10014 lines
		
	
	
		
			401 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			10014 lines
		
	
	
		
			401 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for C++ templates.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "TreeTransform.h"
 | 
						|
#include "clang/AST/ASTConsumer.h"
 | 
						|
#include "clang/AST/ASTContext.h"
 | 
						|
#include "clang/AST/DeclFriend.h"
 | 
						|
#include "clang/AST/DeclTemplate.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/RecursiveASTVisitor.h"
 | 
						|
#include "clang/AST/TypeVisitor.h"
 | 
						|
#include "clang/Basic/Builtins.h"
 | 
						|
#include "clang/Basic/LangOptions.h"
 | 
						|
#include "clang/Basic/PartialDiagnostic.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Sema/DeclSpec.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/ParsedTemplate.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "clang/Sema/Template.h"
 | 
						|
#include "clang/Sema/TemplateDeduction.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
 | 
						|
#include <iterator>
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
// Exported for use by Parser.
 | 
						|
SourceRange
 | 
						|
clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
 | 
						|
                              unsigned N) {
 | 
						|
  if (!N) return SourceRange();
 | 
						|
  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
 | 
						|
}
 | 
						|
 | 
						|
namespace clang {
 | 
						|
/// \brief [temp.constr.decl]p2: A template's associated constraints are
 | 
						|
/// defined as a single constraint-expression derived from the introduced
 | 
						|
/// constraint-expressions [ ... ].
 | 
						|
///
 | 
						|
/// \param Params The template parameter list and optional requires-clause.
 | 
						|
///
 | 
						|
/// \param FD The underlying templated function declaration for a function
 | 
						|
/// template.
 | 
						|
static Expr *formAssociatedConstraints(TemplateParameterList *Params,
 | 
						|
                                       FunctionDecl *FD);
 | 
						|
}
 | 
						|
 | 
						|
static Expr *clang::formAssociatedConstraints(TemplateParameterList *Params,
 | 
						|
                                              FunctionDecl *FD) {
 | 
						|
  // FIXME: Concepts: collect additional introduced constraint-expressions
 | 
						|
  assert(!FD && "Cannot collect constraints from function declaration yet.");
 | 
						|
  return Params->getRequiresClause();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the declaration found is acceptable as the name
 | 
						|
/// of a template and, if so, return that template declaration. Otherwise,
 | 
						|
/// returns NULL.
 | 
						|
static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
 | 
						|
                                           NamedDecl *Orig,
 | 
						|
                                           bool AllowFunctionTemplates) {
 | 
						|
  NamedDecl *D = Orig->getUnderlyingDecl();
 | 
						|
 | 
						|
  if (isa<TemplateDecl>(D)) {
 | 
						|
    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    return Orig;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
 | 
						|
    // C++ [temp.local]p1:
 | 
						|
    //   Like normal (non-template) classes, class templates have an
 | 
						|
    //   injected-class-name (Clause 9). The injected-class-name
 | 
						|
    //   can be used with or without a template-argument-list. When
 | 
						|
    //   it is used without a template-argument-list, it is
 | 
						|
    //   equivalent to the injected-class-name followed by the
 | 
						|
    //   template-parameters of the class template enclosed in
 | 
						|
    //   <>. When it is used with a template-argument-list, it
 | 
						|
    //   refers to the specified class template specialization,
 | 
						|
    //   which could be the current specialization or another
 | 
						|
    //   specialization.
 | 
						|
    if (Record->isInjectedClassName()) {
 | 
						|
      Record = cast<CXXRecordDecl>(Record->getDeclContext());
 | 
						|
      if (Record->getDescribedClassTemplate())
 | 
						|
        return Record->getDescribedClassTemplate();
 | 
						|
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
 | 
						|
        return Spec->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::FilterAcceptableTemplateNames(LookupResult &R,
 | 
						|
                                         bool AllowFunctionTemplates) {
 | 
						|
  // The set of class templates we've already seen.
 | 
						|
  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
 | 
						|
  LookupResult::Filter filter = R.makeFilter();
 | 
						|
  while (filter.hasNext()) {
 | 
						|
    NamedDecl *Orig = filter.next();
 | 
						|
    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
 | 
						|
                                               AllowFunctionTemplates);
 | 
						|
    if (!Repl)
 | 
						|
      filter.erase();
 | 
						|
    else if (Repl != Orig) {
 | 
						|
 | 
						|
      // C++ [temp.local]p3:
 | 
						|
      //   A lookup that finds an injected-class-name (10.2) can result in an
 | 
						|
      //   ambiguity in certain cases (for example, if it is found in more than
 | 
						|
      //   one base class). If all of the injected-class-names that are found
 | 
						|
      //   refer to specializations of the same class template, and if the name
 | 
						|
      //   is used as a template-name, the reference refers to the class
 | 
						|
      //   template itself and not a specialization thereof, and is not
 | 
						|
      //   ambiguous.
 | 
						|
      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
 | 
						|
        if (!ClassTemplates.insert(ClassTmpl).second) {
 | 
						|
          filter.erase();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      // FIXME: we promote access to public here as a workaround to
 | 
						|
      // the fact that LookupResult doesn't let us remember that we
 | 
						|
      // found this template through a particular injected class name,
 | 
						|
      // which means we end up doing nasty things to the invariants.
 | 
						|
      // Pretending that access is public is *much* safer.
 | 
						|
      filter.replace(Repl, AS_public);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  filter.done();
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
 | 
						|
                                         bool AllowFunctionTemplates) {
 | 
						|
  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
 | 
						|
    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
TemplateNameKind Sema::isTemplateName(Scope *S,
 | 
						|
                                      CXXScopeSpec &SS,
 | 
						|
                                      bool hasTemplateKeyword,
 | 
						|
                                      UnqualifiedId &Name,
 | 
						|
                                      ParsedType ObjectTypePtr,
 | 
						|
                                      bool EnteringContext,
 | 
						|
                                      TemplateTy &TemplateResult,
 | 
						|
                                      bool &MemberOfUnknownSpecialization) {
 | 
						|
  assert(getLangOpts().CPlusPlus && "No template names in C!");
 | 
						|
 | 
						|
  DeclarationName TName;
 | 
						|
  MemberOfUnknownSpecialization = false;
 | 
						|
 | 
						|
  switch (Name.getKind()) {
 | 
						|
  case UnqualifiedIdKind::IK_Identifier:
 | 
						|
    TName = DeclarationName(Name.Identifier);
 | 
						|
    break;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_OperatorFunctionId:
 | 
						|
    TName = Context.DeclarationNames.getCXXOperatorName(
 | 
						|
                                              Name.OperatorFunctionId.Operator);
 | 
						|
    break;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_LiteralOperatorId:
 | 
						|
    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    return TNK_Non_template;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ObjectType = ObjectTypePtr.get();
 | 
						|
 | 
						|
  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
 | 
						|
  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
 | 
						|
                     MemberOfUnknownSpecialization);
 | 
						|
  if (R.empty()) return TNK_Non_template;
 | 
						|
  if (R.isAmbiguous()) {
 | 
						|
    // Suppress diagnostics;  we'll redo this lookup later.
 | 
						|
    R.suppressDiagnostics();
 | 
						|
 | 
						|
    // FIXME: we might have ambiguous templates, in which case we
 | 
						|
    // should at least parse them properly!
 | 
						|
    return TNK_Non_template;
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateName Template;
 | 
						|
  TemplateNameKind TemplateKind;
 | 
						|
 | 
						|
  unsigned ResultCount = R.end() - R.begin();
 | 
						|
  if (ResultCount > 1) {
 | 
						|
    // We assume that we'll preserve the qualifier from a function
 | 
						|
    // template name in other ways.
 | 
						|
    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
 | 
						|
    TemplateKind = TNK_Function_template;
 | 
						|
 | 
						|
    // We'll do this lookup again later.
 | 
						|
    R.suppressDiagnostics();
 | 
						|
  } else {
 | 
						|
    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
 | 
						|
 | 
						|
    if (SS.isSet() && !SS.isInvalid()) {
 | 
						|
      NestedNameSpecifier *Qualifier = SS.getScopeRep();
 | 
						|
      Template = Context.getQualifiedTemplateName(Qualifier,
 | 
						|
                                                  hasTemplateKeyword, TD);
 | 
						|
    } else {
 | 
						|
      Template = TemplateName(TD);
 | 
						|
    }
 | 
						|
 | 
						|
    if (isa<FunctionTemplateDecl>(TD)) {
 | 
						|
      TemplateKind = TNK_Function_template;
 | 
						|
 | 
						|
      // We'll do this lookup again later.
 | 
						|
      R.suppressDiagnostics();
 | 
						|
    } else {
 | 
						|
      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
 | 
						|
             isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
 | 
						|
             isa<BuiltinTemplateDecl>(TD));
 | 
						|
      TemplateKind =
 | 
						|
          isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateResult = TemplateTy::make(Template);
 | 
						|
  return TemplateKind;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
 | 
						|
                                SourceLocation NameLoc,
 | 
						|
                                ParsedTemplateTy *Template) {
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  bool MemberOfUnknownSpecialization = false;
 | 
						|
 | 
						|
  // We could use redeclaration lookup here, but we don't need to: the
 | 
						|
  // syntactic form of a deduction guide is enough to identify it even
 | 
						|
  // if we can't look up the template name at all.
 | 
						|
  LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
 | 
						|
  LookupTemplateName(R, S, SS, /*ObjectType*/QualType(),
 | 
						|
                     /*EnteringContext*/false, MemberOfUnknownSpecialization);
 | 
						|
 | 
						|
  if (R.empty()) return false;
 | 
						|
  if (R.isAmbiguous()) {
 | 
						|
    // FIXME: Diagnose an ambiguity if we find at least one template.
 | 
						|
    R.suppressDiagnostics();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We only treat template-names that name type templates as valid deduction
 | 
						|
  // guide names.
 | 
						|
  TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
 | 
						|
  if (!TD || !getAsTypeTemplateDecl(TD))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Template)
 | 
						|
    *Template = TemplateTy::make(TemplateName(TD));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
 | 
						|
                                       SourceLocation IILoc,
 | 
						|
                                       Scope *S,
 | 
						|
                                       const CXXScopeSpec *SS,
 | 
						|
                                       TemplateTy &SuggestedTemplate,
 | 
						|
                                       TemplateNameKind &SuggestedKind) {
 | 
						|
  // We can't recover unless there's a dependent scope specifier preceding the
 | 
						|
  // template name.
 | 
						|
  // FIXME: Typo correction?
 | 
						|
  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
 | 
						|
      computeDeclContext(*SS))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The code is missing a 'template' keyword prior to the dependent template
 | 
						|
  // name.
 | 
						|
  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
 | 
						|
  Diag(IILoc, diag::err_template_kw_missing)
 | 
						|
    << Qualifier << II.getName()
 | 
						|
    << FixItHint::CreateInsertion(IILoc, "template ");
 | 
						|
  SuggestedTemplate
 | 
						|
    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
 | 
						|
  SuggestedKind = TNK_Dependent_template_name;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::LookupTemplateName(LookupResult &Found,
 | 
						|
                              Scope *S, CXXScopeSpec &SS,
 | 
						|
                              QualType ObjectType,
 | 
						|
                              bool EnteringContext,
 | 
						|
                              bool &MemberOfUnknownSpecialization) {
 | 
						|
  // Determine where to perform name lookup
 | 
						|
  MemberOfUnknownSpecialization = false;
 | 
						|
  DeclContext *LookupCtx = nullptr;
 | 
						|
  bool isDependent = false;
 | 
						|
  if (!ObjectType.isNull()) {
 | 
						|
    // This nested-name-specifier occurs in a member access expression, e.g.,
 | 
						|
    // x->B::f, and we are looking into the type of the object.
 | 
						|
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
 | 
						|
    LookupCtx = computeDeclContext(ObjectType);
 | 
						|
    isDependent = ObjectType->isDependentType();
 | 
						|
    assert((isDependent || !ObjectType->isIncompleteType() ||
 | 
						|
            ObjectType->castAs<TagType>()->isBeingDefined()) &&
 | 
						|
           "Caller should have completed object type");
 | 
						|
 | 
						|
    // Template names cannot appear inside an Objective-C class or object type.
 | 
						|
    if (ObjectType->isObjCObjectOrInterfaceType()) {
 | 
						|
      Found.clear();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  } else if (SS.isSet()) {
 | 
						|
    // This nested-name-specifier occurs after another nested-name-specifier,
 | 
						|
    // so long into the context associated with the prior nested-name-specifier.
 | 
						|
    LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
    isDependent = isDependentScopeSpecifier(SS);
 | 
						|
 | 
						|
    // The declaration context must be complete.
 | 
						|
    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  bool ObjectTypeSearchedInScope = false;
 | 
						|
  bool AllowFunctionTemplatesInLookup = true;
 | 
						|
  if (LookupCtx) {
 | 
						|
    // Perform "qualified" name lookup into the declaration context we
 | 
						|
    // computed, which is either the type of the base of a member access
 | 
						|
    // expression or the declaration context associated with a prior
 | 
						|
    // nested-name-specifier.
 | 
						|
    LookupQualifiedName(Found, LookupCtx);
 | 
						|
    if (!ObjectType.isNull() && Found.empty()) {
 | 
						|
      // C++ [basic.lookup.classref]p1:
 | 
						|
      //   In a class member access expression (5.2.5), if the . or -> token is
 | 
						|
      //   immediately followed by an identifier followed by a <, the
 | 
						|
      //   identifier must be looked up to determine whether the < is the
 | 
						|
      //   beginning of a template argument list (14.2) or a less-than operator.
 | 
						|
      //   The identifier is first looked up in the class of the object
 | 
						|
      //   expression. If the identifier is not found, it is then looked up in
 | 
						|
      //   the context of the entire postfix-expression and shall name a class
 | 
						|
      //   or function template.
 | 
						|
      if (S) LookupName(Found, S);
 | 
						|
      ObjectTypeSearchedInScope = true;
 | 
						|
      AllowFunctionTemplatesInLookup = false;
 | 
						|
    }
 | 
						|
  } else if (isDependent && (!S || ObjectType.isNull())) {
 | 
						|
    // We cannot look into a dependent object type or nested nme
 | 
						|
    // specifier.
 | 
						|
    MemberOfUnknownSpecialization = true;
 | 
						|
    return;
 | 
						|
  } else {
 | 
						|
    // Perform unqualified name lookup in the current scope.
 | 
						|
    LookupName(Found, S);
 | 
						|
 | 
						|
    if (!ObjectType.isNull())
 | 
						|
      AllowFunctionTemplatesInLookup = false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Found.empty() && !isDependent) {
 | 
						|
    // If we did not find any names, attempt to correct any typos.
 | 
						|
    DeclarationName Name = Found.getLookupName();
 | 
						|
    Found.clear();
 | 
						|
    // Simple filter callback that, for keywords, only accepts the C++ *_cast
 | 
						|
    auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
 | 
						|
    FilterCCC->WantTypeSpecifiers = false;
 | 
						|
    FilterCCC->WantExpressionKeywords = false;
 | 
						|
    FilterCCC->WantRemainingKeywords = false;
 | 
						|
    FilterCCC->WantCXXNamedCasts = true;
 | 
						|
    if (TypoCorrection Corrected = CorrectTypo(
 | 
						|
            Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
 | 
						|
            std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
 | 
						|
      Found.setLookupName(Corrected.getCorrection());
 | 
						|
      if (auto *ND = Corrected.getFoundDecl())
 | 
						|
        Found.addDecl(ND);
 | 
						|
      FilterAcceptableTemplateNames(Found);
 | 
						|
      if (!Found.empty()) {
 | 
						|
        if (LookupCtx) {
 | 
						|
          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | 
						|
          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | 
						|
                                  Name.getAsString() == CorrectedStr;
 | 
						|
          diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
 | 
						|
                                    << Name << LookupCtx << DroppedSpecifier
 | 
						|
                                    << SS.getRange());
 | 
						|
        } else {
 | 
						|
          diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      Found.setLookupName(Name);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
 | 
						|
  if (Found.empty()) {
 | 
						|
    if (isDependent)
 | 
						|
      MemberOfUnknownSpecialization = true;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
 | 
						|
      !getLangOpts().CPlusPlus11) {
 | 
						|
    // C++03 [basic.lookup.classref]p1:
 | 
						|
    //   [...] If the lookup in the class of the object expression finds a
 | 
						|
    //   template, the name is also looked up in the context of the entire
 | 
						|
    //   postfix-expression and [...]
 | 
						|
    //
 | 
						|
    // Note: C++11 does not perform this second lookup.
 | 
						|
    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
 | 
						|
                            LookupOrdinaryName);
 | 
						|
    LookupName(FoundOuter, S);
 | 
						|
    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
 | 
						|
 | 
						|
    if (FoundOuter.empty()) {
 | 
						|
      //   - if the name is not found, the name found in the class of the
 | 
						|
      //     object expression is used, otherwise
 | 
						|
    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
 | 
						|
               FoundOuter.isAmbiguous()) {
 | 
						|
      //   - if the name is found in the context of the entire
 | 
						|
      //     postfix-expression and does not name a class template, the name
 | 
						|
      //     found in the class of the object expression is used, otherwise
 | 
						|
      FoundOuter.clear();
 | 
						|
    } else if (!Found.isSuppressingDiagnostics()) {
 | 
						|
      //   - if the name found is a class template, it must refer to the same
 | 
						|
      //     entity as the one found in the class of the object expression,
 | 
						|
      //     otherwise the program is ill-formed.
 | 
						|
      if (!Found.isSingleResult() ||
 | 
						|
          Found.getFoundDecl()->getCanonicalDecl()
 | 
						|
            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
 | 
						|
        Diag(Found.getNameLoc(),
 | 
						|
             diag::ext_nested_name_member_ref_lookup_ambiguous)
 | 
						|
          << Found.getLookupName()
 | 
						|
          << ObjectType;
 | 
						|
        Diag(Found.getRepresentativeDecl()->getLocation(),
 | 
						|
             diag::note_ambig_member_ref_object_type)
 | 
						|
          << ObjectType;
 | 
						|
        Diag(FoundOuter.getFoundDecl()->getLocation(),
 | 
						|
             diag::note_ambig_member_ref_scope);
 | 
						|
 | 
						|
        // Recover by taking the template that we found in the object
 | 
						|
        // expression's type.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
 | 
						|
                                              SourceLocation Less,
 | 
						|
                                              SourceLocation Greater) {
 | 
						|
  if (TemplateName.isInvalid())
 | 
						|
    return;
 | 
						|
 | 
						|
  DeclarationNameInfo NameInfo;
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  LookupNameKind LookupKind;
 | 
						|
 | 
						|
  DeclContext *LookupCtx = nullptr;
 | 
						|
  NamedDecl *Found = nullptr;
 | 
						|
 | 
						|
  // Figure out what name we looked up.
 | 
						|
  if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
 | 
						|
    NameInfo = ME->getMemberNameInfo();
 | 
						|
    SS.Adopt(ME->getQualifierLoc());
 | 
						|
    LookupKind = LookupMemberName;
 | 
						|
    LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
 | 
						|
    Found = ME->getMemberDecl();
 | 
						|
  } else {
 | 
						|
    auto *DRE = cast<DeclRefExpr>(TemplateName.get());
 | 
						|
    NameInfo = DRE->getNameInfo();
 | 
						|
    SS.Adopt(DRE->getQualifierLoc());
 | 
						|
    LookupKind = LookupOrdinaryName;
 | 
						|
    Found = DRE->getFoundDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to correct the name by looking for templates and C++ named casts.
 | 
						|
  struct TemplateCandidateFilter : CorrectionCandidateCallback {
 | 
						|
    TemplateCandidateFilter() {
 | 
						|
      WantTypeSpecifiers = false;
 | 
						|
      WantExpressionKeywords = false;
 | 
						|
      WantRemainingKeywords = false;
 | 
						|
      WantCXXNamedCasts = true;
 | 
						|
    };
 | 
						|
    bool ValidateCandidate(const TypoCorrection &Candidate) override {
 | 
						|
      if (auto *ND = Candidate.getCorrectionDecl())
 | 
						|
        return isAcceptableTemplateName(ND->getASTContext(), ND, true);
 | 
						|
      return Candidate.isKeyword();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  if (TypoCorrection Corrected =
 | 
						|
          CorrectTypo(NameInfo, LookupKind, S, &SS,
 | 
						|
                      llvm::make_unique<TemplateCandidateFilter>(),
 | 
						|
                      CTK_ErrorRecovery, LookupCtx)) {
 | 
						|
    auto *ND = Corrected.getFoundDecl();
 | 
						|
    if (ND)
 | 
						|
      ND = isAcceptableTemplateName(Context, ND,
 | 
						|
                                    /*AllowFunctionTemplates*/ true);
 | 
						|
    if (ND || Corrected.isKeyword()) {
 | 
						|
      if (LookupCtx) {
 | 
						|
        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
 | 
						|
        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
 | 
						|
                                Name.getAsString() == CorrectedStr;
 | 
						|
        diagnoseTypo(Corrected,
 | 
						|
                     PDiag(diag::err_non_template_in_member_template_id_suggest)
 | 
						|
                         << Name << LookupCtx << DroppedSpecifier
 | 
						|
                         << SS.getRange(), false);
 | 
						|
      } else {
 | 
						|
        diagnoseTypo(Corrected,
 | 
						|
                     PDiag(diag::err_non_template_in_template_id_suggest)
 | 
						|
                         << Name, false);
 | 
						|
      }
 | 
						|
      if (Found)
 | 
						|
        Diag(Found->getLocation(),
 | 
						|
             diag::note_non_template_in_template_id_found);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
 | 
						|
    << Name << SourceRange(Less, Greater);
 | 
						|
  if (Found)
 | 
						|
    Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnDependentIdExpression - Handle a dependent id-expression that
 | 
						|
/// was just parsed.  This is only possible with an explicit scope
 | 
						|
/// specifier naming a dependent type.
 | 
						|
ExprResult
 | 
						|
Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
 | 
						|
                                 SourceLocation TemplateKWLoc,
 | 
						|
                                 const DeclarationNameInfo &NameInfo,
 | 
						|
                                 bool isAddressOfOperand,
 | 
						|
                           const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  DeclContext *DC = getFunctionLevelDeclContext();
 | 
						|
 | 
						|
  // C++11 [expr.prim.general]p12:
 | 
						|
  //   An id-expression that denotes a non-static data member or non-static
 | 
						|
  //   member function of a class can only be used:
 | 
						|
  //   (...)
 | 
						|
  //   - if that id-expression denotes a non-static data member and it
 | 
						|
  //     appears in an unevaluated operand.
 | 
						|
  //
 | 
						|
  // If this might be the case, form a DependentScopeDeclRefExpr instead of a
 | 
						|
  // CXXDependentScopeMemberExpr. The former can instantiate to either
 | 
						|
  // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
 | 
						|
  // always a MemberExpr.
 | 
						|
  bool MightBeCxx11UnevalField =
 | 
						|
      getLangOpts().CPlusPlus11 && isUnevaluatedContext();
 | 
						|
 | 
						|
  // Check if the nested name specifier is an enum type.
 | 
						|
  bool IsEnum = false;
 | 
						|
  if (NestedNameSpecifier *NNS = SS.getScopeRep())
 | 
						|
    IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
 | 
						|
 | 
						|
  if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
 | 
						|
      isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
 | 
						|
    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
 | 
						|
 | 
						|
    // Since the 'this' expression is synthesized, we don't need to
 | 
						|
    // perform the double-lookup check.
 | 
						|
    NamedDecl *FirstQualifierInScope = nullptr;
 | 
						|
 | 
						|
    return CXXDependentScopeMemberExpr::Create(
 | 
						|
        Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
 | 
						|
        /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
 | 
						|
        FirstQualifierInScope, NameInfo, TemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
 | 
						|
                                SourceLocation TemplateKWLoc,
 | 
						|
                                const DeclarationNameInfo &NameInfo,
 | 
						|
                                const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  return DependentScopeDeclRefExpr::Create(
 | 
						|
      Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
 | 
						|
      TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Determine whether we would be unable to instantiate this template (because
 | 
						|
/// it either has no definition, or is in the process of being instantiated).
 | 
						|
bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
 | 
						|
                                          NamedDecl *Instantiation,
 | 
						|
                                          bool InstantiatedFromMember,
 | 
						|
                                          const NamedDecl *Pattern,
 | 
						|
                                          const NamedDecl *PatternDef,
 | 
						|
                                          TemplateSpecializationKind TSK,
 | 
						|
                                          bool Complain /*= true*/) {
 | 
						|
  assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
 | 
						|
         isa<VarDecl>(Instantiation));
 | 
						|
 | 
						|
  bool IsEntityBeingDefined = false;
 | 
						|
  if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
 | 
						|
    IsEntityBeingDefined = TD->isBeingDefined();
 | 
						|
 | 
						|
  if (PatternDef && !IsEntityBeingDefined) {
 | 
						|
    NamedDecl *SuggestedDef = nullptr;
 | 
						|
    if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
 | 
						|
                              /*OnlyNeedComplete*/false)) {
 | 
						|
      // If we're allowed to diagnose this and recover, do so.
 | 
						|
      bool Recover = Complain && !isSFINAEContext();
 | 
						|
      if (Complain)
 | 
						|
        diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
 | 
						|
                              Sema::MissingImportKind::Definition, Recover);
 | 
						|
      return !Recover;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  llvm::Optional<unsigned> Note;
 | 
						|
  QualType InstantiationTy;
 | 
						|
  if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
 | 
						|
    InstantiationTy = Context.getTypeDeclType(TD);
 | 
						|
  if (PatternDef) {
 | 
						|
    Diag(PointOfInstantiation,
 | 
						|
         diag::err_template_instantiate_within_definition)
 | 
						|
      << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
 | 
						|
      << InstantiationTy;
 | 
						|
    // Not much point in noting the template declaration here, since
 | 
						|
    // we're lexically inside it.
 | 
						|
    Instantiation->setInvalidDecl();
 | 
						|
  } else if (InstantiatedFromMember) {
 | 
						|
    if (isa<FunctionDecl>(Instantiation)) {
 | 
						|
      Diag(PointOfInstantiation,
 | 
						|
           diag::err_explicit_instantiation_undefined_member)
 | 
						|
        << /*member function*/ 1 << Instantiation->getDeclName()
 | 
						|
        << Instantiation->getDeclContext();
 | 
						|
      Note = diag::note_explicit_instantiation_here;
 | 
						|
    } else {
 | 
						|
      assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
 | 
						|
      Diag(PointOfInstantiation,
 | 
						|
           diag::err_implicit_instantiate_member_undefined)
 | 
						|
        << InstantiationTy;
 | 
						|
      Note = diag::note_member_declared_at;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (isa<FunctionDecl>(Instantiation)) {
 | 
						|
      Diag(PointOfInstantiation,
 | 
						|
           diag::err_explicit_instantiation_undefined_func_template)
 | 
						|
        << Pattern;
 | 
						|
      Note = diag::note_explicit_instantiation_here;
 | 
						|
    } else if (isa<TagDecl>(Instantiation)) {
 | 
						|
      Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
 | 
						|
        << (TSK != TSK_ImplicitInstantiation)
 | 
						|
        << InstantiationTy;
 | 
						|
      Note = diag::note_template_decl_here;
 | 
						|
    } else {
 | 
						|
      assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
 | 
						|
      if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
 | 
						|
        Diag(PointOfInstantiation,
 | 
						|
             diag::err_explicit_instantiation_undefined_var_template)
 | 
						|
          << Instantiation;
 | 
						|
        Instantiation->setInvalidDecl();
 | 
						|
      } else
 | 
						|
        Diag(PointOfInstantiation,
 | 
						|
             diag::err_explicit_instantiation_undefined_member)
 | 
						|
          << /*static data member*/ 2 << Instantiation->getDeclName()
 | 
						|
          << Instantiation->getDeclContext();
 | 
						|
      Note = diag::note_explicit_instantiation_here;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Note) // Diagnostics were emitted.
 | 
						|
    Diag(Pattern->getLocation(), Note.getValue());
 | 
						|
 | 
						|
  // In general, Instantiation isn't marked invalid to get more than one
 | 
						|
  // error for multiple undefined instantiations. But the code that does
 | 
						|
  // explicit declaration -> explicit definition conversion can't handle
 | 
						|
  // invalid declarations, so mark as invalid in that case.
