent = true;
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      // A tag 'foo::bar' must already exist.
 | 
						|
      Diag(NameLoc, diag::err_not_tag_in_scope)
 | 
						|
        << Kind << Name << DC << SS.getRange();
 | 
						|
      Name = nullptr;
 | 
						|
      Invalid = true;
 | 
						|
      goto CreateNewDecl;
 | 
						|
    }
 | 
						|
  } else if (Name) {
 | 
						|
    // C++14 [class.mem]p14:
 | 
						|
    //   If T is the name of a class, then each of the following shall have a
 | 
						|
    //   name different from T:
 | 
						|
    //    -- every member of class T that is itself a type
 | 
						|
    if (TUK != TUK_Reference && TUK != TUK_Friend &&
 | 
						|
        DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // If this is a named struct, check to see if there was a previous forward
 | 
						|
    // declaration or definition.
 | 
						|
    // FIXME: We're looking into outer scopes here, even when we
 | 
						|
    // shouldn't be. Doing so can result in ambiguities that we
 | 
						|
    // shouldn't be diagnosing.
 | 
						|
    LookupName(Previous, S);
 | 
						|
 | 
						|
    // When declaring or defining a tag, ignore ambiguities introduced
 | 
						|
    // by types using'ed into this scope.
 | 
						|
    if (Previous.isAmbiguous() &&
 | 
						|
        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
 | 
						|
      LookupResult::Filter F = Previous.makeFilter();
 | 
						|
      while (F.hasNext()) {
 | 
						|
        NamedDecl *ND = F.next();
 | 
						|
        if (!ND->getDeclContext()->getRedeclContext()->Equals(
 | 
						|
                SearchDC->getRedeclContext()))
 | 
						|
          F.erase();
 | 
						|
      }
 | 
						|
      F.done();
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [namespace.memdef]p3:
 | 
						|
    //   If the name in a friend declaration is neither qualified nor
 | 
						|
    //   a template-id and the declaration is a function or an
 | 
						|
    //   elaborated-type-specifier, the lookup to determine whether
 | 
						|
    //   the entity has been previously declared shall not consider
 | 
						|
    //   any scopes outside the innermost enclosing namespace.
 | 
						|
    //
 | 
						|
    // MSVC doesn't implement the above rule for types, so a friend tag
 | 
						|
    // declaration may be a redeclaration of a type declared in an enclosing
 | 
						|
    // scope.  They do implement this rule for friend functions.
 | 
						|
    //
 | 
						|
    // Does it matter that this should be by scope instead of by
 | 
						|
    // semantic context?
 | 
						|
    if (!Previous.empty() && TUK == TUK_Friend) {
 | 
						|
      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
 | 
						|
      LookupResult::Filter F = Previous.makeFilter();
 | 
						|
      bool FriendSawTagOutsideEnclosingNamespace = false;
 | 
						|
      while (F.hasNext()) {
 | 
						|
        NamedDecl *ND = F.next();
 | 
						|
        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
 | 
						|
        if (DC->isFileContext() &&
 | 
						|
            !EnclosingNS->Encloses(ND->getDeclContext())) {
 | 
						|
          if (getLangOpts().MSVCCompat)
 | 
						|
            FriendSawTagOutsideEnclosingNamespace = true;
 | 
						|
          else
 | 
						|
            F.erase();
 | 
						|
        }
 | 
						|
      }
 | 
						|
      F.done();
 | 
						|
 | 
						|
      // Diagnose this MSVC extension in the easy case where lookup would have
 | 
						|
      // unambiguously found something outside the enclosing namespace.
 | 
						|
      if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
 | 
						|
        NamedDecl *ND = Previous.getFoundDecl();
 | 
						|
        Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
 | 
						|
            << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Note:  there used to be some attempt at recovery here.
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
 | 
						|
      // FIXME: This makes sure that we ignore the contexts associated
 | 
						|
      // with C structs, unions, and enums when looking for a matching
 | 
						|
      // tag declaration or definition. See the similar lookup tweak
 | 
						|
      // in Sema::LookupName; is there a better way to deal with this?
 | 
						|
      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
 | 
						|
        SearchDC = SearchDC->getParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.isSingleResult() &&
 | 
						|
      Previous.getFoundDecl()->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    Previous.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
 | 
						|
      DC->Equals(getStdNamespace())) {
 | 
						|
    if (Name->isStr("bad_alloc")) {
 | 
						|
      // This is a declaration of or a reference to "std::bad_alloc".
 | 
						|
      isStdBadAlloc = true;
 | 
						|
 | 
						|
      // If std::bad_alloc has been implicitly declared (but made invisible to
 | 
						|
      // name lookup), fill in this implicit declaration as the previous
 | 
						|
      // declaration, so that the declarations get chained appropriately.
 | 
						|
      if (Previous.empty() && StdBadAlloc)
 | 
						|
        Previous.addDecl(getStdBadAlloc());
 | 
						|
    } else if (Name->isStr("align_val_t")) {
 | 
						|
      isStdAlignValT = true;
 | 
						|
      if (Previous.empty() && StdAlignValT)
 | 
						|
        Previous.addDecl(getStdAlignValT());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we didn't find a previous declaration, and this is a reference
 | 
						|
  // (or friend reference), move to the correct scope.  In C++, we
 | 
						|
  // also need to do a redeclaration lookup there, just in case
 | 
						|
  // there's a shadow friend decl.
 | 
						|
  if (Name && Previous.empty() &&
 | 
						|
      (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
 | 
						|
    if (Invalid) goto CreateNewDecl;
 | 
						|
    assert(SS.isEmpty());
 | 
						|
 | 
						|
    if (TUK == TUK_Reference || IsTemplateParamOrArg) {
 | 
						|
      // C++ [basic.scope.pdecl]p5:
 | 
						|
      //   -- for an elaborated-type-specifier of the form
 | 
						|
      //
 | 
						|
      //          class-key identifier
 | 
						|
      //
 | 
						|
      //      if the elaborated-type-specifier is used in the
 | 
						|
      //      decl-specifier-seq or parameter-declaration-clause of a
 | 
						|
      //      function defined in namespace scope, the identifier is
 | 
						|
      //      declared as a class-name in the namespace that contains
 | 
						|
      //      the declaration; otherwise, except as a friend
 | 
						|
      //      declaration, the identifier is declared in the smallest
 | 
						|
      //      non-class, non-function-prototype scope that contains the
 | 
						|
      //      declaration.
 | 
						|
      //
 | 
						|
      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
 | 
						|
      // C structs and unions.
 | 
						|
      //
 | 
						|
      // It is an error in C++ to declare (rather than define) an enum
 | 
						|
      // type, including via an elaborated type specifier.  We'll
 | 
						|
      // diagnose that later; for now, declare the enum in the same
 | 
						|
      // scope as we would have picked for any other tag type.
 | 
						|
      //
 | 
						|
      // GNU C also supports this behavior as part of its incomplete
 | 
						|
      // enum types extension, while GNU C++ does not.
 | 
						|
      //
 | 
						|
      // Find the context where we'll be declaring the tag.
 | 
						|
      // FIXME: We would like to maintain the current DeclContext as the
 | 
						|
      // lexical context,
 | 
						|
      SearchDC = getTagInjectionContext(SearchDC);
 | 
						|
 | 
						|
      // Find the scope where we'll be declaring the tag.
 | 
						|
      S = getTagInjectionScope(S, getLangOpts());
 | 
						|
    } else {
 | 
						|
      assert(TUK == TUK_Friend);
 | 
						|
      // C++ [namespace.memdef]p3:
 | 
						|
      //   If a friend declaration in a non-local class first declares a
 | 
						|
      //   class or function, the friend class or function is a member of
 | 
						|
      //   the innermost enclosing namespace.
 | 
						|
      SearchDC = SearchDC->getEnclosingNamespaceContext();
 | 
						|
    }
 | 
						|
 | 
						|
    // In C++, we need to do a redeclaration lookup to properly
 | 
						|
    // diagnose some problems.
 | 
						|
    // FIXME: redeclaration lookup is also used (with and without C++) to find a
 | 
						|
    // hidden declaration so that we don't get ambiguity errors when using a
 | 
						|
    // type declared by an elaborated-type-specifier.  In C that is not correct
 | 
						|
    // and we should instead merge compatible types found by lookup.
 | 
						|
    if (getLangOpts().CPlusPlus) {
 | 
						|
      Previous.setRedeclarationKind(forRedeclarationInCurContext());
 | 
						|
      LookupQualifiedName(Previous, SearchDC);
 | 
						|
    } else {
 | 
						|
      Previous.setRedeclarationKind(forRedeclarationInCurContext());
 | 
						|
      LookupName(Previous, S);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a known previous declaration to use, then use it.
 | 
						|
  if (Previous.empty() && SkipBody && SkipBody->Previous)
 | 
						|
    Previous.addDecl(SkipBody->Previous);
 | 
						|
 | 
						|
  if (!Previous.empty()) {
 | 
						|
    NamedDecl *PrevDecl = Previous.getFoundDecl();
 | 
						|
    NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
 | 
						|
 | 
						|
    // It's okay to have a tag decl in the same scope as a typedef
 | 
						|
    // which hides a tag decl in the same scope.  Finding this
 | 
						|
    // insanity with a redeclaration lookup can only actually happen
 | 
						|
    // in C++.
 | 
						|
    //
 | 
						|
    // This is also okay for elaborated-type-specifiers, which is
 | 
						|
    // technically forbidden by the current standard but which is
 | 
						|
    // okay according to the likely resolution of an open issue;
 | 
						|
    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
 | 
						|
    if (getLangOpts().CPlusPlus) {
 | 
						|
      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | 
						|
        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
 | 
						|
          TagDecl *Tag = TT->getDecl();
 | 
						|
          if (Tag->getDeclName() == Name &&
 | 
						|
              Tag->getDeclContext()->getRedeclContext()
 | 
						|
                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
 | 
						|
            PrevDecl = Tag;
 | 
						|
            Previous.clear();
 | 
						|
            Previous.addDecl(Tag);
 | 
						|
            Previous.resolveKind();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a redeclaration of a using shadow declaration, it must
 | 
						|
    // declare a tag in the same context. In MSVC mode, we allow a
 | 
						|
    // redefinition if either context is within the other.
 | 
						|
    if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
 | 
						|
      auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
 | 
						|
      if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
 | 
						|
          isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
 | 
						|
          !(OldTag && isAcceptableTagRedeclContext(
 | 
						|
                          *this, OldTag->getDeclContext(), SearchDC))) {
 | 
						|
        Diag(KWLoc, diag::err_using_decl_conflict_reverse);
 | 
						|
        Diag(Shadow->getTargetDecl()->getLocation(),
 | 
						|
             diag::note_using_decl_target);
 | 
						|
        Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
 | 
						|
            << 0;
 | 
						|
        // Recover by ignoring the old declaration.
 | 
						|
        Previous.clear();
 | 
						|
        goto CreateNewDecl;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
 | 
						|
      // If this is a use of a previous tag, or if the tag is already declared
 | 
						|
      // in the same scope (so that the definition/declaration completes or
 | 
						|
      // rementions the tag), reuse the decl.
 | 
						|
      if (TUK == TUK_Reference || TUK == TUK_Friend ||
 | 
						|
          isDeclInScope(DirectPrevDecl, SearchDC, S,
 | 
						|
                        SS.isNotEmpty() || isMemberSpecialization)) {
 | 
						|
        // Make sure that this wasn't declared as an enum and now used as a
 | 
						|
        // struct or something similar.
 | 
						|
        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
 | 
						|
                                          TUK == TUK_Definition, KWLoc,
 | 
						|
                                          Name)) {
 | 
						|
          bool SafeToContinue
 | 
						|
            = (PrevTagDecl->getTagKind() != TTK_Enum &&
 | 
						|
               Kind != TTK_Enum);
 | 
						|
          if (SafeToContinue)
 | 
						|
            Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
              << Name
 | 
						|
              << FixItHint::CreateReplacement(SourceRange(KWLoc),
 | 
						|
                                              PrevTagDecl->getKindName());
 | 
						|
          else
 | 
						|
            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
 | 
						|
          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
 | 
						|
 | 
						|
          if (SafeToContinue)
 | 
						|
            Kind = PrevTagDecl->getTagKind();
 | 
						|
          else {
 | 
						|
            // Recover by making this an anonymous redefinition.
 | 
						|
            Name = nullptr;
 | 
						|
            Previous.clear();
 | 
						|
            Invalid = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
 | 
						|
          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
 | 
						|
 | 
						|
          // If this is an elaborated-type-specifier for a scoped enumeration,
 | 
						|
          // the 'class' keyword is not necessary and not permitted.
 | 
						|
          if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | 
						|
            if (ScopedEnum)
 | 
						|
              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
 | 
						|
                << PrevEnum->isScoped()
 | 
						|
                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
 | 
						|
            return PrevTagDecl;
 | 
						|
          }
 | 
						|
 | 
						|
          QualType EnumUnderlyingTy;
 | 
						|
          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | 
						|
            EnumUnderlyingTy = TI->getType().getUnqualifiedType();
 | 
						|
          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
 | 
						|
            EnumUnderlyingTy = QualType(T, 0);
 | 
						|
 | 
						|
          // All conflicts with previous declarations are recovered by
 | 
						|
          // returning the previous declaration, unless this is a definition,
 | 
						|
          // in which case we want the caller to bail out.
 | 
						|
          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
 | 
						|
                                     ScopedEnum, EnumUnderlyingTy,
 | 
						|
                                     IsFixed, PrevEnum))
 | 
						|
            return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        // C++11 [class.mem]p1:
 | 
						|
        //   A member shall not be declared twice in the member-specification,
 | 
						|
        //   except that a nested class or member class template can be declared
 | 
						|
        //   and then later defined.
 | 
						|
        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
 | 
						|
            S->isDeclScope(PrevDecl)) {
 | 
						|
          Diag(NameLoc, diag::ext_member_redeclared);
 | 
						|
          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Invalid) {
 | 
						|
          // If this is a use, just return the declaration we found, unless
 | 
						|
          // we have attributes.
 | 
						|
          if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | 
						|
            if (Attr) {
 | 
						|
              // FIXME: Diagnose these attributes. For now, we create a new
 | 
						|
              // declaration to hold them.
 | 
						|
            } else if (TUK == TUK_Reference &&
 | 
						|
                       (PrevTagDecl->getFriendObjectKind() ==
 | 
						|
                            Decl::FOK_Undeclared ||
 | 
						|
                        PrevDecl->getOwningModule() != getCurrentModule()) &&
 | 
						|
                       SS.isEmpty()) {
 | 
						|
              // This declaration is a reference to an existing entity, but
 | 
						|
              // has different visibility from that entity: it either makes
 | 
						|
              // a friend visible or it makes a type visible in a new module.
 | 
						|
              // In either case, create a new declaration. We only do this if
 | 
						|
              // the declaration would have meant the same thing if no prior
 | 
						|
              // declaration were found, that is, if it was found in the same
 | 
						|
              // scope where we would have injected a declaration.
 | 
						|
              if (!getTagInjectionContext(CurContext)->getRedeclContext()
 | 
						|
                       ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
 | 
						|
                return PrevTagDecl;
 | 
						|
              // This is in the injected scope, create a new declaration in
 | 
						|
              // that scope.
 | 
						|
              S = getTagInjectionScope(S, getLangOpts());
 | 
						|
            } else {
 | 
						|
              return PrevTagDecl;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // Diagnose attempts to redefine a tag.
 | 
						|
          if (TUK == TUK_Definition) {
 | 
						|
            if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
 | 
						|
              // If we're defining a specialization and the previous definition
 | 
						|
              // is from an implicit instantiation, don't emit an error
 | 
						|
              // here; we'll catch this in the general case below.
 | 
						|
              bool IsExplicitSpecializationAfterInstantiation = false;
 | 
						|
              if (isMemberSpecialization) {
 | 
						|
                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
 | 
						|
                  IsExplicitSpecializationAfterInstantiation =
 | 
						|
                    RD->getTemplateSpecializationKind() !=
 | 
						|
                    TSK_ExplicitSpecialization;
 | 
						|
                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
 | 
						|
                  IsExplicitSpecializationAfterInstantiation =
 | 
						|
                    ED->getTemplateSpecializationKind() !=
 | 
						|
                    TSK_ExplicitSpecialization;
 | 
						|
              }
 | 
						|
 | 
						|
              // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
 | 
						|
              // not keep more that one definition around (merge them). However,
 | 
						|
              // ensure the decl passes the structural compatibility check in
 | 
						|
              // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
 | 
						|
              NamedDecl *Hidden = nullptr;
 | 
						|
              if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
 | 
						|
                // There is a definition of this tag, but it is not visible. We
 | 
						|
                // explicitly make use of C++'s one definition rule here, and
 | 
						|
                // assume that this definition is identical to the hidden one
 | 
						|
                // we already have. Make the existing definition visible and
 | 
						|
                // use it in place of this one.