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDeclaration)
 | 
						|
    Instantiation->setInvalidDecl();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
 | 
						|
/// that the template parameter 'PrevDecl' is being shadowed by a new
 | 
						|
/// declaration at location Loc. Returns true to indicate that this is
 | 
						|
/// an error, and false otherwise.
 | 
						|
void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
 | 
						|
  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
 | 
						|
 | 
						|
  // Microsoft Visual C++ permits template parameters to be shadowed.
 | 
						|
  if (getLangOpts().MicrosoftExt)
 | 
						|
    return;
 | 
						|
 | 
						|
  // C++ [temp.local]p4:
 | 
						|
  //   A template-parameter shall not be redeclared within its
 | 
						|
  //   scope (including nested scopes).
 | 
						|
  Diag(Loc, diag::err_template_param_shadow)
 | 
						|
    << cast<NamedDecl>(PrevDecl)->getDeclName();
 | 
						|
  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
 | 
						|
}
 | 
						|
 | 
						|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
 | 
						|
/// the parameter D to reference the templated declaration and return a pointer
 | 
						|
/// to the template declaration. Otherwise, do nothing to D and return null.
 | 
						|
TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
 | 
						|
  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
 | 
						|
    D = Temp->getTemplatedDecl();
 | 
						|
    return Temp;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
 | 
						|
                                             SourceLocation EllipsisLoc) const {
 | 
						|
  assert(Kind == Template &&
 | 
						|
         "Only template template arguments can be pack expansions here");
 | 
						|
  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
 | 
						|
         "Template template argument pack expansion without packs");
 | 
						|
  ParsedTemplateArgument Result(*this);
 | 
						|
  Result.EllipsisLoc = EllipsisLoc;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
 | 
						|
                                            const ParsedTemplateArgument &Arg) {
 | 
						|
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
  case ParsedTemplateArgument::Type: {
 | 
						|
    TypeSourceInfo *DI;
 | 
						|
    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
 | 
						|
    if (!DI)
 | 
						|
      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(T), DI);
 | 
						|
  }
 | 
						|
 | 
						|
  case ParsedTemplateArgument::NonType: {
 | 
						|
    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(E), E);
 | 
						|
  }
 | 
						|
 | 
						|
  case ParsedTemplateArgument::Template: {
 | 
						|
    TemplateName Template = Arg.getAsTemplate().get();
 | 
						|
    TemplateArgument TArg;
 | 
						|
    if (Arg.getEllipsisLoc().isValid())
 | 
						|
      TArg = TemplateArgument(Template, Optional<unsigned int>());
 | 
						|
    else
 | 
						|
      TArg = Template;
 | 
						|
    return TemplateArgumentLoc(TArg,
 | 
						|
                               Arg.getScopeSpec().getWithLocInContext(
 | 
						|
                                                              SemaRef.Context),
 | 
						|
                               Arg.getLocation(),
 | 
						|
                               Arg.getEllipsisLoc());
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Unhandled parsed template argument");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Translates template arguments as provided by the parser
 | 
						|
/// into template arguments used by semantic analysis.
 | 
						|
void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
 | 
						|
                                      TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
 | 
						|
   TemplateArgs.addArgument(translateTemplateArgument(*this,
 | 
						|
                                                      TemplateArgsIn[I]));
 | 
						|
}
 | 
						|
 | 
						|
static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
 | 
						|
                                                 SourceLocation Loc,
 | 
						|
                                                 IdentifierInfo *Name) {
 | 
						|
  NamedDecl *PrevDecl = SemaRef.LookupSingleName(
 | 
						|
      S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
 | 
						|
  if (PrevDecl && PrevDecl->isTemplateParameter())
 | 
						|
    SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
 | 
						|
}
 | 
						|
 | 
						|
/// Convert a parsed type into a parsed template argument. This is mostly
 | 
						|
/// trivial, except that we may have parsed a C++17 deduced class template
 | 
						|
/// specialization type, in which case we should form a template template
 | 
						|
/// argument instead of a type template argument.
 | 
						|
ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
 | 
						|
  TypeSourceInfo *TInfo;
 | 
						|
  QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
 | 
						|
  if (T.isNull())
 | 
						|
    return ParsedTemplateArgument();
 | 
						|
  assert(TInfo && "template argument with no location");
 | 
						|
 | 
						|
  // If we might have formed a deduced template specialization type, convert
 | 
						|
  // it to a template template argument.
 | 
						|
  if (getLangOpts().CPlusPlus17) {
 | 
						|
    TypeLoc TL = TInfo->getTypeLoc();
 | 
						|
    SourceLocation EllipsisLoc;
 | 
						|
    if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
 | 
						|
      EllipsisLoc = PET.getEllipsisLoc();
 | 
						|
      TL = PET.getPatternLoc();
 | 
						|
    }
 | 
						|
 | 
						|
    CXXScopeSpec SS;
 | 
						|
    if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
 | 
						|
      SS.Adopt(ET.getQualifierLoc());
 | 
						|
      TL = ET.getNamedTypeLoc();
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
 | 
						|
      TemplateName Name = DTST.getTypePtr()->getTemplateName();
 | 
						|
      if (SS.isSet())
 | 
						|
        Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
 | 
						|
                                                /*HasTemplateKeyword*/ false,
 | 
						|
                                                Name.getAsTemplateDecl());
 | 
						|
      ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
 | 
						|
                                    DTST.getTemplateNameLoc());
 | 
						|
      if (EllipsisLoc.isValid())
 | 
						|
        Result = Result.getTemplatePackExpansion(EllipsisLoc);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a normal type template argument. Note, if the type template
 | 
						|
  // argument is an injected-class-name for a template, it has a dual nature
 | 
						|
  // and can be used as either a type or a template. We handle that in 
 | 
						|
  // convertTypeTemplateArgumentToTemplate.
 | 
						|
  return ParsedTemplateArgument(ParsedTemplateArgument::Type,
 | 
						|
                                ParsedType.get().getAsOpaquePtr(),
 | 
						|
                                TInfo->getTypeLoc().getLocStart());
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTypeParameter - Called when a C++ template type parameter
 | 
						|
/// (e.g., "typename T") has been parsed. Typename specifies whether
 | 
						|
/// the keyword "typename" was used to declare the type parameter
 | 
						|
/// (otherwise, "class" was used), and KeyLoc is the location of the
 | 
						|
/// "class" or "typename" keyword. ParamName is the name of the
 | 
						|
/// parameter (NULL indicates an unnamed template parameter) and
 | 
						|
/// ParamNameLoc is the location of the parameter name (if any).
 | 
						|
/// If the type parameter has a default argument, it will be added
 | 
						|
/// later via ActOnTypeParameterDefault.
 | 
						|
NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
 | 
						|
                               SourceLocation EllipsisLoc,
 | 
						|
                               SourceLocation KeyLoc,
 | 
						|
                               IdentifierInfo *ParamName,
 | 
						|
                               SourceLocation ParamNameLoc,
 | 
						|
                               unsigned Depth, unsigned Position,
 | 
						|
                               SourceLocation EqualLoc,
 | 
						|
                               ParsedType DefaultArg) {
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template type parameter not in template parameter scope!");
 | 
						|
 | 
						|
  SourceLocation Loc = ParamNameLoc;
 | 
						|
  if (!ParamName)
 | 
						|
    Loc = KeyLoc;
 | 
						|
 | 
						|
  bool IsParameterPack = EllipsisLoc.isValid();
 | 
						|
  TemplateTypeParmDecl *Param
 | 
						|
    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | 
						|
                                   KeyLoc, Loc, Depth, Position, ParamName,
 | 
						|
                                   Typename, IsParameterPack);
 | 
						|
  Param->setAccess(AS_public);
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
 | 
						|
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  //   A default template-argument may be specified for any kind of
 | 
						|
  //   template-parameter that is not a template parameter pack.
 | 
						|
  if (DefaultArg && IsParameterPack) {
 | 
						|
    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    DefaultArg = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the default argument, if provided.
 | 
						|
  if (DefaultArg) {
 | 
						|
    TypeSourceInfo *DefaultTInfo;
 | 
						|
    GetTypeFromParser(DefaultArg, &DefaultTInfo);
 | 
						|
 | 
						|
    assert(DefaultTInfo && "expected source information for type");
 | 
						|
 | 
						|
    // Check for unexpanded parameter packs.
 | 
						|
    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
 | 
						|
                                        UPPC_DefaultArgument))
 | 
						|
      return Param;
 | 
						|
 | 
						|
    // Check the template argument itself.
 | 
						|
    if (CheckTemplateArgument(Param, DefaultTInfo)) {
 | 
						|
      Param->setInvalidDecl();
 | 
						|
      return Param;
 | 
						|
    }
 | 
						|
 | 
						|
    Param->setDefaultArgument(DefaultTInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the type of a non-type template parameter is
 | 
						|
/// well-formed.
 | 
						|
///
 | 
						|
/// \returns the (possibly-promoted) parameter type if valid;
 | 
						|
/// otherwise, produces a diagnostic and returns a NULL type.
 | 
						|
QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
 | 
						|
                                                 SourceLocation Loc) {
 | 
						|
  if (TSI->getType()->isUndeducedType()) {
 | 
						|
    // C++1z [temp.dep.expr]p3:
 | 
						|
    //   An id-expression is type-dependent if it contains
 | 
						|
    //    - an identifier associated by name lookup with a non-type
 | 
						|
    //      template-parameter declared with a type that contains a
 | 
						|
    //      placeholder type (7.1.7.4),
 | 
						|
    TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
 | 
						|
  }
 | 
						|
 | 
						|
  return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
 | 
						|
                                                 SourceLocation Loc) {
 | 
						|
  // We don't allow variably-modified types as the type of non-type template
 | 
						|
  // parameters.
 | 
						|
  if (T->isVariablyModifiedType()) {
 | 
						|
    Diag(Loc, diag::err_variably_modified_nontype_template_param)
 | 
						|
      << T;
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.param]p4:
 | 
						|
  //
 | 
						|
  // A non-type template-parameter shall have one of the following
 | 
						|
  // (optionally cv-qualified) types:
 | 
						|
  //
 | 
						|
  //       -- integral or enumeration type,
 | 
						|
  if (T->isIntegralOrEnumerationType() ||
 | 
						|
      //   -- pointer to object or pointer to function,
 | 
						|
      T->isPointerType() ||
 | 
						|
      //   -- reference to object or reference to function,
 | 
						|
      T->isReferenceType() ||
 | 
						|
      //   -- pointer to member,
 | 
						|
      T->isMemberPointerType() ||
 | 
						|
      //   -- std::nullptr_t.
 | 
						|
      T->isNullPtrType() ||
 | 
						|
      // If T is a dependent type, we can't do the check now, so we
 | 
						|
      // assume that it is well-formed.
 | 
						|
      T->isDependentType() ||
 | 
						|
      // Allow use of auto in template parameter declarations.
 | 
						|
      T->isUndeducedType()) {
 | 
						|
    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
 | 
						|
    // are ignored when determining its type.
 | 
						|
    return T.getUnqualifiedType();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.param]p8:
 | 
						|
  //
 | 
						|
  //   A non-type template-parameter of type "array of T" or
 | 
						|
  //   "function returning T" is adjusted to be of type "pointer to
 | 
						|
  //   T" or "pointer to function returning T", respectively.
 | 
						|
  else if (T->isArrayType() || T->isFunctionType())
 | 
						|
    return Context.getDecayedType(T);
 | 
						|
 | 
						|
  Diag(Loc, diag::err_template_nontype_parm_bad_type)
 | 
						|
    << T;
 | 
						|
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
 | 
						|
                                          unsigned Depth,
 | 
						|
                                          unsigned Position,
 | 
						|
                                          SourceLocation EqualLoc,
 | 
						|
                                          Expr *Default) {
 | 
						|
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
 | 
						|
 | 
						|
  // Check that we have valid decl-specifiers specified.
 | 
						|
  auto CheckValidDeclSpecifiers = [this, &D] {
 | 
						|
    // C++ [temp.param]
 | 
						|
    // p1 
 | 
						|
    //   template-parameter:
 | 
						|
    //     ...
 | 
						|
    //     parameter-declaration
 | 
						|
    // p2 
 | 
						|
    //   ... A storage class shall not be specified in a template-parameter
 | 
						|
    //   declaration.
 | 
						|
    // [dcl.typedef]p1: 
 | 
						|
    //   The typedef specifier [...] shall not be used in the decl-specifier-seq
 | 
						|
    //   of a parameter-declaration
 | 
						|
    const DeclSpec &DS = D.getDeclSpec();
 | 
						|
    auto EmitDiag = [this](SourceLocation Loc) {
 | 
						|
      Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
 | 
						|
          << FixItHint::CreateRemoval(Loc);
 | 
						|
    };
 | 
						|
    if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
 | 
						|
      EmitDiag(DS.getStorageClassSpecLoc());
 | 
						|
    
 | 
						|
    if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
 | 
						|
      EmitDiag(DS.getThreadStorageClassSpecLoc());
 | 
						|
    
 | 
						|
    // [dcl.inline]p1: 
 | 
						|
    //   The inline specifier can be applied only to the declaration or 
 | 
						|
    //   definition of a variable or function.
 | 
						|
    
 | 
						|
    if (DS.isInlineSpecified())
 | 
						|
      EmitDiag(DS.getInlineSpecLoc());
 | 
						|
    
 | 
						|
    // [dcl.constexpr]p1:
 | 
						|
    //   The constexpr specifier shall be applied only to the definition of a 
 | 
						|
    //   variable or variable template or the declaration of a function or 
 | 
						|
    //   function template.
 | 
						|
    
 | 
						|
    if (DS.isConstexprSpecified())
 | 
						|
      EmitDiag(DS.getConstexprSpecLoc());
 | 
						|
 | 
						|
    // [dcl.fct.spec]p1:
 | 
						|
    //   Function-specifiers can be used only in function declarations.
 | 
						|
 | 
						|
    if (DS.isVirtualSpecified())
 | 
						|
      EmitDiag(DS.getVirtualSpecLoc());
 | 
						|
 | 
						|
    if (DS.isExplicitSpecified())
 | 
						|
      EmitDiag(DS.getExplicitSpecLoc());
 | 
						|
 | 
						|
    if (DS.isNoreturnSpecified())
 | 
						|
      EmitDiag(DS.getNoreturnSpecLoc());
 | 
						|
  };
 | 
						|
 | 
						|
  CheckValidDeclSpecifiers();
 | 
						|
  
 | 
						|
  if (TInfo->getType()->isUndeducedType()) {
 | 
						|
    Diag(D.getIdentifierLoc(),
 | 
						|
         diag::warn_cxx14_compat_template_nontype_parm_auto_type)
 | 
						|
      << QualType(TInfo->getType()->getContainedAutoType(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Non-type template parameter not in template parameter scope!");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
 | 
						|
  if (T.isNull()) {
 | 
						|
    T = Context.IntTy; // Recover with an 'int' type.
 | 
						|
    Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  IdentifierInfo *ParamName = D.getIdentifier();
 | 
						|
  bool IsParameterPack = D.hasEllipsis();
 | 
						|
  NonTypeTemplateParmDecl *Param
 | 
						|
    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | 
						|
                                      D.getLocStart(),
 | 
						|
                                      D.getIdentifierLoc(),
 | 
						|
                                      Depth, Position, ParamName, T,
 | 
						|
                                      IsParameterPack, TInfo);
 | 
						|
  Param->setAccess(AS_public);
 | 
						|
 | 
						|
  if (Invalid)
 | 
						|
    Param->setInvalidDecl();
 | 
						|
 | 
						|
  if (ParamName) {
 | 
						|
    maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
 | 
						|
                                         ParamName);
 | 
						|
 | 
						|
    // Add the template parameter into the current scope.
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  //   A default template-argument may be specified for any kind of
 | 
						|
  //   template-parameter that is not a template parameter pack.
 | 
						|
  if (Default && IsParameterPack) {
 | 
						|
    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    Default = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the well-formedness of the default template argument, if provided.
 | 
						|
  if (Default) {
 | 
						|
    // Check for unexpanded parameter packs.
 | 
						|
    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
 | 
						|
      return Param;
 | 
						|
 | 
						|
    TemplateArgument Converted;
 | 
						|
    ExprResult DefaultRes =
 | 
						|
        CheckTemplateArgument(Param, Param->getType(), Default, Converted);
 | 
						|
    if (DefaultRes.isInvalid()) {
 | 
						|
      Param->setInvalidDecl();
 | 
						|
      return Param;
 | 
						|
    }
 | 
						|
    Default = DefaultRes.get();
 | 
						|
 | 
						|
    Param->setDefaultArgument(Default);
 | 
						|
  }
 | 
						|
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
 | 
						|
/// parameter (e.g. T in template <template \<typename> class T> class array)
 | 
						|
/// has been parsed. S is the current scope.
 | 
						|
NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
 | 
						|
                                           SourceLocation TmpLoc,
 | 
						|
                                           TemplateParameterList *Params,
 | 
						|
                                           SourceLocation EllipsisLoc,
 | 
						|
                                           IdentifierInfo *Name,
 | 
						|
                                           SourceLocation NameLoc,
 | 
						|
                                           unsigned Depth,
 | 
						|
                                           unsigned Position,
 | 
						|
                                           SourceLocation EqualLoc,
 | 
						|
                                           ParsedTemplateArgument Default) {
 | 
						|
  assert(S->isTemplateParamScope() &&
 | 
						|
         "Template template parameter not in template parameter scope!");
 | 
						|
 | 
						|
  // Construct the parameter object.
 | 
						|
  bool IsParameterPack = EllipsisLoc.isValid();
 | 
						|
  TemplateTemplateParmDecl *Param =
 | 
						|
    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
 | 
						|
                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
 | 
						|
                                     Depth, Position, IsParameterPack,
 | 
						|
                                     Name, Params);
 | 
						|
  Param->setAccess(AS_public);
 | 
						|
 | 
						|
  // If the template template parameter has a name, then link the identifier
 | 
						|
  // into the scope and lookup mechanisms.
 | 
						|
  if (Name) {
 | 
						|
    maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
 | 
						|
 | 
						|
    S->AddDecl(Param);
 | 
						|
    IdResolver.AddDecl(Param);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Params->size() == 0) {
 | 
						|
    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
 | 
						|
    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
 | 
						|
    Param->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.param]p9:
 | 
						|
  //   A default template-argument may be specified for any kind of
 | 
						|
  //   template-parameter that is not a template parameter pack.
 | 
						|
  if (IsParameterPack && !Default.isInvalid()) {
 | 
						|
    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
 | 
						|
    Default = ParsedTemplateArgument();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Default.isInvalid()) {
 | 
						|
    // Check only that we have a template template argument. We don't want to
 | 
						|
    // try to check well-formedness now, because our template template parameter
 | 
						|
    // might have dependent types in its template parameters, which we wouldn't
 | 
						|
    // be able to match now.
 | 
						|
    //
 | 
						|
    // If none of the template template parameter's template arguments mention
 | 
						|
    // other template parameters, we could actually perform more checking here.
 | 
						|
    // However, it isn't worth doing.
 | 
						|
    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
 | 
						|
    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
 | 
						|
      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
 | 
						|
        << DefaultArg.getSourceRange();
 | 
						|
      return Param;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for unexpanded parameter packs.
 | 
						|
    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
 | 
						|
                                        DefaultArg.getArgument().getAsTemplate(),
 | 
						|
                                        UPPC_DefaultArgument))
 | 
						|
      return Param;
 | 
						|
 | 
						|
    Param->setDefaultArgument(Context, DefaultArg);
 | 
						|
  }
 | 
						|
 | 
						|
  return Param;
 | 
						|
}
 | 
						|
 | 
						|
/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
 | 
						|
/// constrained by RequiresClause, that contains the template parameters in
 | 
						|
/// Params.
 | 
						|
TemplateParameterList *
 | 
						|
Sema::ActOnTemplateParameterList(unsigned Depth,
 | 
						|
                                 SourceLocation ExportLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 ArrayRef<NamedDecl *> Params,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 Expr *RequiresClause) {
 | 
						|
  if (ExportLoc.isValid())
 | 
						|
    Diag(ExportLoc, diag::warn_template_export_unsupported);
 | 
						|
 | 
						|
  return TemplateParameterList::Create(
 | 
						|
      Context, TemplateLoc, LAngleLoc,
 | 
						|
      llvm::makeArrayRef(Params.data(), Params.size()),
 | 
						|
      RAngleLoc, RequiresClause);
 | 
						|
}
 | 
						|
 | 
						|
static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
 | 
						|
  if (SS.isSet())
 | 
						|
    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
 | 
						|
}
 | 
						|
 | 
						|
DeclResult
 | 
						|
Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                         SourceLocation KWLoc, CXXScopeSpec &SS,
 | 
						|
                         IdentifierInfo *Name, SourceLocation NameLoc,
 | 
						|
                         AttributeList *Attr,
 | 
						|
                         TemplateParameterList *TemplateParams,
 | 
						|
                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
 | 
						|
                         SourceLocation FriendLoc,
 | 
						|
                         unsigned NumOuterTemplateParamLists,
 | 
						|
                         TemplateParameterList** OuterTemplateParamLists,
 | 
						|
                         SkipBodyInfo *SkipBody) {
 | 
						|
  assert(TemplateParams && TemplateParams->size() > 0 &&
 | 
						|
         "No template parameters");
 | 
						|
  assert(TUK != TUK_Reference && "Can only declare or define class templates");
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // Check that we can declare a template here.
 | 
						|
  if (CheckTemplateDeclScope(S, TemplateParams))
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TTK_Enum && "can't build template of enumerated type");
 | 
						|
 | 
						|
  // There is no such thing as an unnamed class template.
 | 
						|
  if (!Name) {
 | 
						|
    Diag(KWLoc, diag::err_template_unnamed_class);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Find any previous declaration with this name. For a friend with no
 | 
						|
  // scope explicitly specified, we only look for tag declarations (per
 | 
						|
  // C++11 [basic.lookup.elab]p2).
 | 
						|
  DeclContext *SemanticContext;
 | 
						|
  LookupResult Previous(*this, Name, NameLoc,
 | 
						|
                        (SS.isEmpty() && TUK == TUK_Friend)
 | 
						|
                          ? LookupTagName : LookupOrdinaryName,
 | 
						|
                        forRedeclarationInCurContext());
 | 
						|
  if (SS.isNotEmpty() && !SS.isInvalid()) {
 | 
						|
    SemanticContext = computeDeclContext(SS, true);
 | 
						|
    if (!SemanticContext) {
 | 
						|
      // FIXME: Horrible, horrible hack! We can't currently represent this
 | 
						|
      // in the AST, and historically we have just ignored such friend
 | 
						|
      // class templates, so don't complain here.
 | 
						|
      Diag(NameLoc, TUK == TUK_Friend
 | 
						|
                        ? diag::warn_template_qualified_friend_ignored
 | 
						|
                        : diag::err_template_qualified_declarator_no_match)
 | 
						|
          << SS.getScopeRep() << SS.getRange();
 | 
						|
      return TUK != TUK_Friend;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RequireCompleteDeclContext(SS, SemanticContext))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If we're adding a template to a dependent context, we may need to
 | 
						|
    // rebuilding some of the types used within the template parameter list,
 | 
						|
    // now that we know what the current instantiation is.
 | 
						|
    if (SemanticContext->isDependentContext()) {
 | 
						|
      ContextRAII SavedContext(*this, SemanticContext);
 | 
						|
      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
 | 
						|
        Invalid = true;
 | 
						|
    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
 | 
						|
      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
 | 
						|
 | 
						|
    LookupQualifiedName(Previous, SemanticContext);
 | 
						|
  } else {
 | 
						|
    SemanticContext = CurContext;
 | 
						|
 | 
						|
    // C++14 [class.mem]p14:
 | 
						|
    //   If T is the name of a class, then each of the following shall have a
 | 
						|
    //   name different from T:
 | 
						|
    //    -- every member template of class T
 | 
						|
    if (TUK != TUK_Friend &&
 | 
						|
        DiagnoseClassNameShadow(SemanticContext,
 | 
						|
                                DeclarationNameInfo(Name, NameLoc)))
 | 
						|
      return true;
 | 
						|
 | 
						|
    LookupName(Previous, S);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Previous.isAmbiguous())
 | 
						|
    return true;
 | 
						|
 | 
						|
  NamedDecl *PrevDecl = nullptr;
 | 
						|
  if (Previous.begin() != Previous.end())
 | 
						|
    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | 
						|
 | 
						|
  if (PrevDecl && PrevDecl->isTemplateParameter()) {
 | 
						|
    // Maybe we will complain about the shadowed template parameter.
 | 
						|
    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
 | 
						|
    // Just pretend that we didn't see the previous declaration.
 | 
						|
    PrevDecl = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a previous declaration with the same name, check
 | 
						|
  // whether this is a valid redeclaration.
 | 
						|
  ClassTemplateDecl *PrevClassTemplate =
 | 
						|
      dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
 | 
						|
 | 
						|
  // We may have found the injected-class-name of a class template,
 | 
						|
  // class template partial specialization, or class template specialization.
 | 
						|
  // In these cases, grab the template that is being defined or specialized.
 | 
						|
  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
 | 
						|
      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
 | 
						|
    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
 | 
						|
    PrevClassTemplate
 | 
						|
      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
 | 
						|
    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
 | 
						|
      PrevClassTemplate
 | 
						|
        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
 | 
						|
            ->getSpecializedTemplate();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    // C++ [namespace.memdef]p3:
 | 
						|
    //   [...] When looking for a prior declaration of a class or a function
 | 
						|
    //   declared as a friend, and when the name of the friend class or
 | 
						|
    //   function is neither a qualified name nor a template-id, scopes outside
 | 
						|
    //   the innermost enclosing namespace scope are not considered.
 | 
						|
    if (!SS.isSet()) {
 | 
						|
      DeclContext *OutermostContext = CurContext;
 | 
						|
      while (!OutermostContext->isFileContext())
 | 
						|
        OutermostContext = OutermostContext->getLookupParent();
 | 
						|
 | 
						|
      if (PrevDecl &&
 | 
						|
          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
 | 
						|
           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
 | 
						|
        SemanticContext = PrevDecl->getDeclContext();
 | 
						|
      } else {
 | 
						|
        // Declarations in outer scopes don't matter. However, the outermost
 | 
						|
        // context we computed is the semantic context for our new
 | 
						|
        // declaration.
 | 
						|
        PrevDecl = PrevClassTemplate = nullptr;
 | 
						|
        SemanticContext = OutermostContext;
 | 
						|
 | 
						|
        // Check that the chosen semantic context doesn't already contain a
 | 
						|
        // declaration of this name as a non-tag type.
 | 
						|
        Previous.clear(LookupOrdinaryName);
 | 
						|
        DeclContext *LookupContext = SemanticContext;
 | 
						|
        while (LookupContext->isTransparentContext())
 | 
						|
          LookupContext = LookupContext->getLookupParent();
 | 
						|
        LookupQualifiedName(Previous, LookupContext);
 | 
						|
 | 
						|
        if (Previous.isAmbiguous())
 | 
						|
          return true;
 | 
						|
 | 
						|
        if (Previous.begin() != Previous.end())
 | 
						|
          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (PrevDecl &&
 | 
						|
             !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
 | 
						|
                            S, SS.isValid()))
 | 
						|
    PrevDecl = PrevClassTemplate = nullptr;
 | 
						|
 | 
						|
  if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
 | 
						|
          PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
 | 
						|
    if (SS.isEmpty() &&
 | 
						|
        !(PrevClassTemplate &&
 | 
						|
          PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
 | 
						|
              SemanticContext->getRedeclContext()))) {
 | 
						|
      Diag(KWLoc, diag::err_using_decl_conflict_reverse);
 | 
						|
      Diag(Shadow->getTargetDecl()->getLocation(),
 | 
						|
           diag::note_using_decl_target);
 | 
						|
      Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
 | 
						|
      // Recover by ignoring the old declaration.
 | 
						|
      PrevDecl = PrevClassTemplate = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO Memory management; associated constraints are not always stored.
 | 
						|
  Expr *const CurAC = formAssociatedConstraints(TemplateParams, nullptr);
 | 
						|
 | 
						|
  if (PrevClassTemplate) {
 | 
						|
    // Ensure that the template parameter lists are compatible. Skip this check
 | 
						|
    // for a friend in a dependent context: the template parameter list itself
 | 
						|
    // could be dependent.
 | 
						|
    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
 | 
						|
        !TemplateParameterListsAreEqual(TemplateParams,
 | 
						|
                                   PrevClassTemplate->getTemplateParameters(),
 | 
						|
                                        /*Complain=*/true,
 | 
						|
                                        TPL_TemplateMatch))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Check for matching associated constraints on redeclarations.
 | 
						|
    const Expr *const PrevAC = PrevClassTemplate->getAssociatedConstraints();
 | 
						|
    const bool RedeclACMismatch = [&] {
 | 
						|
      if (!(CurAC || PrevAC))
 | 
						|
        return false; // Nothing to check; no mismatch.
 | 
						|
      if (CurAC && PrevAC) {
 | 
						|
        llvm::FoldingSetNodeID CurACInfo, PrevACInfo;
 | 
						|
        CurAC->Profile(CurACInfo, Context, /*Canonical=*/true);
 | 
						|
        PrevAC->Profile(PrevACInfo, Context, /*Canonical=*/true);
 | 
						|
        if (CurACInfo == PrevACInfo)
 | 
						|
          return false; // All good; no mismatch.
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }();
 | 
						|
 | 
						|
    if (RedeclACMismatch) {
 | 
						|
      Diag(CurAC ? CurAC->getLocStart() : NameLoc,
 | 
						|
           diag::err_template_different_associated_constraints);
 | 
						|
      Diag(PrevAC ? PrevAC->getLocStart() : PrevClassTemplate->getLocation(),
 | 
						|
           diag::note_template_prev_declaration) << /*declaration*/0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.class]p4:
 | 
						|
    //   In a redeclaration, partial specialization, explicit
 | 
						|
    //   specialization or explicit instantiation of a class template,
 | 
						|
    //   the class-key shall agree in kind with the original class
 | 
						|
    //   template declaration (7.1.5.3).
 | 
						|
    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
 | 
						|
    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
 | 
						|
                                      TUK == TUK_Definition,  KWLoc, Name)) {
 | 
						|
      Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Name
 | 
						|
        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
 | 
						|
      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
 | 
						|
      Kind = PrevRecordDecl->getTagKind();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for redefinition of this class template.
 | 
						|
    if (TUK == TUK_Definition) {
 | 
						|
      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
 | 
						|
        // If we have a prior definition that is not visible, treat this as
 | 
						|
        // simply making that previous definition visible.
 | 
						|
        NamedDecl *Hidden = nullptr;
 | 
						|
        if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
 | 
						|
          SkipBody->ShouldSkip = true;
 | 
						|
          auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
 | 
						|
          assert(Tmpl && "original definition of a class template is not a "
 | 
						|
                         "class template?");
 | 
						|
          makeMergedDefinitionVisible(Hidden);
 | 
						|
          makeMergedDefinitionVisible(Tmpl);
 | 
						|
          return Def;
 | 
						|
        }
 | 
						|
 | 
						|
        Diag(NameLoc, diag::err_redefinition) << Name;
 | 
						|
        Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
        // FIXME: Would it make sense to try to "forget" the previous
 | 
						|
        // definition, as part of error recovery?
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (PrevDecl) {
 | 
						|
    // C++ [temp]p5:
 | 
						|
    //   A class template shall not have the same name as any other
 | 
						|
    //   template, class, function, object, enumeration, enumerator,
 | 
						|
    //   namespace, or type in the same scope (3.3), except as specified
 | 
						|
    //   in (14.5.4).
 | 
						|
    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
 | 
						|
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the template parameter list of this declaration, possibly
 | 
						|
  // merging in the template parameter list from the previous class
 | 
						|
  // template declaration. Skip this check for a friend in a dependent
 | 
						|
  // context, because the template parameter list might be dependent.
 | 
						|
  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
 | 
						|
      CheckTemplateParameterList(
 | 
						|
          TemplateParams,
 | 
						|
          PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
 | 
						|
                            : nullptr,
 | 
						|
          (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
 | 
						|
           SemanticContext->isDependentContext())
 | 
						|
              ? TPC_ClassTemplateMember
 | 
						|
              : TUK == TUK_Friend ? TPC_FriendClassTemplate
 | 
						|
                                  : TPC_ClassTemplate))
 | 
						|
    Invalid = true;
 | 
						|
 | 
						|
  if (SS.isSet()) {
 | 
						|
    // If the name of the template was qualified, we must be defining the
 | 
						|
    // template out-of-line.
 | 
						|
    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
 | 
						|
      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
 | 
						|
                                      : diag::err_member_decl_does_not_match)
 | 
						|
        << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a templated friend in a dependent context we should not put it
 | 
						|
  // on the redecl chain. In some cases, the templated friend can be the most
 | 
						|
  // recent declaration tricking the template instantiator to make substitutions
 | 
						|
  // there.
 | 
						|
  // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
 | 
						|
  bool ShouldAddRedecl
 | 
						|
    = !(TUK == TUK_Friend && CurContext->isDependentContext());
 | 
						|
 | 
						|
  CXXRecordDecl *NewClass =
 | 
						|
    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
 | 
						|
                          PrevClassTemplate && ShouldAddRedecl ?
 | 
						|
                            PrevClassTemplate->getTemplatedDecl() : nullptr,
 | 
						|
                          /*DelayTypeCreation=*/true);
 | 
						|
  SetNestedNameSpecifier(NewClass, SS);
 | 
						|
  if (NumOuterTemplateParamLists > 0)
 | 
						|
    NewClass->setTemplateParameterListsInfo(
 | 
						|
        Context, llvm::makeArrayRef(OuterTemplateParamLists,
 | 
						|
                                    NumOuterTemplateParamLists));
 | 
						|
 | 
						|
  // Add alignment attributes if necessary; these attributes are checked when
 | 
						|
  // the ASTContext lays out the structure.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    AddAlignmentAttributesForRecord(NewClass);
 | 
						|
    AddMsStructLayoutForRecord(NewClass);
 | 
						|
  }
 | 
						|
 | 
						|
  // Attach the associated constraints when the declaration will not be part of
 | 
						|
  // a decl chain.
 | 
						|
  Expr *const ACtoAttach =
 | 
						|
      PrevClassTemplate && ShouldAddRedecl ? nullptr : CurAC;
 | 
						|
 | 
						|
  ClassTemplateDecl *NewTemplate
 | 
						|
    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
 | 
						|
                                DeclarationName(Name), TemplateParams,
 | 
						|
                                NewClass, ACtoAttach);
 | 
						|
 | 
						|
  if (ShouldAddRedecl)
 | 
						|
    NewTemplate->setPreviousDecl(PrevClassTemplate);
 | 
						|
 | 
						|
  NewClass->setDescribedClassTemplate(NewTemplate);
 | 
						|
 | 
						|
  if (ModulePrivateLoc.isValid())
 | 
						|
    NewTemplate->setModulePrivate();
 | 
						|
 | 
						|
  // Build the type for the class template declaration now.
 | 
						|
  QualType T = NewTemplate->getInjectedClassNameSpecialization();
 | 
						|
  T = Context.getInjectedClassNameType(NewClass, T);
 | 
						|
  assert(T->isDependentType() && "Class template type is not dependent?");
 | 
						|
  (void)T;
 | 
						|
 | 
						|
  // If we are providing an explicit specialization of a member that is a
 | 
						|
  // class template, make a note of that.
 | 
						|
  if (PrevClassTemplate &&
 | 
						|
      PrevClassTemplate->getInstantiatedFromMemberTemplate())
 | 
						|
    PrevClassTemplate->setMemberSpecialization();
 | 
						|
 | 
						|
  // Set the access specifier.
 | 
						|
  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
 | 
						|
    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
 | 
						|
 | 
						|
  // Set the lexical context of these templates
 | 
						|
  NewClass->setLexicalDeclContext(CurContext);
 | 
						|
  NewTemplate->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    NewClass->startDefinition();
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, NewClass, Attr);
 | 
						|
 | 
						|
  if (PrevClassTemplate)
 | 
						|
    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
 | 
						|
 | 
						|
  AddPushedVisibilityAttribute(NewClass);
 | 
						|
 | 
						|
  if (TUK != TUK_Friend) {
 | 
						|
    // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
 | 
						|
    Scope *Outer = S;
 | 
						|
    while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
      Outer = Outer->getParent();
 | 
						|
    PushOnScopeChains(NewTemplate, Outer);
 | 
						|
  } else {
 | 
						|
    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
 | 
						|
      NewTemplate->setAccess(PrevClassTemplate->getAccess());
 | 
						|
      NewClass->setAccess(PrevClassTemplate->getAccess());
 | 
						|
    }
 | 
						|
 | 
						|
    NewTemplate->setObjectOfFriendDecl();
 | 
						|
 | 
						|
    // Friend templates are visible in fairly strange ways.
 | 
						|
    if (!CurContext->isDependentContext()) {
 | 
						|
      DeclContext *DC = SemanticContext->getRedeclContext();
 | 
						|
      DC->makeDeclVisibleInContext(NewTemplate);
 | 
						|
      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
 | 
						|
        PushOnScopeChains(NewTemplate, EnclosingScope,
 | 
						|
                          /* AddToContext = */ false);
 | 
						|
    }
 | 
						|
 | 
						|
    FriendDecl *Friend = FriendDecl::Create(
 | 
						|
        Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
 | 
						|
    Friend->setAccess(AS_public);
 | 
						|
    CurContext->addDecl(Friend);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevClassTemplate)
 | 
						|
    CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
 | 
						|
 | 
						|
  if (Invalid) {
 | 
						|
    NewTemplate->setInvalidDecl();
 | 
						|
    NewClass->setInvalidDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  ActOnDocumentableDecl(NewTemplate);
 | 
						|
 | 
						|
  return NewTemplate;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Transform to convert portions of a constructor declaration into the
 | 
						|
/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
 | 
						|
struct ConvertConstructorToDeductionGuideTransform {
 | 
						|
  ConvertConstructorToDeductionGuideTransform(Sema &S,
 | 
						|
                                              ClassTemplateDecl *Template)
 | 
						|
      : SemaRef(S), Template(Template) {}
 | 
						|
 | 
						|
  Sema &SemaRef;
 | 
						|
  ClassTemplateDecl *Template;
 | 
						|
 | 
						|
  DeclContext *DC = Template->getDeclContext();
 | 
						|
  CXXRecordDecl *Primary = Template->getTemplatedDecl();
 | 
						|
  DeclarationName DeductionGuideName =
 | 
						|
      SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
 | 
						|
 | 
						|
  QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
 | 
						|
 | 
						|
  // Index adjustment to apply to convert depth-1 template parameters into
 | 
						|
  // depth-0 template parameters.
 | 
						|
  unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
 | 
						|
 | 
						|
  /// Transform a constructor declaration into a deduction guide.
 | 
						|
  NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
 | 
						|
                                  CXXConstructorDecl *CD) {
 | 
						|
    SmallVector<TemplateArgument, 16> SubstArgs;
 | 
						|
 | 
						|
    LocalInstantiationScope Scope(SemaRef);
 | 
						|
 | 
						|
    // C++ [over.match.class.deduct]p1:
 | 
						|
    // -- For each constructor of the class template designated by the
 | 
						|
    //    template-name, a function template with the following properties:
 | 
						|
 | 
						|
    //    -- The template parameters are the template parameters of the class
 | 
						|
    //       template followed by the template parameters (including default
 | 
						|
    //       template arguments) of the constructor, if any.
 | 
						|
    TemplateParameterList *TemplateParams = Template->getTemplateParameters();
 | 
						|
    if (FTD) {
 | 
						|
      TemplateParameterList *InnerParams = FTD->getTemplateParameters();
 | 
						|
      SmallVector<NamedDecl *, 16> AllParams;
 | 
						|
      AllParams.reserve(TemplateParams->size() + InnerParams->size());
 | 
						|
      AllParams.insert(AllParams.begin(),
 | 
						|
                       TemplateParams->begin(), TemplateParams->end());
 | 
						|
      SubstArgs.reserve(InnerParams->size());
 | 
						|
 | 
						|
      // Later template parameters could refer to earlier ones, so build up
 | 
						|
      // a list of substituted template arguments as we go.
 | 
						|
      for (NamedDecl *Param : *InnerParams) {
 | 
						|
        MultiLevelTemplateArgumentList Args;
 | 
						|
        Args.addOuterTemplateArguments(SubstArgs);
 | 
						|
        Args.addOuterRetainedLevel();
 | 
						|
        NamedDecl *NewParam = transformTemplateParameter(Param, Args);
 | 
						|
        if (!NewParam)
 | 
						|
          return nullptr;
 | 
						|
        AllParams.push_back(NewParam);
 | 
						|
        SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
 | 
						|
            SemaRef.Context.getInjectedTemplateArg(NewParam)));
 | 
						|
      }
 | 
						|
      TemplateParams = TemplateParameterList::Create(
 | 
						|
          SemaRef.Context, InnerParams->getTemplateLoc(),
 | 
						|
          InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
 | 
						|
          /*FIXME: RequiresClause*/ nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we built a new template-parameter-list, track that we need to
 | 
						|
    // substitute references to the old parameters into references to the
 | 
						|
    // new ones.
 | 
						|
    MultiLevelTemplateArgumentList Args;
 | 
						|
    if (FTD) {
 | 
						|
      Args.addOuterTemplateArguments(SubstArgs);
 | 
						|
      Args.addOuterRetainedLevel();
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
 | 
						|
                                   .getAsAdjusted<FunctionProtoTypeLoc>();
 | 
						|
    assert(FPTL && "no prototype for constructor declaration");
 | 
						|
 | 
						|
    // Transform the type of the function, adjusting the return type and
 | 
						|
    // replacing references to the old parameters with references to the
 | 
						|
    // new ones.
 | 
						|
    TypeLocBuilder TLB;
 | 
						|
    SmallVector<ParmVarDecl*, 8> Params;
 | 
						|
    QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
 | 
						|
    if (NewType.isNull())
 | 
						|
      return nullptr;
 | 
						|
    TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
 | 
						|
 | 
						|
    return buildDeductionGuide(TemplateParams, CD->isExplicit(), NewTInfo,
 | 
						|
                               CD->getLocStart(), CD->getLocation(),
 | 
						|
                               CD->getLocEnd());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Build a deduction guide with the specified parameter types.
 | 
						|
  NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
 | 
						|
    SourceLocation Loc = Template->getLocation();
 | 
						|
 | 
						|
    // Build the requested type.
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
    EPI.HasTrailingReturn = true;
 | 
						|
    QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
 | 
						|
                                                DeductionGuideName, EPI);
 | 
						|
    TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
 | 
						|
 | 
						|
    FunctionProtoTypeLoc FPTL =
 | 
						|
        TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
 | 
						|
 | 
						|
    // Build the parameters, needed during deduction / substitution.
 | 
						|
    SmallVector<ParmVarDecl*, 4> Params;
 | 
						|
    for (auto T : ParamTypes) {
 | 
						|
      ParmVarDecl *NewParam = ParmVarDecl::Create(
 | 
						|
          SemaRef.Context, DC, Loc, Loc, nullptr, T,
 | 
						|
          SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
 | 
						|
      NewParam->setScopeInfo(0, Params.size());
 | 
						|
      FPTL.setParam(Params.size(), NewParam);
 | 
						|
      Params.push_back(NewParam);
 | 
						|
    }
 | 
						|
 | 
						|
    return buildDeductionGuide(Template->getTemplateParameters(), false, TSI,
 | 
						|
                               Loc, Loc, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Transform a constructor template parameter into a deduction guide template
 | 
						|
  /// parameter, rebuilding any internal references to earlier parameters and
 | 
						|
  /// renumbering as we go.
 | 
						|
  NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
 | 
						|
                                        MultiLevelTemplateArgumentList &Args) {
 | 
						|
    if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
 | 
						|
      // TemplateTypeParmDecl's index cannot be changed after creation, so
 | 
						|
      // substitute it directly.
 | 
						|
      auto *NewTTP = TemplateTypeParmDecl::Create(
 | 
						|
          SemaRef.Context, DC, TTP->getLocStart(), TTP->getLocation(),
 | 
						|
          /*Depth*/0, Depth1IndexAdjustment + TTP->getIndex(),
 | 
						|
          TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
 | 
						|
          TTP->isParameterPack());
 | 
						|
      if (TTP->hasDefaultArgument()) {
 | 
						|
        TypeSourceInfo *InstantiatedDefaultArg =
 | 
						|
            SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
 | 
						|
                              TTP->getDefaultArgumentLoc(), TTP->getDeclName());
 | 
						|
        if (InstantiatedDefaultArg)
 | 
						|
          NewTTP->setDefaultArgument(InstantiatedDefaultArg);
 | 
						|
      }
 | 
						|
      SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
 | 
						|
                                                           NewTTP);
 | 
						|
      return NewTTP;
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
 | 
						|
      return transformTemplateParameterImpl(TTP, Args);
 | 
						|
 | 
						|
    return transformTemplateParameterImpl(
 | 
						|
        cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
 | 
						|
  }
 | 
						|
  template<typename TemplateParmDecl>
 | 
						|
  TemplateParmDecl *
 | 
						|
  transformTemplateParameterImpl(TemplateParmDecl *OldParam,
 | 
						|
                                 MultiLevelTemplateArgumentList &Args) {
 | 
						|
    // Ask the template instantiator to do the heavy lifting for us, then adjust
 | 
						|
    // the index of the parameter once it's done.
 | 
						|
    auto *NewParam =
 | 
						|
        cast_or_null<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
 | 
						|
    assert(NewParam->getDepth() == 0 && "unexpected template param depth");
 | 
						|
    NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
 | 
						|
    return NewParam;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType transformFunctionProtoType(TypeLocBuilder &TLB,
 | 
						|
                                      FunctionProtoTypeLoc TL,
 | 
						|
                                      SmallVectorImpl<ParmVarDecl*> &Params,
 | 
						|
                                      MultiLevelTemplateArgumentList &Args) {
 | 
						|
    SmallVector<QualType, 4> ParamTypes;
 | 
						|
    const FunctionProtoType *T = TL.getTypePtr();
 | 
						|
 | 
						|
    //    -- The types of the function parameters are those of the constructor.
 | 
						|
    for (auto *OldParam : TL.getParams()) {
 | 
						|
      ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
 | 
						|
      if (!NewParam)
 | 
						|
        return QualType();
 | 
						|
      ParamTypes.push_back(NewParam->getType());
 | 
						|
      Params.push_back(NewParam);
 | 
						|
    }
 | 
						|
 | 
						|
    //    -- The return type is the class template specialization designated by
 | 
						|
    //       the template-name and template arguments corresponding to the
 | 
						|
    //       template parameters obtained from the class template.
 | 
						|
    //
 | 
						|
    // We use the injected-class-name type of the primary template instead.
 | 
						|
    // This has the convenient property that it is different from any type that
 | 
						|
    // the user can write in a deduction-guide (because they cannot enter the
 | 
						|
    // context of the template), so implicit deduction guides can never collide
 | 
						|
    // with explicit ones.
 | 
						|
    QualType ReturnType = DeducedType;
 | 
						|
    TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
 | 
						|
 | 
						|
    // Resolving a wording defect, we also inherit the variadicness of the
 | 
						|
    // constructor.
 | 
						|
    FunctionProtoType::ExtProtoInfo EPI;
 | 
						|
    EPI.Variadic = T->isVariadic();
 | 
						|
    EPI.HasTrailingReturn = true;
 | 
						|
 | 
						|
    QualType Result = SemaRef.BuildFunctionType(
 | 
						|
        ReturnType, ParamTypes, TL.getLocStart(), DeductionGuideName, EPI);
 | 
						|
    if (Result.isNull())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
 | 
						|
    NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
 | 
						|
    NewTL.setLParenLoc(TL.getLParenLoc());
 | 
						|
    NewTL.setRParenLoc(TL.getRParenLoc());
 | 
						|
    NewTL.setExceptionSpecRange(SourceRange());
 | 
						|
    NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
 | 
						|
    for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
 | 
						|
      NewTL.setParam(I, Params[I]);
 | 
						|
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  ParmVarDecl *
 | 
						|
  transformFunctionTypeParam(ParmVarDecl *OldParam,
 | 
						|
                             MultiLevelTemplateArgumentList &Args) {
 | 
						|
    TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
 | 
						|
    TypeSourceInfo *NewDI;
 | 
						|
    if (!Args.getNumLevels())
 | 
						|
      NewDI = OldDI;
 | 
						|
    else if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
 | 
						|
      // Expand out the one and only element in each inner pack.
 | 
						|
      Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
 | 
						|
      NewDI =
 | 
						|
          SemaRef.SubstType(PackTL.getPatternLoc(), Args,
 | 
						|
                            OldParam->getLocation(), OldParam->getDeclName());
 | 
						|
      if (!NewDI) return nullptr;
 | 
						|
      NewDI =
 | 
						|
          SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
 | 
						|
                                     PackTL.getTypePtr()->getNumExpansions());
 | 
						|
    } else
 | 
						|
      NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
 | 
						|
                                OldParam->getDeclName());
 | 
						|
    if (!NewDI)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Canonicalize the type. This (for instance) replaces references to
 | 
						|
    // typedef members of the current instantiations with the definitions of
 | 
						|
    // those typedefs, avoiding triggering instantiation of the deduced type
 | 
						|
    // during deduction.
 | 
						|
    // FIXME: It would be preferable to retain type sugar and source
 | 
						|
    // information here (and handle this in substitution instead).
 | 
						|
    NewDI = SemaRef.Context.getTrivialTypeSourceInfo(
 | 
						|
        SemaRef.Context.getCanonicalType(NewDI->getType()),
 | 
						|
        OldParam->getLocation());
 | 
						|
 | 
						|
    // Resolving a wording defect, we also inherit default arguments from the
 | 
						|
    // constructor.
 | 
						|
    ExprResult NewDefArg;
 | 
						|
    if (OldParam->hasDefaultArg()) {
 | 
						|
      NewDefArg = Args.getNumLevels()
 | 
						|
                      ? SemaRef.SubstExpr(OldParam->getDefaultArg(), Args)
 | 
						|
                      : OldParam->getDefaultArg();
 | 
						|
      if (NewDefArg.isInvalid())
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
 | 
						|
                                                OldParam->getInnerLocStart(),
 | 
						|
                                                OldParam->getLocation(),
 | 
						|
                                                OldParam->getIdentifier(),
 | 
						|
                                                NewDI->getType(),
 | 
						|
                                                NewDI,
 | 
						|
                                                OldParam->getStorageClass(),
 | 
						|
                                                NewDefArg.get());
 | 
						|
    NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
 | 
						|
                           OldParam->getFunctionScopeIndex());
 | 
						|
    return NewParam;
 | 
						|
  }
 | 
						|
 | 
						|
  NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
 | 
						|
                                 bool Explicit, TypeSourceInfo *TInfo,
 | 
						|
                                 SourceLocation LocStart, SourceLocation Loc,
 | 
						|
                                 SourceLocation LocEnd) {
 | 
						|
    DeclarationNameInfo Name(DeductionGuideName, Loc);
 | 
						|
    ArrayRef<ParmVarDecl *> Params =
 | 
						|
        TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
 | 
						|
 | 
						|
    // Build the implicit deduction guide template.