 | 
						|
                if (!getLangOpts().CPlusPlus) {
 | 
						|
                  // Postpone making the old definition visible until after we
 | 
						|
                  // complete parsing the new one and do the structural
 | 
						|
                  // comparison.
 | 
						|
                  SkipBody->CheckSameAsPrevious = true;
 | 
						|
                  SkipBody->New = createTagFromNewDecl();
 | 
						|
                  SkipBody->Previous = Hidden;
 | 
						|
                } else {
 | 
						|
                  SkipBody->ShouldSkip = true;
 | 
						|
                  makeMergedDefinitionVisible(Hidden);
 | 
						|
                }
 | 
						|
                return Def;
 | 
						|
              } else if (!IsExplicitSpecializationAfterInstantiation) {
 | 
						|
                // A redeclaration in function prototype scope in C isn't
 | 
						|
                // visible elsewhere, so merely issue a warning.
 | 
						|
                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
 | 
						|
                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
 | 
						|
                else
 | 
						|
                  Diag(NameLoc, diag::err_redefinition) << Name;
 | 
						|
                notePreviousDefinition(Def,
 | 
						|
                                       NameLoc.isValid() ? NameLoc : KWLoc);
 | 
						|
                // If this is a redefinition, recover by making this
 | 
						|
                // struct be anonymous, which will make any later
 | 
						|
                // references get the previous definition.
 | 
						|
                Name = nullptr;
 | 
						|
                Previous.clear();
 | 
						|
                Invalid = true;
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
              // If the type is currently being defined, complain
 | 
						|
              // about a nested redefinition.
 | 
						|
              auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
 | 
						|
              if (TD->isBeingDefined()) {
 | 
						|
                Diag(NameLoc, diag::err_nested_redefinition) << Name;
 | 
						|
                Diag(PrevTagDecl->getLocation(),
 | 
						|
                     diag::note_previous_definition);
 | 
						|
                Name = nullptr;
 | 
						|
                Previous.clear();
 | 
						|
                Invalid = true;
 | 
						|
              }
 | 
						|
            }
 | 
						|
 | 
						|
            // Okay, this is definition of a previously declared or referenced
 | 
						|
            // tag. We're going to create a new Decl for it.
 | 
						|
          }
 | 
						|
 | 
						|
          // Okay, we're going to make a redeclaration.  If this is some kind
 | 
						|
          // of reference, make sure we build the redeclaration in the same DC
 | 
						|
          // as the original, and ignore the current access specifier.
 | 
						|
          if (TUK == TUK_Friend || TUK == TUK_Reference) {
 | 
						|
            SearchDC = PrevTagDecl->getDeclContext();
 | 
						|
            AS = AS_none;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // If we get here we have (another) forward declaration or we
 | 
						|
        // have a definition.  Just create a new decl.
 | 
						|
 | 
						|
      } else {
 | 
						|
        // If we get here, this is a definition of a new tag type in a nested
 | 
						|
        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
 | 
						|
        // new decl/type.  We set PrevDecl to NULL so that the entities
 | 
						|
        // have distinct types.
 | 
						|
        Previous.clear();
 | 
						|
      }
 | 
						|
      // If we get here, we're going to create a new Decl. If PrevDecl
 | 
						|
      // is non-NULL, it's a definition of the tag declared by
 | 
						|
      // PrevDecl. If it's NULL, we have a new definition.
 | 
						|
 | 
						|
    // Otherwise, PrevDecl is not a tag, but was found with tag
 | 
						|
    // lookup.  This is only actually possible in C++, where a few
 | 
						|
    // things like templates still live in the tag namespace.
 | 
						|
    } else {
 | 
						|
      // Use a better diagnostic if an elaborated-type-specifier
 | 
						|
      // found the wrong kind of type on the first
 | 
						|
      // (non-redeclaration) lookup.
 | 
						|
      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
 | 
						|
          !Previous.isForRedeclaration()) {
 | 
						|
        NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
 | 
						|
        Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
 | 
						|
                                                       << Kind;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_declared_at);
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      // Otherwise, only diagnose if the declaration is in scope.
 | 
						|
      } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
 | 
						|
                                SS.isNotEmpty() || isMemberSpecialization)) {
 | 
						|
        // do nothing
 | 
						|
 | 
						|
      // Diagnose implicit declarations introduced by elaborated types.
 | 
						|
      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
 | 
						|
        NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
 | 
						|
        Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      // Otherwise it's a declaration.  Call out a particularly common
 | 
						|
      // case here.
 | 
						|
      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
 | 
						|
        unsigned Kind = 0;
 | 
						|
        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
 | 
						|
        Diag(NameLoc, diag::err_tag_definition_of_typedef)
 | 
						|
          << Name << Kind << TND->getUnderlyingType();
 | 
						|
        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      // Otherwise, diagnose.
 | 
						|
      } else {
 | 
						|
        // The tag name clashes with something else in the target scope,
 | 
						|
        // issue an error and recover by making this tag be anonymous.
 | 
						|
        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | 
						|
        notePreviousDefinition(PrevDecl, NameLoc);
 | 
						|
        Name = nullptr;
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // The existing declaration isn't relevant to us; we're in a
 | 
						|
      // new scope, so clear out the previous declaration.
 | 
						|
      Previous.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
CreateNewDecl:
 | 
						|
 | 
						|
  TagDecl *PrevDecl = nullptr;
 | 
						|
  if (Previous.isSingleResult())
 | 
						|
    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
 | 
						|
 | 
						|
  // If there is an identifier, use the location of the identifier as the
 | 
						|
  // location of the decl, otherwise use the location of the struct/union
 | 
						|
  // keyword.
 | 
						|
  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
 | 
						|
 | 
						|
  // Otherwise, create a new declaration. If there is a previous
 | 
						|
  // declaration of the same entity, the two will be linked via
 | 
						|
  // PrevDecl.
 | 
						|
  TagDecl *New;
 | 
						|
 | 
						|
  bool IsForwardReference = false;
 | 
						|
  if (Kind == TTK_Enum) {
 | 
						|
    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | 
						|
    // enum X { A, B, C } D;    D should chain to X.
 | 
						|
    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
 | 
						|
                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
 | 
						|
                           ScopedEnumUsesClassTag, IsFixed);
 | 
						|
 | 
						|
    if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
 | 
						|
      StdAlignValT = cast<EnumDecl>(New);
 | 
						|
 | 
						|
    // If this is an undefined enum, warn.
 | 
						|
    if (TUK != TUK_Definition && !Invalid) {
 | 
						|
      TagDecl *Def;
 | 
						|
      if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
 | 
						|
          cast<EnumDecl>(New)->isFixed()) {
 | 
						|
        // C++0x: 7.2p2: opaque-enum-declaration.
 | 
						|
        // Conflicts are diagnosed above. Do nothing.
 | 
						|
      }
 | 
						|
      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
 | 
						|
        Diag(Loc, diag::ext_forward_ref_enum_def)
 | 
						|
          << New;
 | 
						|
        Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      } else {
 | 
						|
        unsigned DiagID = diag::ext_forward_ref_enum;
 | 
						|
        if (getLangOpts().MSVCCompat)
 | 
						|
          DiagID = diag::ext_ms_forward_ref_enum;
 | 
						|
        else if (getLangOpts().CPlusPlus)
 | 
						|
          DiagID = diag::err_forward_ref_enum;
 | 
						|
        Diag(Loc, DiagID);
 | 
						|
 | 
						|
        // If this is a forward-declared reference to an enumeration, make a
 | 
						|
        // note of it; we won't actually be introducing the declaration into
 | 
						|
        // the declaration context.
 | 
						|
        if (TUK == TUK_Reference)
 | 
						|
          IsForwardReference = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (EnumUnderlying) {
 | 
						|
      EnumDecl *ED = cast<EnumDecl>(New);
 | 
						|
      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
 | 
						|
        ED->setIntegerTypeSourceInfo(TI);
 | 
						|
      else
 | 
						|
        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
 | 
						|
      ED->setPromotionType(ED->getIntegerType());
 | 
						|
      assert(ED->isComplete() && "enum with type should be complete");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // struct/union/class
 | 
						|
 | 
						|
    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
 | 
						|
    // struct X { int A; } D;    D should chain to X.
 | 
						|
    if (getLangOpts().CPlusPlus) {
 | 
						|
      // FIXME: Look for a way to use RecordDecl for simple structs.
 | 
						|
      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | 
						|
                                  cast_or_null<CXXRecordDecl>(PrevDecl));
 | 
						|
 | 
						|
      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
 | 
						|
        StdBadAlloc = cast<CXXRecordDecl>(New);
 | 
						|
    } else
 | 
						|
      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
 | 
						|
                               cast_or_null<RecordDecl>(PrevDecl));
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [dcl.type]p3:
 | 
						|
  //   A type-specifier-seq shall not define a class or enumeration [...].
 | 
						|
  if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
 | 
						|
      TUK == TUK_Definition) {
 | 
						|
    Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
 | 
						|
      << Context.getTagDeclType(New);
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
 | 
						|
      DC->getDeclKind() == Decl::Enum) {
 | 
						|
    Diag(New->getLocation(), diag::err_type_defined_in_enum)
 | 
						|
      << Context.getTagDeclType(New);
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Maybe add qualifier info.
 | 
						|
  if (SS.isNotEmpty()) {
 | 
						|
    if (SS.isSet()) {
 | 
						|
      // If this is either a declaration or a definition, check the
 | 
						|
      // nested-name-specifier against the current context.
 | 
						|
      if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
 | 
						|
          diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
 | 
						|
                                       isMemberSpecialization))
 | 
						|
        Invalid = true;
 | 
						|
 | 
						|
      New->setQualifierInfo(SS.getWithLocInContext(Context));
 | 
						|
      if (TemplateParameterLists.size() > 0) {
 | 
						|
        New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else
 | 
						|
      Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
 | 
						|
    // Add alignment attributes if necessary; these attributes are checked when
 | 
						|
    // the ASTContext lays out the structure.
 | 
						|
    //
 | 
						|
    // It is important for implementing the correct semantics that this
 | 
						|
    // happen here (in ActOnTag). The #pragma pack stack is
 | 
						|
    // maintained as a result of parser callbacks which can occur at
 | 
						|
    // many points during the parsing of a struct declaration (because
 | 
						|
    // the #pragma tokens are effectively skipped over during the
 | 
						|
    // parsing of the struct).
 | 
						|
    if (TUK == TUK_Definition) {
 | 
						|
      AddAlignmentAttributesForRecord(RD);
 | 
						|
      AddMsStructLayoutForRecord(RD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ModulePrivateLoc.isValid()) {
 | 
						|
    if (isMemberSpecialization)
 | 
						|
      Diag(New->getLocation(), diag::err_module_private_specialization)
 | 
						|
        << 2
 | 
						|
        << FixItHint::CreateRemoval(ModulePrivateLoc);
 | 
						|
    // __module_private__ does not apply to local classes. However, we only
 | 
						|
    // diagnose this as an error when the declaration specifiers are
 | 
						|
    // freestanding. Here, we just ignore the __module_private__.
 | 
						|
    else if (!SearchDC->isFunctionOrMethod())
 | 
						|
      New->setModulePrivate();
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a specialization of a member class (of a class template),
 | 
						|
  // check the specialization.
 | 
						|
  if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  // If we're declaring or defining a tag in function prototype scope in C,
 | 
						|
  // note that this type can only be used within the function and add it to
 | 
						|
  // the list of decls to inject into the function definition scope.
 | 
						|
  if ((Name || Kind == TTK_Enum) &&
 | 
						|
      getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
 | 
						|
    if (getLangOpts().CPlusPlus) {
 | 
						|
      // C++ [dcl.fct]p6:
 | 
						|
      //   Types shall not be defined in return or parameter types.
 | 
						|
      if (TUK == TUK_Definition && !IsTypeSpecifier) {
 | 
						|
        Diag(Loc, diag::err_type_defined_in_param_type)
 | 
						|
            << Name;
 | 
						|
        Invalid = true;
 | 
						|
      }
 | 
						|
    } else if (!PrevDecl) {
 | 
						|
      Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    New->setInvalidDecl();
 | 
						|
 | 
						|
  // Set the lexical context. If the tag has a C++ scope specifier, the
 | 
						|
  // lexical context will be different from the semantic context.
 | 
						|
  New->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  // Mark this as a friend decl if applicable.
 | 
						|
  // In Microsoft mode, a friend declaration also acts as a forward
 | 
						|
  // declaration so we always pass true to setObjectOfFriendDecl to make
 | 
						|
  // the tag name visible.
 | 
						|
  if (TUK == TUK_Friend)
 | 
						|
    New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
 | 
						|
 | 
						|
  // Set the access specifier.
 | 
						|
  if (!Invalid && SearchDC->isRecord())
 | 
						|
    SetMemberAccessSpecifier(New, PrevDecl, AS);
 | 
						|
 | 
						|
  if (PrevDecl)
 | 
						|
    CheckRedeclarationModuleOwnership(New, PrevDecl);
 | 
						|
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    New->startDefinition();
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, New, Attr);
 | 
						|
  AddPragmaAttributes(S, New);
 | 
						|
 | 
						|
  // If this has an identifier, add it to the scope stack.
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    // We might be replacing an existing declaration in the lookup tables;
 | 
						|
    // if so, borrow its access specifier.
 | 
						|
    if (PrevDecl)
 | 
						|
      New->setAccess(PrevDecl->getAccess());
 | 
						|
 | 
						|
    DeclContext *DC = New->getDeclContext()->getRedeclContext();
 | 
						|
    DC->makeDeclVisibleInContext(New);
 | 
						|
    if (Name) // can be null along some error paths
 | 
						|
      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | 
						|
        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
 | 
						|
  } else if (Name) {
 | 
						|
    S = getNonFieldDeclScope(S);
 | 
						|
    PushOnScopeChains(New, S, !IsForwardReference);
 | 
						|
    if (IsForwardReference)
 | 
						|
      SearchDC->makeDeclVisibleInContext(New);
 | 
						|
  } else {
 | 
						|
    CurContext->addDecl(New);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the C FILE type, notify the AST context.
 | 
						|
  if (IdentifierInfo *II = New->getIdentifier())
 | 
						|
    if (!New->isInvalidDecl() &&
 | 
						|
        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
 | 
						|
        II->isStr("FILE"))
 | 
						|
      Context.setFILEDecl(New);
 | 
						|
 | 
						|
  if (PrevDecl)
 | 
						|
    mergeDeclAttributes(New, PrevDecl);
 | 
						|
 | 
						|
  // If there's a #pragma GCC visibility in scope, set the visibility of this
 | 
						|
  // record.
 | 
						|
  AddPushedVisibilityAttribute(New);
 | 
						|
 | 
						|
  if (isMemberSpecialization && !New->isInvalidDecl())
 | 
						|
    CompleteMemberSpecialization(New, Previous);
 | 
						|
 | 
						|
  OwnedDecl = true;
 | 
						|
  // In C++, don't return an invalid declaration. We can't recover well from
 | 
						|
  // the cases where we make the type anonymous.
 | 
						|
  if (Invalid && getLangOpts().CPlusPlus) {
 | 
						|
    if (New->isBeingDefined())
 | 
						|
      if (auto RD = dyn_cast<RecordDecl>(New))
 | 
						|
        RD->completeDefinition();
 | 
						|
    return nullptr;
 | 
						|
  } else {
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
 | 
						|
  // Enter the tag context.
 | 
						|
  PushDeclContext(S, Tag);
 | 
						|
 | 
						|
  ActOnDocumentableDecl(TagD);
 | 
						|
 | 
						|
  // If there's a #pragma GCC visibility in scope, set the visibility of this
 | 
						|
  // record.
 | 
						|
  AddPushedVisibilityAttribute(Tag);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
 | 
						|
                                    SkipBodyInfo &SkipBody) {
 | 
						|
  if (!hasStructuralCompatLayout(Prev, SkipBody.New))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make the previous decl visible.