 | 
						|
    auto *Guide =
 | 
						|
        CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, Explicit,
 | 
						|
                                      Name, TInfo->getType(), TInfo, LocEnd);
 | 
						|
    Guide->setImplicit();
 | 
						|
    Guide->setParams(Params);
 | 
						|
 | 
						|
    for (auto *Param : Params)
 | 
						|
      Param->setDeclContext(Guide);
 | 
						|
 | 
						|
    auto *GuideTemplate = FunctionTemplateDecl::Create(
 | 
						|
        SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
 | 
						|
    GuideTemplate->setImplicit();
 | 
						|
    Guide->setDescribedFunctionTemplate(GuideTemplate);
 | 
						|
 | 
						|
    if (isa<CXXRecordDecl>(DC)) {
 | 
						|
      Guide->setAccess(AS_public);
 | 
						|
      GuideTemplate->setAccess(AS_public);
 | 
						|
    }
 | 
						|
 | 
						|
    DC->addDecl(GuideTemplate);
 | 
						|
    return GuideTemplate;
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
 | 
						|
                                          SourceLocation Loc) {
 | 
						|
  DeclContext *DC = Template->getDeclContext();
 | 
						|
  if (DC->isDependentContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  ConvertConstructorToDeductionGuideTransform Transform(
 | 
						|
      *this, cast<ClassTemplateDecl>(Template));
 | 
						|
  if (!isCompleteType(Loc, Transform.DeducedType))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check whether we've already declared deduction guides for this template.
 | 
						|
  // FIXME: Consider storing a flag on the template to indicate this.
 | 
						|
  auto Existing = DC->lookup(Transform.DeductionGuideName);
 | 
						|
  for (auto *D : Existing)
 | 
						|
    if (D->isImplicit())
 | 
						|
      return;
 | 
						|
 | 
						|
  // In case we were expanding a pack when we attempted to declare deduction
 | 
						|
  // guides, turn off pack expansion for everything we're about to do.
 | 
						|
  ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
 | 
						|
  // Create a template instantiation record to track the "instantiation" of
 | 
						|
  // constructors into deduction guides.
 | 
						|
  // FIXME: Add a kind for this to give more meaningful diagnostics. But can
 | 
						|
  // this substitution process actually fail?
 | 
						|
  InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
 | 
						|
 | 
						|
  // Convert declared constructors into deduction guide templates.
 | 
						|
  // FIXME: Skip constructors for which deduction must necessarily fail (those
 | 
						|
  // for which some class template parameter without a default argument never
 | 
						|
  // appears in a deduced context).
 | 
						|
  bool AddedAny = false;
 | 
						|
  for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
 | 
						|
    D = D->getUnderlyingDecl();
 | 
						|
    if (D->isInvalidDecl() || D->isImplicit())
 | 
						|
      continue;
 | 
						|
    D = cast<NamedDecl>(D->getCanonicalDecl());
 | 
						|
 | 
						|
    auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
 | 
						|
    auto *CD =
 | 
						|
        dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
 | 
						|
    // Class-scope explicit specializations (MS extension) do not result in
 | 
						|
    // deduction guides.
 | 
						|
    if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Transform.transformConstructor(FTD, CD);
 | 
						|
    AddedAny = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++17 [over.match.class.deduct]
 | 
						|
  //    --  If C is not defined or does not declare any constructors, an
 | 
						|
  //    additional function template derived as above from a hypothetical
 | 
						|
  //    constructor C().
 | 
						|
  if (!AddedAny)
 | 
						|
    Transform.buildSimpleDeductionGuide(None);
 | 
						|
 | 
						|
  //    -- An additional function template derived as above from a hypothetical
 | 
						|
  //    constructor C(C), called the copy deduction candidate.
 | 
						|
  cast<CXXDeductionGuideDecl>(
 | 
						|
      cast<FunctionTemplateDecl>(
 | 
						|
          Transform.buildSimpleDeductionGuide(Transform.DeducedType))
 | 
						|
          ->getTemplatedDecl())
 | 
						|
      ->setIsCopyDeductionCandidate();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose the presence of a default template argument on a
 | 
						|
/// template parameter, which is ill-formed in certain contexts.
 | 
						|
///
 | 
						|
/// \returns true if the default template argument should be dropped.
 | 
						|
static bool DiagnoseDefaultTemplateArgument(Sema &S,
 | 
						|
                                            Sema::TemplateParamListContext TPC,
 | 
						|
                                            SourceLocation ParamLoc,
 | 
						|
                                            SourceRange DefArgRange) {
 | 
						|
  switch (TPC) {
 | 
						|
  case Sema::TPC_ClassTemplate:
 | 
						|
  case Sema::TPC_VarTemplate:
 | 
						|
  case Sema::TPC_TypeAliasTemplate:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Sema::TPC_FunctionTemplate:
 | 
						|
  case Sema::TPC_FriendFunctionTemplateDefinition:
 | 
						|
    // C++ [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in a
 | 
						|
    //   function template declaration or a function template
 | 
						|
    //   definition [...]
 | 
						|
    //   If a friend function template declaration specifies a default
 | 
						|
    //   template-argument, that declaration shall be a definition and shall be
 | 
						|
    //   the only declaration of the function template in the translation unit.
 | 
						|
    // (C++98/03 doesn't have this wording; see DR226).
 | 
						|
    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
 | 
						|
         diag::warn_cxx98_compat_template_parameter_default_in_function_template
 | 
						|
           : diag::ext_template_parameter_default_in_function_template)
 | 
						|
      << DefArgRange;
 | 
						|
    return false;
 | 
						|
 | 
						|
  case Sema::TPC_ClassTemplateMember:
 | 
						|
    // C++0x [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in the
 | 
						|
    //   template-parameter-lists of the definition of a member of a
 | 
						|
    //   class template that appears outside of the member's class.
 | 
						|
    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
 | 
						|
      << DefArgRange;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Sema::TPC_FriendClassTemplate:
 | 
						|
  case Sema::TPC_FriendFunctionTemplate:
 | 
						|
    // C++ [temp.param]p9:
 | 
						|
    //   A default template-argument shall not be specified in a
 | 
						|
    //   friend template declaration.
 | 
						|
    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
 | 
						|
      << DefArgRange;
 | 
						|
    return true;
 | 
						|
 | 
						|
    // FIXME: C++0x [temp.param]p9 allows default template-arguments
 | 
						|
    // for friend function templates if there is only a single
 | 
						|
    // declaration (and it is a definition). Strange!
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid TemplateParamListContext!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check for unexpanded parameter packs within the template parameters
 | 
						|
/// of a template template parameter, recursively.
 | 
						|
static bool DiagnoseUnexpandedParameterPacks(Sema &S,
 | 
						|
                                             TemplateTemplateParmDecl *TTP) {
 | 
						|
  // A template template parameter which is a parameter pack is also a pack
 | 
						|
  // expansion.
 | 
						|
  if (TTP->isParameterPack())
 | 
						|
    return false;
 | 
						|
 | 
						|
  TemplateParameterList *Params = TTP->getTemplateParameters();
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    NamedDecl *P = Params->getParam(I);
 | 
						|
    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
 | 
						|
      if (!NTTP->isParameterPack() &&
 | 
						|
          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
 | 
						|
                                            NTTP->getTypeSourceInfo(),
 | 
						|
                                      Sema::UPPC_NonTypeTemplateParameterType))
 | 
						|
        return true;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TemplateTemplateParmDecl *InnerTTP
 | 
						|
                                        = dyn_cast<TemplateTemplateParmDecl>(P))
 | 
						|
      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
 | 
						|
        return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks the validity of a template parameter list, possibly
 | 
						|
/// considering the template parameter list from a previous
 | 
						|
/// declaration.
 | 
						|
///
 | 
						|
/// If an "old" template parameter list is provided, it must be
 | 
						|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param NewParams Template parameter list for a new template
 | 
						|
/// declaration. This template parameter list will be updated with any
 | 
						|
/// default arguments that are carried through from the previous
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \param OldParams If provided, template parameter list from a
 | 
						|
/// previous declaration of the same template. Default template
 | 
						|
/// arguments will be merged from the old template parameter list to
 | 
						|
/// the new template parameter list.
 | 
						|
///
 | 
						|
/// \param TPC Describes the context in which we are checking the given
 | 
						|
/// template parameter list.
 | 
						|
///
 | 
						|
/// \returns true if an error occurred, false otherwise.
 | 
						|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
 | 
						|
                                      TemplateParameterList *OldParams,
 | 
						|
                                      TemplateParamListContext TPC) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  // C++ [temp.param]p10:
 | 
						|
  //   The set of default template-arguments available for use with a
 | 
						|
  //   template declaration or definition is obtained by merging the
 | 
						|
  //   default arguments from the definition (if in scope) and all
 | 
						|
  //   declarations in scope in the same way default function
 | 
						|
  //   arguments are (8.3.6).
 | 
						|
  bool SawDefaultArgument = false;
 | 
						|
  SourceLocation PreviousDefaultArgLoc;
 | 
						|
 | 
						|
  // Dummy initialization to avoid warnings.
 | 
						|
  TemplateParameterList::iterator OldParam = NewParams->end();
 | 
						|
  if (OldParams)
 | 
						|
    OldParam = OldParams->begin();
 | 
						|
 | 
						|
  bool RemoveDefaultArguments = false;
 | 
						|
  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | 
						|
                                    NewParamEnd = NewParams->end();
 | 
						|
       NewParam != NewParamEnd; ++NewParam) {
 | 
						|
    // Variables used to diagnose redundant default arguments
 | 
						|
    bool RedundantDefaultArg = false;
 | 
						|
    SourceLocation OldDefaultLoc;
 | 
						|
    SourceLocation NewDefaultLoc;
 | 
						|
 | 
						|
    // Variable used to diagnose missing default arguments
 | 
						|
    bool MissingDefaultArg = false;
 | 
						|
 | 
						|
    // Variable used to diagnose non-final parameter packs
 | 
						|
    bool SawParameterPack = false;
 | 
						|
 | 
						|
    if (TemplateTypeParmDecl *NewTypeParm
 | 
						|
          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewTypeParm->hasDefaultArgument() &&
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC,
 | 
						|
                                          NewTypeParm->getLocation(),
 | 
						|
               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
 | 
						|
                                                       .getSourceRange()))
 | 
						|
        NewTypeParm->removeDefaultArgument();
 | 
						|
 | 
						|
      // Merge default arguments for template type parameters.
 | 
						|
      TemplateTypeParmDecl *OldTypeParm
 | 
						|
          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
 | 
						|
      if (NewTypeParm->isParameterPack()) {
 | 
						|
        assert(!NewTypeParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        SawParameterPack = true;
 | 
						|
      } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
 | 
						|
                 NewTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
 | 
						|
        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
 | 
						|
               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
 | 
						|
      // Check for unexpanded parameter packs.
 | 
						|
      if (!NewNonTypeParm->isParameterPack() &&
 | 
						|
          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
 | 
						|
                                          NewNonTypeParm->getTypeSourceInfo(),
 | 
						|
                                          UPPC_NonTypeTemplateParameterType)) {
 | 
						|
        Invalid = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewNonTypeParm->hasDefaultArgument() &&
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC,
 | 
						|
                                          NewNonTypeParm->getLocation(),
 | 
						|
                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
 | 
						|
        NewNonTypeParm->removeDefaultArgument();
 | 
						|
      }
 | 
						|
 | 
						|
      // Merge default arguments for non-type template parameters
 | 
						|
      NonTypeTemplateParmDecl *OldNonTypeParm
 | 
						|
        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
 | 
						|
      if (NewNonTypeParm->isParameterPack()) {
 | 
						|
        assert(!NewNonTypeParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        if (!NewNonTypeParm->isPackExpansion())
 | 
						|
          SawParameterPack = true;
 | 
						|
      } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
 | 
						|
                 NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
 | 
						|
        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (NewNonTypeParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    } else {
 | 
						|
      TemplateTemplateParmDecl *NewTemplateParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*NewParam);
 | 
						|
 | 
						|
      // Check for unexpanded parameter packs, recursively.
 | 
						|
      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
 | 
						|
        Invalid = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check the presence of a default argument here.
 | 
						|
      if (NewTemplateParm->hasDefaultArgument() &&
 | 
						|
          DiagnoseDefaultTemplateArgument(*this, TPC,
 | 
						|
                                          NewTemplateParm->getLocation(),
 | 
						|
                     NewTemplateParm->getDefaultArgument().getSourceRange()))
 | 
						|
        NewTemplateParm->removeDefaultArgument();
 | 
						|
 | 
						|
      // Merge default arguments for template template parameters
 | 
						|
      TemplateTemplateParmDecl *OldTemplateParm
 | 
						|
        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
 | 
						|
      if (NewTemplateParm->isParameterPack()) {
 | 
						|
        assert(!NewTemplateParm->hasDefaultArgument() &&
 | 
						|
               "Parameter packs can't have a default argument!");
 | 
						|
        if (!NewTemplateParm->isPackExpansion())
 | 
						|
          SawParameterPack = true;
 | 
						|
      } else if (OldTemplateParm &&
 | 
						|
                 hasVisibleDefaultArgument(OldTemplateParm) &&
 | 
						|
                 NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
 | 
						|
        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        RedundantDefaultArg = true;
 | 
						|
        PreviousDefaultArgLoc = NewDefaultLoc;
 | 
						|
      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
 | 
						|
        // Merge the default argument from the old declaration to the
 | 
						|
        // new declaration.
 | 
						|
        NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
 | 
						|
        PreviousDefaultArgLoc
 | 
						|
          = OldTemplateParm->getDefaultArgument().getLocation();
 | 
						|
      } else if (NewTemplateParm->hasDefaultArgument()) {
 | 
						|
        SawDefaultArgument = true;
 | 
						|
        PreviousDefaultArgLoc
 | 
						|
          = NewTemplateParm->getDefaultArgument().getLocation();
 | 
						|
      } else if (SawDefaultArgument)
 | 
						|
        MissingDefaultArg = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++11 [temp.param]p11:
 | 
						|
    //   If a template parameter of a primary class template or alias template
 | 
						|
    //   is a template parameter pack, it shall be the last template parameter.
 | 
						|
    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
 | 
						|
        (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
 | 
						|
         TPC == TPC_TypeAliasTemplate)) {
 | 
						|
      Diag((*NewParam)->getLocation(),
 | 
						|
           diag::err_template_param_pack_must_be_last_template_parameter);
 | 
						|
      Invalid = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (RedundantDefaultArg) {
 | 
						|
      // C++ [temp.param]p12:
 | 
						|
      //   A template-parameter shall not be given default arguments
 | 
						|
      //   by two different declarations in the same scope.
 | 
						|
      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
 | 
						|
      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
 | 
						|
      // C++ [temp.param]p11:
 | 
						|
      //   If a template-parameter of a class template has a default
 | 
						|
      //   template-argument, each subsequent template-parameter shall either
 | 
						|
      //   have a default template-argument supplied or be a template parameter
 | 
						|
      //   pack.
 | 
						|
      Diag((*NewParam)->getLocation(),
 | 
						|
           diag::err_template_param_default_arg_missing);
 | 
						|
      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
 | 
						|
      Invalid = true;
 | 
						|
      RemoveDefaultArguments = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have an old template parameter list that we're merging
 | 
						|
    // in, move on to the next parameter.
 | 
						|
    if (OldParams)
 | 
						|
      ++OldParam;
 | 
						|
  }
 | 
						|
 | 
						|
  // We were missing some default arguments at the end of the list, so remove
 | 
						|
  // all of the default arguments.
 | 
						|
  if (RemoveDefaultArguments) {
 | 
						|
    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
 | 
						|
                                      NewParamEnd = NewParams->end();
 | 
						|
         NewParam != NewParamEnd; ++NewParam) {
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
 | 
						|
        TTP->removeDefaultArgument();
 | 
						|
      else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
 | 
						|
        NTTP->removeDefaultArgument();
 | 
						|
      else
 | 
						|
        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Invalid;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// A class which looks for a use of a certain level of template
 | 
						|
/// parameter.
 | 
						|
struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
 | 
						|
  typedef RecursiveASTVisitor<DependencyChecker> super;
 | 
						|
 | 
						|
  unsigned Depth;
 | 
						|
 | 
						|
  // Whether we're looking for a use of a template parameter that makes the
 | 
						|
  // overall construct type-dependent / a dependent type. This is strictly
 | 
						|
  // best-effort for now; we may fail to match at all for a dependent type
 | 
						|
  // in some cases if this is set.
 | 
						|
  bool IgnoreNonTypeDependent;
 | 
						|
 | 
						|
  bool Match;
 | 
						|
  SourceLocation MatchLoc;
 | 
						|
 | 
						|
  DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
 | 
						|
      : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
 | 
						|
        Match(false) {}
 | 
						|
 | 
						|
  DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
 | 
						|
      : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
 | 
						|
    NamedDecl *ND = Params->getParam(0);
 | 
						|
    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
 | 
						|
      Depth = PD->getDepth();
 | 
						|
    } else if (NonTypeTemplateParmDecl *PD =
 | 
						|
                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
 | 
						|
      Depth = PD->getDepth();
 | 
						|
    } else {
 | 
						|
      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
 | 
						|
    if (ParmDepth >= Depth) {
 | 
						|
      Match = true;
 | 
						|
      MatchLoc = Loc;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
 | 
						|
    // Prune out non-type-dependent expressions if requested. This can
 | 
						|
    // sometimes result in us failing to find a template parameter reference
 | 
						|
    // (if a value-dependent expression creates a dependent type), but this
 | 
						|
    // mode is best-effort only.
 | 
						|
    if (auto *E = dyn_cast_or_null<Expr>(S))
 | 
						|
      if (IgnoreNonTypeDependent && !E->isTypeDependent())
 | 
						|
        return true;
 | 
						|
    return super::TraverseStmt(S, Q);
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseTypeLoc(TypeLoc TL) {
 | 
						|
    if (IgnoreNonTypeDependent && !TL.isNull() &&
 | 
						|
        !TL.getType()->isDependentType())
 | 
						|
      return true;
 | 
						|
    return super::TraverseTypeLoc(TL);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
 | 
						|
    return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
 | 
						|
    // For a best-effort search, keep looking until we find a location.
 | 
						|
    return IgnoreNonTypeDependent || !Matches(T->getDepth());
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseTemplateName(TemplateName N) {
 | 
						|
    if (TemplateTemplateParmDecl *PD =
 | 
						|
          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
 | 
						|
      if (Matches(PD->getDepth()))
 | 
						|
        return false;
 | 
						|
    return super::TraverseTemplateName(N);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitDeclRefExpr(DeclRefExpr *E) {
 | 
						|
    if (NonTypeTemplateParmDecl *PD =
 | 
						|
          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
 | 
						|
      if (Matches(PD->getDepth(), E->getExprLoc()))
 | 
						|
        return false;
 | 
						|
    return super::VisitDeclRefExpr(E);
 | 
						|
  }
 | 
						|
 | 
						|
  bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
 | 
						|
    return TraverseType(T->getReplacementType());
 | 
						|
  }
 | 
						|
 | 
						|
  bool
 | 
						|
  VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
 | 
						|
    return TraverseTemplateArgument(T->getArgumentPack());
 | 
						|
  }
 | 
						|
 | 
						|
  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
 | 
						|
    return TraverseType(T->getInjectedSpecializationType());
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Determines whether a given type depends on the given parameter
 | 
						|
/// list.
 | 
						|
static bool
 | 
						|
DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
 | 
						|
  DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
 | 
						|
  Checker.TraverseType(T);
 | 
						|
  return Checker.Match;
 | 
						|
}
 | 
						|
 | 
						|
// Find the source range corresponding to the named type in the given
 | 
						|
// nested-name-specifier, if any.
 | 
						|
static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
 | 
						|
                                                       QualType T,
 | 
						|
                                                       const CXXScopeSpec &SS) {
 | 
						|
  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
 | 
						|
  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
 | 
						|
    if (const Type *CurType = NNS->getAsType()) {
 | 
						|
      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
 | 
						|
        return NNSLoc.getTypeLoc().getSourceRange();
 | 
						|
    } else
 | 
						|
      break;
 | 
						|
 | 
						|
    NNSLoc = NNSLoc.getPrefix();
 | 
						|
  }
 | 
						|
 | 
						|
  return SourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Match the given template parameter lists to the given scope
 | 
						|
/// specifier, returning the template parameter list that applies to the
 | 
						|
/// name.
 | 
						|
///
 | 
						|
/// \param DeclStartLoc the start of the declaration that has a scope
 | 
						|
/// specifier or a template parameter list.
 | 
						|
///
 | 
						|
/// \param DeclLoc The location of the declaration itself.
 | 
						|
///
 | 
						|
/// \param SS the scope specifier that will be matched to the given template
 | 
						|
/// parameter lists. This scope specifier precedes a qualified name that is
 | 
						|
/// being declared.
 | 
						|
///
 | 
						|
/// \param TemplateId The template-id following the scope specifier, if there
 | 
						|
/// is one. Used to check for a missing 'template<>'.
 | 
						|
///
 | 
						|
/// \param ParamLists the template parameter lists, from the outermost to the
 | 
						|
/// innermost template parameter lists.
 | 
						|
///
 | 
						|
/// \param IsFriend Whether to apply the slightly different rules for
 | 
						|
/// matching template parameters to scope specifiers in friend
 | 
						|
/// declarations.
 | 
						|
///
 | 
						|
/// \param IsMemberSpecialization will be set true if the scope specifier
 | 
						|
/// denotes a fully-specialized type, and therefore this is a declaration of
 | 
						|
/// a member specialization.
 | 
						|
///
 | 
						|
/// \returns the template parameter list, if any, that corresponds to the
 | 
						|
/// name that is preceded by the scope specifier @p SS. This template
 | 
						|
/// parameter list may have template parameters (if we're declaring a
 | 
						|
/// template) or may have no template parameters (if we're declaring a
 | 
						|
/// template specialization), or may be NULL (if what we're declaring isn't
 | 
						|
/// itself a template).
 | 
						|
TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
 | 
						|
    SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
 | 
						|
    TemplateIdAnnotation *TemplateId,
 | 
						|
    ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
 | 
						|
    bool &IsMemberSpecialization, bool &Invalid) {
 | 
						|
  IsMemberSpecialization = false;
 | 
						|
  Invalid = false;
 | 
						|
 | 
						|
  // The sequence of nested types to which we will match up the template
 | 
						|
  // parameter lists. We first build this list by starting with the type named
 | 
						|
  // by the nested-name-specifier and walking out until we run out of types.
 | 
						|
  SmallVector<QualType, 4> NestedTypes;
 | 
						|
  QualType T;
 | 
						|
  if (SS.getScopeRep()) {
 | 
						|
    if (CXXRecordDecl *Record
 | 
						|
              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
 | 
						|
      T = Context.getTypeDeclType(Record);
 | 
						|
    else
 | 
						|
      T = QualType(SS.getScopeRep()->getAsType(), 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found an explicit specialization that prevents us from needing
 | 
						|
  // 'template<>' headers, this will be set to the location of that
 | 
						|
  // explicit specialization.
 | 
						|
  SourceLocation ExplicitSpecLoc;
 | 
						|
 | 
						|
  while (!T.isNull()) {
 | 
						|
    NestedTypes.push_back(T);
 | 
						|
 | 
						|
    // Retrieve the parent of a record type.
 | 
						|
    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
 | 
						|
      // If this type is an explicit specialization, we're done.
 | 
						|
      if (ClassTemplateSpecializationDecl *Spec
 | 
						|
          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
 | 
						|
        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
 | 
						|
            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
 | 
						|
          ExplicitSpecLoc = Spec->getLocation();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      } else if (Record->getTemplateSpecializationKind()
 | 
						|
                                                == TSK_ExplicitSpecialization) {
 | 
						|
        ExplicitSpecLoc = Record->getLocation();
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
 | 
						|
        T = Context.getTypeDeclType(Parent);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const TemplateSpecializationType *TST
 | 
						|
                                     = T->getAs<TemplateSpecializationType>()) {
 | 
						|
      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
 | 
						|
        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
 | 
						|
          T = Context.getTypeDeclType(Parent);
 | 
						|
        else
 | 
						|
          T = QualType();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Look one step prior in a dependent template specialization type.
 | 
						|
    if (const DependentTemplateSpecializationType *DependentTST
 | 
						|
                          = T->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
 | 
						|
        T = QualType(NNS->getAsType(), 0);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Look one step prior in a dependent name type.
 | 
						|
    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
 | 
						|
      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
 | 
						|
        T = QualType(NNS->getAsType(), 0);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Retrieve the parent of an enumeration type.
 | 
						|
    if (const EnumType *EnumT = T->getAs<EnumType>()) {
 | 
						|
      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
 | 
						|
      // check here.
 | 
						|
      EnumDecl *Enum = EnumT->getDecl();
 | 
						|
 | 
						|
      // Get to the parent type.
 | 
						|
      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
 | 
						|
        T = Context.getTypeDeclType(Parent);
 | 
						|
      else
 | 
						|
        T = QualType();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    T = QualType();
 | 
						|
  }
 | 
						|
  // Reverse the nested types list, since we want to traverse from the outermost
 | 
						|
  // to the innermost while checking template-parameter-lists.
 | 
						|
  std::reverse(NestedTypes.begin(), NestedTypes.end());
 | 
						|
 | 
						|
  // C++0x [temp.expl.spec]p17:
 | 
						|
  //   A member or a member template may be nested within many
 | 
						|
  //   enclosing class templates. In an explicit specialization for
 | 
						|
  //   such a member, the member declaration shall be preceded by a
 | 
						|
  //   template<> for each enclosing class template that is
 | 
						|
  //   explicitly specialized.
 | 
						|
  bool SawNonEmptyTemplateParameterList = false;
 | 
						|
 | 
						|
  auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
 | 
						|
    if (SawNonEmptyTemplateParameterList) {
 | 
						|
      Diag(DeclLoc, diag::err_specialize_member_of_template)
 | 
						|
        << !Recovery << Range;
 | 
						|
      Invalid = true;
 | 
						|
      IsMemberSpecialization = false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
 | 
						|
    // Check that we can have an explicit specialization here.
 | 
						|
    if (CheckExplicitSpecialization(Range, true))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // We don't have a template header, but we should.
 | 
						|
    SourceLocation ExpectedTemplateLoc;
 | 
						|
    if (!ParamLists.empty())
 | 
						|
      ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
 | 
						|
    else
 | 
						|
      ExpectedTemplateLoc = DeclStartLoc;
 | 
						|
 | 
						|
    Diag(DeclLoc, diag::err_template_spec_needs_header)
 | 
						|
      << Range
 | 
						|
      << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned ParamIdx = 0;
 | 
						|
  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
 | 
						|
       ++TypeIdx) {
 | 
						|
    T = NestedTypes[TypeIdx];
 | 
						|
 | 
						|
    // Whether we expect a 'template<>' header.
 | 
						|
    bool NeedEmptyTemplateHeader = false;
 | 
						|
 | 
						|
    // Whether we expect a template header with parameters.
 | 
						|
    bool NeedNonemptyTemplateHeader = false;
 | 
						|
 | 
						|
    // For a dependent type, the set of template parameters that we
 | 
						|
    // expect to see.
 | 
						|
    TemplateParameterList *ExpectedTemplateParams = nullptr;
 | 
						|
 | 
						|
    // C++0x [temp.expl.spec]p15:
 | 
						|
    //   A member or a member template may be nested within many enclosing
 | 
						|
    //   class templates. In an explicit specialization for such a member, the
 | 
						|
    //   member declaration shall be preceded by a template<> for each
 | 
						|
    //   enclosing class template that is explicitly specialized.
 | 
						|
    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
 | 
						|
      if (ClassTemplatePartialSpecializationDecl *Partial
 | 
						|
            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
 | 
						|
        ExpectedTemplateParams = Partial->getTemplateParameters();
 | 
						|
        NeedNonemptyTemplateHeader = true;
 | 
						|
      } else if (Record->isDependentType()) {
 | 
						|
        if (Record->getDescribedClassTemplate()) {
 | 
						|
          ExpectedTemplateParams = Record->getDescribedClassTemplate()
 | 
						|
                                                      ->getTemplateParameters();
 | 
						|
          NeedNonemptyTemplateHeader = true;
 | 
						|
        }
 | 
						|
      } else if (ClassTemplateSpecializationDecl *Spec
 | 
						|
                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
 | 
						|
        // C++0x [temp.expl.spec]p4:
 | 
						|
        //   Members of an explicitly specialized class template are defined
 | 
						|
        //   in the same manner as members of normal classes, and not using
 | 
						|
        //   the template<> syntax.
 | 
						|
        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
 | 
						|
          NeedEmptyTemplateHeader = true;
 | 
						|
        else
 | 
						|
          continue;
 | 
						|
      } else if (Record->getTemplateSpecializationKind()) {
 | 
						|
        if (Record->getTemplateSpecializationKind()
 | 
						|
                                                != TSK_ExplicitSpecialization &&
 | 
						|
            TypeIdx == NumTypes - 1)
 | 
						|
          IsMemberSpecialization = true;
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (const TemplateSpecializationType *TST
 | 
						|
                                     = T->getAs<TemplateSpecializationType>()) {
 | 
						|
      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
 | 
						|
        ExpectedTemplateParams = Template->getTemplateParameters();
 | 
						|
        NeedNonemptyTemplateHeader = true;
 | 
						|
      }
 | 
						|
    } else if (T->getAs<DependentTemplateSpecializationType>()) {
 | 
						|
      // FIXME:  We actually could/should check the template arguments here
 | 
						|
      // against the corresponding template parameter list.
 | 
						|
      NeedNonemptyTemplateHeader = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.expl.spec]p16:
 | 
						|
    //   In an explicit specialization declaration for a member of a class
 | 
						|
    //   template or a member template that ap- pears in namespace scope, the
 | 
						|
    //   member template and some of its enclosing class templates may remain
 | 
						|
    //   unspecialized, except that the declaration shall not explicitly
 | 
						|
    //   specialize a class member template if its en- closing class templates
 | 
						|
    //   are not explicitly specialized as well.
 | 
						|
    if (ParamIdx < ParamLists.size()) {
 | 
						|
      if (ParamLists[ParamIdx]->size() == 0) {
 | 
						|
        if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
 | 
						|
                                        false))
 | 
						|
          return nullptr;
 | 
						|
      } else
 | 
						|
        SawNonEmptyTemplateParameterList = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedEmptyTemplateHeader) {
 | 
						|
      // If we're on the last of the types, and we need a 'template<>' header
 | 
						|
      // here, then it's a member specialization.
 | 
						|
      if (TypeIdx == NumTypes - 1)
 | 
						|
        IsMemberSpecialization = true;
 | 
						|
 | 
						|
      if (ParamIdx < ParamLists.size()) {
 | 
						|
        if (ParamLists[ParamIdx]->size() > 0) {
 | 
						|
          // The header has template parameters when it shouldn't. Complain.
 | 
						|
          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
 | 
						|
               diag::err_template_param_list_matches_nontemplate)
 | 
						|
            << T
 | 
						|
            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
 | 
						|
                           ParamLists[ParamIdx]->getRAngleLoc())
 | 
						|
            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
 | 
						|
          Invalid = true;
 | 
						|
          return nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        // Consume this template header.
 | 
						|
        ++ParamIdx;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!IsFriend)
 | 
						|
        if (DiagnoseMissingExplicitSpecialization(
 | 
						|
                getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (NeedNonemptyTemplateHeader) {
 | 
						|
      // In friend declarations we can have template-ids which don't
 | 
						|
      // depend on the corresponding template parameter lists.  But
 | 
						|
      // assume that empty parameter lists are supposed to match this
 | 
						|
      // template-id.
 | 
						|
      if (IsFriend && T->isDependentType()) {
 | 
						|
        if (ParamIdx < ParamLists.size() &&
 | 
						|
            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
 | 
						|
          ExpectedTemplateParams = nullptr;
 | 
						|
        else
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (ParamIdx < ParamLists.size()) {
 | 
						|
        // Check the template parameter list, if we can.
 | 
						|
        if (ExpectedTemplateParams &&
 | 
						|
            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
 | 
						|
                                            ExpectedTemplateParams,
 | 
						|
                                            true, TPL_TemplateMatch))
 | 
						|
          Invalid = true;
 | 
						|
 | 
						|
        if (!Invalid &&
 | 
						|
            CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
 | 
						|
                                       TPC_ClassTemplateMember))
 | 
						|
          Invalid = true;
 | 
						|
 | 
						|
        ++ParamIdx;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
 | 
						|
        << T
 | 
						|
        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
 | 
						|
      Invalid = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there were at least as many template-ids as there were template
 | 
						|
  // parameter lists, then there are no template parameter lists remaining for
 | 
						|
  // the declaration itself.
 | 
						|
  if (ParamIdx >= ParamLists.size()) {
 | 
						|
    if (TemplateId && !IsFriend) {
 | 
						|
      // We don't have a template header for the declaration itself, but we
 | 
						|
      // should.
 | 
						|
      DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
 | 
						|
                                                        TemplateId->RAngleLoc));
 | 
						|
 | 
						|
      // Fabricate an empty template parameter list for the invented header.
 | 
						|
      return TemplateParameterList::Create(Context, SourceLocation(),
 | 
						|
                                           SourceLocation(), None,
 | 
						|
                                           SourceLocation(), nullptr);
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there were too many template parameter lists, complain about that now.
 | 
						|
  if (ParamIdx < ParamLists.size() - 1) {
 | 
						|
    bool HasAnyExplicitSpecHeader = false;
 | 
						|
    bool AllExplicitSpecHeaders = true;
 | 
						|
    for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
 | 
						|
      if (ParamLists[I]->size() == 0)
 | 
						|
        HasAnyExplicitSpecHeader = true;
 | 
						|
      else
 | 
						|
        AllExplicitSpecHeaders = false;
 | 
						|
    }
 | 
						|
 | 
						|
    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
 | 
						|
         AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
 | 
						|
                                : diag::err_template_spec_extra_headers)
 | 
						|
        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
 | 
						|
                       ParamLists[ParamLists.size() - 2]->getRAngleLoc());
 | 
						|
 | 
						|
    // If there was a specialization somewhere, such that 'template<>' is
 | 
						|
    // not required, and there were any 'template<>' headers, note where the
 | 
						|
    // specialization occurred.
 | 
						|
    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
 | 
						|
      Diag(ExplicitSpecLoc,
 | 
						|
           diag::note_explicit_template_spec_does_not_need_header)
 | 
						|
        << NestedTypes.back();
 | 
						|
 | 
						|
    // We have a template parameter list with no corresponding scope, which
 | 
						|
    // means that the resulting template declaration can't be instantiated
 | 
						|
    // properly (we'll end up with dependent nodes when we shouldn't).
 | 
						|
    if (!AllExplicitSpecHeaders)
 | 
						|
      Invalid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p16:
 | 
						|
  //   In an explicit specialization declaration for a member of a class
 | 
						|
  //   template or a member template that ap- pears in namespace scope, the
 | 
						|
  //   member template and some of its enclosing class templates may remain
 | 
						|
  //   unspecialized, except that the declaration shall not explicitly
 | 
						|
  //   specialize a class member template if its en- closing class templates
 | 
						|
  //   are not explicitly specialized as well.
 | 
						|
  if (ParamLists.back()->size() == 0 &&
 | 
						|
      CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
 | 
						|
                                  false))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Return the last template parameter list, which corresponds to the
 | 
						|
  // entity being declared.
 | 
						|
  return ParamLists.back();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::NoteAllFoundTemplates(TemplateName Name) {
 | 
						|
  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
 | 
						|
    Diag(Template->getLocation(), diag::note_template_declared_here)
 | 
						|
        << (isa<FunctionTemplateDecl>(Template)
 | 
						|
                ? 0
 | 
						|
                : isa<ClassTemplateDecl>(Template)
 | 
						|
                      ? 1
 | 
						|
                      : isa<VarTemplateDecl>(Template)
 | 
						|
                            ? 2
 | 
						|
                            : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
 | 
						|
        << Template->getDeclName();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
 | 
						|
    for (OverloadedTemplateStorage::iterator I = OST->begin(),
 | 
						|
                                          IEnd = OST->end();
 | 
						|
         I != IEnd; ++I)
 | 
						|
      Diag((*I)->getLocation(), diag::note_template_declared_here)
 | 
						|
        << 0 << (*I)->getDeclName();
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static QualType
 | 
						|
checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
 | 
						|
                           const SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
                           SourceLocation TemplateLoc,
 | 
						|
                           TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  ASTContext &Context = SemaRef.getASTContext();
 | 
						|
  switch (BTD->getBuiltinTemplateKind()) {
 | 
						|
  case BTK__make_integer_seq: {
 | 
						|
    // Specializations of __make_integer_seq<S, T, N> are treated like
 | 
						|
    // S<T, 0, ..., N-1>.
 | 
						|
 | 
						|
    // C++14 [inteseq.intseq]p1:
 | 
						|
    //   T shall be an integer type.
 | 
						|
    if (!Converted[1].getAsType()->isIntegralType(Context)) {
 | 
						|
      SemaRef.Diag(TemplateArgs[1].getLocation(),
 | 
						|
                   diag::err_integer_sequence_integral_element_type);
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    // C++14 [inteseq.make]p1:
 | 
						|
    //   If N is negative the program is ill-formed.
 | 
						|
    TemplateArgument NumArgsArg = Converted[2];
 | 
						|
    llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
 | 
						|
    if (NumArgs < 0) {
 | 
						|
      SemaRef.Diag(TemplateArgs[2].getLocation(),
 | 
						|
                   diag::err_integer_sequence_negative_length);
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    QualType ArgTy = NumArgsArg.getIntegralType();
 | 
						|
    TemplateArgumentListInfo SyntheticTemplateArgs;
 | 
						|
    // The type argument gets reused as the first template argument in the
 | 
						|
    // synthetic template argument list.
 | 
						|
    SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
 | 
						|
    // Expand N into 0 ... N-1.
 | 
						|
    for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
 | 
						|
         I < NumArgs; ++I) {
 | 
						|
      TemplateArgument TA(Context, I, ArgTy);
 | 
						|
      SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
 | 
						|
          TA, ArgTy, TemplateArgs[2].getLocation()));
 | 
						|
    }
 | 
						|
    // The first template argument will be reused as the template decl that
 | 
						|
    // our synthetic template arguments will be applied to.
 | 
						|
    return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
 | 
						|
                                       TemplateLoc, SyntheticTemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  case BTK__type_pack_element:
 | 
						|
    // Specializations of
 | 
						|
    //    __type_pack_element<Index, T_1, ..., T_N>
 | 
						|
    // are treated like T_Index.
 | 
						|
    assert(Converted.size() == 2 &&
 | 
						|
      "__type_pack_element should be given an index and a parameter pack");
 | 
						|
 | 
						|
    // If the Index is out of bounds, the program is ill-formed.
 | 
						|
    TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
 | 
						|
    llvm::APSInt Index = IndexArg.getAsIntegral();
 | 
						|
    assert(Index >= 0 && "the index used with __type_pack_element should be of "
 | 
						|
                         "type std::size_t, and hence be non-negative");
 | 
						|
    if (Index >= Ts.pack_size()) {
 | 
						|
      SemaRef.Diag(TemplateArgs[0].getLocation(),
 | 
						|
                   diag::err_type_pack_element_out_of_bounds);
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    // We simply return the type at index `Index`.
 | 
						|
    auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
 | 
						|
    return Nth->getAsType();
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected BuiltinTemplateDecl!");
 | 
						|
}
 | 
						|
 | 
						|
/// Determine whether this alias template is "enable_if_t".
 | 
						|
static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
 | 
						|
  return AliasTemplate->getName().equals("enable_if_t");
 | 
						|
}
 | 
						|
 | 
						|
/// Collect all of the separable terms in the given condition, which
 | 
						|
/// might be a conjunction.
 | 
						|
///
 | 
						|
/// FIXME: The right answer is to convert the logical expression into
 | 
						|
/// disjunctive normal form, so we can find the first failed term
 | 
						|
/// within each possible clause.
 | 
						|
static void collectConjunctionTerms(Expr *Clause,
 | 
						|
                                    SmallVectorImpl<Expr *> &Terms) {
 | 
						|
  if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
 | 
						|
    if (BinOp->getOpcode() == BO_LAnd) {
 | 
						|
      collectConjunctionTerms(BinOp->getLHS(), Terms);
 | 
						|
      collectConjunctionTerms(BinOp->getRHS(), Terms);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Terms.push_back(Clause);
 | 
						|
}
 | 
						|
 | 
						|
// The ranges-v3 library uses an odd pattern of a top-level "||" with
 | 
						|
// a left-hand side that is value-dependent but never true. Identify
 | 
						|
// the idiom and ignore that term.
 | 
						|
static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
 | 
						|
  // Top-level '||'.
 | 
						|
  auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
 | 
						|
  if (!BinOp) return Cond;
 | 
						|
 | 
						|
  if (BinOp->getOpcode() != BO_LOr) return Cond;
 | 
						|
 | 
						|
  // With an inner '==' that has a literal on the right-hand side.
 | 
						|
  Expr *LHS = BinOp->getLHS();
 | 
						|
  auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
 | 
						|
  if (!InnerBinOp) return Cond;
 | 
						|
 | 
						|
  if (InnerBinOp->getOpcode() != BO_EQ ||
 | 
						|
      !isa<IntegerLiteral>(InnerBinOp->getRHS()))
 | 
						|
    return Cond;
 | 
						|
 | 
						|
  // If the inner binary operation came from a macro expansion named
 | 
						|
  // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
 | 
						|
  // of the '||', which is the real, user-provided condition.
 | 
						|
  SourceLocation Loc = InnerBinOp->getExprLoc();
 | 
						|
  if (!Loc.isMacroID()) return Cond;
 | 
						|
 | 
						|
  StringRef MacroName = PP.getImmediateMacroName(Loc);
 | 
						|
  if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
 | 
						|
    return BinOp->getRHS();
 | 
						|
 | 
						|
  return Cond;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<Expr *, std::string>
 | 
						|
Sema::findFailedBooleanCondition(Expr *Cond, bool AllowTopLevelCond) {
 | 
						|
  Cond = lookThroughRangesV3Condition(PP, Cond);
 | 
						|
 | 
						|
  // Separate out all of the terms in a conjunction.
 | 
						|
  SmallVector<Expr *, 4> Terms;
 | 
						|
  collectConjunctionTerms(Cond, Terms);
 | 
						|
 | 
						|
  // Determine which term failed.
 | 
						|
  Expr *FailedCond = nullptr;
 | 
						|
  for (Expr *Term : Terms) {
 | 
						|
    Expr *TermAsWritten = Term->IgnoreParenImpCasts();
 | 
						|
 | 
						|
    // Literals are uninteresting.
 | 
						|
    if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
 | 
						|
        isa<IntegerLiteral>(TermAsWritten))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The initialization of the parameter from the argument is
 | 
						|
    // a constant-evaluated context.
 | 
						|
    EnterExpressionEvaluationContext ConstantEvaluated(
 | 
						|
      *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
 | 
						|
 | 
						|
    bool Succeeded;
 | 
						|
    if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
 | 
						|
        !Succeeded) {
 | 
						|
      FailedCond = TermAsWritten;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FailedCond) {
 | 
						|
    if (!AllowTopLevelCond)
 | 
						|
      return { nullptr, "" };
 | 
						|
 | 
						|
    FailedCond = Cond->IgnoreParenImpCasts();
 | 
						|
  }
 | 
						|
 | 
						|
  std::string Description;
 | 
						|
  {
 | 
						|
    llvm::raw_string_ostream Out(Description);
 | 
						|
    FailedCond->printPretty(Out, nullptr, getPrintingPolicy());
 | 
						|
  }
 | 
						|
  return { FailedCond, Description };
 | 
						|
}
 | 
						|
 | 
						|
QualType Sema::CheckTemplateIdType(TemplateName Name,
 | 
						|
                                   SourceLocation TemplateLoc,
 | 
						|
                                   TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  DependentTemplateName *DTN
 | 
						|
    = Name.getUnderlying().getAsDependentTemplateName();
 | 
						|
  if (DTN && DTN->isIdentifier())
 | 
						|
    // When building a template-id where the template-name is dependent,
 | 
						|
    // assume the template is a type template. Either our assumption is
 | 
						|
    // correct, or the code is ill-formed and will be diagnosed when the
 | 
						|
    // dependent name is substituted.
 | 
						|
    return Context.getDependentTemplateSpecializationType(ETK_None,
 | 
						|
                                                          DTN->getQualifier(),
 | 
						|
                                                          DTN->getIdentifier(),
 | 
						|
                                                          TemplateArgs);
 | 
						|
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template || isa<FunctionTemplateDecl>(Template) ||
 | 
						|
      isa<VarTemplateDecl>(Template)) {
 | 
						|
    // We might have a substituted template template parameter pack. If so,
 | 
						|
    // build a template specialization type for it.
 | 
						|
    if (Name.getAsSubstTemplateTemplateParmPack())
 | 
						|
      return Context.getTemplateSpecializationType(Name, TemplateArgs);
 | 
						|
 | 
						|
    Diag(TemplateLoc, diag::err_template_id_not_a_type)
 | 
						|
      << Name;
 | 
						|
    NoteAllFoundTemplates(Name);
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
 | 
						|
                                false, Converted))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  QualType CanonType;
 | 
						|
 | 
						|
  bool InstantiationDependent = false;
 | 
						|
  if (TypeAliasTemplateDecl *AliasTemplate =
 | 
						|
          dyn_cast<TypeAliasTemplateDecl>(Template)) {
 | 
						|
    // Find the canonical type for this type alias template specialization.
 | 
						|
    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
 | 
						|
    if (Pattern->isInvalidDecl())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                           Converted);
 | 
						|
 | 
						|
    // Only substitute for the innermost template argument list.
 | 
						|
    MultiLevelTemplateArgumentList TemplateArgLists;
 | 
						|
    TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
 | 
						|
    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
 | 
						|
    for (unsigned I = 0; I < Depth; ++I)
 | 
						|
      TemplateArgLists.addOuterTemplateArguments(None);
 | 
						|
 | 
						|
    LocalInstantiationScope Scope(*this);
 | 
						|
    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
 | 
						|
    if (Inst.isInvalid())
 | 
						|
      return QualType();
 | 
						|
 | 
						|
    CanonType = SubstType(Pattern->getUnderlyingType(),
 | 
						|
                          TemplateArgLists, AliasTemplate->getLocation(),
 | 
						|
                          AliasTemplate->getDeclName());
 | 
						|
    if (CanonType.isNull()) {
 | 
						|
      // If this was enable_if and we failed to find the nested type
 | 
						|
      // within enable_if in a SFINAE context, dig out the specific
 | 
						|
      // enable_if condition that failed and present that instead.
 | 
						|
      if (isEnableIfAliasTemplate(AliasTemplate)) {
 | 
						|
        if (auto DeductionInfo = isSFINAEContext()) {
 | 
						|
          if (*DeductionInfo &&
 | 
						|
              (*DeductionInfo)->hasSFINAEDiagnostic() &&
 | 
						|
              (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
 | 
						|
                diag::err_typename_nested_not_found_enable_if &&
 | 
						|
              TemplateArgs[0].getArgument().getKind()
 | 
						|
                == TemplateArgument::Expression) {
 | 
						|
            Expr *FailedCond;
 | 
						|
            std::string FailedDescription;
 | 
						|
            std::tie(FailedCond, FailedDescription) =
 | 
						|
              findFailedBooleanCondition(
 | 
						|
                TemplateArgs[0].getSourceExpression(),
 | 
						|
                /*AllowTopLevelCond=*/true);
 | 
						|
 | 
						|
            // Remove the old SFINAE diagnostic.
 | 
						|
            PartialDiagnosticAt OldDiag =
 | 
						|
              {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
 | 
						|
            (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
 | 
						|
 | 
						|
            // Add a new SFINAE diagnostic specifying which condition
 | 
						|
            // failed.
 | 
						|
            (*DeductionInfo)->addSFINAEDiagnostic(
 | 
						|
              OldDiag.first,
 | 
						|
              PDiag(diag::err_typename_nested_not_found_requirement)
 | 
						|
                << FailedDescription
 | 
						|
                << FailedCond->getSourceRange());
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
  } else if (Name.isDependent() ||
 | 
						|
             TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
               TemplateArgs, InstantiationDependent)) {
 | 
						|
    // This class template specialization is a dependent
 | 
						|
    // type. Therefore, its canonical type is another class template
 | 
						|
    // specialization type that contains all of the converted
 | 
						|
    // arguments in canonical form. This ensures that, e.g., A<T> and
 | 
						|
    // A<T, T> have identical types when A is declared as:
 | 
						|
    //
 | 
						|
    //   template<typename T, typename U = T> struct A;
 | 
						|
    CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
 | 
						|
 | 
						|
    // This might work out to be a current instantiation, in which
 | 
						|
    // case the canonical type needs to be the InjectedClassNameType.
 | 
						|
    //
 | 
						|
    // TODO: in theory this could be a simple hashtable lookup; most
 | 
						|
    // changes to CurContext don't change the set of current
 | 
						|
    // instantiations.
 | 
						|
    if (isa<ClassTemplateDecl>(Template)) {
 | 
						|
      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
 | 
						|
        // If we get out to a namespace, we're done.
 | 
						|
        if (Ctx->isFileContext()) break;
 | 
						|
 | 
						|
        // If this isn't a record, keep looking.
 | 
						|
        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
 | 
						|
        if (!Record) continue;
 | 
						|
 | 
						|
        // Look for one of the two cases with InjectedClassNameTypes
 | 
						|
        // and check whether it's the same template.
 | 
						|
        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
 | 
						|
            !Record->getDescribedClassTemplate())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Fetch the injected class name type and check whether its
 | 
						|
        // injected type is equal to the type we just built.
 | 
						|
        QualType ICNT = Context.getTypeDeclType(Record);
 | 
						|
        QualType Injected = cast<InjectedClassNameType>(ICNT)
 | 
						|
          ->getInjectedSpecializationType();
 | 
						|
 | 
						|
        if (CanonType != Injected->getCanonicalTypeInternal())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If so, the canonical type of this TST is the injected
 | 
						|
        // class name type of the record we just found.
 | 
						|
        assert(ICNT.isCanonical());
 | 
						|
        CanonType = ICNT;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ClassTemplateDecl *ClassTemplate
 | 
						|
               = dyn_cast<ClassTemplateDecl>(Template)) {
 | 
						|
    // Find the class template specialization declaration that
 | 
						|
    // corresponds to these arguments.
 | 
						|
    void *InsertPos = nullptr;
 | 
						|
    ClassTemplateSpecializationDecl *Decl
 | 
						|
      = ClassTemplate->findSpecialization(Converted, InsertPos);
 | 
						|
    if (!Decl) {
 | 
						|
      // This is the first time we have referenced this class template
 | 
						|
      // specialization. Create the canonical declaration and add it to
 | 
						|
      // the set of specializations.
 | 
						|
      Decl = ClassTemplateSpecializationDecl::Create(Context,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getTagKind(),
 | 
						|
                                                ClassTemplate->getDeclContext(),
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getLocStart(),
 | 
						|
                                                ClassTemplate->getLocation(),
 | 
						|
                                                     ClassTemplate,
 | 
						|
                                                     Converted, nullptr);
 | 
						|
      ClassTemplate->AddSpecialization(Decl, InsertPos);
 | 
						|
      if (ClassTemplate->isOutOfLine())
 | 
						|
        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
 | 
						|
    }
 | 
						|
 | 
						|
    if (Decl->getSpecializationKind() == TSK_Undeclared) {
 | 
						|
      MultiLevelTemplateArgumentList TemplateArgLists;
 | 
						|
      TemplateArgLists.addOuterTemplateArguments(Converted);
 | 
						|
      InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
 | 
						|
                              Decl);
 | 
						|
    }
 | 
						|
 | 
						|
    // Diagnose uses of this specialization.
 | 
						|
    (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
 | 
						|
 | 
						|
    CanonType = Context.getTypeDeclType(Decl);
 | 
						|
    assert(isa<RecordType>(CanonType) &&
 | 
						|
           "type of non-dependent specialization is not a RecordType");
 | 
						|
  } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
 | 
						|
    CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
 | 
						|
                                           TemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization, which refers back to the class template
 | 
						|
  // specialization we created or found.
 | 
						|
  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
 | 
						|
                          TemplateTy TemplateD, IdentifierInfo *TemplateII,
 | 
						|
                          SourceLocation TemplateIILoc,
 | 
						|
                          SourceLocation LAngleLoc,
 | 
						|
                          ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                          SourceLocation RAngleLoc,
 | 
						|
                          bool IsCtorOrDtorName, bool IsClassName) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
 | 
						|
    DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
 | 
						|
 | 
						|
    // C++ [temp.res]p3:
 | 
						|
    //   A qualified-id that refers to a type and in which the
 | 
						|
    //   nested-name-specifier depends on a template-parameter (14.6.2)
 | 
						|
    //   shall be prefixed by the keyword typename to indicate that the
 | 
						|
    //   qualified-id denotes a type, forming an
 | 
						|
    //   elaborated-type-specifier (7.1.5.3).
 | 
						|
    if (!LookupCtx && isDependentScopeSpecifier(SS)) {
 | 
						|
      Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
 | 
						|
        << SS.getScopeRep() << TemplateII->getName();
 | 
						|
      // Recover as if 'typename' were specified.
 | 
						|
      // FIXME: This is not quite correct recovery as we don't transform SS
 | 
						|
      // into the corresponding dependent form (and we don't diagnose missing
 | 
						|
      // 'template' keywords within SS as a result).
 | 
						|
      return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
 | 
						|
                               TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
 | 
						|
                               TemplateArgsIn, RAngleLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
 | 
						|
    // it's not actually allowed to be used as a type in most cases. Because
 | 
						|
    // we annotate it before we know whether it's valid, we have to check for
 | 
						|
    // this case here.
 | 
						|
    auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
 | 
						|
    if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
 | 
						|
      Diag(TemplateIILoc,
 | 
						|
           TemplateKWLoc.isInvalid()
 | 
						|
               ? diag::err_out_of_line_qualified_id_type_names_constructor
 | 
						|
               : diag::ext_out_of_line_qualified_id_type_names_constructor)
 | 
						|
        << TemplateII << 0 /*injected-class-name used as template name*/
 | 
						|
        << 1 /*if any keyword was present, it was 'template'*/;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateName Template = TemplateD.get();
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | 
						|
    QualType T
 | 
						|
      = Context.getDependentTemplateSpecializationType(ETK_None,
 | 
						|
                                                       DTN->getQualifier(),
 | 
						|
                                                       DTN->getIdentifier(),
 | 
						|
                                                       TemplateArgs);
 | 
						|
    // Build type-source information.
 | 
						|
    TypeLocBuilder TLB;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL
 | 
						|
      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateIILoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
 | 
						|
  if (Result.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Build type-source information.