 | 
						|
  makeMergedDefinitionVisible(SkipBody.Previous);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
 | 
						|
  assert(isa<ObjCContainerDecl>(IDecl) &&
 | 
						|
         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
 | 
						|
  DeclContext *OCD = cast<DeclContext>(IDecl);
 | 
						|
  assert(getContainingDC(OCD) == CurContext &&
 | 
						|
      "The next DeclContext should be lexically contained in the current one.");
 | 
						|
  CurContext = OCD;
 | 
						|
  return IDecl;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
 | 
						|
                                           SourceLocation FinalLoc,
 | 
						|
                                           bool IsFinalSpelledSealed,
 | 
						|
                                           SourceLocation LBraceLoc) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
 | 
						|
 | 
						|
  FieldCollector->StartClass();
 | 
						|
 | 
						|
  if (!Record->getIdentifier())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (FinalLoc.isValid())
 | 
						|
    Record->addAttr(new (Context)
 | 
						|
                    FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
 | 
						|
 | 
						|
  // C++ [class]p2:
 | 
						|
  //   [...] The class-name is also inserted into the scope of the
 | 
						|
  //   class itself; this is known as the injected-class-name. For
 | 
						|
  //   purposes of access checking, the injected-class-name is treated
 | 
						|
  //   as if it were a public member name.
 | 
						|
  CXXRecordDecl *InjectedClassName
 | 
						|
    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
 | 
						|
                            Record->getLocStart(), Record->getLocation(),
 | 
						|
                            Record->getIdentifier(),
 | 
						|
                            /*PrevDecl=*/nullptr,
 | 
						|
                            /*DelayTypeCreation=*/true);
 | 
						|
  Context.getTypeDeclType(InjectedClassName, Record);
 | 
						|
  InjectedClassName->setImplicit();
 | 
						|
  InjectedClassName->setAccess(AS_public);
 | 
						|
  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
 | 
						|
      InjectedClassName->setDescribedClassTemplate(Template);
 | 
						|
  PushOnScopeChains(InjectedClassName, S);
 | 
						|
  assert(InjectedClassName->isInjectedClassName() &&
 | 
						|
         "Broken injected-class-name");
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
 | 
						|
                                    SourceRange BraceRange) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  Tag->setBraceRange(BraceRange);
 | 
						|
 | 
						|
  // Make sure we "complete" the definition even it is invalid.
 | 
						|
  if (Tag->isBeingDefined()) {
 | 
						|
    assert(Tag->isInvalidDecl() && "We should already have completed it");
 | 
						|
    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
 | 
						|
      RD->completeDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXRecordDecl>(Tag)) {
 | 
						|
    FieldCollector->FinishClass();
 | 
						|
  }
 | 
						|
 | 
						|
  // Exit this scope of this tag's definition.
 | 
						|
  PopDeclContext();
 | 
						|
 | 
						|
  if (getCurLexicalContext()->isObjCContainer() &&
 | 
						|
      Tag->getDeclContext()->isFileContext())
 | 
						|
    Tag->setTopLevelDeclInObjCContainer();
 | 
						|
 | 
						|
  // Notify the consumer that we've defined a tag.
 | 
						|
  if (!Tag->isInvalidDecl())
 | 
						|
    Consumer.HandleTagDeclDefinition(Tag);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnObjCContainerFinishDefinition() {
 | 
						|
  // Exit this scope of this interface definition.
 | 
						|
  PopDeclContext();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
 | 
						|
  assert(DC == CurContext && "Mismatch of container contexts");
 | 
						|
  OriginalLexicalContext = DC;
 | 
						|
  ActOnObjCContainerFinishDefinition();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
 | 
						|
  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
 | 
						|
  OriginalLexicalContext = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
 | 
						|
  AdjustDeclIfTemplate(TagD);
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  Tag->setInvalidDecl();
 | 
						|
 | 
						|
  // Make sure we "complete" the definition even it is invalid.
 | 
						|
  if (Tag->isBeingDefined()) {
 | 
						|
    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
 | 
						|
      RD->completeDefinition();
 | 
						|
  }
 | 
						|
 | 
						|
  // We're undoing ActOnTagStartDefinition here, not
 | 
						|
  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
 | 
						|
  // the FieldCollector.
 | 
						|
 | 
						|
  PopDeclContext();
 | 
						|
}
 | 
						|
 | 
						|
// Note that FieldName may be null for anonymous bitfields.
 | 
						|
ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
 | 
						|
                                IdentifierInfo *FieldName,
 | 
						|
                                QualType FieldTy, bool IsMsStruct,
 | 
						|
                                Expr *BitWidth, bool *ZeroWidth) {
 | 
						|
  // Default to true; that shouldn't confuse checks for emptiness
 | 
						|
  if (ZeroWidth)
 | 
						|
    *ZeroWidth = true;
 | 
						|
 | 
						|
  // C99 6.7.2.1p4 - verify the field type.
 | 
						|
  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
 | 
						|
  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
 | 
						|
    // Handle incomplete types with specific error.
 | 
						|
    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
 | 
						|
      return ExprError();
 | 
						|
    if (FieldName)
 | 
						|
      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
 | 
						|
        << FieldName << FieldTy << BitWidth->getSourceRange();
 | 
						|
    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
 | 
						|
      << FieldTy << BitWidth->getSourceRange();
 | 
						|
  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
 | 
						|
                                             UPPC_BitFieldWidth))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  // If the bit-width is type- or value-dependent, don't try to check
 | 
						|
  // it now.
 | 
						|
  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
 | 
						|
    return BitWidth;
 | 
						|
 | 
						|
  llvm::APSInt Value;
 | 
						|
  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
 | 
						|
  if (ICE.isInvalid())
 | 
						|
    return ICE;
 | 
						|
  BitWidth = ICE.get();
 | 
						|
 | 
						|
  if (Value != 0 && ZeroWidth)
 | 
						|
    *ZeroWidth = false;
 | 
						|
 | 
						|
  // Zero-width bitfield is ok for anonymous field.
 | 
						|
  if (Value == 0 && FieldName)
 | 
						|
    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
 | 
						|
 | 
						|
  if (Value.isSigned() && Value.isNegative()) {
 | 
						|
    if (FieldName)
 | 
						|
      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
 | 
						|
               << FieldName << Value.toString(10);
 | 
						|
    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
 | 
						|
      << Value.toString(10);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FieldTy->isDependentType()) {
 | 
						|
    uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
 | 
						|
    uint64_t TypeWidth = Context.getIntWidth(FieldTy);
 | 
						|
    bool BitfieldIsOverwide = Value.ugt(TypeWidth);
 | 
						|
 | 
						|
    // Over-wide bitfields are an error in C or when using the MSVC bitfield
 | 
						|
    // ABI.
 | 
						|
    bool CStdConstraintViolation =
 | 
						|
        BitfieldIsOverwide && !getLangOpts().CPlusPlus;
 | 
						|
    bool MSBitfieldViolation =
 | 
						|
        Value.ugt(TypeStorageSize) &&
 | 
						|
        (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
 | 
						|
    if (CStdConstraintViolation || MSBitfieldViolation) {
 | 
						|
      unsigned DiagWidth =
 | 
						|
          CStdConstraintViolation ? TypeWidth : TypeStorageSize;
 | 
						|
      if (FieldName)
 | 
						|
        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
 | 
						|
               << FieldName << (unsigned)Value.getZExtValue()
 | 
						|
               << !CStdConstraintViolation << DiagWidth;
 | 
						|
 | 
						|
      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
 | 
						|
             << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
 | 
						|
             << DiagWidth;
 | 
						|
    }
 | 
						|
 | 
						|
    // Warn on types where the user might conceivably expect to get all
 | 
						|
    // specified bits as value bits: that's all integral types other than
 | 
						|
    // 'bool'.
 | 
						|
    if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
 | 
						|
      if (FieldName)
 | 
						|
        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
 | 
						|
            << FieldName << (unsigned)Value.getZExtValue()
 | 
						|
            << (unsigned)TypeWidth;
 | 
						|
      else
 | 
						|
        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
 | 
						|
            << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return BitWidth;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnField - Each field of a C struct/union is passed into this in order
 | 
						|
/// to create a FieldDecl object for it.
 | 
						|
Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
 | 
						|
                       Declarator &D, Expr *BitfieldWidth) {
 | 
						|
  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
 | 
						|
                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
 | 
						|
                               /*InitStyle=*/ICIS_NoInit, AS_public);
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
/// HandleField - Analyze a field of a C struct or a C++ data member.
 | 
						|
///
 | 
						|
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
 | 
						|
                             SourceLocation DeclStart,
 | 
						|
                             Declarator &D, Expr *BitWidth,
 | 
						|
                             InClassInitStyle InitStyle,
 | 
						|
                             AccessSpecifier AS) {
 | 
						|
  if (D.isDecompositionDeclarator()) {
 | 
						|
    const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
 | 
						|
    Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
 | 
						|
      << Decomp.getSourceRange();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *II = D.getIdentifier();
 | 
						|
  SourceLocation Loc = DeclStart;
 | 
						|
  if (II) Loc = D.getIdentifierLoc();
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
  if (getLangOpts().CPlusPlus) {
 | 
						|
    CheckExtraCXXDefaultArguments(D);
 | 
						|
 | 
						|
    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
 | 
						|
                                        UPPC_DataMemberType)) {
 | 
						|
      D.setInvalidType();
 | 
						|
      T = Context.IntTy;
 | 
						|
      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // TR 18037 does not allow fields to be declared with address spaces.
 | 
						|
  if (T.getQualifiers().hasAddressSpace() ||
 | 
						|
      T->isDependentAddressSpaceType() ||
 | 
						|
      T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
 | 
						|
    Diag(Loc, diag::err_field_with_address_space);
 | 
						|
    D.setInvalidType();
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
 | 
						|
  // used as structure or union field: image, sampler, event or block types.
 | 
						|
  if (LangOpts.OpenCL && (T->isEventT() || T->isImageType() ||
 | 
						|
                          T->isSamplerT() || T->isBlockPointerType())) {
 | 
						|
    Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
 | 
						|
    D.setInvalidType();
 | 
						|
  }
 | 
						|
 | 
						|
  DiagnoseFunctionSpecifiers(D.getDeclSpec());
 | 
						|
 | 
						|
  if (D.getDeclSpec().isInlineSpecified())
 | 
						|
    Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
 | 
						|
        << getLangOpts().CPlusPlus17;
 | 
						|
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
 | 
						|
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
 | 
						|
         diag::err_invalid_thread)
 | 
						|
      << DeclSpec::getSpecifierName(TSCS);
 | 
						|
 | 
						|
  // Check to see if this name was declared as a member previously
 | 
						|
  NamedDecl *PrevDecl = nullptr;
 | 
						|
  LookupResult Previous(*this, II, Loc, LookupMemberName,
 | 
						|
                        ForVisibleRedeclaration);
 | 
						|
  LookupName(Previous, S);
 | 
						|
  switch (Previous.getResultKind()) {
 | 
						|
    case LookupResult::Found:
 | 
						|
    case LookupResult::FoundUnresolvedValue:
 | 
						|
      PrevDecl = Previous.getAsSingle<NamedDecl>();
 | 
						|
      break;
 | 
						|
 | 
						|
    case LookupResult::FoundOverloaded:
 | 
						|
      PrevDecl = Previous.getRepresentativeDecl();
 | 
						|
      break;
 | 
						|
 | 
						|
    case LookupResult::NotFound:
 | 
						|
    case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
    case LookupResult::Ambiguous:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  Previous.suppressDiagnostics();
 | 
						|
 | 
						|
  if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
 | 
						|
    PrevDecl = nullptr;
 | 
						|
 | 
						|
  bool Mutable
 | 
						|
    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
 | 
						|
  SourceLocation TSSL = D.getLocStart();
 | 
						|
  FieldDecl *NewFD
 | 
						|
    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
 | 
						|
                     TSSL, AS, PrevDecl, &D);
 | 
						|
 | 
						|
  if (NewFD->isInvalidDecl())
 | 
						|
    Record->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified())
 | 
						|
    NewFD->setModulePrivate();
 | 
						|
 | 
						|
  if (NewFD->isInvalidDecl() && PrevDecl) {
 | 
						|
    // Don't introduce NewFD into scope; there's already something
 | 
						|
    // with the same name in the same scope.
 | 
						|
  } else if (II) {
 | 
						|
    PushOnScopeChains(NewFD, S);
 | 
						|
  } else
 | 
						|
    Record->addDecl(NewFD);
 | 
						|
 | 
						|
  return NewFD;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build a new FieldDecl and check its well-formedness.
 | 
						|
///
 | 
						|
/// This routine builds a new FieldDecl given the fields name, type,
 | 
						|
/// record, etc. \p PrevDecl should refer to any previous declaration
 | 
						|
/// with the same name and in the same scope as the field to be
 | 
						|
/// created.
 | 
						|
///
 | 
						|
/// \returns a new FieldDecl.
 | 
						|
///
 | 
						|
/// \todo The Declarator argument is a hack. It will be removed once
 | 
						|
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
 | 
						|
                                TypeSourceInfo *TInfo,
 | 
						|
                                RecordDecl *Record, SourceLocation Loc,
 | 
						|
                                bool Mutable, Expr *BitWidth,
 | 
						|
                                InClassInitStyle InitStyle,
 | 
						|
                                SourceLocation TSSL,
 | 
						|
                                AccessSpecifier AS, NamedDecl *PrevDecl,
 | 
						|
                                Declarator *D) {
 | 
						|
  IdentifierInfo *II = Name.getAsIdentifierInfo();
 | 
						|
  bool InvalidDecl = false;
 | 
						|
  if (D) InvalidDecl = D->isInvalidType();
 | 
						|
 | 
						|
  // If we receive a broken type, recover by assuming 'int' and
 | 
						|
  // marking this declaration as invalid.
 | 
						|
  if (T.isNull()) {
 | 
						|
    InvalidDecl = true;
 | 
						|
    T = Context.IntTy;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType EltTy = Context.getBaseElementType(T);
 | 
						|
  if (!EltTy->isDependentType()) {
 | 
						|
    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
 | 
						|
      // Fields of incomplete type force their record to be invalid.
 | 
						|
      Record->setInvalidDecl();
 | 
						|
      InvalidDecl = true;
 | 
						|
    } else {
 | 
						|
      NamedDecl *Def;
 | 
						|
      EltTy->isIncompleteType(&Def);
 | 
						|
      if (Def && Def->isInvalidDecl()) {
 | 
						|
        Record->setInvalidDecl();
 | 
						|
        InvalidDecl = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // OpenCL v1.2 s6.9.c: bitfields are not supported.
 | 
						|
  if (BitWidth && getLangOpts().OpenCL) {
 | 
						|
    Diag(Loc, diag::err_opencl_bitfields);
 | 
						|
    InvalidDecl = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
 | 
						|
  if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
 | 
						|
      T.hasQualifiers()) {
 | 
						|
    InvalidDecl = true;
 | 
						|
    Diag(Loc, diag::err_anon_bitfield_qualifiers);
 | 
						|
  }
 | 
						|
 | 
						|
  // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | 
						|
  // than a variably modified type.
 | 
						|
  if (!InvalidDecl && T->isVariablyModifiedType()) {
 | 
						|
    bool SizeIsNegative;
 | 
						|
    llvm::APSInt Oversized;
 | 
						|
 | 
						|
    TypeSourceInfo *FixedTInfo =
 | 
						|
      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
 | 
						|
                                                    SizeIsNegative,
 | 
						|
                                                    Oversized);
 | 
						|
    if (FixedTInfo) {
 | 
						|
      Diag(Loc, diag::warn_illegal_constant_array_size);
 | 
						|
      TInfo = FixedTInfo;
 | 
						|
      T = FixedTInfo->getType();
 | 
						|
    } else {
 | 
						|
      if (SizeIsNegative)
 | 
						|
        Diag(Loc, diag::err_typecheck_negative_array_size);
 | 
						|
      else if (Oversized.getBoolValue())
 | 
						|
        Diag(Loc, diag::err_array_too_large)
 | 
						|
          << Oversized.toString(10);
 | 
						|
      else
 | 
						|
        Diag(Loc, diag::err_typecheck_field_variable_size);
 | 
						|
      InvalidDecl = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fields can not have abstract class types
 | 
						|
  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
 | 
						|
                                             diag::err_abstract_type_in_decl,
 | 
						|
                                             AbstractFieldType))
 | 
						|
    InvalidDecl = true;
 | 
						|
 | 
						|
  bool ZeroWidth = false;
 | 
						|
  if (InvalidDecl)
 | 
						|
    BitWidth = nullptr;
 | 
						|
  // If this is declared as a bit-field, check the bit-field.