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateIILoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
 | 
						|
    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | 
						|
 | 
						|
  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
 | 
						|
  // constructor or destructor name (in such a case, the scope specifier
 | 
						|
  // will be attached to the enclosing Decl or Expr node).
 | 
						|
  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
 | 
						|
    // Create an elaborated-type-specifier containing the nested-name-specifier.
 | 
						|
    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
 | 
						|
    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
 | 
						|
    ElabTL.setElaboratedKeywordLoc(SourceLocation());
 | 
						|
    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  }
 | 
						|
 | 
						|
  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | 
						|
}
 | 
						|
 | 
						|
TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
 | 
						|
                                        TypeSpecifierType TagSpec,
 | 
						|
                                        SourceLocation TagLoc,
 | 
						|
                                        CXXScopeSpec &SS,
 | 
						|
                                        SourceLocation TemplateKWLoc,
 | 
						|
                                        TemplateTy TemplateD,
 | 
						|
                                        SourceLocation TemplateLoc,
 | 
						|
                                        SourceLocation LAngleLoc,
 | 
						|
                                        ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                        SourceLocation RAngleLoc) {
 | 
						|
  TemplateName Template = TemplateD.get();
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  // Determine the tag kind
 | 
						|
  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  ElaboratedTypeKeyword Keyword
 | 
						|
    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
 | 
						|
 | 
						|
  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | 
						|
    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
 | 
						|
                                                          DTN->getQualifier(),
 | 
						|
                                                          DTN->getIdentifier(),
 | 
						|
                                                                TemplateArgs);
 | 
						|
 | 
						|
    // Build type-source information.
 | 
						|
    TypeLocBuilder TLB;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL
 | 
						|
      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(TagLoc);
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateLoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
 | 
						|
  }
 | 
						|
 | 
						|
  if (TypeAliasTemplateDecl *TAT =
 | 
						|
        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
 | 
						|
    // C++0x [dcl.type.elab]p2:
 | 
						|
    //   If the identifier resolves to a typedef-name or the simple-template-id
 | 
						|
    //   resolves to an alias template specialization, the
 | 
						|
    //   elaborated-type-specifier is ill-formed.
 | 
						|
    Diag(TemplateLoc, diag::err_tag_reference_non_tag)
 | 
						|
        << TAT << NTK_TypeAliasTemplate << TagKind;
 | 
						|
    Diag(TAT->getLocation(), diag::note_declared_at);
 | 
						|
  }
 | 
						|
 | 
						|
  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
 | 
						|
  if (Result.isNull())
 | 
						|
    return TypeResult(true);
 | 
						|
 | 
						|
  // Check the tag kind
 | 
						|
  if (const RecordType *RT = Result->getAs<RecordType>()) {
 | 
						|
    RecordDecl *D = RT->getDecl();
 | 
						|
 | 
						|
    IdentifierInfo *Id = D->getIdentifier();
 | 
						|
    assert(Id && "templated class must have an identifier");
 | 
						|
 | 
						|
    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
 | 
						|
                                      TagLoc, Id)) {
 | 
						|
      Diag(TagLoc, diag::err_use_with_wrong_tag)
 | 
						|
        << Result
 | 
						|
        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
 | 
						|
      Diag(D->getLocation(), diag::note_previous_use);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Provide source-location information for the template specialization.
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = TLB.push<TemplateSpecializationTypeLoc>(Result);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateLoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
 | 
						|
    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
 | 
						|
 | 
						|
  // Construct an elaborated type containing the nested-name-specifier (if any)
 | 
						|
  // and tag keyword.
 | 
						|
  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
 | 
						|
  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
 | 
						|
  ElabTL.setElaboratedKeywordLoc(TagLoc);
 | 
						|
  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             SourceLocation Loc,
 | 
						|
                                             bool IsPartialSpecialization);
 | 
						|
 | 
						|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
 | 
						|
 | 
						|
static bool isTemplateArgumentTemplateParameter(
 | 
						|
    const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
 | 
						|
  switch (Arg.getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
  case TemplateArgument::NullPtr:
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case TemplateArgument::Type: {
 | 
						|
    QualType Type = Arg.getAsType();
 | 
						|
    const TemplateTypeParmType *TPT =
 | 
						|
        Arg.getAsType()->getAs<TemplateTypeParmType>();
 | 
						|
    return TPT && !Type.hasQualifiers() &&
 | 
						|
           TPT->getDepth() == Depth && TPT->getIndex() == Index;
 | 
						|
  }
 | 
						|
 | 
						|
  case TemplateArgument::Expression: {
 | 
						|
    DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
 | 
						|
    if (!DRE || !DRE->getDecl())
 | 
						|
      return false;
 | 
						|
    const NonTypeTemplateParmDecl *NTTP =
 | 
						|
        dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
 | 
						|
    return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
 | 
						|
  }
 | 
						|
 | 
						|
  case TemplateArgument::Template:
 | 
						|
    const TemplateTemplateParmDecl *TTP =
 | 
						|
        dyn_cast_or_null<TemplateTemplateParmDecl>(
 | 
						|
            Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
 | 
						|
    return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
 | 
						|
  }
 | 
						|
  llvm_unreachable("unexpected kind of template argument");
 | 
						|
}
 | 
						|
 | 
						|
static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
 | 
						|
                                    ArrayRef<TemplateArgument> Args) {
 | 
						|
  if (Params->size() != Args.size())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Depth = Params->getDepth();
 | 
						|
 | 
						|
  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
 | 
						|
    TemplateArgument Arg = Args[I];
 | 
						|
 | 
						|
    // If the parameter is a pack expansion, the argument must be a pack
 | 
						|
    // whose only element is a pack expansion.
 | 
						|
    if (Params->getParam(I)->isParameterPack()) {
 | 
						|
      if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
 | 
						|
          !Arg.pack_begin()->isPackExpansion())
 | 
						|
        return false;
 | 
						|
      Arg = Arg.pack_begin()->getPackExpansionPattern();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Convert the parser's template argument list representation into our form.
 | 
						|
static TemplateArgumentListInfo
 | 
						|
makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
 | 
						|
  TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
 | 
						|
                                        TemplateId.RAngleLoc);
 | 
						|
  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
 | 
						|
                                     TemplateId.NumArgs);
 | 
						|
  S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
 | 
						|
  return TemplateArgs;
 | 
						|
}
 | 
						|
 | 
						|
template<typename PartialSpecDecl>
 | 
						|
static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
 | 
						|
  if (Partial->getDeclContext()->isDependentContext())
 | 
						|
    return;
 | 
						|
 | 
						|
  // FIXME: Get the TDK from deduction in order to provide better diagnostics
 | 
						|
  // for non-substitution-failure issues?
 | 
						|
  TemplateDeductionInfo Info(Partial->getLocation());
 | 
						|
  if (S.isMoreSpecializedThanPrimary(Partial, Info))
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *Template = Partial->getSpecializedTemplate();
 | 
						|
  S.Diag(Partial->getLocation(),
 | 
						|
         diag::ext_partial_spec_not_more_specialized_than_primary)
 | 
						|
      << isa<VarTemplateDecl>(Template);
 | 
						|
 | 
						|
  if (Info.hasSFINAEDiagnostic()) {
 | 
						|
    PartialDiagnosticAt Diag = {SourceLocation(),
 | 
						|
                                PartialDiagnostic::NullDiagnostic()};
 | 
						|
    Info.takeSFINAEDiagnostic(Diag);
 | 
						|
    SmallString<128> SFINAEArgString;
 | 
						|
    Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
 | 
						|
    S.Diag(Diag.first,
 | 
						|
           diag::note_partial_spec_not_more_specialized_than_primary)
 | 
						|
      << SFINAEArgString;
 | 
						|
  }
 | 
						|
 | 
						|
  S.Diag(Template->getLocation(), diag::note_template_decl_here);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
 | 
						|
                           const llvm::SmallBitVector &DeducibleParams) {
 | 
						|
  for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
 | 
						|
    if (!DeducibleParams[I]) {
 | 
						|
      NamedDecl *Param = TemplateParams->getParam(I);
 | 
						|
      if (Param->getDeclName())
 | 
						|
        S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
 | 
						|
            << Param->getDeclName();
 | 
						|
      else
 | 
						|
        S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
 | 
						|
            << "(anonymous)";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template<typename PartialSpecDecl>
 | 
						|
static void checkTemplatePartialSpecialization(Sema &S,
 | 
						|
                                               PartialSpecDecl *Partial) {
 | 
						|
  // C++1z [temp.class.spec]p8: (DR1495)
 | 
						|
  //   - The specialization shall be more specialized than the primary
 | 
						|
  //     template (14.5.5.2).
 | 
						|
  checkMoreSpecializedThanPrimary(S, Partial);
 | 
						|
 | 
						|
  // C++ [temp.class.spec]p8: (DR1315)
 | 
						|
  //   - Each template-parameter shall appear at least once in the
 | 
						|
  //     template-id outside a non-deduced context.
 | 
						|
  // C++1z [temp.class.spec.match]p3 (P0127R2)
 | 
						|
  //   If the template arguments of a partial specialization cannot be
 | 
						|
  //   deduced because of the structure of its template-parameter-list
 | 
						|
  //   and the template-id, the program is ill-formed.
 | 
						|
  auto *TemplateParams = Partial->getTemplateParameters();
 | 
						|
  llvm::SmallBitVector DeducibleParams(TemplateParams->size());
 | 
						|
  S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
 | 
						|
                               TemplateParams->getDepth(), DeducibleParams);
 | 
						|
 | 
						|
  if (!DeducibleParams.all()) {
 | 
						|
    unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
 | 
						|
    S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
 | 
						|
      << isa<VarTemplatePartialSpecializationDecl>(Partial)
 | 
						|
      << (NumNonDeducible > 1)
 | 
						|
      << SourceRange(Partial->getLocation(),
 | 
						|
                     Partial->getTemplateArgsAsWritten()->RAngleLoc);
 | 
						|
    noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckTemplatePartialSpecialization(
 | 
						|
    ClassTemplatePartialSpecializationDecl *Partial) {
 | 
						|
  checkTemplatePartialSpecialization(*this, Partial);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckTemplatePartialSpecialization(
 | 
						|
    VarTemplatePartialSpecializationDecl *Partial) {
 | 
						|
  checkTemplatePartialSpecialization(*this, Partial);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
 | 
						|
  // C++1z [temp.param]p11:
 | 
						|
  //   A template parameter of a deduction guide template that does not have a
 | 
						|
  //   default-argument shall be deducible from the parameter-type-list of the
 | 
						|
  //   deduction guide template.
 | 
						|
  auto *TemplateParams = TD->getTemplateParameters();
 | 
						|
  llvm::SmallBitVector DeducibleParams(TemplateParams->size());
 | 
						|
  MarkDeducedTemplateParameters(TD, DeducibleParams);
 | 
						|
  for (unsigned I = 0; I != TemplateParams->size(); ++I) {
 | 
						|
    // A parameter pack is deducible (to an empty pack).
 | 
						|
    auto *Param = TemplateParams->getParam(I);
 | 
						|
    if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
 | 
						|
      DeducibleParams[I] = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DeducibleParams.all()) {
 | 
						|
    unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
 | 
						|
    Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
 | 
						|
      << (NumNonDeducible > 1);
 | 
						|
    noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
DeclResult Sema::ActOnVarTemplateSpecialization(
 | 
						|
    Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
 | 
						|
    TemplateParameterList *TemplateParams, StorageClass SC,
 | 
						|
    bool IsPartialSpecialization) {
 | 
						|
  // D must be variable template id.
 | 
						|
  assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
 | 
						|
         "Variable template specialization is declared with a template it.");
 | 
						|
 | 
						|
  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
 | 
						|
  TemplateArgumentListInfo TemplateArgs =
 | 
						|
      makeTemplateArgumentListInfo(*this, *TemplateId);
 | 
						|
  SourceLocation TemplateNameLoc = D.getIdentifierLoc();
 | 
						|
  SourceLocation LAngleLoc = TemplateId->LAngleLoc;
 | 
						|
  SourceLocation RAngleLoc = TemplateId->RAngleLoc;
 | 
						|
 | 
						|
  TemplateName Name = TemplateId->Template.get();
 | 
						|
 | 
						|
  // The template-id must name a variable template.
 | 
						|
  VarTemplateDecl *VarTemplate =
 | 
						|
      dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
  if (!VarTemplate) {
 | 
						|
    NamedDecl *FnTemplate;
 | 
						|
    if (auto *OTS = Name.getAsOverloadedTemplate())
 | 
						|
      FnTemplate = *OTS->begin();
 | 
						|
    else
 | 
						|
      FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
    if (FnTemplate)
 | 
						|
      return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
 | 
						|
               << FnTemplate->getDeclName();
 | 
						|
    return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
 | 
						|
             << IsPartialSpecialization;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for unexpanded parameter packs in any of the template arguments.
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
 | 
						|
                                        UPPC_PartialSpecialization))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
 | 
						|
                                false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Find the variable template (partial) specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  if (IsPartialSpecialization) {
 | 
						|
    if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
 | 
						|
                                               TemplateArgs.size(), Converted))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
 | 
						|
    // also do them during instantiation.
 | 
						|
    bool InstantiationDependent;
 | 
						|
    if (!Name.isDependent() &&
 | 
						|
        !TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
            TemplateArgs.arguments(),
 | 
						|
            InstantiationDependent)) {
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
 | 
						|
          << VarTemplate->getDeclName();
 | 
						|
      IsPartialSpecialization = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
 | 
						|
                                Converted)) {
 | 
						|
      // C++ [temp.class.spec]p9b3:
 | 
						|
      //
 | 
						|
      //   -- The argument list of the specialization shall not be identical
 | 
						|
      //      to the implicit argument list of the primary template.
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | 
						|
        << /*variable template*/ 1
 | 
						|
        << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
 | 
						|
        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
 | 
						|
      // FIXME: Recover from this by treating the declaration as a redeclaration
 | 
						|
      // of the primary template.
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void *InsertPos = nullptr;
 | 
						|
  VarTemplateSpecializationDecl *PrevDecl = nullptr;
 | 
						|
 | 
						|
  if (IsPartialSpecialization)
 | 
						|
    // FIXME: Template parameter list matters too
 | 
						|
    PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
 | 
						|
  else
 | 
						|
    PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
 | 
						|
 | 
						|
  VarTemplateSpecializationDecl *Specialization = nullptr;
 | 
						|
 | 
						|
  // Check whether we can declare a variable template specialization in
 | 
						|
  // the current scope.
 | 
						|
  if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
 | 
						|
                                       TemplateNameLoc,
 | 
						|
                                       IsPartialSpecialization))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
 | 
						|
    // Since the only prior variable template specialization with these
 | 
						|
    // arguments was referenced but not declared,  reuse that
 | 
						|
    // declaration node as our own, updating its source location and
 | 
						|
    // the list of outer template parameters to reflect our new declaration.
 | 
						|
    Specialization = PrevDecl;
 | 
						|
    Specialization->setLocation(TemplateNameLoc);
 | 
						|
    PrevDecl = nullptr;
 | 
						|
  } else if (IsPartialSpecialization) {
 | 
						|
    // Create a new class template partial specialization declaration node.
 | 
						|
    VarTemplatePartialSpecializationDecl *PrevPartial =
 | 
						|
        cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
 | 
						|
    VarTemplatePartialSpecializationDecl *Partial =
 | 
						|
        VarTemplatePartialSpecializationDecl::Create(
 | 
						|
            Context, VarTemplate->getDeclContext(), TemplateKWLoc,
 | 
						|
            TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
 | 
						|
            Converted, TemplateArgs);
 | 
						|
 | 
						|
    if (!PrevPartial)
 | 
						|
      VarTemplate->AddPartialSpecialization(Partial, InsertPos);
 | 
						|
    Specialization = Partial;
 | 
						|
 | 
						|
    // If we are providing an explicit specialization of a member variable
 | 
						|
    // template specialization, make a note of that.
 | 
						|
    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
 | 
						|
      PrevPartial->setMemberSpecialization();
 | 
						|
 | 
						|
    CheckTemplatePartialSpecialization(Partial);
 | 
						|
  } else {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization or friend declaration.
 | 
						|
    Specialization = VarTemplateSpecializationDecl::Create(
 | 
						|
        Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
 | 
						|
        VarTemplate, DI->getType(), DI, SC, Converted);
 | 
						|
    Specialization->setTemplateArgsInfo(TemplateArgs);
 | 
						|
 | 
						|
    if (!PrevDecl)
 | 
						|
      VarTemplate->AddSpecialization(Specialization, InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
 | 
						|
    bool Okay = false;
 | 
						|
    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
      // Is there any previous explicit specialization declaration?
 | 
						|
      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | 
						|
        Okay = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Okay) {
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
 | 
						|
          << Name << Range;
 | 
						|
 | 
						|
      Diag(PrevDecl->getPointOfInstantiation(),
 | 
						|
           diag::note_instantiation_required_here)
 | 
						|
          << (PrevDecl->getTemplateSpecializationKind() !=
 | 
						|
              TSK_ImplicitInstantiation);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Specialization->setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  // Add the specialization into its lexical context, so that it can
 | 
						|
  // be seen when iterating through the list of declarations in that
 | 
						|
  // context. However, specializations are not found by name lookup.
 | 
						|
  CurContext->addDecl(Specialization);
 | 
						|
 | 
						|
  // Note that this is an explicit specialization.
 | 
						|
  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    // Check that this isn't a redefinition of this specialization,
 | 
						|
    // merging with previous declarations.
 | 
						|
    LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
 | 
						|
                          forRedeclarationInCurContext());
 | 
						|
    PrevSpec.addDecl(PrevDecl);
 | 
						|
    D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
 | 
						|
  } else if (Specialization->isStaticDataMember() &&
 | 
						|
             Specialization->isOutOfLine()) {
 | 
						|
    Specialization->setAccess(VarTemplate->getAccess());
 | 
						|
  }
 | 
						|
 | 
						|
  // Link instantiations of static data members back to the template from
 | 
						|
  // which they were instantiated.
 | 
						|
  if (Specialization->isStaticDataMember())
 | 
						|
    Specialization->setInstantiationOfStaticDataMember(
 | 
						|
        VarTemplate->getTemplatedDecl(),
 | 
						|
        Specialization->getSpecializationKind());
 | 
						|
 | 
						|
  return Specialization;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief A partial specialization whose template arguments have matched
 | 
						|
/// a given template-id.
 | 
						|
struct PartialSpecMatchResult {
 | 
						|
  VarTemplatePartialSpecializationDecl *Partial;
 | 
						|
  TemplateArgumentList *Args;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
DeclResult
 | 
						|
Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
 | 
						|
                         SourceLocation TemplateNameLoc,
 | 
						|
                         const TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  assert(Template && "A variable template id without template?");
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(
 | 
						|
          Template, TemplateNameLoc,
 | 
						|
          const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
 | 
						|
          Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Find the variable template specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  void *InsertPos = nullptr;
 | 
						|
  if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
 | 
						|
          Converted, InsertPos)) {
 | 
						|
    checkSpecializationVisibility(TemplateNameLoc, Spec);
 | 
						|
    // If we already have a variable template specialization, return it.
 | 
						|
    return Spec;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is the first time we have referenced this variable template
 | 
						|
  // specialization. Create the canonical declaration and add it to
 | 
						|
  // the set of specializations, based on the closest partial specialization
 | 
						|
  // that it represents. That is,
 | 
						|
  VarDecl *InstantiationPattern = Template->getTemplatedDecl();
 | 
						|
  TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
 | 
						|
                                       Converted);
 | 
						|
  TemplateArgumentList *InstantiationArgs = &TemplateArgList;
 | 
						|
  bool AmbiguousPartialSpec = false;
 | 
						|
  typedef PartialSpecMatchResult MatchResult;
 | 
						|
  SmallVector<MatchResult, 4> Matched;
 | 
						|
  SourceLocation PointOfInstantiation = TemplateNameLoc;
 | 
						|
  TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
 | 
						|
                                            /*ForTakingAddress=*/false);
 | 
						|
 | 
						|
  // 1. Attempt to find the closest partial specialization that this
 | 
						|
  // specializes, if any.
 | 
						|
  // If any of the template arguments is dependent, then this is probably
 | 
						|
  // a placeholder for an incomplete declarative context; which must be
 | 
						|
  // complete by instantiation time. Thus, do not search through the partial
 | 
						|
  // specializations yet.
 | 
						|
  // TODO: Unify with InstantiateClassTemplateSpecialization()?
 | 
						|
  //       Perhaps better after unification of DeduceTemplateArguments() and
 | 
						|
  //       getMoreSpecializedPartialSpecialization().
 | 
						|
  bool InstantiationDependent = false;
 | 
						|
  if (!TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
          TemplateArgs, InstantiationDependent)) {
 | 
						|
 | 
						|
    SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
 | 
						|
    Template->getPartialSpecializations(PartialSpecs);
 | 
						|
 | 
						|
    for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
 | 
						|
      VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
 | 
						|
      TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | 
						|
 | 
						|
      if (TemplateDeductionResult Result =
 | 
						|
              DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
 | 
						|
        // Store the failed-deduction information for use in diagnostics, later.
 | 
						|
        // TODO: Actually use the failed-deduction info?
 | 
						|
        FailedCandidates.addCandidate().set(
 | 
						|
            DeclAccessPair::make(Template, AS_public), Partial,
 | 
						|
            MakeDeductionFailureInfo(Context, Result, Info));
 | 
						|
        (void)Result;
 | 
						|
      } else {
 | 
						|
        Matched.push_back(PartialSpecMatchResult());
 | 
						|
        Matched.back().Partial = Partial;
 | 
						|
        Matched.back().Args = Info.take();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Matched.size() >= 1) {
 | 
						|
      SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
 | 
						|
      if (Matched.size() == 1) {
 | 
						|
        //   -- If exactly one matching specialization is found, the
 | 
						|
        //      instantiation is generated from that specialization.
 | 
						|
        // We don't need to do anything for this.
 | 
						|
      } else {
 | 
						|
        //   -- If more than one matching specialization is found, the
 | 
						|
        //      partial order rules (14.5.4.2) are used to determine
 | 
						|
        //      whether one of the specializations is more specialized
 | 
						|
        //      than the others. If none of the specializations is more
 | 
						|
        //      specialized than all of the other matching
 | 
						|
        //      specializations, then the use of the variable template is
 | 
						|
        //      ambiguous and the program is ill-formed.
 | 
						|
        for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
 | 
						|
                                                   PEnd = Matched.end();
 | 
						|
             P != PEnd; ++P) {
 | 
						|
          if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
 | 
						|
                                                      PointOfInstantiation) ==
 | 
						|
              P->Partial)
 | 
						|
            Best = P;
 | 
						|
        }
 | 
						|
 | 
						|
        // Determine if the best partial specialization is more specialized than
 | 
						|
        // the others.
 | 
						|
        for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
 | 
						|
                                                   PEnd = Matched.end();
 | 
						|
             P != PEnd; ++P) {
 | 
						|
          if (P != Best && getMoreSpecializedPartialSpecialization(
 | 
						|
                               P->Partial, Best->Partial,
 | 
						|
                               PointOfInstantiation) != Best->Partial) {
 | 
						|
            AmbiguousPartialSpec = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Instantiate using the best variable template partial specialization.
 | 
						|
      InstantiationPattern = Best->Partial;
 | 
						|
      InstantiationArgs = Best->Args;
 | 
						|
    } else {
 | 
						|
      //   -- If no match is found, the instantiation is generated
 | 
						|
      //      from the primary template.
 | 
						|
      // InstantiationPattern = Template->getTemplatedDecl();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // 2. Create the canonical declaration.
 | 
						|
  // Note that we do not instantiate a definition until we see an odr-use
 | 
						|
  // in DoMarkVarDeclReferenced().
 | 
						|
  // FIXME: LateAttrs et al.?
 | 
						|
  VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
 | 
						|
      Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
 | 
						|
      Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
 | 
						|
  if (!Decl)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (AmbiguousPartialSpec) {
 | 
						|
    // Partial ordering did not produce a clear winner. Complain.
 | 
						|
    Decl->setInvalidDecl();
 | 
						|
    Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
 | 
						|
        << Decl;
 | 
						|
 | 
						|
    // Print the matching partial specializations.
 | 
						|
    for (MatchResult P : Matched)
 | 
						|
      Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
 | 
						|
          << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
 | 
						|
                                             *P.Args);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (VarTemplatePartialSpecializationDecl *D =
 | 
						|
          dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
 | 
						|
    Decl->setInstantiationOf(D, InstantiationArgs);
 | 
						|
 | 
						|
  checkSpecializationVisibility(TemplateNameLoc, Decl);
 | 
						|
 | 
						|
  assert(Decl && "No variable template specialization?");
 | 
						|
  return Decl;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
 | 
						|
                         const DeclarationNameInfo &NameInfo,
 | 
						|
                         VarTemplateDecl *Template, SourceLocation TemplateLoc,
 | 
						|
                         const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
 | 
						|
  DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
 | 
						|
                                       *TemplateArgs);
 | 
						|
  if (Decl.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  VarDecl *Var = cast<VarDecl>(Decl.get());
 | 
						|
  if (!Var->getTemplateSpecializationKind())
 | 
						|
    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
 | 
						|
                                       NameInfo.getLoc());
 | 
						|
 | 
						|
  // Build an ordinary singleton decl ref.