 | 
						|
  if (BitWidth) {
 | 
						|
    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
 | 
						|
                              &ZeroWidth).get();
 | 
						|
    if (!BitWidth) {
 | 
						|
      InvalidDecl = true;
 | 
						|
      BitWidth = nullptr;
 | 
						|
      ZeroWidth = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that 'mutable' is consistent with the type of the declaration.
 | 
						|
  if (!InvalidDecl && Mutable) {
 | 
						|
    unsigned DiagID = 0;
 | 
						|
    if (T->isReferenceType())
 | 
						|
      DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
 | 
						|
                                        : diag::err_mutable_reference;
 | 
						|
    else if (T.isConstQualified())
 | 
						|
      DiagID = diag::err_mutable_const;
 | 
						|
 | 
						|
    if (DiagID) {
 | 
						|
      SourceLocation ErrLoc = Loc;
 | 
						|
      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
 | 
						|
        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
 | 
						|
      Diag(ErrLoc, DiagID);
 | 
						|
      if (DiagID != diag::ext_mutable_reference) {
 | 
						|
        Mutable = false;
 | 
						|
        InvalidDecl = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [class.union]p8 (DR1460):
 | 
						|
  //   At most one variant member of a union may have a
 | 
						|
  //   brace-or-equal-initializer.
 | 
						|
  if (InitStyle != ICIS_NoInit)
 | 
						|
    checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
 | 
						|
 | 
						|
  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
 | 
						|
                                       BitWidth, Mutable, InitStyle);
 | 
						|
  if (InvalidDecl)
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
 | 
						|
  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
 | 
						|
    Diag(Loc, diag::err_duplicate_member) << II;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!InvalidDecl && getLangOpts().CPlusPlus) {
 | 
						|
    if (Record->isUnion()) {
 | 
						|
      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | 
						|
        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
        if (RDecl->getDefinition()) {
 | 
						|
          // C++ [class.union]p1: An object of a class with a non-trivial
 | 
						|
          // constructor, a non-trivial copy constructor, a non-trivial
 | 
						|
          // destructor, or a non-trivial copy assignment operator
 | 
						|
          // cannot be a member of a union, nor can an array of such
 | 
						|
          // objects.
 | 
						|
          if (CheckNontrivialField(NewFD))
 | 
						|
            NewFD->setInvalidDecl();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // C++ [class.union]p1: If a union contains a member of reference type,
 | 
						|
      // the program is ill-formed, except when compiling with MSVC extensions
 | 
						|
      // enabled.
 | 
						|
      if (EltTy->isReferenceType()) {
 | 
						|
        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
 | 
						|
                                    diag::ext_union_member_of_reference_type :
 | 
						|
                                    diag::err_union_member_of_reference_type)
 | 
						|
          << NewFD->getDeclName() << EltTy;
 | 
						|
        if (!getLangOpts().MicrosoftExt)
 | 
						|
          NewFD->setInvalidDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We need to pass in the attributes given an AST
 | 
						|
  // representation, not a parser representation.
 | 
						|
  if (D) {
 | 
						|
    // FIXME: The current scope is almost... but not entirely... correct here.
 | 
						|
    ProcessDeclAttributes(getCurScope(), NewFD, *D);
 | 
						|
 | 
						|
    if (NewFD->hasAttrs())
 | 
						|
      CheckAlignasUnderalignment(NewFD);
 | 
						|
  }
 | 
						|
 | 
						|
  // In auto-retain/release, infer strong retension for fields of
 | 
						|
  // retainable type.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
 | 
						|
    NewFD->setInvalidDecl();
 | 
						|
 | 
						|
  if (T.isObjCGCWeak())
 | 
						|
    Diag(Loc, diag::warn_attribute_weak_on_field);
 | 
						|
 | 
						|
  NewFD->setAccess(AS);
 | 
						|
  return NewFD;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckNontrivialField(FieldDecl *FD) {
 | 
						|
  assert(FD);
 | 
						|
  assert(getLangOpts().CPlusPlus && "valid check only for C++");
 | 
						|
 | 
						|
  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  QualType EltTy = Context.getBaseElementType(FD->getType());
 | 
						|
  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
 | 
						|
    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
 | 
						|
    if (RDecl->getDefinition()) {
 | 
						|
      // We check for copy constructors before constructors
 | 
						|
      // because otherwise we'll never get complaints about
 | 
						|
      // copy constructors.
 | 
						|
 | 
						|
      CXXSpecialMember member = CXXInvalid;
 | 
						|
      // We're required to check for any non-trivial constructors. Since the
 | 
						|
      // implicit default constructor is suppressed if there are any
 | 
						|
      // user-declared constructors, we just need to check that there is a
 | 
						|
      // trivial default constructor and a trivial copy constructor. (We don't
 | 
						|
      // worry about move constructors here, since this is a C++98 check.)
 | 
						|
      if (RDecl->hasNonTrivialCopyConstructor())
 | 
						|
        member = CXXCopyConstructor;
 | 
						|
      else if (!RDecl->hasTrivialDefaultConstructor())
 | 
						|
        member = CXXDefaultConstructor;
 | 
						|
      else if (RDecl->hasNonTrivialCopyAssignment())
 | 
						|
        member = CXXCopyAssignment;
 | 
						|
      else if (RDecl->hasNonTrivialDestructor())
 | 
						|
        member = CXXDestructor;
 | 
						|
 | 
						|
      if (member != CXXInvalid) {
 | 
						|
        if (!getLangOpts().CPlusPlus11 &&
 | 
						|
            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
 | 
						|
          // Objective-C++ ARC: it is an error to have a non-trivial field of
 | 
						|
          // a union. However, system headers in Objective-C programs
 | 
						|
          // occasionally have Objective-C lifetime objects within unions,
 | 
						|
          // and rather than cause the program to fail, we make those
 | 
						|
          // members unavailable.
 | 
						|
          SourceLocation Loc = FD->getLocation();
 | 
						|
          if (getSourceManager().isInSystemHeader(Loc)) {
 | 
						|
            if (!FD->hasAttr<UnavailableAttr>())
 | 
						|
              FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
 | 
						|
                            UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
 | 
						|
               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
 | 
						|
               diag::err_illegal_union_or_anon_struct_member)
 | 
						|
          << FD->getParent()->isUnion() << FD->getDeclName() << member;
 | 
						|
        DiagnoseNontrivial(RDecl, member);
 | 
						|
        return !getLangOpts().CPlusPlus11;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// TranslateIvarVisibility - Translate visibility from a token ID to an
 | 
						|
///  AST enum value.
 | 
						|
static ObjCIvarDecl::AccessControl
 | 
						|
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
 | 
						|
  switch (ivarVisibility) {
 | 
						|
  default: llvm_unreachable("Unknown visitibility kind");
 | 
						|
  case tok::objc_private: return ObjCIvarDecl::Private;
 | 
						|
  case tok::objc_public: return ObjCIvarDecl::Public;
 | 
						|
  case tok::objc_protected: return ObjCIvarDecl::Protected;
 | 
						|
  case tok::objc_package: return ObjCIvarDecl::Package;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
 | 
						|
/// in order to create an IvarDecl object for it.
 | 
						|
Decl *Sema::ActOnIvar(Scope *S,
 | 
						|
                                SourceLocation DeclStart,
 | 
						|
                                Declarator &D, Expr *BitfieldWidth,
 | 
						|
                                tok::ObjCKeywordKind Visibility) {
 | 
						|
 | 
						|
  IdentifierInfo *II = D.getIdentifier();
 | 
						|
  Expr *BitWidth = (Expr*)BitfieldWidth;
 | 
						|
  SourceLocation Loc = DeclStart;
 | 
						|
  if (II) Loc = D.getIdentifierLoc();
 | 
						|
 | 
						|
  // FIXME: Unnamed fields can be handled in various different ways, for
 | 
						|
  // example, unnamed unions inject all members into the struct namespace!
 | 
						|
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
  QualType T = TInfo->getType();
 | 
						|
 | 
						|
  if (BitWidth) {
 | 
						|
    // 6.7.2.1p3, 6.7.2.1p4
 | 
						|
    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
 | 
						|
    if (!BitWidth)
 | 
						|
      D.setInvalidType();
 | 
						|
  } else {
 | 
						|
    // Not a bitfield.
 | 
						|
 | 
						|
    // validate II.
 | 
						|
 | 
						|
  }
 | 
						|
  if (T->isReferenceType()) {
 | 
						|
    Diag(Loc, diag::err_ivar_reference_type);
 | 
						|
    D.setInvalidType();
 | 
						|
  }
 | 
						|
  // C99 6.7.2.1p8: A member of a structure or union may have any type other
 | 
						|
  // than a variably modified type.
 | 
						|
  else if (T->isVariablyModifiedType()) {
 | 
						|
    Diag(Loc, diag::err_typecheck_ivar_variable_size);
 | 
						|
    D.setInvalidType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the visibility (access control) for this ivar.
 | 
						|
  ObjCIvarDecl::AccessControl ac =
 | 
						|
    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
 | 
						|
                                        : ObjCIvarDecl::None;
 | 
						|
  // Must set ivar's DeclContext to its enclosing interface.
 | 
						|
  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
 | 
						|
  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
 | 
						|
    return nullptr;
 | 
						|
  ObjCContainerDecl *EnclosingContext;
 | 
						|
  if (ObjCImplementationDecl *IMPDecl =
 | 
						|
      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | 
						|
    if (LangOpts.ObjCRuntime.isFragile()) {
 | 
						|
    // Case of ivar declared in an implementation. Context is that of its class.
 | 
						|
      EnclosingContext = IMPDecl->getClassInterface();
 | 
						|
      assert(EnclosingContext && "Implementation has no class interface!");
 | 
						|
    }
 | 
						|
    else
 | 
						|
      EnclosingContext = EnclosingDecl;
 | 
						|
  } else {
 | 
						|
    if (ObjCCategoryDecl *CDecl =
 | 
						|
        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | 
						|
      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
 | 
						|
        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    EnclosingContext = EnclosingDecl;
 | 
						|
  }
 | 
						|
 | 
						|
  // Construct the decl.
 | 
						|
  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
 | 
						|
                                             DeclStart, Loc, II, T,
 | 
						|
                                             TInfo, ac, (Expr *)BitfieldWidth);
 | 
						|
 | 
						|
  if (II) {
 | 
						|
    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
 | 
						|
                                           ForVisibleRedeclaration);
 | 
						|
    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
 | 
						|
        && !isa<TagDecl>(PrevDecl)) {
 | 
						|
      Diag(Loc, diag::err_duplicate_member) << II;
 | 
						|
      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
 | 
						|
      NewID->setInvalidDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process attributes attached to the ivar.
 | 
						|
  ProcessDeclAttributes(S, NewID, D);
 | 
						|
 | 
						|
  if (D.isInvalidType())
 | 
						|
    NewID->setInvalidDecl();
 | 
						|
 | 
						|
  // In ARC, infer 'retaining' for ivars of retainable type.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
 | 
						|
    NewID->setInvalidDecl();
 | 
						|
 | 
						|
  if (D.getDeclSpec().isModulePrivateSpecified())
 | 
						|
    NewID->setModulePrivate();
 | 
						|
 | 
						|
  if (II) {
 | 
						|
    // FIXME: When interfaces are DeclContexts, we'll need to add
 | 
						|
    // these to the interface.
 | 
						|
    S->AddDecl(NewID);
 | 
						|
    IdResolver.AddDecl(NewID);
 | 
						|
  }
 | 
						|
 | 
						|
  if (LangOpts.ObjCRuntime.isNonFragile() &&
 | 
						|
      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
 | 
						|
    Diag(Loc, diag::warn_ivars_in_interface);
 | 
						|
 | 
						|
  return NewID;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
 | 
						|
/// class and class extensions. For every class \@interface and class
 | 
						|
/// extension \@interface, if the last ivar is a bitfield of any type,
 | 
						|
/// then add an implicit `char :0` ivar to the end of that interface.
 | 
						|
void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
 | 
						|
                             SmallVectorImpl<Decl *> &AllIvarDecls) {
 | 
						|
  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
 | 
						|
  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
 | 
						|
 | 
						|
  if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
 | 
						|
    return;
 | 
						|
  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
 | 
						|
  if (!ID) {
 | 
						|
    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
 | 
						|
      if (!CD->IsClassExtension())
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    // No need to add this to end of @implementation.
 | 
						|
    else
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  // All conditions are met. Add a new bitfield to the tail end of ivars.
 | 
						|
  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
 | 
						|
  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
 | 
						|
 | 
						|
  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
 | 
						|
                              DeclLoc, DeclLoc, nullptr,
 | 
						|
                              Context.CharTy,
 | 
						|
                              Context.getTrivialTypeSourceInfo(Context.CharTy,
 | 
						|
                                                               DeclLoc),
 | 
						|
                              ObjCIvarDecl::Private, BW,
 | 
						|
                              true);
 | 
						|
  AllIvarDecls.push_back(Ivar);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
 | 
						|
                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
 | 
						|
                       SourceLocation RBrac, AttributeList *Attr) {
 | 
						|
  assert(EnclosingDecl && "missing record or interface decl");
 | 
						|
 | 
						|
  // If this is an Objective-C @implementation or category and we have
 | 
						|
  // new fields here we should reset the layout of the interface since
 | 
						|
  // it will now change.
 | 
						|
  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
 | 
						|
    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
 | 
						|
    switch (DC->getKind()) {
 | 
						|
    default: break;
 | 
						|
    case Decl::ObjCCategory:
 | 
						|
      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
 | 
						|
      break;
 | 
						|
    case Decl::ObjCImplementation:
 | 
						|
      Context.
 | 
						|
        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
 | 
						|
 | 
						|
  // Start counting up the number of named members; make sure to include
 | 
						|
  // members of anonymous structs and unions in the total.
 | 
						|
  unsigned NumNamedMembers = 0;
 | 
						|
  if (Record) {
 | 
						|
    for (const auto *I : Record->decls()) {
 | 
						|
      if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
 | 
						|
        if (IFD->getDeclName())
 | 
						|
          ++NumNamedMembers;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify that all the fields are okay.
 | 
						|
  SmallVector<FieldDecl*, 32> RecFields;
 | 
						|
 | 
						|
  bool ObjCFieldLifetimeErrReported = false;
 | 
						|
  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
 | 
						|
       i != end; ++i) {
 | 
						|
    FieldDecl *FD = cast<FieldDecl>(*i);
 | 
						|
 | 
						|
    // Get the type for the field.
 | 
						|
    const Type *FDTy = FD->getType().getTypePtr();
 | 
						|
 | 
						|
    if (!FD->isAnonymousStructOrUnion()) {
 | 
						|
      // Remember all fields written by the user.
 | 
						|
      RecFields.push_back(FD);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the field is already invalid for some reason, don't emit more
 | 
						|
    // diagnostics about it.
 | 
						|
    if (FD->isInvalidDecl()) {
 | 
						|
      EnclosingDecl->setInvalidDecl();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C99 6.7.2.1p2:
 | 
						|
    //   A structure or union shall not contain a member with
 | 
						|
    //   incomplete or function type (hence, a structure shall not
 | 
						|
    //   contain an instance of itself, but may contain a pointer to
 | 
						|
    //   an instance of itself), except that the last member of a
 | 
						|
    //   structure with more than one named member may have incomplete
 | 
						|
    //   array type; such a structure (and any union containing,
 | 
						|
    //   possibly recursively, a member that is such a structure)
 | 
						|
    //   shall not be a member of a structure or an element of an
 | 
						|
    //   array.
 | 
						|
    bool IsLastField = (i + 1 == Fields.end());
 | 
						|
    if (FDTy->isFunctionType()) {
 | 
						|
      // Field declared as a function.
 | 
						|
      Diag(FD->getLocation(), diag::err_field_declared_as_function)
 | 
						|
        << FD->getDeclName();
 | 
						|
      FD->setInvalidDecl();
 | 
						|
      EnclosingDecl->setInvalidDecl();
 | 
						|
      continue;
 | 
						|
    } else if (FDTy->isIncompleteArrayType() &&
 | 
						|
               (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
 | 
						|
      if (Record) {
 | 
						|
        // Flexible array member.
 | 
						|
        // Microsoft and g++ is more permissive regarding flexible array.
 | 
						|
        // It will accept flexible array in union and also
 | 
						|
        // as the sole element of a struct/class.
 | 
						|
        unsigned DiagID = 0;
 | 
						|
        if (!Record->isUnion() && !IsLastField) {
 | 
						|
          Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
 | 
						|
            << FD->getDeclName() << FD->getType() << Record->getTagKind();
 | 
						|
          Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
 | 
						|
          FD->setInvalidDecl();
 | 
						|
          EnclosingDecl->setInvalidDecl();
 | 
						|
          continue;
 | 
						|
        } else if (Record->isUnion())
 | 
						|
          DiagID = getLangOpts().MicrosoftExt
 | 
						|
                       ? diag::ext_flexible_array_union_ms
 | 
						|
                       : getLangOpts().CPlusPlus
 | 
						|
                             ? diag::ext_flexible_array_union_gnu
 | 
						|
                             : diag::err_flexible_array_union;
 | 
						|
        else if (NumNamedMembers < 1)
 | 
						|
          DiagID = getLangOpts().MicrosoftExt
 | 
						|
                       ? diag::ext_flexible_array_empty_aggregate_ms
 | 
						|
                       : getLangOpts().CPlusPlus
 | 
						|
                             ? diag::ext_flexible_array_empty_aggregate_gnu
 | 
						|
                             : diag::err_flexible_array_empty_aggregate;
 | 
						|
 | 
						|
        if (DiagID)
 | 
						|
          Diag(FD->getLocation(), DiagID) << FD->getDeclName()
 | 
						|
                                          << Record->getTagKind();
 | 
						|
        // While the layout of types that contain virtual bases is not specified
 | 
						|
        // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
 | 
						|
        // virtual bases after the derived members.  This would make a flexible
 | 
						|
        // array member declared at the end of an object not adjacent to the end
 | 
						|
        // of the type.
 | 
						|
        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
 | 
						|
          if (RD->getNumVBases() != 0)
 | 
						|
            Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
 | 
						|
              << FD->getDeclName() << Record->getTagKind();
 | 
						|
        if (!getLangOpts().C99)
 | 
						|
          Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
 | 
						|
            << FD->getDeclName() << Record->getTagKind();
 | 
						|
 | 
						|
        // If the element type has a non-trivial destructor, we would not
 | 
						|
        // implicitly destroy the elements, so disallow it for now.
 | 
						|
        //
 | 
						|
        // FIXME: GCC allows this. We should probably either implicitly delete
 | 
						|
        // the destructor of the containing class, or just allow this.
 | 
						|
        QualType BaseElem = Context.getBaseElementType(FD->getType());
 | 
						|
        if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
 | 
						|
          Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
 | 
						|
            << FD->getDeclName() << FD->getType();
 | 
						|
          FD->setInvalidDecl();
 | 
						|
          EnclosingDecl->setInvalidDecl();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Okay, we have a legal flexible array member at the end of the struct.
 | 
						|
        Record->setHasFlexibleArrayMember(true);
 | 
						|
      } else {
 | 
						|
        // In ObjCContainerDecl ivars with incomplete array type are accepted,
 | 
						|
        // unless they are followed by another ivar. That check is done
 | 
						|
        // elsewhere, after synthesized ivars are known.
 | 
						|
      }
 | 
						|
    } else if (!FDTy->isDependentType() &&
 | 
						|
               RequireCompleteType(FD->getLocation(), FD->getType(),
 | 
						|
                                   diag::err_field_incomplete)) {
 | 
						|
      // Incomplete type
 | 
						|
      FD->setInvalidDecl();
 | 
						|
      EnclosingDecl->setInvalidDecl();
 | 
						|
      continue;
 | 
						|
    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
 | 
						|
      if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
 | 
						|
        // A type which contains a flexible array member is considered to be a
 | 
						|
        // flexible array member.
 | 
						|
        Record->setHasFlexibleArrayMember(true);
 | 
						|
        if (!Record->isUnion()) {
 | 
						|
          // If this is a struct/class and this is not the last element, reject
 | 
						|
          // it.  Note that GCC supports variable sized arrays in the middle of
 | 
						|
          // structures.
 | 
						|
          if (!IsLastField)
 | 
						|
            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
 | 
						|
              << FD->getDeclName() << FD->getType();
 | 
						|
          else {
 | 
						|
            // We support flexible arrays at the end of structs in
 | 
						|
            // other structs as an extension.
 | 
						|
            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
 | 
						|
              << FD->getDeclName();
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
 | 
						|
          RequireNonAbstractType(FD->getLocation(), FD->getType(),
 | 
						|
                                 diag::err_abstract_type_in_decl,
 | 
						|
                                 AbstractIvarType)) {
 | 
						|
        // Ivars can not have abstract class types
 | 
						|
        FD->setInvalidDecl();
 | 
						|
      }
 | 
						|
      if (Record && FDTTy->getDecl()->hasObjectMember())
 | 
						|
        Record->setHasObjectMember(true);
 | 
						|
      if (Record && FDTTy->getDecl()->hasVolatileMember())
 | 
						|
        Record->setHasVolatileMember(true);
 | 
						|
    } else if (FDTy->isObjCObjectType()) {
 | 
						|
      /// A field cannot be an Objective-c object
 | 
						|
      Diag(FD->getLocation(), diag::err_statically_allocated_object)
 | 
						|
        << FixItHint::CreateInsertion(FD->getLocation(), "*");
 | 
						|
      QualType T = Context.getObjCObjectPointerType(FD->getType());
 | 
						|
      FD->setType(T);
 | 
						|
    } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
 | 
						|
               Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) {
 | 
						|
      // It's an error in ARC or Weak if a field has lifetime.
 | 
						|
      // We don't want to report this in a system header, though,
 | 
						|
      // so we just make the field unavailable.
 | 
						|
      // FIXME: that's really not sufficient; we need to make the type
 | 
						|
      // itself invalid to, say, initialize or copy.
 | 
						|
      QualType T = FD->getType();
 | 
						|
      if (T.hasNonTrivialObjCLifetime()) {
 | 
						|
        SourceLocation loc = FD->getLocation();
 | 
						|
        if (getSourceManager().isInSystemHeader(loc)) {
 | 
						|
          if (!FD->hasAttr<UnavailableAttr>()) {
 | 
						|
            FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
 | 
						|
                          UnavailableAttr::IR_ARCFieldWithOwnership, loc));
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
 | 
						|
            << T->isBlockPointerType() << Record->getTagKind();
 | 
						|
        }
 | 
						|
        ObjCFieldLifetimeErrReported = true;
 | 
						|
      }
 | 
						|
    } else if (getLangOpts().ObjC1 &&
 | 
						|
               getLangOpts().getGC() != LangOptions::NonGC &&
 | 
						|
               Record && !Record->hasObjectMember()) {
 | 
						|
      if (FD->getType()->isObjCObjectPointerType() ||
 | 
						|
          FD->getType().isObjCGCStrong())
 | 
						|
        Record->setHasObjectMember(true);
 | 
						|
      else if (Context.getAsArrayType(FD->getType())) {
 | 
						|
        QualType BaseType = Context.getBaseElementType(FD->getType());
 | 
						|
        if (BaseType->isRecordType() &&
 | 
						|
            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
 | 
						|
          Record->setHasObjectMember(true);
 | 
						|
        else if (BaseType->isObjCObjectPointerType() ||
 | 
						|
                 BaseType.isObjCGCStrong())
 | 
						|
               Record->setHasObjectMember(true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
 | 
						|
      QualType FT = FD->getType();
 | 
						|
      if (FT.isNonTrivialToPrimitiveDefaultInitialize())
 | 
						|
        Record->setNonTrivialToPrimitiveDefaultInitialize(true);
 | 
						|
      QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
 | 
						|
      if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
 | 
						|
        Record->setNonTrivialToPrimitiveCopy(true);
 | 
						|
      if (FT.isDestructedType()) {
 | 
						|
        Record->setNonTrivialToPrimitiveDestroy(true);
 | 
						|
        Record->setParamDestroyedInCallee(true);
 | 
						|
      }
 | 
						|
 | 
						|
      if (const auto *RT = FT->getAs<RecordType>()) {
 | 
						|
        if (RT->getDecl()->getArgPassingRestrictions() ==
 | 
						|
            RecordDecl::APK_CanNeverPassInRegs)
 | 
						|
          Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
 | 
						|
      } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
 | 
						|
        Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Record && FD->getType().isVolatileQualified())
 | 
						|
      Record->setHasVolatileMember(true);
 | 
						|
    // Keep track of the number of named members.
 | 
						|
    if (FD->getIdentifier())
 | 
						|
      ++NumNamedMembers;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we successfully defined 'Record'.
 | 
						|
  if (Record) {
 | 
						|
    bool Completed = false;
 | 
						|
    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
 | 
						|
      if (!CXXRecord->isInvalidDecl()) {
 | 
						|
        // Set access bits correctly on the directly-declared conversions.
 | 
						|
        for (CXXRecordDecl::conversion_iterator
 | 
						|
               I = CXXRecord->conversion_begin(),
 | 
						|
               E = CXXRecord->conversion_end(); I != E; ++I)
 | 
						|
          I.setAccess((*I)->getAccess());
 | 
						|
      }
 | 
						|
 | 
						|
      if (!CXXRecord->isDependentType()) {
 | 
						|
        if (CXXRecord->hasUserDeclaredDestructor()) {
 | 
						|
          // Adjust user-defined destructor exception spec.
 | 
						|
          if (getLangOpts().CPlusPlus11)
 | 
						|
            AdjustDestructorExceptionSpec(CXXRecord,
 | 
						|
                                          CXXRecord->getDestructor());
 | 
						|
        }
 | 
						|
 | 
						|
        // Add any implicitly-declared members to this class.
 | 
						|
        AddImplicitlyDeclaredMembersToClass(CXXRecord);
 | 
						|
 | 
						|
        if (!CXXRecord->isInvalidDecl()) {
 | 
						|
          // If we have virtual base classes, we may end up finding multiple
 | 
						|
          // final overriders for a given virtual function. Check for this
 | 
						|
          // problem now.
 | 
						|
          if (CXXRecord->getNumVBases()) {
 | 
						|
            CXXFinalOverriderMap FinalOverriders;
 | 
						|
            CXXRecord->getFinalOverriders(FinalOverriders);
 | 
						|
 | 
						|
            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
 | 
						|
                                             MEnd = FinalOverriders.end();
 | 
						|
                 M != MEnd; ++M) {
 | 
						|
              for (OverridingMethods::iterator SO = M->second.begin(),
 | 
						|
                                            SOEnd = M->second.end();
 | 
						|
                   SO != SOEnd; ++SO) {
 | 
						|
                assert(SO->second.size() > 0 &&
 | 
						|
                       "Virtual function without overriding functions?");
 | 
						|
                if (SO->second.size() == 1)
 | 
						|
                  continue;
 | 
						|
 | 
						|
                // C++ [class.virtual]p2:
 | 
						|
                //   In a derived class, if a virtual member function of a base
 | 
						|
                //   class subobject has more than one final overrider the
 | 
						|
                //   program is ill-formed.
 | 
						|
                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
 | 
						|
                  << (const NamedDecl *)M->first << Record;
 | 
						|
                Diag(M->first->getLocation(),
 | 
						|
                     diag::note_overridden_virtual_function);
 | 
						|
                for (OverridingMethods::overriding_iterator
 | 
						|
                          OM = SO->second.begin(),
 | 
						|
                       OMEnd = SO->second.end();
 | 
						|
                     OM != OMEnd; ++OM)
 | 
						|
                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
 | 
						|
                    << (const NamedDecl *)M->first << OM->Method->getParent();
 | 
						|
 | 
						|
                Record->setInvalidDecl();
 | 
						|
              }
 | 
						|
            }
 | 
						|
            CXXRecord->completeDefinition(&FinalOverriders);
 | 
						|
            Completed = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Completed)
 | 
						|
      Record->completeDefinition();
 | 
						|
 | 
						|
    // We may have deferred checking for a deleted destructor. Check now.
 | 
						|
    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
 | 
						|
      auto *Dtor = CXXRecord->getDestructor();
 | 
						|
      if (Dtor && Dtor->isImplicit() &&
 | 
						|
          ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
 | 
						|
        CXXRecord->setImplicitDestructorIsDeleted();
 | 
						|
        SetDeclDeleted(Dtor, CXXRecord->getLocation());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Record->hasAttrs()) {
 | 
						|
      CheckAlignasUnderalignment(Record);
 | 
						|
 | 
						|
      if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
 | 
						|
        checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
 | 
						|
                                           IA->getRange(), IA->getBestCase(),
 | 
						|
                                           IA->getSemanticSpelling());
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if the structure/union declaration is a type that can have zero
 | 
						|
    // size in C. For C this is a language extension, for C++ it may cause
 | 
						|
    // compatibility problems.
 | 
						|
    bool CheckForZeroSize;
 | 
						|
    if (!getLangOpts().CPlusPlus) {
 | 
						|
      CheckForZeroSize = true;
 | 
						|
    } else {
 | 
						|
      // For C++ filter out types that cannot be referenced in C code.
 | 
						|
      CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
 | 
						|
      CheckForZeroSize =
 | 
						|
          CXXRecord->getLexicalDeclContext()->isExternCContext() &&
 | 
						|
          !CXXRecord->isDependentType() &&
 | 
						|
          CXXRecord->isCLike();
 | 
						|
    }
 | 
						|
    if (CheckForZeroSize) {
 | 
						|
      bool ZeroSize = true;
 | 
						|
      bool IsEmpty = true;
 | 
						|
      unsigned NonBitFields = 0;
 | 
						|
      for (RecordDecl::field_iterator I = Record->field_begin(),
 | 
						|
                                      E = Record->field_end();
 | 
						|
           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
 | 
						|
        IsEmpty = false;
 | 
						|
        if (I->isUnnamedBitfield()) {
 | 
						|
          if (!I->isZeroLengthBitField(Context))
 | 
						|
            ZeroSize = false;
 | 
						|
        } else {
 | 
						|
          ++NonBitFields;
 | 
						|
          QualType FieldType = I->getType();
 | 
						|
          if (FieldType->isIncompleteType() ||
 | 
						|
              !Context.getTypeSizeInChars(FieldType).isZero())
 | 
						|
            ZeroSize = false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Empty structs are an extension in C (C99 6.7.2.1p7). They are
 | 
						|
      // allowed in C++, but warn if its declaration is inside
 | 
						|
      // extern "C" block.
 | 
						|
      if (ZeroSize) {
 | 
						|
        Diag(RecLoc, getLangOpts().CPlusPlus ?
 | 
						|
                         diag::warn_zero_size_struct_union_in_extern_c :
 | 
						|
                         diag::warn_zero_size_struct_union_compat)
 | 
						|
          << IsEmpty << Record->isUnion() << (NonBitFields > 1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Structs without named members are extension in C (C99 6.7.2.1p7),
 | 
						|
      // but are accepted by GCC.
 | 
						|
      if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
 | 
						|
        Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
 | 
						|
                               diag::ext_no_named_members_in_struct_union)
 | 
						|
          << Record->isUnion();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    ObjCIvarDecl **ClsFields =
 | 
						|
      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
 | 
						|
    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
 | 
						|
      ID->setEndOfDefinitionLoc(RBrac);
 | 
						|
      // Add ivar's to class's DeclContext.
 | 
						|
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | 
						|
        ClsFields[i]->setLexicalDeclContext(ID);
 | 
						|
        ID->addDecl(ClsFields[i]);
 | 
						|
      }
 | 
						|
      // Must enforce the rule that ivars in the base classes may not be
 | 
						|
      // duplicates.
 | 
						|
      if (ID->getSuperClass())
 | 
						|
        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
 | 
						|
    } else if (ObjCImplementationDecl *IMPDecl =
 | 
						|
                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
 | 
						|
      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
 | 
						|
      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
 | 
						|
        // Ivar declared in @implementation never belongs to the implementation.
 | 
						|
        // Only it is in implementation's lexical context.
 | 
						|
        ClsFields[I]->setLexicalDeclContext(IMPDecl);
 | 
						|
      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
 | 
						|
      IMPDecl->setIvarLBraceLoc(LBrac);
 | 
						|
      IMPDecl->setIvarRBraceLoc(RBrac);
 | 
						|
    } else if (ObjCCategoryDecl *CDecl =
 | 
						|
                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
 | 
						|
      // case of ivars in class extension; all other cases have been
 | 
						|
      // reported as errors elsewhere.