 | 
						|
  return BuildDeclarationNameExpr(SS, NameInfo, Var,
 | 
						|
                                  /*FoundD=*/nullptr, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
 | 
						|
                                     SourceLocation TemplateKWLoc,
 | 
						|
                                     LookupResult &R,
 | 
						|
                                     bool RequiresADL,
 | 
						|
                                 const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
  // FIXME: Can we do any checking at this point? I guess we could check the
 | 
						|
  // template arguments that we have against the template name, if the template
 | 
						|
  // name refers to a single template. That's not a terribly common case,
 | 
						|
  // though.
 | 
						|
  // foo<int> could identify a single function unambiguously
 | 
						|
  // This approach does NOT work, since f<int>(1);
 | 
						|
  // gets resolved prior to resorting to overload resolution
 | 
						|
  // i.e., template<class T> void f(double);
 | 
						|
  //       vs template<class T, class U> void f(U);
 | 
						|
 | 
						|
  // These should be filtered out by our callers.
 | 
						|
  assert(!R.empty() && "empty lookup results when building templateid");
 | 
						|
  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
 | 
						|
 | 
						|
  // In C++1y, check variable template ids.
 | 
						|
  bool InstantiationDependent;
 | 
						|
  if (R.getAsSingle<VarTemplateDecl>() &&
 | 
						|
      !TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
           *TemplateArgs, InstantiationDependent)) {
 | 
						|
    return CheckVarTemplateId(SS, R.getLookupNameInfo(),
 | 
						|
                              R.getAsSingle<VarTemplateDecl>(),
 | 
						|
                              TemplateKWLoc, TemplateArgs);
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't want lookup warnings at this point.
 | 
						|
  R.suppressDiagnostics();
 | 
						|
 | 
						|
  UnresolvedLookupExpr *ULE
 | 
						|
    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
 | 
						|
                                   SS.getWithLocInContext(Context),
 | 
						|
                                   TemplateKWLoc,
 | 
						|
                                   R.getLookupNameInfo(),
 | 
						|
                                   RequiresADL, TemplateArgs,
 | 
						|
                                   R.begin(), R.end());
 | 
						|
 | 
						|
  return ULE;
 | 
						|
}
 | 
						|
 | 
						|
// We actually only call this from template instantiation.
 | 
						|
ExprResult
 | 
						|
Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
 | 
						|
                                   SourceLocation TemplateKWLoc,
 | 
						|
                                   const DeclarationNameInfo &NameInfo,
 | 
						|
                             const TemplateArgumentListInfo *TemplateArgs) {
 | 
						|
 | 
						|
  assert(TemplateArgs || TemplateKWLoc.isValid());
 | 
						|
  DeclContext *DC;
 | 
						|
  if (!(DC = computeDeclContext(SS, false)) ||
 | 
						|
      DC->isDependentContext() ||
 | 
						|
      RequireCompleteDeclContext(SS, DC))
 | 
						|
    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
 | 
						|
 | 
						|
  bool MemberOfUnknownSpecialization;
 | 
						|
  LookupResult R(*this, NameInfo, LookupOrdinaryName);
 | 
						|
  LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
 | 
						|
                     MemberOfUnknownSpecialization);
 | 
						|
 | 
						|
  if (R.isAmbiguous())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  if (R.empty()) {
 | 
						|
    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
 | 
						|
      << NameInfo.getName() << SS.getRange();
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
 | 
						|
    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
 | 
						|
      << SS.getScopeRep()
 | 
						|
      << NameInfo.getName().getAsString() << SS.getRange();
 | 
						|
    Diag(Temp->getLocation(), diag::note_referenced_class_template);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Form a dependent template name.
 | 
						|
///
 | 
						|
/// This action forms a dependent template name given the template
 | 
						|
/// name and its (presumably dependent) scope specifier. For
 | 
						|
/// example, given "MetaFun::template apply", the scope specifier \p
 | 
						|
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
 | 
						|
/// of the "template" keyword, and "apply" is the \p Name.
 | 
						|
TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
 | 
						|
                                                  CXXScopeSpec &SS,
 | 
						|
                                                  SourceLocation TemplateKWLoc,
 | 
						|
                                                  UnqualifiedId &Name,
 | 
						|
                                                  ParsedType ObjectType,
 | 
						|
                                                  bool EnteringContext,
 | 
						|
                                                  TemplateTy &Result,
 | 
						|
                                                  bool AllowInjectedClassName) {
 | 
						|
  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
 | 
						|
    Diag(TemplateKWLoc,
 | 
						|
         getLangOpts().CPlusPlus11 ?
 | 
						|
           diag::warn_cxx98_compat_template_outside_of_template :
 | 
						|
           diag::ext_template_outside_of_template)
 | 
						|
      << FixItHint::CreateRemoval(TemplateKWLoc);
 | 
						|
 | 
						|
  DeclContext *LookupCtx = nullptr;
 | 
						|
  if (SS.isSet())
 | 
						|
    LookupCtx = computeDeclContext(SS, EnteringContext);
 | 
						|
  if (!LookupCtx && ObjectType)
 | 
						|
    LookupCtx = computeDeclContext(ObjectType.get());
 | 
						|
  if (LookupCtx) {
 | 
						|
    // C++0x [temp.names]p5:
 | 
						|
    //   If a name prefixed by the keyword template is not the name of
 | 
						|
    //   a template, the program is ill-formed. [Note: the keyword
 | 
						|
    //   template may not be applied to non-template members of class
 | 
						|
    //   templates. -end note ] [ Note: as is the case with the
 | 
						|
    //   typename prefix, the template prefix is allowed in cases
 | 
						|
    //   where it is not strictly necessary; i.e., when the
 | 
						|
    //   nested-name-specifier or the expression on the left of the ->
 | 
						|
    //   or . is not dependent on a template-parameter, or the use
 | 
						|
    //   does not appear in the scope of a template. -end note]
 | 
						|
    //
 | 
						|
    // Note: C++03 was more strict here, because it banned the use of
 | 
						|
    // the "template" keyword prior to a template-name that was not a
 | 
						|
    // dependent name. C++ DR468 relaxed this requirement (the
 | 
						|
    // "template" keyword is now permitted). We follow the C++0x
 | 
						|
    // rules, even in C++03 mode with a warning, retroactively applying the DR.
 | 
						|
    bool MemberOfUnknownSpecialization;
 | 
						|
    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
 | 
						|
                                          ObjectType, EnteringContext, Result,
 | 
						|
                                          MemberOfUnknownSpecialization);
 | 
						|
    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
 | 
						|
        isa<CXXRecordDecl>(LookupCtx) &&
 | 
						|
        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
 | 
						|
         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
 | 
						|
      // This is a dependent template. Handle it below.
 | 
						|
    } else if (TNK == TNK_Non_template) {
 | 
						|
      Diag(Name.getLocStart(),
 | 
						|
           diag::err_template_kw_refers_to_non_template)
 | 
						|
        << GetNameFromUnqualifiedId(Name).getName()
 | 
						|
        << Name.getSourceRange()
 | 
						|
        << TemplateKWLoc;
 | 
						|
      return TNK_Non_template;
 | 
						|
    } else {
 | 
						|
      // We found something; return it.
 | 
						|
      auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
 | 
						|
      if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
 | 
						|
          Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
 | 
						|
          Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
 | 
						|
        // C++14 [class.qual]p2:
 | 
						|
        //   In a lookup in which function names are not ignored and the
 | 
						|
        //   nested-name-specifier nominates a class C, if the name specified
 | 
						|
        //   [...] is the injected-class-name of C, [...] the name is instead
 | 
						|
        //   considered to name the constructor
 | 
						|
        //
 | 
						|
        // We don't get here if naming the constructor would be valid, so we
 | 
						|
        // just reject immediately and recover by treating the
 | 
						|
        // injected-class-name as naming the template.
 | 
						|
        Diag(Name.getLocStart(),
 | 
						|
             diag::ext_out_of_line_qualified_id_type_names_constructor)
 | 
						|
          << Name.Identifier << 0 /*injected-class-name used as template name*/
 | 
						|
          << 1 /*'template' keyword was used*/;
 | 
						|
      }
 | 
						|
      return TNK;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  NestedNameSpecifier *Qualifier = SS.getScopeRep();
 | 
						|
 | 
						|
  switch (Name.getKind()) {
 | 
						|
  case UnqualifiedIdKind::IK_Identifier:
 | 
						|
    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | 
						|
                                                              Name.Identifier));
 | 
						|
    return TNK_Dependent_template_name;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_OperatorFunctionId:
 | 
						|
    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
 | 
						|
                                             Name.OperatorFunctionId.Operator));
 | 
						|
    return TNK_Function_template;
 | 
						|
 | 
						|
  case UnqualifiedIdKind::IK_LiteralOperatorId:
 | 
						|
    llvm_unreachable("literal operator id cannot have a dependent scope");
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  Diag(Name.getLocStart(),
 | 
						|
       diag::err_template_kw_refers_to_non_template)
 | 
						|
    << GetNameFromUnqualifiedId(Name).getName()
 | 
						|
    << Name.getSourceRange()
 | 
						|
    << TemplateKWLoc;
 | 
						|
  return TNK_Non_template;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
 | 
						|
                                     TemplateArgumentLoc &AL,
 | 
						|
                          SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
  const TemplateArgument &Arg = AL.getArgument();
 | 
						|
  QualType ArgType;
 | 
						|
  TypeSourceInfo *TSI = nullptr;
 | 
						|
 | 
						|
  // Check template type parameter.
 | 
						|
  switch(Arg.getKind()) {
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    // C++ [temp.arg.type]p1:
 | 
						|
    //   A template-argument for a template-parameter which is a
 | 
						|
    //   type shall be a type-id.
 | 
						|
    ArgType = Arg.getAsType();
 | 
						|
    TSI = AL.getTypeSourceInfo();
 | 
						|
    break;
 | 
						|
  case TemplateArgument::Template:
 | 
						|
  case TemplateArgument::TemplateExpansion: {
 | 
						|
    // We have a template type parameter but the template argument
 | 
						|
    // is a template without any arguments.
 | 
						|
    SourceRange SR = AL.getSourceRange();
 | 
						|
    TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
 | 
						|
    Diag(SR.getBegin(), diag::err_template_missing_args)
 | 
						|
      << (int)getTemplateNameKindForDiagnostics(Name) << Name << SR;
 | 
						|
    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
 | 
						|
      Diag(Decl->getLocation(), diag::note_template_decl_here);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case TemplateArgument::Expression: {
 | 
						|
    // We have a template type parameter but the template argument is an
 | 
						|
    // expression; see if maybe it is missing the "typename" keyword.
 | 
						|
    CXXScopeSpec SS;
 | 
						|
    DeclarationNameInfo NameInfo;
 | 
						|
 | 
						|
    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
 | 
						|
      SS.Adopt(ArgExpr->getQualifierLoc());
 | 
						|
      NameInfo = ArgExpr->getNameInfo();
 | 
						|
    } else if (DependentScopeDeclRefExpr *ArgExpr =
 | 
						|
               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
 | 
						|
      SS.Adopt(ArgExpr->getQualifierLoc());
 | 
						|
      NameInfo = ArgExpr->getNameInfo();
 | 
						|
    } else if (CXXDependentScopeMemberExpr *ArgExpr =
 | 
						|
               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
 | 
						|
      if (ArgExpr->isImplicitAccess()) {
 | 
						|
        SS.Adopt(ArgExpr->getQualifierLoc());
 | 
						|
        NameInfo = ArgExpr->getMemberNameInfo();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
 | 
						|
      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
 | 
						|
      LookupParsedName(Result, CurScope, &SS);
 | 
						|
 | 
						|
      if (Result.getAsSingle<TypeDecl>() ||
 | 
						|
          Result.getResultKind() ==
 | 
						|
              LookupResult::NotFoundInCurrentInstantiation) {
 | 
						|
        // Suggest that the user add 'typename' before the NNS.
 | 
						|
        SourceLocation Loc = AL.getSourceRange().getBegin();
 | 
						|
        Diag(Loc, getLangOpts().MSVCCompat
 | 
						|
                      ? diag::ext_ms_template_type_arg_missing_typename
 | 
						|
                      : diag::err_template_arg_must_be_type_suggest)
 | 
						|
            << FixItHint::CreateInsertion(Loc, "typename ");
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
        // Recover by synthesizing a type using the location information that we
 | 
						|
        // already have.
 | 
						|
        ArgType =
 | 
						|
            Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
 | 
						|
        TypeLocBuilder TLB;
 | 
						|
        DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
 | 
						|
        TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
 | 
						|
        TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
        TL.setNameLoc(NameInfo.getLoc());
 | 
						|
        TSI = TLB.getTypeSourceInfo(Context, ArgType);
 | 
						|
 | 
						|
        // Overwrite our input TemplateArgumentLoc so that we can recover
 | 
						|
        // properly.
 | 
						|
        AL = TemplateArgumentLoc(TemplateArgument(ArgType),
 | 
						|
                                 TemplateArgumentLocInfo(TSI));
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // fallthrough
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  }
 | 
						|
  default: {
 | 
						|
    // We have a template type parameter but the template argument
 | 
						|
    // is not a type.
 | 
						|
    SourceRange SR = AL.getSourceRange();
 | 
						|
    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckTemplateArgument(Param, TSI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Add the converted template type argument.
 | 
						|
  ArgType = Context.getCanonicalType(ArgType);
 | 
						|
 | 
						|
  // Objective-C ARC:
 | 
						|
  //   If an explicitly-specified template argument type is a lifetime type
 | 
						|
  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
 | 
						|
  if (getLangOpts().ObjCAutoRefCount &&
 | 
						|
      ArgType->isObjCLifetimeType() &&
 | 
						|
      !ArgType.getObjCLifetime()) {
 | 
						|
    Qualifiers Qs;
 | 
						|
    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
 | 
						|
    ArgType = Context.getQualifiedType(ArgType, Qs);
 | 
						|
  }
 | 
						|
 | 
						|
  Converted.push_back(TemplateArgument(ArgType));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given template type parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the template template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static TypeSourceInfo *
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             TemplateTypeParmDecl *Param,
 | 
						|
                             SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
 | 
						|
 | 
						|
  // If the argument type is dependent, instantiate it now based
 | 
						|
  // on the previously-computed template arguments.
 | 
						|
  if (ArgType->getType()->isDependentType()) {
 | 
						|
    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                     Param, Template, Converted,
 | 
						|
                                     SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    if (Inst.isInvalid())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | 
						|
 | 
						|
    // Only substitute for the innermost template argument list.
 | 
						|
    MultiLevelTemplateArgumentList TemplateArgLists;
 | 
						|
    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | 
						|
    for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
 | 
						|
      TemplateArgLists.addOuterTemplateArguments(None);
 | 
						|
 | 
						|
    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | 
						|
    ArgType =
 | 
						|
        SemaRef.SubstType(ArgType, TemplateArgLists,
 | 
						|
                          Param->getDefaultArgumentLoc(), Param->getDeclName());
 | 
						|
  }
 | 
						|
 | 
						|
  return ArgType;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given non-type template parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the non-type template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static ExprResult
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             NonTypeTemplateParmDecl *Param,
 | 
						|
                        SmallVectorImpl<TemplateArgument> &Converted) {
 | 
						|
  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
 | 
						|
                                   Param, Template, Converted,
 | 
						|
                                   SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
  if (Inst.isInvalid())
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | 
						|
 | 
						|
  // Only substitute for the innermost template argument list.
 | 
						|
  MultiLevelTemplateArgumentList TemplateArgLists;
 | 
						|
  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | 
						|
  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
 | 
						|
    TemplateArgLists.addOuterTemplateArguments(None);
 | 
						|
 | 
						|
  EnterExpressionEvaluationContext ConstantEvaluated(
 | 
						|
      SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
 | 
						|
  return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Substitute template arguments into the default template argument for
 | 
						|
/// the given template template parameter.
 | 
						|
///
 | 
						|
/// \param SemaRef the semantic analysis object for which we are performing
 | 
						|
/// the substitution.
 | 
						|
///
 | 
						|
/// \param Template the template that we are synthesizing template arguments
 | 
						|
/// for.
 | 
						|
///
 | 
						|
/// \param TemplateLoc the location of the template name that started the
 | 
						|
/// template-id we are checking.
 | 
						|
///
 | 
						|
/// \param RAngleLoc the location of the right angle bracket ('>') that
 | 
						|
/// terminates the template-id.
 | 
						|
///
 | 
						|
/// \param Param the template template parameter whose default we are
 | 
						|
/// substituting into.
 | 
						|
///
 | 
						|
/// \param Converted the list of template arguments provided for template
 | 
						|
/// parameters that precede \p Param in the template parameter list.
 | 
						|
///
 | 
						|
/// \param QualifierLoc Will be set to the nested-name-specifier (with
 | 
						|
/// source-location information) that precedes the template name.
 | 
						|
///
 | 
						|
/// \returns the substituted template argument, or NULL if an error occurred.
 | 
						|
static TemplateName
 | 
						|
SubstDefaultTemplateArgument(Sema &SemaRef,
 | 
						|
                             TemplateDecl *Template,
 | 
						|
                             SourceLocation TemplateLoc,
 | 
						|
                             SourceLocation RAngleLoc,
 | 
						|
                             TemplateTemplateParmDecl *Param,
 | 
						|
                       SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
                             NestedNameSpecifierLoc &QualifierLoc) {
 | 
						|
  Sema::InstantiatingTemplate Inst(
 | 
						|
      SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
 | 
						|
      SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
  if (Inst.isInvalid())
 | 
						|
    return TemplateName();
 | 
						|
 | 
						|
  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | 
						|
 | 
						|
  // Only substitute for the innermost template argument list.
 | 
						|
  MultiLevelTemplateArgumentList TemplateArgLists;
 | 
						|
  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
 | 
						|
  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
 | 
						|
    TemplateArgLists.addOuterTemplateArguments(None);
 | 
						|
 | 
						|
  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
 | 
						|
  // Substitute into the nested-name-specifier first,
 | 
						|
  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
 | 
						|
  if (QualifierLoc) {
 | 
						|
    QualifierLoc =
 | 
						|
        SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
 | 
						|
    if (!QualifierLoc)
 | 
						|
      return TemplateName();
 | 
						|
  }
 | 
						|
 | 
						|
  return SemaRef.SubstTemplateName(
 | 
						|
             QualifierLoc,
 | 
						|
             Param->getDefaultArgument().getArgument().getAsTemplate(),
 | 
						|
             Param->getDefaultArgument().getTemplateNameLoc(),
 | 
						|
             TemplateArgLists);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief If the given template parameter has a default template
 | 
						|
/// argument, substitute into that default template argument and
 | 
						|
/// return the corresponding template argument.
 | 
						|
TemplateArgumentLoc
 | 
						|
Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
 | 
						|
                                              SourceLocation TemplateLoc,
 | 
						|
                                              SourceLocation RAngleLoc,
 | 
						|
                                              Decl *Param,
 | 
						|
                                              SmallVectorImpl<TemplateArgument>
 | 
						|
                                                &Converted,
 | 
						|
                                              bool &HasDefaultArg) {
 | 
						|
  HasDefaultArg = false;
 | 
						|
 | 
						|
  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | 
						|
    if (!hasVisibleDefaultArgument(TypeParm))
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    HasDefaultArg = true;
 | 
						|
    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                      TemplateLoc,
 | 
						|
                                                      RAngleLoc,
 | 
						|
                                                      TypeParm,
 | 
						|
                                                      Converted);
 | 
						|
    if (DI)
 | 
						|
      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
 | 
						|
 | 
						|
    return TemplateArgumentLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  if (NonTypeTemplateParmDecl *NonTypeParm
 | 
						|
        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
    if (!hasVisibleDefaultArgument(NonTypeParm))
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    HasDefaultArg = true;
 | 
						|
    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                  TemplateLoc,
 | 
						|
                                                  RAngleLoc,
 | 
						|
                                                  NonTypeParm,
 | 
						|
                                                  Converted);
 | 
						|
    if (Arg.isInvalid())
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    Expr *ArgE = Arg.getAs<Expr>();
 | 
						|
    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
 | 
						|
  }
 | 
						|
 | 
						|
  TemplateTemplateParmDecl *TempTempParm
 | 
						|
    = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
  if (!hasVisibleDefaultArgument(TempTempParm))
 | 
						|
    return TemplateArgumentLoc();
 | 
						|
 | 
						|
  HasDefaultArg = true;
 | 
						|
  NestedNameSpecifierLoc QualifierLoc;
 | 
						|
  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                    TemplateLoc,
 | 
						|
                                                    RAngleLoc,
 | 
						|
                                                    TempTempParm,
 | 
						|
                                                    Converted,
 | 
						|
                                                    QualifierLoc);
 | 
						|
  if (TName.isNull())
 | 
						|
    return TemplateArgumentLoc();
 | 
						|
 | 
						|
  return TemplateArgumentLoc(TemplateArgument(TName),
 | 
						|
                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
 | 
						|
                TempTempParm->getDefaultArgument().getTemplateNameLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// Convert a template-argument that we parsed as a type into a template, if
 | 
						|
/// possible. C++ permits injected-class-names to perform dual service as
 | 
						|
/// template template arguments and as template type arguments.
 | 
						|
static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
 | 
						|
  // Extract and step over any surrounding nested-name-specifier.
 | 
						|
  NestedNameSpecifierLoc QualLoc;
 | 
						|
  if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
 | 
						|
    if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
 | 
						|
      return TemplateArgumentLoc();
 | 
						|
 | 
						|
    QualLoc = ETLoc.getQualifierLoc();
 | 
						|
    TLoc = ETLoc.getNamedTypeLoc();
 | 
						|
  }
 | 
						|
 | 
						|
  // If this type was written as an injected-class-name, it can be used as a
 | 
						|
  // template template argument.
 | 
						|
  if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
 | 
						|
    return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
 | 
						|
                               QualLoc, InjLoc.getNameLoc());
 | 
						|
 | 
						|
  // If this type was written as an injected-class-name, it may have been
 | 
						|
  // converted to a RecordType during instantiation. If the RecordType is
 | 
						|
  // *not* wrapped in a TemplateSpecializationType and denotes a class
 | 
						|
  // template specialization, it must have come from an injected-class-name.
 | 
						|
  if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
 | 
						|
    if (auto *CTSD =
 | 
						|
            dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
 | 
						|
      return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
 | 
						|
                                 QualLoc, RecLoc.getNameLoc());
 | 
						|
 | 
						|
  return TemplateArgumentLoc();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument corresponds to the given
 | 
						|
/// template parameter.
 | 
						|
///
 | 
						|
/// \param Param The template parameter against which the argument will be
 | 
						|
/// checked.
 | 
						|
///
 | 
						|
/// \param Arg The template argument, which may be updated due to conversions.
 | 
						|
///
 | 
						|
/// \param Template The template in which the template argument resides.
 | 
						|
///
 | 
						|
/// \param TemplateLoc The location of the template name for the template
 | 
						|
/// whose argument list we're matching.
 | 
						|
///
 | 
						|
/// \param RAngleLoc The location of the right angle bracket ('>') that closes
 | 
						|
/// the template argument list.
 | 
						|
///
 | 
						|
/// \param ArgumentPackIndex The index into the argument pack where this
 | 
						|
/// argument will be placed. Only valid if the parameter is a parameter pack.
 | 
						|
///
 | 
						|
/// \param Converted The checked, converted argument will be added to the
 | 
						|
/// end of this small vector.
 | 
						|
///
 | 
						|
/// \param CTAK Describes how we arrived at this particular template argument:
 | 
						|
/// explicitly written, deduced, etc.
 | 
						|
///
 | 
						|
/// \returns true on error, false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(NamedDecl *Param,
 | 
						|
                                 TemplateArgumentLoc &Arg,
 | 
						|
                                 NamedDecl *Template,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 unsigned ArgumentPackIndex,
 | 
						|
                            SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
                                 CheckTemplateArgumentKind CTAK) {
 | 
						|
  // Check template type parameters.
 | 
						|
  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
 | 
						|
    return CheckTemplateTypeArgument(TTP, Arg, Converted);
 | 
						|
 | 
						|
  // Check non-type template parameters.
 | 
						|
  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
    // Do substitution on the type of the non-type template parameter
 | 
						|
    // with the template arguments we've seen thus far.  But if the
 | 
						|
    // template has a dependent context then we cannot substitute yet.
 | 
						|
    QualType NTTPType = NTTP->getType();
 | 
						|
    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
 | 
						|
      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
 | 
						|
 | 
						|
    // FIXME: Do we need to substitute into parameters here if they're
 | 
						|
    // instantiation-dependent but not dependent?
 | 
						|
    if (NTTPType->isDependentType() &&
 | 
						|
        !isa<TemplateTemplateParmDecl>(Template) &&
 | 
						|
        !Template->getDeclContext()->isDependentContext()) {
 | 
						|
      // Do substitution on the type of the non-type template parameter.
 | 
						|
      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | 
						|
                                 NTTP, Converted,
 | 
						|
                                 SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
      if (Inst.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
 | 
						|
                                        Converted);
 | 
						|
      NTTPType = SubstType(NTTPType,
 | 
						|
                           MultiLevelTemplateArgumentList(TemplateArgs),
 | 
						|
                           NTTP->getLocation(),
 | 
						|
                           NTTP->getDeclName());
 | 
						|
      // If that worked, check the non-type template parameter type
 | 
						|
      // for validity.
 | 
						|
      if (!NTTPType.isNull())
 | 
						|
        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
 | 
						|
                                                     NTTP->getLocation());
 | 
						|
      if (NTTPType.isNull())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (Arg.getArgument().getKind()) {
 | 
						|
    case TemplateArgument::Null:
 | 
						|
      llvm_unreachable("Should never see a NULL template argument here");
 | 
						|
 | 
						|
    case TemplateArgument::Expression: {
 | 
						|
      TemplateArgument Result;
 | 
						|
      ExprResult Res =
 | 
						|
        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
 | 
						|
                              Result, CTAK);
 | 
						|
      if (Res.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // If the resulting expression is new, then use it in place of the
 | 
						|
      // old expression in the template argument.