 | 
						|
      // FIXME. Class extension does not have a LocEnd field.
 | 
						|
      // CDecl->setLocEnd(RBrac);
 | 
						|
      // Add ivar's to class extension's DeclContext.
 | 
						|
      // Diagnose redeclaration of private ivars.
 | 
						|
      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
 | 
						|
      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
 | 
						|
        if (IDecl) {
 | 
						|
          if (const ObjCIvarDecl *ClsIvar =
 | 
						|
              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
 | 
						|
            Diag(ClsFields[i]->getLocation(),
 | 
						|
                 diag::err_duplicate_ivar_declaration);
 | 
						|
            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          for (const auto *Ext : IDecl->known_extensions()) {
 | 
						|
            if (const ObjCIvarDecl *ClsExtIvar
 | 
						|
                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
 | 
						|
              Diag(ClsFields[i]->getLocation(),
 | 
						|
                   diag::err_duplicate_ivar_declaration);
 | 
						|
              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        ClsFields[i]->setLexicalDeclContext(CDecl);
 | 
						|
        CDecl->addDecl(ClsFields[i]);
 | 
						|
      }
 | 
						|
      CDecl->setIvarLBraceLoc(LBrac);
 | 
						|
      CDecl->setIvarRBraceLoc(RBrac);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Record, Attr);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given integral value is representable within
 | 
						|
/// the given type T.
 | 
						|
static bool isRepresentableIntegerValue(ASTContext &Context,
 | 
						|
                                        llvm::APSInt &Value,
 | 
						|
                                        QualType T) {
 | 
						|
  assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
 | 
						|
         "Integral type required!");
 | 
						|
  unsigned BitWidth = Context.getIntWidth(T);
 | 
						|
 | 
						|
  if (Value.isUnsigned() || Value.isNonNegative()) {
 | 
						|
    if (T->isSignedIntegerOrEnumerationType())
 | 
						|
      --BitWidth;
 | 
						|
    return Value.getActiveBits() <= BitWidth;
 | 
						|
  }
 | 
						|
  return Value.getMinSignedBits() <= BitWidth;
 | 
						|
}
 | 
						|
 | 
						|
// \brief Given an integral type, return the next larger integral type
 | 
						|
// (or a NULL type of no such type exists).
 | 
						|
static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
 | 
						|
  // FIXME: Int128/UInt128 support, which also needs to be introduced into
 | 
						|
  // enum checking below.
 | 
						|
  assert((T->isIntegralType(Context) ||
 | 
						|
         T->isEnumeralType()) && "Integral type required!");
 | 
						|
  const unsigned NumTypes = 4;
 | 
						|
  QualType SignedIntegralTypes[NumTypes] = {
 | 
						|
    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
 | 
						|
  };
 | 
						|
  QualType UnsignedIntegralTypes[NumTypes] = {
 | 
						|
    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
 | 
						|
    Context.UnsignedLongLongTy
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned BitWidth = Context.getTypeSize(T);
 | 
						|
  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
 | 
						|
                                                        : UnsignedIntegralTypes;
 | 
						|
  for (unsigned I = 0; I != NumTypes; ++I)
 | 
						|
    if (Context.getTypeSize(Types[I]) > BitWidth)
 | 
						|
      return Types[I];
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
 | 
						|
                                          EnumConstantDecl *LastEnumConst,
 | 
						|
                                          SourceLocation IdLoc,
 | 
						|
                                          IdentifierInfo *Id,
 | 
						|
                                          Expr *Val) {
 | 
						|
  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | 
						|
  llvm::APSInt EnumVal(IntWidth);
 | 
						|
  QualType EltTy;
 | 
						|
 | 
						|
  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
 | 
						|
    Val = nullptr;
 | 
						|
 | 
						|
  if (Val)
 | 
						|
    Val = DefaultLvalueConversion(Val).get();
 | 
						|
 | 
						|
  if (Val) {
 | 
						|
    if (Enum->isDependentType() || Val->isTypeDependent())
 | 
						|
      EltTy = Context.DependentTy;
 | 
						|
    else {
 | 
						|
      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
 | 
						|
          !getLangOpts().MSVCCompat) {
 | 
						|
        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
 | 
						|
        // constant-expression in the enumerator-definition shall be a converted
 | 
						|
        // constant expression of the underlying type.
 | 
						|
        EltTy = Enum->getIntegerType();
 | 
						|
        ExprResult Converted =
 | 
						|
          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
 | 
						|
                                           CCEK_Enumerator);
 | 
						|
        if (Converted.isInvalid())
 | 
						|
          Val = nullptr;
 | 
						|
        else
 | 
						|
          Val = Converted.get();
 | 
						|
      } else if (!Val->isValueDependent() &&
 | 
						|
                 !(Val = VerifyIntegerConstantExpression(Val,
 | 
						|
                                                         &EnumVal).get())) {
 | 
						|
        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
 | 
						|
      } else {
 | 
						|
        if (Enum->isComplete()) {
 | 
						|
          EltTy = Enum->getIntegerType();
 | 
						|
 | 
						|
          // In Obj-C and Microsoft mode, require the enumeration value to be
 | 
						|
          // representable in the underlying type of the enumeration. In C++11,
 | 
						|
          // we perform a non-narrowing conversion as part of converted constant
 | 
						|
          // expression checking.
 | 
						|
          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | 
						|
            if (getLangOpts().MSVCCompat) {
 | 
						|
              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
 | 
						|
              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
 | 
						|
            } else
 | 
						|
              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
 | 
						|
          } else
 | 
						|
            Val = ImpCastExprToType(Val, EltTy,
 | 
						|
                                    EltTy->isBooleanType() ?
 | 
						|
                                    CK_IntegralToBoolean : CK_IntegralCast)
 | 
						|
                    .get();
 | 
						|
        } else if (getLangOpts().CPlusPlus) {
 | 
						|
          // C++11 [dcl.enum]p5:
 | 
						|
          //   If the underlying type is not fixed, the type of each enumerator
 | 
						|
          //   is the type of its initializing value:
 | 
						|
          //     - If an initializer is specified for an enumerator, the
 | 
						|
          //       initializing value has the same type as the expression.
 | 
						|
          EltTy = Val->getType();
 | 
						|
        } else {
 | 
						|
          // C99 6.7.2.2p2:
 | 
						|
          //   The expression that defines the value of an enumeration constant
 | 
						|
          //   shall be an integer constant expression that has a value
 | 
						|
          //   representable as an int.
 | 
						|
 | 
						|
          // Complain if the value is not representable in an int.
 | 
						|
          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
 | 
						|
            Diag(IdLoc, diag::ext_enum_value_not_int)
 | 
						|
              << EnumVal.toString(10) << Val->getSourceRange()
 | 
						|
              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
 | 
						|
          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
 | 
						|
            // Force the type of the expression to 'int'.
 | 
						|
            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
 | 
						|
          }
 | 
						|
          EltTy = Val->getType();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Val) {
 | 
						|
    if (Enum->isDependentType())
 | 
						|
      EltTy = Context.DependentTy;
 | 
						|
    else if (!LastEnumConst) {
 | 
						|
      // C++0x [dcl.enum]p5:
 | 
						|
      //   If the underlying type is not fixed, the type of each enumerator
 | 
						|
      //   is the type of its initializing value:
 | 
						|
      //     - If no initializer is specified for the first enumerator, the
 | 
						|
      //       initializing value has an unspecified integral type.
 | 
						|
      //
 | 
						|
      // GCC uses 'int' for its unspecified integral type, as does
 | 
						|
      // C99 6.7.2.2p3.
 | 
						|
      if (Enum->isFixed()) {
 | 
						|
        EltTy = Enum->getIntegerType();
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        EltTy = Context.IntTy;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Assign the last value + 1.
 | 
						|
      EnumVal = LastEnumConst->getInitVal();
 | 
						|
      ++EnumVal;
 | 
						|
      EltTy = LastEnumConst->getType();
 | 
						|
 | 
						|
      // Check for overflow on increment.
 | 
						|
      if (EnumVal < LastEnumConst->getInitVal()) {
 | 
						|
        // C++0x [dcl.enum]p5:
 | 
						|
        //   If the underlying type is not fixed, the type of each enumerator
 | 
						|
        //   is the type of its initializing value:
 | 
						|
        //
 | 
						|
        //     - Otherwise the type of the initializing value is the same as
 | 
						|
        //       the type of the initializing value of the preceding enumerator
 | 
						|
        //       unless the incremented value is not representable in that type,
 | 
						|
        //       in which case the type is an unspecified integral type
 | 
						|
        //       sufficient to contain the incremented value. If no such type
 | 
						|
        //       exists, the program is ill-formed.
 | 
						|
        QualType T = getNextLargerIntegralType(Context, EltTy);
 | 
						|
        if (T.isNull() || Enum->isFixed()) {
 | 
						|
          // There is no integral type larger enough to represent this
 | 
						|
          // value. Complain, then allow the value to wrap around.
 | 
						|
          EnumVal = LastEnumConst->getInitVal();
 | 
						|
          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
 | 
						|
          ++EnumVal;
 | 
						|
          if (Enum->isFixed())
 | 
						|
            // When the underlying type is fixed, this is ill-formed.
 | 
						|
            Diag(IdLoc, diag::err_enumerator_wrapped)
 | 
						|
              << EnumVal.toString(10)
 | 
						|
              << EltTy;
 | 
						|
          else
 | 
						|
            Diag(IdLoc, diag::ext_enumerator_increment_too_large)
 | 
						|
              << EnumVal.toString(10);
 | 
						|
        } else {
 | 
						|
          EltTy = T;
 | 
						|
        }
 | 
						|
 | 
						|
        // Retrieve the last enumerator's value, extent that type to the
 | 
						|
        // type that is supposed to be large enough to represent the incremented
 | 
						|
        // value, then increment.
 | 
						|
        EnumVal = LastEnumConst->getInitVal();
 | 
						|
        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
 | 
						|
        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
 | 
						|
        ++EnumVal;
 | 
						|
 | 
						|
        // If we're not in C++, diagnose the overflow of enumerator values,
 | 
						|
        // which in C99 means that the enumerator value is not representable in
 | 
						|
        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
 | 
						|
        // permits enumerator values that are representable in some larger
 | 
						|
        // integral type.
 | 
						|
        if (!getLangOpts().CPlusPlus && !T.isNull())
 | 
						|
          Diag(IdLoc, diag::warn_enum_value_overflow);
 | 
						|
      } else if (!getLangOpts().CPlusPlus &&
 | 
						|
                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
 | 
						|
        // Enforce C99 6.7.2.2p2 even when we compute the next value.
 | 
						|
        Diag(IdLoc, diag::ext_enum_value_not_int)
 | 
						|
          << EnumVal.toString(10) << 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EltTy->isDependentType()) {
 | 
						|
    // Make the enumerator value match the signedness and size of the
 | 
						|
    // enumerator's type.
 | 
						|
    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
 | 
						|
    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
 | 
						|
  }
 | 
						|
 | 
						|
  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
 | 
						|
                                  Val, EnumVal);
 | 
						|
}
 | 
						|
 | 
						|
Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
 | 
						|
                                                SourceLocation IILoc) {
 | 
						|
  if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
 | 
						|
      !getLangOpts().CPlusPlus)
 | 
						|
    return SkipBodyInfo();
 | 
						|
 | 
						|
  // We have an anonymous enum definition. Look up the first enumerator to
 | 
						|
  // determine if we should merge the definition with an existing one and
 | 
						|
  // skip the body.
 | 
						|
  NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
 | 
						|
                                         forRedeclarationInCurContext());
 | 
						|
  auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
 | 
						|
  if (!PrevECD)
 | 
						|
    return SkipBodyInfo();
 | 
						|
 | 
						|
  EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
 | 
						|
  NamedDecl *Hidden;
 | 
						|
  if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
 | 
						|
    SkipBodyInfo Skip;
 | 
						|
    Skip.Previous = Hidden;
 | 
						|
    return Skip;
 | 
						|
  }
 | 
						|
 | 
						|
  return SkipBodyInfo();
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
 | 
						|
                              SourceLocation IdLoc, IdentifierInfo *Id,
 | 
						|
                              AttributeList *Attr,
 | 
						|
                              SourceLocation EqualLoc, Expr *Val) {
 | 
						|
  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
 | 
						|
  EnumConstantDecl *LastEnumConst =
 | 
						|
    cast_or_null<EnumConstantDecl>(lastEnumConst);
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  S = getNonFieldDeclScope(S);
 | 
						|
 | 
						|
  // Verify that there isn't already something declared with this name in this
 | 
						|
  // scope.
 | 
						|
  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
 | 
						|
                                         ForVisibleRedeclaration);
 | 
						|
  if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [class.mem]p15:
 | 
						|
  // If T is the name of a class, then each of the following shall have a name
 | 
						|
  // different from T:
 | 
						|
  // - every enumerator of every member of class T that is an unscoped
 | 
						|
  // enumerated type
 | 
						|
  if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
 | 
						|
    DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
 | 
						|
                            DeclarationNameInfo(Id, IdLoc));
 | 
						|
 | 
						|
  EnumConstantDecl *New =
 | 
						|
    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
 | 
						|
  if (!New)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    // When in C++, we may get a TagDecl with the same name; in this case the
 | 
						|
    // enum constant will 'hide' the tag.
 | 
						|
    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
 | 
						|
           "Received TagDecl when not in C++!");
 | 
						|
    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
 | 
						|
      if (isa<EnumConstantDecl>(PrevDecl))
 | 
						|
        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
 | 
						|
      else
 | 
						|
        Diag(IdLoc, diag::err_redefinition) << Id;
 | 
						|
      notePreviousDefinition(PrevDecl, IdLoc);
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process attributes.
 | 
						|
  if (Attr) ProcessDeclAttributeList(S, New, Attr);
 | 
						|
  AddPragmaAttributes(S, New);
 | 
						|
 | 
						|
  // Register this decl in the current scope stack.
 | 
						|
  New->setAccess(TheEnumDecl->getAccess());
 | 
						|
  PushOnScopeChains(New, S);
 | 
						|
 | 
						|
  ActOnDocumentableDecl(New);
 | 
						|
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
// Returns true when the enum initial expression does not trigger the
 | 
						|
// duplicate enum warning.  A few common cases are exempted as follows:
 | 
						|
// Element2 = Element1
 | 
						|
// Element2 = Element1 + 1
 | 
						|
// Element2 = Element1 - 1
 | 
						|
// Where Element2 and Element1 are from the same enum.
 | 
						|
static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
 | 
						|
  Expr *InitExpr = ECD->getInitExpr();
 | 
						|
  if (!InitExpr)
 | 
						|
    return true;
 | 
						|
  InitExpr = InitExpr->IgnoreImpCasts();
 | 
						|
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
 | 
						|
    if (!BO->isAdditiveOp())
 | 
						|
      return true;
 | 
						|
    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
 | 
						|
    if (!IL)
 | 
						|
      return true;
 | 
						|
    if (IL->getValue() != 1)
 | 
						|
      return true;
 | 
						|
 | 
						|
    InitExpr = BO->getLHS();
 | 
						|
  }
 | 
						|
 | 
						|
  // This checks if the elements are from the same enum.
 | 
						|
  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
 | 
						|
  if (!DRE)
 | 
						|
    return true;
 | 
						|
 | 
						|
  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
 | 
						|
  if (!EnumConstant)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
 | 
						|
      Enum)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Emits a warning when an element is implicitly set a value that
 | 
						|
// a previous element has already been set to.
 | 
						|
static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
 | 
						|
                                        EnumDecl *Enum, QualType EnumType) {
 | 
						|
  // Avoid anonymous enums
 | 
						|
  if (!Enum->getIdentifier())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Only check for small enums.
 | 
						|
  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
 | 
						|
    return;
 | 
						|
 | 
						|
  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
 | 
						|
  typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
 | 
						|
 | 
						|
  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
 | 
						|
  typedef llvm::DenseMap<int64_t, DeclOrVector> ValueToVectorMap;
 | 
						|
 | 
						|
  // Use int64_t as a key to avoid needing special handling for DenseMap keys.
 | 
						|
  auto EnumConstantToKey = [](const EnumConstantDecl *D) {
 | 
						|
    llvm::APSInt Val = D->getInitVal();
 | 
						|
    return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
 | 
						|
  };
 | 
						|
 | 
						|
  DuplicatesVector DupVector;
 | 
						|
  ValueToVectorMap EnumMap;
 | 
						|
 | 
						|
  // Populate the EnumMap with all values represented by enum constants without
 | 
						|
  // an initializer.
 | 
						|
  for (auto *Element : Elements) {
 | 
						|
    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
 | 
						|
 | 
						|
    // Null EnumConstantDecl means a previous diagnostic has been emitted for
 | 
						|
    // this constant.  Skip this enum since it may be ill-formed.
 | 
						|
    if (!ECD) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Constants with initalizers are handled in the next loop.
 | 
						|
    if (ECD->getInitExpr())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Duplicate values are handled in the next loop.
 | 
						|
    EnumMap.insert({EnumConstantToKey(ECD), ECD});
 | 
						|
  }
 | 
						|
 | 
						|
  if (EnumMap.size() == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create vectors for any values that has duplicates.
 | 
						|
  for (auto *Element : Elements) {
 | 
						|
    // The last loop returned if any constant was null.
 | 
						|
    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
 | 
						|
    if (!ValidDuplicateEnum(ECD, Enum))
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto Iter = EnumMap.find(EnumConstantToKey(ECD));
 | 
						|
    if (Iter == EnumMap.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    DeclOrVector& Entry = Iter->second;
 | 
						|
    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
 | 
						|
      // Ensure constants are different.
 | 
						|
      if (D == ECD)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Create new vector and push values onto it.
 | 
						|
      auto Vec = llvm::make_unique<ECDVector>();
 | 
						|
      Vec->push_back(D);
 | 
						|
      Vec->push_back(ECD);
 | 
						|
 | 
						|
      // Update entry to point to the duplicates vector.
 | 
						|
      Entry = Vec.get();
 | 
						|
 | 
						|
      // Store the vector somewhere we can consult later for quick emission of
 | 
						|
      // diagnostics.
 | 
						|
      DupVector.emplace_back(std::move(Vec));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    ECDVector *Vec = Entry.get<ECDVector*>();
 | 
						|
    // Make sure constants are not added more than once.
 | 
						|
    if (*Vec->begin() == ECD)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Vec->push_back(ECD);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit diagnostics.
 | 
						|
  for (const auto &Vec : DupVector) {
 | 
						|
    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
 | 
						|
 | 
						|
    // Emit warning for one enum constant.
 | 
						|
    auto *FirstECD = Vec->front();
 | 
						|
    S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
 | 
						|
      << FirstECD << FirstECD->getInitVal().toString(10)
 | 
						|
      << FirstECD->getSourceRange();
 | 
						|
 | 
						|
    // Emit one note for each of the remaining enum constants with
 | 
						|
    // the same value.
 | 
						|
    for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
 | 
						|
      S.Diag(ECD->getLocation(), diag::note_duplicate_element)
 | 
						|
        << ECD << ECD->getInitVal().toString(10)
 | 
						|
        << ECD->getSourceRange();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
 | 
						|
                             bool AllowMask) const {
 | 
						|
  assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
 | 
						|
  assert(ED->isCompleteDefinition() && "expected enum definition");
 | 
						|
 | 
						|
  auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
 | 
						|
  llvm::APInt &FlagBits = R.first->second;
 | 
						|
 | 
						|
  if (R.second) {
 | 
						|
    for (auto *E : ED->enumerators()) {
 | 
						|
      const auto &EVal = E->getInitVal();
 | 
						|
      // Only single-bit enumerators introduce new flag values.
 | 
						|
      if (EVal.isPowerOf2())
 | 
						|
        FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // A value is in a flag enum if either its bits are a subset of the enum's
 | 
						|
  // flag bits (the first condition) or we are allowing masks and the same is
 | 
						|
  // true of its complement (the second condition). When masks are allowed, we
 | 
						|
  // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
 | 
						|
  //
 | 
						|
  // While it's true that any value could be used as a mask, the assumption is
 | 
						|
  // that a mask will have all of the insignificant bits set. Anything else is
 | 
						|
  // likely a logic error.
 | 
						|
  llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
 | 
						|
  return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
 | 
						|
                         Decl *EnumDeclX,
 | 
						|
                         ArrayRef<Decl *> Elements,
 | 
						|
                         Scope *S, AttributeList *Attr) {
 | 
						|
  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
 | 
						|
  QualType EnumType = Context.getTypeDeclType(Enum);
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Enum, Attr);
 | 
						|
 | 
						|
  if (Enum->isDependentType()) {
 | 
						|
    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | 
						|
      EnumConstantDecl *ECD =
 | 
						|
        cast_or_null<EnumConstantDecl>(Elements[i]);
 | 
						|
      if (!ECD) continue;
 | 
						|
 | 
						|
      ECD->setType(EnumType);
 | 
						|
    }
 | 
						|
 | 
						|
    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: If the result value doesn't fit in an int, it must be a long or long
 | 
						|
  // long value.  ISO C does not support this, but GCC does as an extension,
 | 
						|
  // emit a warning.
 | 
						|
  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
 | 
						|
  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
 | 
						|
  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
 | 
						|
 | 
						|
  // Verify that all the values are okay, compute the size of the values, and
 | 
						|
  // reverse the list.
 | 
						|
  unsigned NumNegativeBits = 0;
 | 
						|
  unsigned NumPositiveBits = 0;
 | 
						|
 | 
						|
  // Keep track of whether all elements have type int.
 | 
						|
  bool AllElementsInt = true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
 | 
						|
    EnumConstantDecl *ECD =
 | 
						|
      cast_or_null<EnumConstantDecl>(Elements[i]);
 | 
						|
    if (!ECD) continue;  // Already issued a diagnostic.
 | 
						|
 | 
						|
    const llvm::APSInt &InitVal = ECD->getInitVal();
 | 
						|
 | 
						|
    // Keep track of the size of positive and negative values.
 | 
						|
    if (InitVal.isUnsigned() || InitVal.isNonNegative())
 | 
						|
      NumPositiveBits = std::max(NumPositiveBits,
 | 
						|
                                 (unsigned)InitVal.getActiveBits());
 | 
						|
    else
 | 
						|
      NumNegativeBits = std::max(NumNegativeBits,
 | 
						|
                                 (unsigned)InitVal.getMinSignedBits());
 | 
						|
 | 
						|
    // Keep track of whether every enum element has type int (very commmon).
 | 
						|
    if (AllElementsInt)
 | 
						|
      AllElementsInt = ECD->getType() == Context.IntTy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out the type that should be used for this enum.
 | 
						|
  QualType BestType;
 | 
						|
  unsigned BestWidth;
 | 
						|
 | 
						|
  // C++0x N3000 [conv.prom]p3:
 | 
						|
  //   An rvalue of an unscoped enumeration type whose underlying
 | 
						|
  //   type is not fixed can be converted to an rvalue of the first
 | 
						|
  //   of the following types that can represent all the values of
 | 
						|
  //   the enumeration: int, unsigned int, long int, unsigned long
 | 
						|
  //   int, long long int, or unsigned long long int.
 | 
						|
  // C99 6.4.4.3p2:
 | 
						|
  //   An identifier declared as an enumeration constant has type int.
 | 
						|
  // The C99 rule is modified by a gcc extension
 | 
						|
  QualType BestPromotionType;
 | 
						|
 | 
						|
  bool Packed = Enum->hasAttr<PackedAttr>();
 | 
						|
  // -fshort-enums is the equivalent to specifying the packed attribute on all
 | 
						|
  // enum definitions.
 | 
						|
  if (LangOpts.ShortEnums)
 | 
						|
    Packed = true;
 | 
						|
 | 
						|
  // If the enum already has a type because it is fixed or dictated by the
 | 
						|
  // target, promote that type instead of analyzing the enumerators.
 | 
						|
  if (Enum->isComplete()) {
 | 
						|
    BestType = Enum->getIntegerType();
 | 
						|
    if (BestType->isPromotableIntegerType())
 | 
						|
      BestPromotionType = Context.getPromotedIntegerType(BestType);
 | 
						|
    else
 | 
						|
      BestPromotionType = BestType;
 | 
						|
 | 
						|
    BestWidth = Context.getIntWidth(BestType);
 | 
						|
  }
 | 
						|
  else if (NumNegativeBits) {
 | 
						|
    // If there is a negative value, figure out the smallest integer type (of
 | 
						|
    // int/long/longlong) that fits.
 | 
						|
    // If it's packed, check also if it fits a char or a short.
 | 
						|
    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
 | 
						|
      BestType = Context.SignedCharTy;
 | 
						|
      BestWidth = CharWidth;
 | 
						|
    } else if (Packed && NumNegativeBits <= ShortWidth &&
 | 
						|
               NumPositiveBits < ShortWidth) {
 | 
						|
      BestType = Context.ShortTy;
 | 
						|
      BestWidth = ShortWidth;
 | 
						|
    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
 | 
						|
      BestType = Context.IntTy;
 | 
						|
      BestWidth = IntWidth;
 | 
						|
    } else {
 | 
						|
      BestWidth = Context.getTargetInfo().getLongWidth();
 | 
						|
 | 
						|
      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
 | 
						|
        BestType = Context.LongTy;
 | 
						|
      } else {
 | 
						|
        BestWidth = Context.getTargetInfo().getLongLongWidth();
 | 
						|
 | 
						|
        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
 | 
						|
          Diag(Enum->getLocation(), diag::ext_enum_too_large);
 | 
						|
        BestType = Context.LongLongTy;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
 | 
						|
  } else {
 | 
						|
    // If there is no negative value, figure out the smallest type that fits
 | 
						|
    // all of the enumerator values.
 | 
						|
    // If it's packed, check also if it fits a char or a short.
 | 
						|
    if (Packed && NumPositiveBits <= CharWidth) {
 | 
						|
      BestType = Context.UnsignedCharTy;
 | 
						|
      BestPromotionType = Context.IntTy;
 | 
						|
      BestWidth = CharWidth;
 | 
						|
    } else if (Packed && NumPositiveBits <= ShortWidth) {
 | 
						|
      BestType = Context.UnsignedShortTy;
 | 
						|
      BestPromotionType = Context.IntTy;
 | 
						|
      BestWidth = ShortWidth;
 | 
						|
    } else if (NumPositiveBits <= IntWidth) {
 | 
						|
      BestType = Context.UnsignedIntTy;
 | 
						|
      BestWidth = IntWidth;
 | 
						|
      BestPromotionType
 | 
						|
        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
 | 
						|
                           ? Context.UnsignedIntTy : Context.IntTy;
 | 
						|
    } else if (NumPositiveBits <=
 | 
						|
               (BestWidth = Context.getTargetInfo().getLongWidth())) {
 | 
						|
      BestType = Context.UnsignedLongTy;
 | 
						|
      BestPromotionType
 | 
						|
        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
 | 
						|
                           ? Context.UnsignedLongTy : Context.LongTy;
 | 
						|
    } else {
 | 
						|
      BestWidth = Context.getTargetInfo().getLongLongWidth();
 | 
						|
      assert(NumPositiveBits <= BestWidth &&
 | 
						|
             "How could an initializer get larger than ULL?");
 | 
						|
      BestType = Context.UnsignedLongLongTy;
 | 
						|
      BestPromotionType
 | 
						|
        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
 | 
						|
                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of the enumerator constants, changing their types to match
 | 
						|
  // the type of the enum if needed.
 | 
						|
  for (auto *D : Elements) {
 | 
						|
    auto *ECD = cast_or_null<EnumConstantDecl>(D);
 | 
						|
    if (!ECD) continue;  // Already issued a diagnostic.
 | 
						|
 | 
						|
    // Standard C says the enumerators have int type, but we allow, as an
 | 
						|
    // extension, the enumerators to be larger than int size.  If each
 | 
						|
    // enumerator value fits in an int, type it as an int, otherwise type it the
 | 
						|
    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
 | 
						|
    // that X has type 'int', not 'unsigned'.
 | 
						|
 | 
						|
    // Determine whether the value fits into an int.
 | 
						|
    llvm::APSInt InitVal = ECD->getInitVal();
 | 
						|
 | 
						|
    // If it fits into an integer type, force it.  Otherwise force it to match
 | 
						|
    // the enum decl type.
 | 
						|
    QualType NewTy;
 | 
						|
    unsigned NewWidth;
 | 
						|
    bool NewSign;
 | 
						|
    if (!getLangOpts().CPlusPlus &&
 | 
						|
        !Enum->isFixed() &&
 | 
						|
        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
 | 
						|
      NewTy = Context.IntTy;
 | 
						|
      NewWidth = IntWidth;
 | 
						|
      NewSign = true;
 | 
						|
    } else if (ECD->getType() == BestType) {
 | 
						|
      // Already the right type!
 | 
						|
      if (getLangOpts().CPlusPlus)
 | 
						|
        // C++ [dcl.enum]p4: Following the closing brace of an
 | 
						|
        // enum-specifier, each enumerator has the type of its
 | 
						|
        // enumeration.
 | 
						|
        ECD->setType(EnumType);
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      NewTy = BestType;
 | 
						|
      NewWidth = BestWidth;
 | 
						|
      NewSign = BestType->isSignedIntegerOrEnumerationType();
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust the APSInt value.
 | 
						|
    InitVal = InitVal.extOrTrunc(NewWidth);
 | 
						|
    InitVal.setIsSigned(NewSign);
 | 
						|
    ECD->setInitVal(InitVal);
 | 
						|
 | 
						|
    // Adjust the Expr initializer and type.
 | 
						|
    if (ECD->getInitExpr() &&
 | 
						|
        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
 | 
						|
      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
 | 
						|
                                                CK_IntegralCast,
 | 
						|
                                                ECD->getInitExpr(),
 | 
						|
                                                /*base paths*/ nullptr,
 | 
						|
                                                VK_RValue));
 | 
						|
    if (getLangOpts().CPlusPlus)
 | 
						|
      // C++ [dcl.enum]p4: Following the closing brace of an
 | 
						|
      // enum-specifier, each enumerator has the type of its
 | 
						|
      // enumeration.
 | 
						|
      ECD->setType(EnumType);
 | 
						|
    else
 | 
						|
      ECD->setType(NewTy);
 | 
						|
  }
 | 
						|
 | 
						|
  Enum->completeDefinition(BestType, BestPromotionType,
 | 
						|
                           NumPositiveBits, NumNegativeBits);
 | 
						|
 | 
						|
  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
 | 
						|
 | 
						|
  if (Enum->isClosedFlag()) {
 | 
						|
    for (Decl *D : Elements) {
 | 
						|
      EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
 | 
						|
      if (!ECD) continue;  // Already issued a diagnostic.
 | 
						|
 | 
						|
      llvm::APSInt InitVal = ECD->getInitVal();
 | 
						|
      if (InitVal != 0 && !InitVal.isPowerOf2() &&
 | 
						|
          !IsValueInFlagEnum(Enum, InitVal, true))
 | 
						|
        Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
 | 
						|
          << ECD << Enum;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that the enum type is defined, ensure it's not been underaligned.
 | 
						|
  if (Enum->hasAttrs())
 | 
						|
    CheckAlignasUnderalignment(Enum);
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
 | 
						|
                                  SourceLocation StartLoc,
 | 
						|
                                  SourceLocation EndLoc) {
 | 
						|
  StringLiteral *AsmString = cast<StringLiteral>(expr);
 | 
						|
 | 
						|
  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
 | 
						|
                                                   AsmString, StartLoc,
 | 
						|
                                                   EndLoc);
 | 
						|
  CurContext->addDecl(New);
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
static void checkModuleImportContext(Sema &S, Module *M,
 | 
						|
                                     SourceLocation ImportLoc, DeclContext *DC,
 | 
						|
                                     bool FromInclude = false) {
 | 
						|
  SourceLocation ExternCLoc;
 | 
						|
 | 
						|
  if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
 | 
						|
    switch (LSD->getLanguage()) {
 | 
						|
    case LinkageSpecDecl::lang_c:
 | 
						|
      if (ExternCLoc.isInvalid())
 | 
						|
        ExternCLoc = LSD->getLocStart();
 | 
						|
      break;
 | 
						|
    case LinkageSpecDecl::lang_cxx:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    DC = LSD->getParent();
 | 
						|
  }
 | 
						|
 | 
						|
  while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
 | 
						|
    DC = DC->getParent();
 | 
						|
 | 
						|
  if (!isa<TranslationUnitDecl>(DC)) {
 | 
						|
    S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
 | 
						|
                          ? diag::ext_module_import_not_at_top_level_noop
 | 
						|
                          : diag::err_module_import_not_at_top_level_fatal)
 | 
						|
        << M->getFullModuleName() << DC;
 | 
						|
    S.Diag(cast<Decl>(DC)->getLocStart(),
 | 
						|
           diag::note_module_import_not_at_top_level) << DC;
 | 
						|
  } else if (!M->IsExternC && ExternCLoc.isValid()) {
 | 
						|
    S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
 | 
						|
      << M->getFullModuleName();
 | 
						|
    S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc,
 | 
						|
                                           SourceLocation ModuleLoc,
 | 
						|
                                           ModuleDeclKind MDK,
 | 
						|
                                           ModuleIdPath Path) {
 | 
						|
  assert(getLangOpts().ModulesTS &&
 | 
						|
         "should only have module decl in modules TS");
 | 
						|
 | 
						|
  // A module implementation unit requires that we are not compiling a module
 | 
						|
  // of any kind. A module interface unit requires that we are not compiling a
 | 
						|
  // module map.
 | 
						|
  switch (getLangOpts().getCompilingModule()) {
 | 
						|
  case LangOptions::CMK_None:
 | 
						|
    // It's OK to compile a module interface as a normal translation unit.
 | 
						|
    break;
 | 
						|
 | 
						|
  case LangOptions::CMK_ModuleInterface:
 | 
						|
    if (MDK != ModuleDeclKind::Implementation)
 | 
						|
      break;
 | 
						|
 | 
						|
    // We were asked to compile a module interface unit but this is a module
 | 
						|
    // implementation unit. That indicates the 'export' is missing.
 | 
						|
    Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
 | 
						|
      << FixItHint::CreateInsertion(ModuleLoc, "export ");
 | 
						|
    MDK = ModuleDeclKind::Interface;
 | 
						|
    break;
 | 
						|
 | 
						|
  case LangOptions::CMK_ModuleMap:
 | 
						|
    Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ModuleScopes.size() == 1 && "expected to be at global module scope");
 | 
						|
 | 
						|
  // FIXME: Most of this work should be done by the preprocessor rather than
 | 
						|
  // here, in order to support macro import.
 | 
						|
 | 
						|
  // Only one module-declaration is permitted per source file.
 | 
						|
  if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) {
 | 
						|
    Diag(ModuleLoc, diag::err_module_redeclaration);
 | 
						|
    Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
 | 
						|
         diag::note_prev_module_declaration);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Flatten the dots in a module name. Unlike Clang's hierarchical module map
 | 
						|
  // modules, the dots here are just another character that can appear in a
 | 
						|
  // module name.
 | 
						|
  std::string ModuleName;
 | 
						|
  for (auto &Piece : Path) {
 | 
						|
    if (!ModuleName.empty())
 | 
						|
      ModuleName += ".";
 | 
						|
    ModuleName += Piece.first->getName();
 | 
						|
  }
 | 
						|
 | 
						|
  // If a module name was explicitly specified on the command line, it must be
 | 
						|
  // correct.
 | 
						|
  if (!getLangOpts().CurrentModule.empty() &&
 | 
						|
      getLangOpts().CurrentModule != ModuleName) {
 | 
						|
    Diag(Path.front().second, diag::err_current_module_name_mismatch)
 | 
						|
        << SourceRange(Path.front().second, Path.back().second)
 | 
						|
        << getLangOpts().CurrentModule;
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
 | 
						|
 | 
						|
  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
 | 
						|
  Module *Mod;
 | 
						|
 | 
						|
  switch (MDK) {
 | 
						|
  case ModuleDeclKind::Interface: {
 | 
						|
    // We can't have parsed or imported a definition of this module or parsed a
 | 
						|
    // module map defining it already.
 | 
						|
    if (auto *M = Map.findModule(ModuleName)) {
 | 
						|
      Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
 | 
						|
      if (M->DefinitionLoc.isValid())
 | 
						|
        Diag(M->DefinitionLoc, diag::note_prev_module_definition);
 | 
						|
      else if (const auto *FE = M->getASTFile())
 | 
						|
        Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
 | 
						|
            << FE->getName();
 | 
						|
      Mod = M;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Create a Module for the module that we're defining.
 | 
						|
    Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
 | 
						|
                                           ModuleScopes.front().Module);
 | 
						|
    assert(Mod && "module creation should not fail");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ModuleDeclKind::Partition:
 | 
						|
    // FIXME: Check we are in a submodule of the named module.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  case ModuleDeclKind::Implementation:
 | 
						|
    std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
 | 
						|
        PP.getIdentifierInfo(ModuleName), Path[0].second);
 | 
						|
    Mod = getModuleLoader().loadModule(ModuleLoc, Path, Module::AllVisible,
 | 
						|
                                       /*IsIncludeDirective=*/false);
 | 
						|
    if (!Mod) {
 | 
						|
      Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
 | 
						|
      // Create an empty module interface unit for error recovery.
 | 
						|
      Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
 | 
						|
                                             ModuleScopes.front().Module);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Switch from the global module to the named module.
 | 
						|
  ModuleScopes.back().Module = Mod;
 | 
						|
  ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
 | 
						|
  VisibleModules.setVisible(Mod, ModuleLoc);
 | 
						|
 | 
						|
  // From now on, we have an owning module for all declarations we see.
 | 
						|
  // However, those declarations are module-private unless explicitly
 | 
						|
  // exported.
 | 
						|
  auto *TU = Context.getTranslationUnitDecl();
 | 
						|
  TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
 | 
						|
  TU->setLocalOwningModule(Mod);
 | 
						|
 | 
						|
  // FIXME: Create a ModuleDecl.
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
 | 
						|
                                   SourceLocation ImportLoc,
 | 
						|
                                   ModuleIdPath Path) {
 | 
						|
  Module *Mod =
 | 
						|
      getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
 | 
						|
                                   /*IsIncludeDirective=*/false);
 | 
						|
  if (!Mod)
 | 
						|
    return true;
 | 
						|
 | 
						|
  VisibleModules.setVisible(Mod, ImportLoc);
 | 
						|
 | 
						|
  checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
 | 
						|
 | 
						|
  // FIXME: we should support importing a submodule within a different submodule
 | 
						|
  // of the same top-level module. Until we do, make it an error rather than
 | 
						|
  // silently ignoring the import.
 | 
						|
  // Import-from-implementation is valid in the Modules TS. FIXME: Should we
 | 
						|
  // warn on a redundant import of the current module?
 | 
						|
  if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
 | 
						|
      (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS))
 | 
						|
    Diag(ImportLoc, getLangOpts().isCompilingModule()
 | 
						|
                        ? diag::err_module_self_import
 | 
						|
                        : diag::err_module_import_in_implementation)
 | 
						|
        << Mod->getFullModuleName() << getLangOpts().CurrentModule;
 | 
						|
 | 
						|
  SmallVector<SourceLocation, 2> IdentifierLocs;
 | 
						|
  Module *ModCheck = Mod;
 | 
						|
  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
 | 
						|
    // If we've run out of module parents, just drop the remaining identifiers.
 | 
						|
    // We need the length to be consistent.
 | 
						|
    if (!ModCheck)
 | 
						|
      break;
 | 
						|
    ModCheck = ModCheck->Parent;
 | 
						|
 | 
						|
    IdentifierLocs.push_back(Path[I].second);
 | 
						|
  }
 | 
						|
 | 
						|
  ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
 | 
						|
                                          Mod, IdentifierLocs);
 | 
						|
  if (!ModuleScopes.empty())
 | 
						|
    Context.addModuleInitializer(ModuleScopes.back().Module, Import);
 | 
						|
  CurContext->addDecl(Import);
 | 
						|
 | 
						|
  // Re-export the module if needed.
 | 
						|
  if (Import->isExported() &&
 | 
						|
      !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface)
 | 
						|
    getCurrentModule()->Exports.emplace_back(Mod, false);
 | 
						|
 | 
						|
  return Import;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
 | 
						|
  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
 | 
						|
  BuildModuleInclude(DirectiveLoc, Mod);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
 | 
						|
  // Determine whether we're in the #include buffer for a module. The #includes
 | 
						|
  // in that buffer do not qualify as module imports; they're just an
 | 
						|
  // implementation detail of us building the module.
 | 
						|
  //
 | 
						|
  // FIXME: Should we even get ActOnModuleInclude calls for those?
 | 
						|
  bool IsInModuleIncludes =
 | 
						|
      TUKind == TU_Module &&
 | 
						|
      getSourceManager().isWrittenInMainFile(DirectiveLoc);
 | 
						|
 | 
						|
  bool ShouldAddImport = !IsInModuleIncludes;
 | 
						|
 | 
						|
  // If this module import was due to an inclusion directive, create an
 | 
						|
  // implicit import declaration to capture it in the AST.
 | 
						|
  if (ShouldAddImport) {
 | 
						|
    TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
 | 
						|
    ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
 | 
						|
                                                     DirectiveLoc, Mod,
 | 
						|
                                                     DirectiveLoc);
 | 
						|
    if (!ModuleScopes.empty())
 | 
						|
      Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
 | 
						|
    TU->addDecl(ImportD);
 | 
						|
    Consumer.HandleImplicitImportDecl(ImportD);
 | 
						|
  }
 | 
						|
 | 
						|
  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
 | 
						|
  VisibleModules.setVisible(Mod, DirectiveLoc);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
 | 
						|
  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
 | 
						|
 | 
						|
  ModuleScopes.push_back({});
 | 
						|
  ModuleScopes.back().Module = Mod;
 | 
						|
  if (getLangOpts().ModulesLocalVisibility)
 | 
						|
    ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
 | 
						|
 | 
						|
  VisibleModules.setVisible(Mod, DirectiveLoc);
 | 
						|
 | 
						|
  // The enclosing context is now part of this module.
 | 
						|
  // FIXME: Consider creating a child DeclContext to hold the entities
 | 
						|
  // lexically within the module.
 | 
						|
  if (getLangOpts().trackLocalOwningModule()) {
 | 
						|
    for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
 | 
						|
      cast<Decl>(DC)->setModuleOwnershipKind(
 | 
						|
          getLangOpts().ModulesLocalVisibility
 | 
						|
              ? Decl::ModuleOwnershipKind::VisibleWhenImported
 | 
						|
              : Decl::ModuleOwnershipKind::Visible);
 | 
						|
      cast<Decl>(DC)->setLocalOwningModule(Mod);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
 | 
						|
  if (getLangOpts().ModulesLocalVisibility) {
 | 
						|
    VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
 | 
						|
    // Leaving a module hides namespace names, so our visible namespace cache
 | 
						|
    // is now out of date.
 | 
						|
    VisibleNamespaceCache.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
 | 
						|
         "left the wrong module scope");
 | 
						|
  ModuleScopes.pop_back();
 | 
						|
 | 
						|
  // We got to the end of processing a local module. Create an
 | 
						|
  // ImportDecl as we would for an imported module.
 | 
						|
  FileID File = getSourceManager().getFileID(EomLoc);
 | 
						|
  SourceLocation DirectiveLoc;
 | 
						|
  if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
 | 
						|
    // We reached the end of a #included module header. Use the #include loc.
 | 
						|
    assert(File != getSourceManager().getMainFileID() &&
 | 
						|
           "end of submodule in main source file");
 | 
						|
    DirectiveLoc = getSourceManager().getIncludeLoc(File);
 | 
						|
  } else {
 | 
						|
    // We reached an EOM pragma. Use the pragma location.
 | 
						|
    DirectiveLoc = EomLoc;
 | 
						|
  }
 | 
						|
  BuildModuleInclude(DirectiveLoc, Mod);
 | 
						|
 | 
						|
  // Any further declarations are in whatever module we returned to.
 | 
						|
  if (getLangOpts().trackLocalOwningModule()) {
 | 
						|
    // The parser guarantees that this is the same context that we entered
 | 
						|
    // the module within.
 | 
						|
    for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
 | 
						|
      cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
 | 
						|
      if (!getCurrentModule())
 | 
						|
        cast<Decl>(DC)->setModuleOwnershipKind(
 | 
						|
            Decl::ModuleOwnershipKind::Unowned);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
 | 
						|
                                                      Module *Mod) {
 | 
						|
  // Bail if we're not allowed to implicitly import a module here.
 | 
						|
  if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
 | 
						|
      VisibleModules.isVisible(Mod))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Create the implicit import declaration.
 | 
						|
  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
 | 
						|
  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
 | 
						|
                                                   Loc, Mod, Loc);
 | 
						|
  TU->addDecl(ImportD);
 | 
						|
  Consumer.HandleImplicitImportDecl(ImportD);
 | 
						|
 | 
						|
  // Make the module visible.
 | 
						|
  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
 | 
						|
  VisibleModules.setVisible(Mod, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// We have parsed the start of an export declaration, including the '{'
 | 
						|
/// (if present).
 | 
						|
Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
 | 
						|
                                 SourceLocation LBraceLoc) {
 | 
						|
  ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
 | 
						|
 | 
						|
  // C++ Modules TS draft:
 | 
						|
  //   An export-declaration shall appear in the purview of a module other than
 | 
						|
  //   the global module.
 | 
						|
  if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface)
 | 
						|
    Diag(ExportLoc, diag::err_export_not_in_module_interface);
 | 
						|
 | 
						|
  //   An export-declaration [...] shall not contain more than one
 | 
						|
  //   export keyword.
 | 
						|
  //
 | 
						|
  // The intent here is that an export-declaration cannot appear within another
 | 
						|
  // export-declaration.
 | 
						|
  if (D->isExported())
 | 
						|
    Diag(ExportLoc, diag::err_export_within_export);
 | 
						|
 | 
						|
  CurContext->addDecl(D);
 | 
						|
  PushDeclContext(S, D);
 | 
						|
  D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
 | 
						|
  return D;
 | 
						|
}
 | 
						|
 | 
						|
/// Complete the definition of an export declaration.
 | 
						|
Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
 | 
						|
  auto *ED = cast<ExportDecl>(D);
 | 
						|
  if (RBraceLoc.isValid())
 | 
						|
    ED->setRBraceLoc(RBraceLoc);
 | 
						|
 | 
						|
  // FIXME: Diagnose export of internal-linkage declaration (including
 | 
						|
  // anonymous namespace).
 | 
						|
 | 
						|
  PopDeclContext();
 | 
						|
  return D;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
 | 
						|
                                      IdentifierInfo* AliasName,
 | 
						|
                                      SourceLocation PragmaLoc,
 | 
						|
                                      SourceLocation NameLoc,
 | 
						|
                                      SourceLocation AliasNameLoc) {
 | 
						|
  NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
 | 
						|
                                         LookupOrdinaryName);
 | 
						|
  AsmLabelAttr *Attr =
 | 
						|
      AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
 | 
						|
 | 
						|
  // If a declaration that:
 | 
						|
  // 1) declares a function or a variable
 | 
						|
  // 2) has external linkage
 | 
						|
  // already exists, add a label attribute to it.
 | 
						|
  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
 | 
						|
    if (isDeclExternC(PrevDecl))
 | 
						|
      PrevDecl->addAttr(Attr);
 | 
						|
    else
 | 
						|
      Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
 | 
						|
          << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
 | 
						|
  // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
 | 
						|
  } else
 | 
						|
    (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
 | 
						|
                             SourceLocation PragmaLoc,
 | 
						|
                             SourceLocation NameLoc) {
 | 
						|
  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
 | 
						|
  } else {
 | 
						|
    (void)WeakUndeclaredIdentifiers.insert(
 | 
						|
      std::pair<IdentifierInfo*,WeakInfo>
 | 
						|
        (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
 | 
						|
                                IdentifierInfo* AliasName,
 | 
						|
                                SourceLocation PragmaLoc,
 | 
						|
                                SourceLocation NameLoc,
 | 
						|
                                SourceLocation AliasNameLoc) {
 | 
						|
  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
 | 
						|
                                    LookupOrdinaryName);
 | 
						|
  WeakInfo W = WeakInfo(Name, NameLoc);
 | 
						|
 | 
						|
  if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
 | 
						|
    if (!PrevDecl->hasAttr<AliasAttr>())
 | 
						|
      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
 | 
						|
        DeclApplyPragmaWeak(TUScope, ND, W);
 | 
						|
  } else {
 | 
						|
    (void)WeakUndeclaredIdentifiers.insert(
 | 
						|
      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::getObjCDeclContext() const {
 | 
						|
  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
 | 
						|
}
 |