 | 
						|
      if (Res.get() != Arg.getArgument().getAsExpr()) {
 | 
						|
        TemplateArgument TA(Res.get());
 | 
						|
        Arg = TemplateArgumentLoc(TA, Res.get());
 | 
						|
      }
 | 
						|
 | 
						|
      Converted.push_back(Result);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateArgument::Declaration:
 | 
						|
    case TemplateArgument::Integral:
 | 
						|
    case TemplateArgument::NullPtr:
 | 
						|
      // We've already checked this template argument, so just copy
 | 
						|
      // it to the list of converted arguments.
 | 
						|
      Converted.push_back(Arg.getArgument());
 | 
						|
      break;
 | 
						|
 | 
						|
    case TemplateArgument::Template:
 | 
						|
    case TemplateArgument::TemplateExpansion:
 | 
						|
      // We were given a template template argument. It may not be ill-formed;
 | 
						|
      // see below.
 | 
						|
      if (DependentTemplateName *DTN
 | 
						|
            = Arg.getArgument().getAsTemplateOrTemplatePattern()
 | 
						|
                                              .getAsDependentTemplateName()) {
 | 
						|
        // We have a template argument such as \c T::template X, which we
 | 
						|
        // parsed as a template template argument. However, since we now
 | 
						|
        // know that we need a non-type template argument, convert this
 | 
						|
        // template name into an expression.
 | 
						|
 | 
						|
        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
 | 
						|
                                     Arg.getTemplateNameLoc());
 | 
						|
 | 
						|
        CXXScopeSpec SS;
 | 
						|
        SS.Adopt(Arg.getTemplateQualifierLoc());
 | 
						|
        // FIXME: the template-template arg was a DependentTemplateName,
 | 
						|
        // so it was provided with a template keyword. However, its source
 | 
						|
        // location is not stored in the template argument structure.
 | 
						|
        SourceLocation TemplateKWLoc;
 | 
						|
        ExprResult E = DependentScopeDeclRefExpr::Create(
 | 
						|
            Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
 | 
						|
            nullptr);
 | 
						|
 | 
						|
        // If we parsed the template argument as a pack expansion, create a
 | 
						|
        // pack expansion expression.
 | 
						|
        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
 | 
						|
          E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
 | 
						|
          if (E.isInvalid())
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        TemplateArgument Result;
 | 
						|
        E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
 | 
						|
        if (E.isInvalid())
 | 
						|
          return true;
 | 
						|
 | 
						|
        Converted.push_back(Result);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // We have a template argument that actually does refer to a class
 | 
						|
      // template, alias template, or template template parameter, and
 | 
						|
      // therefore cannot be a non-type template argument.
 | 
						|
      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
 | 
						|
        << Arg.getSourceRange();
 | 
						|
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
 | 
						|
    case TemplateArgument::Type: {
 | 
						|
      // We have a non-type template parameter but the template
 | 
						|
      // argument is a type.
 | 
						|
 | 
						|
      // C++ [temp.arg]p2:
 | 
						|
      //   In a template-argument, an ambiguity between a type-id and
 | 
						|
      //   an expression is resolved to a type-id, regardless of the
 | 
						|
      //   form of the corresponding template-parameter.
 | 
						|
      //
 | 
						|
      // We warn specifically about this case, since it can be rather
 | 
						|
      // confusing for users.
 | 
						|
      QualType T = Arg.getArgument().getAsType();
 | 
						|
      SourceRange SR = Arg.getSourceRange();
 | 
						|
      if (T->isFunctionType())
 | 
						|
        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
 | 
						|
      else
 | 
						|
        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    case TemplateArgument::Pack:
 | 
						|
      llvm_unreachable("Caller must expand template argument packs");
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Check template template parameters.
 | 
						|
  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
 | 
						|
  TemplateParameterList *Params = TempParm->getTemplateParameters();
 | 
						|
  if (TempParm->isExpandedParameterPack())
 | 
						|
    Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
 | 
						|
 | 
						|
  // Substitute into the template parameter list of the template
 | 
						|
  // template parameter, since previously-supplied template arguments
 | 
						|
  // may appear within the template template parameter.
 | 
						|
  //
 | 
						|
  // FIXME: Skip this if the parameters aren't instantiation-dependent.
 | 
						|
  {
 | 
						|
    // Set up a template instantiation context.
 | 
						|
    LocalInstantiationScope Scope(*this);
 | 
						|
    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
 | 
						|
                               TempParm, Converted,
 | 
						|
                               SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    if (Inst.isInvalid())
 | 
						|
      return true;
 | 
						|
 | 
						|
    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
 | 
						|
    Params = SubstTemplateParams(Params, CurContext,
 | 
						|
                                 MultiLevelTemplateArgumentList(TemplateArgs));
 | 
						|
    if (!Params)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++1z [temp.local]p1: (DR1004)
 | 
						|
  //   When [the injected-class-name] is used [...] as a template-argument for
 | 
						|
  //   a template template-parameter [...] it refers to the class template
 | 
						|
  //   itself.
 | 
						|
  if (Arg.getArgument().getKind() == TemplateArgument::Type) {
 | 
						|
    TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
 | 
						|
        Arg.getTypeSourceInfo()->getTypeLoc());
 | 
						|
    if (!ConvertedArg.getArgument().isNull())
 | 
						|
      Arg = ConvertedArg;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Arg.getArgument().getKind()) {
 | 
						|
  case TemplateArgument::Null:
 | 
						|
    llvm_unreachable("Should never see a NULL template argument here");
 | 
						|
 | 
						|
  case TemplateArgument::Template:
 | 
						|
  case TemplateArgument::TemplateExpansion:
 | 
						|
    if (CheckTemplateTemplateArgument(Params, Arg))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Converted.push_back(Arg.getArgument());
 | 
						|
    break;
 | 
						|
 | 
						|
  case TemplateArgument::Expression:
 | 
						|
  case TemplateArgument::Type:
 | 
						|
    // We have a template template parameter but the template
 | 
						|
    // argument does not refer to a template.
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
 | 
						|
      << getLangOpts().CPlusPlus11;
 | 
						|
    return true;
 | 
						|
 | 
						|
  case TemplateArgument::Declaration:
 | 
						|
    llvm_unreachable("Declaration argument with template template parameter");
 | 
						|
  case TemplateArgument::Integral:
 | 
						|
    llvm_unreachable("Integral argument with template template parameter");
 | 
						|
  case TemplateArgument::NullPtr:
 | 
						|
    llvm_unreachable("Null pointer argument with template template parameter");
 | 
						|
 | 
						|
  case TemplateArgument::Pack:
 | 
						|
    llvm_unreachable("Caller must expand template argument packs");
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose an arity mismatch in the
 | 
						|
static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
 | 
						|
                                  SourceLocation TemplateLoc,
 | 
						|
                                  TemplateArgumentListInfo &TemplateArgs) {
 | 
						|
  TemplateParameterList *Params = Template->getTemplateParameters();
 | 
						|
  unsigned NumParams = Params->size();
 | 
						|
  unsigned NumArgs = TemplateArgs.size();
 | 
						|
 | 
						|
  SourceRange Range;
 | 
						|
  if (NumArgs > NumParams)
 | 
						|
    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
 | 
						|
                        TemplateArgs.getRAngleLoc());
 | 
						|
  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
    << (NumArgs > NumParams)
 | 
						|
    << (int)S.getTemplateNameKindForDiagnostics(TemplateName(Template))
 | 
						|
    << Template << Range;
 | 
						|
  S.Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
    << Params->getSourceRange();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether the template parameter is a pack expansion, and if so,
 | 
						|
/// determine the number of parameters produced by that expansion. For instance:
 | 
						|
///
 | 
						|
/// \code
 | 
						|
/// template<typename ...Ts> struct A {
 | 
						|
///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
 | 
						|
/// };
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
 | 
						|
/// is not a pack expansion, so returns an empty Optional.
 | 
						|
static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
 | 
						|
  if (NonTypeTemplateParmDecl *NTTP
 | 
						|
        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
    if (NTTP->isExpandedParameterPack())
 | 
						|
      return NTTP->getNumExpansionTypes();
 | 
						|
  }
 | 
						|
 | 
						|
  if (TemplateTemplateParmDecl *TTP
 | 
						|
        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
 | 
						|
    if (TTP->isExpandedParameterPack())
 | 
						|
      return TTP->getNumExpansionTemplateParameters();
 | 
						|
  }
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
/// Diagnose a missing template argument.
 | 
						|
template<typename TemplateParmDecl>
 | 
						|
static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
 | 
						|
                                    TemplateDecl *TD,
 | 
						|
                                    const TemplateParmDecl *D,
 | 
						|
                                    TemplateArgumentListInfo &Args) {
 | 
						|
  // Dig out the most recent declaration of the template parameter; there may be
 | 
						|
  // declarations of the template that are more recent than TD.
 | 
						|
  D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
 | 
						|
                                 ->getTemplateParameters()
 | 
						|
                                 ->getParam(D->getIndex()));
 | 
						|
 | 
						|
  // If there's a default argument that's not visible, diagnose that we're
 | 
						|
  // missing a module import.
 | 
						|
  llvm::SmallVector<Module*, 8> Modules;
 | 
						|
  if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
 | 
						|
    S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
 | 
						|
                            D->getDefaultArgumentLoc(), Modules,
 | 
						|
                            Sema::MissingImportKind::DefaultArgument,
 | 
						|
                            /*Recover*/true);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: If there's a more recent default argument that *is* visible,
 | 
						|
  // diagnose that it was declared too late.
 | 
						|
 | 
						|
  return diagnoseArityMismatch(S, TD, Loc, Args);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check that the given template argument list is well-formed
 | 
						|
/// for specializing the given template.
 | 
						|
bool Sema::CheckTemplateArgumentList(
 | 
						|
    TemplateDecl *Template, SourceLocation TemplateLoc,
 | 
						|
    TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
 | 
						|
    SmallVectorImpl<TemplateArgument> &Converted,
 | 
						|
    bool UpdateArgsWithConversions) {
 | 
						|
  // Make a copy of the template arguments for processing.  Only make the
 | 
						|
  // changes at the end when successful in matching the arguments to the
 | 
						|
  // template.
 | 
						|
  TemplateArgumentListInfo NewArgs = TemplateArgs;
 | 
						|
 | 
						|
  // Make sure we get the template parameter list from the most
 | 
						|
  // recentdeclaration, since that is the only one that has is guaranteed to
 | 
						|
  // have all the default template argument information.
 | 
						|
  TemplateParameterList *Params =
 | 
						|
      cast<TemplateDecl>(Template->getMostRecentDecl())
 | 
						|
          ->getTemplateParameters();
 | 
						|
 | 
						|
  SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
 | 
						|
 | 
						|
  // C++ [temp.arg]p1:
 | 
						|
  //   [...] The type and form of each template-argument specified in
 | 
						|
  //   a template-id shall match the type and form specified for the
 | 
						|
  //   corresponding parameter declared by the template in its
 | 
						|
  //   template-parameter-list.
 | 
						|
  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
 | 
						|
  SmallVector<TemplateArgument, 2> ArgumentPack;
 | 
						|
  unsigned ArgIdx = 0, NumArgs = NewArgs.size();
 | 
						|
  LocalInstantiationScope InstScope(*this, true);
 | 
						|
  for (TemplateParameterList::iterator Param = Params->begin(),
 | 
						|
                                       ParamEnd = Params->end();
 | 
						|
       Param != ParamEnd; /* increment in loop */) {
 | 
						|
    // If we have an expanded parameter pack, make sure we don't have too
 | 
						|
    // many arguments.
 | 
						|
    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
 | 
						|
      if (*Expansions == ArgumentPack.size()) {
 | 
						|
        // We're done with this parameter pack. Pack up its arguments and add
 | 
						|
        // them to the list.
 | 
						|
        Converted.push_back(
 | 
						|
            TemplateArgument::CreatePackCopy(Context, ArgumentPack));
 | 
						|
        ArgumentPack.clear();
 | 
						|
 | 
						|
        // This argument is assigned to the next parameter.
 | 
						|
        ++Param;
 | 
						|
        continue;
 | 
						|
      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
 | 
						|
        // Not enough arguments for this parameter pack.
 | 
						|
        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
 | 
						|
          << false
 | 
						|
          << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
 | 
						|
          << Template;
 | 
						|
        Diag(Template->getLocation(), diag::note_template_decl_here)
 | 
						|
          << Params->getSourceRange();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (ArgIdx < NumArgs) {
 | 
						|
      // Check the template argument we were given.
 | 
						|
      if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
 | 
						|
                                TemplateLoc, RAngleLoc,
 | 
						|
                                ArgumentPack.size(), Converted))
 | 
						|
        return true;
 | 
						|
 | 
						|
      bool PackExpansionIntoNonPack =
 | 
						|
          NewArgs[ArgIdx].getArgument().isPackExpansion() &&
 | 
						|
          (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
 | 
						|
      if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
 | 
						|
        // Core issue 1430: we have a pack expansion as an argument to an
 | 
						|
        // alias template, and it's not part of a parameter pack. This
 | 
						|
        // can't be canonicalized, so reject it now.
 | 
						|
        Diag(NewArgs[ArgIdx].getLocation(),
 | 
						|
             diag::err_alias_template_expansion_into_fixed_list)
 | 
						|
          << NewArgs[ArgIdx].getSourceRange();
 | 
						|
        Diag((*Param)->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // We're now done with this argument.
 | 
						|
      ++ArgIdx;
 | 
						|
 | 
						|
      if ((*Param)->isTemplateParameterPack()) {
 | 
						|
        // The template parameter was a template parameter pack, so take the
 | 
						|
        // deduced argument and place it on the argument pack. Note that we
 | 
						|
        // stay on the same template parameter so that we can deduce more
 | 
						|
        // arguments.
 | 
						|
        ArgumentPack.push_back(Converted.pop_back_val());
 | 
						|
      } else {
 | 
						|
        // Move to the next template parameter.
 | 
						|
        ++Param;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we just saw a pack expansion into a non-pack, then directly convert
 | 
						|
      // the remaining arguments, because we don't know what parameters they'll
 | 
						|
      // match up with.
 | 
						|
      if (PackExpansionIntoNonPack) {
 | 
						|
        if (!ArgumentPack.empty()) {
 | 
						|
          // If we were part way through filling in an expanded parameter pack,
 | 
						|
          // fall back to just producing individual arguments.
 | 
						|
          Converted.insert(Converted.end(),
 | 
						|
                           ArgumentPack.begin(), ArgumentPack.end());
 | 
						|
          ArgumentPack.clear();
 | 
						|
        }
 | 
						|
 | 
						|
        while (ArgIdx < NumArgs) {
 | 
						|
          Converted.push_back(NewArgs[ArgIdx].getArgument());
 | 
						|
          ++ArgIdx;
 | 
						|
        }
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're checking a partial template argument list, we're done.
 | 
						|
    if (PartialTemplateArgs) {
 | 
						|
      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
 | 
						|
        Converted.push_back(
 | 
						|
            TemplateArgument::CreatePackCopy(Context, ArgumentPack));
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a template parameter pack with no more corresponding
 | 
						|
    // arguments, just break out now and we'll fill in the argument pack below.
 | 
						|
    if ((*Param)->isTemplateParameterPack()) {
 | 
						|
      assert(!getExpandedPackSize(*Param) &&
 | 
						|
             "Should have dealt with this already");
 | 
						|
 | 
						|
      // A non-expanded parameter pack before the end of the parameter list
 | 
						|
      // only occurs for an ill-formed template parameter list, unless we've
 | 
						|
      // got a partial argument list for a function template, so just bail out.
 | 
						|
      if (Param + 1 != ParamEnd)
 | 
						|
        return true;
 | 
						|
 | 
						|
      Converted.push_back(
 | 
						|
          TemplateArgument::CreatePackCopy(Context, ArgumentPack));
 | 
						|
      ArgumentPack.clear();
 | 
						|
 | 
						|
      ++Param;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check whether we have a default argument.
 | 
						|
    TemplateArgumentLoc Arg;
 | 
						|
 | 
						|
    // Retrieve the default template argument from the template
 | 
						|
    // parameter. For each kind of template parameter, we substitute the
 | 
						|
    // template arguments provided thus far and any "outer" template arguments
 | 
						|
    // (when the template parameter was part of a nested template) into
 | 
						|
    // the default argument.
 | 
						|
    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
 | 
						|
      if (!hasVisibleDefaultArgument(TTP))
 | 
						|
        return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
 | 
						|
                                       NewArgs);
 | 
						|
 | 
						|
      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
 | 
						|
                                                             Template,
 | 
						|
                                                             TemplateLoc,
 | 
						|
                                                             RAngleLoc,
 | 
						|
                                                             TTP,
 | 
						|
                                                             Converted);
 | 
						|
      if (!ArgType)
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
 | 
						|
                                ArgType);
 | 
						|
    } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
 | 
						|
      if (!hasVisibleDefaultArgument(NTTP))
 | 
						|
        return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
 | 
						|
                                       NewArgs);
 | 
						|
 | 
						|
      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                              TemplateLoc,
 | 
						|
                                                              RAngleLoc,
 | 
						|
                                                              NTTP,
 | 
						|
                                                              Converted);
 | 
						|
      if (E.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Expr *Ex = E.getAs<Expr>();
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
 | 
						|
    } else {
 | 
						|
      TemplateTemplateParmDecl *TempParm
 | 
						|
        = cast<TemplateTemplateParmDecl>(*Param);
 | 
						|
 | 
						|
      if (!hasVisibleDefaultArgument(TempParm))
 | 
						|
        return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
 | 
						|
                                       NewArgs);
 | 
						|
 | 
						|
      NestedNameSpecifierLoc QualifierLoc;
 | 
						|
      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
 | 
						|
                                                       TemplateLoc,
 | 
						|
                                                       RAngleLoc,
 | 
						|
                                                       TempParm,
 | 
						|
                                                       Converted,
 | 
						|
                                                       QualifierLoc);
 | 
						|
      if (Name.isNull())
 | 
						|
        return true;
 | 
						|
 | 
						|
      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
 | 
						|
                           TempParm->getDefaultArgument().getTemplateNameLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // Introduce an instantiation record that describes where we are using
 | 
						|
    // the default template argument. We're not actually instantiating a
 | 
						|
    // template here, we just create this object to put a note into the
 | 
						|
    // context stack.
 | 
						|
    InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
 | 
						|
                               SourceRange(TemplateLoc, RAngleLoc));
 | 
						|
    if (Inst.isInvalid())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Check the default template argument.
 | 
						|
    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
 | 
						|
                              RAngleLoc, 0, Converted))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Core issue 150 (assumed resolution): if this is a template template
 | 
						|
    // parameter, keep track of the default template arguments from the
 | 
						|
    // template definition.
 | 
						|
    if (isTemplateTemplateParameter)
 | 
						|
      NewArgs.addArgument(Arg);
 | 
						|
 | 
						|
    // Move to the next template parameter and argument.
 | 
						|
    ++Param;
 | 
						|
    ++ArgIdx;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're performing a partial argument substitution, allow any trailing
 | 
						|
  // pack expansions; they might be empty. This can happen even if
 | 
						|
  // PartialTemplateArgs is false (the list of arguments is complete but
 | 
						|
  // still dependent).
 | 
						|
  if (ArgIdx < NumArgs && CurrentInstantiationScope &&
 | 
						|
      CurrentInstantiationScope->getPartiallySubstitutedPack()) {
 | 
						|
    while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
 | 
						|
      Converted.push_back(NewArgs[ArgIdx++].getArgument());
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have any leftover arguments, then there were too many arguments.
 | 
						|
  // Complain and fail.
 | 
						|
  if (ArgIdx < NumArgs)
 | 
						|
    return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
 | 
						|
 | 
						|
  // No problems found with the new argument list, propagate changes back
 | 
						|
  // to caller.
 | 
						|
  if (UpdateArgsWithConversions)
 | 
						|
    TemplateArgs = std::move(NewArgs);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  class UnnamedLocalNoLinkageFinder
 | 
						|
    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
 | 
						|
  {
 | 
						|
    Sema &S;
 | 
						|
    SourceRange SR;
 | 
						|
 | 
						|
    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
 | 
						|
 | 
						|
  public:
 | 
						|
    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
 | 
						|
 | 
						|
    bool Visit(QualType T) {
 | 
						|
      return T.isNull() ? false : inherited::Visit(T.getTypePtr());
 | 
						|
    }
 | 
						|
 | 
						|
#define TYPE(Class, Parent) \
 | 
						|
    bool Visit##Class##Type(const Class##Type *);
 | 
						|
#define ABSTRACT_TYPE(Class, Parent) \
 | 
						|
    bool Visit##Class##Type(const Class##Type *) { return false; }
 | 
						|
#define NON_CANONICAL_TYPE(Class, Parent) \
 | 
						|
    bool Visit##Class##Type(const Class##Type *) { return false; }
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
 | 
						|
    bool VisitTagDecl(const TagDecl *Tag);
 | 
						|
    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
 | 
						|
                                                    const BlockPointerType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
 | 
						|
                                                const LValueReferenceType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
 | 
						|
                                                const RValueReferenceType* T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
 | 
						|
                                                  const MemberPointerType* T) {
 | 
						|
  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
 | 
						|
                                                  const ConstantArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
 | 
						|
                                                 const IncompleteArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
 | 
						|
                                                   const VariableArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
 | 
						|
                                            const DependentSizedArrayType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
 | 
						|
                                         const DependentSizedExtVectorType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
 | 
						|
    const DependentAddressSpaceType *T) {
 | 
						|
  return Visit(T->getPointeeType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
 | 
						|
  return Visit(T->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
 | 
						|
                                                  const FunctionProtoType* T) {
 | 
						|
  for (const auto &A : T->param_types()) {
 | 
						|
    if (Visit(A))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Visit(T->getReturnType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
 | 
						|
                                               const FunctionNoProtoType* T) {
 | 
						|
  return Visit(T->getReturnType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
 | 
						|
                                                  const UnresolvedUsingType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
 | 
						|
  return Visit(T->getUnderlyingType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
 | 
						|
                                                    const UnaryTransformType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
 | 
						|
  return Visit(T->getDeducedType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
 | 
						|
    const DeducedTemplateSpecializationType *T) {
 | 
						|
  return Visit(T->getDeducedType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
 | 
						|
  return VisitTagDecl(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
 | 
						|
  return VisitTagDecl(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
 | 
						|
                                                 const TemplateTypeParmType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
 | 
						|
                                        const SubstTemplateTypeParmPackType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
 | 
						|
                                            const TemplateSpecializationType*) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
 | 
						|
                                              const InjectedClassNameType* T) {
 | 
						|
  return VisitTagDecl(T->getDecl());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
 | 
						|
                                                   const DependentNameType* T) {
 | 
						|
  return VisitNestedNameSpecifier(T->getQualifier());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
 | 
						|
                                 const DependentTemplateSpecializationType* T) {
 | 
						|
  return VisitNestedNameSpecifier(T->getQualifier());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
 | 
						|
                                                   const PackExpansionType* T) {
 | 
						|
  return Visit(T->getPattern());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
 | 
						|
                                                   const ObjCInterfaceType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
 | 
						|
                                                const ObjCObjectPointerType *) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
 | 
						|
  return Visit(T->getValueType());
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
 | 
						|
  if (Tag->getDeclContext()->isFunctionOrMethod()) {
 | 
						|
    S.Diag(SR.getBegin(),
 | 
						|
           S.getLangOpts().CPlusPlus11 ?
 | 
						|
             diag::warn_cxx98_compat_template_arg_local_type :
 | 
						|
             diag::ext_template_arg_local_type)
 | 
						|
      << S.Context.getTypeDeclType(Tag) << SR;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Tag->hasNameForLinkage()) {
 | 
						|
    S.Diag(SR.getBegin(),
 | 
						|
           S.getLangOpts().CPlusPlus11 ?
 | 
						|
             diag::warn_cxx98_compat_template_arg_unnamed_type :
 | 
						|
             diag::ext_template_arg_unnamed_type) << SR;
 | 
						|
    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
 | 
						|
                                                    NestedNameSpecifier *NNS) {
 | 
						|
  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (NNS->getKind()) {
 | 
						|
  case NestedNameSpecifier::Identifier:
 | 
						|
  case NestedNameSpecifier::Namespace:
 | 
						|
  case NestedNameSpecifier::NamespaceAlias:
 | 
						|
  case NestedNameSpecifier::Global:
 | 
						|
  case NestedNameSpecifier::Super:
 | 
						|
    return false;
 | 
						|
 | 
						|
  case NestedNameSpecifier::TypeSpec:
 | 
						|
  case NestedNameSpecifier::TypeSpecWithTemplate:
 | 
						|
    return Visit(QualType(NNS->getAsType(), 0));
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template type parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.type]. It
 | 
						|
/// returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
 | 
						|
                                 TypeSourceInfo *ArgInfo) {
 | 
						|
  assert(ArgInfo && "invalid TypeSourceInfo");
 | 
						|
  QualType Arg = ArgInfo->getType();
 | 
						|
  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
 | 
						|
 | 
						|
  if (Arg->isVariablyModifiedType()) {
 | 
						|
    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
 | 
						|
  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
 | 
						|
    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++03 [temp.arg.type]p2:
 | 
						|
  //   A local type, a type with no linkage, an unnamed type or a type
 | 
						|
  //   compounded from any of these types shall not be used as a
 | 
						|
  //   template-argument for a template type-parameter.
 | 
						|
  //
 | 
						|
  // C++11 allows these, and even in C++03 we allow them as an extension with
 | 
						|
  // a warning.
 | 
						|
  if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
 | 
						|
    UnnamedLocalNoLinkageFinder Finder(*this, SR);
 | 
						|
    (void)Finder.Visit(Context.getCanonicalType(Arg));
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
enum NullPointerValueKind {
 | 
						|
  NPV_NotNullPointer,
 | 
						|
  NPV_NullPointer,
 | 
						|
  NPV_Error
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Determine whether the given template argument is a null pointer
 | 
						|
/// value of the appropriate type.
 | 
						|
static NullPointerValueKind
 | 
						|
isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
 | 
						|
                                   QualType ParamType, Expr *Arg,
 | 
						|
                                   Decl *Entity = nullptr) {
 | 
						|
  if (Arg->isValueDependent() || Arg->isTypeDependent())
 | 
						|
    return NPV_NotNullPointer;
 | 
						|
 | 
						|
  // dllimport'd entities aren't constant but are available inside of template
 | 
						|
  // arguments.
 | 
						|
  if (Entity && Entity->hasAttr<DLLImportAttr>())
 | 
						|
    return NPV_NotNullPointer;
 | 
						|
 | 
						|
  if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
 | 
						|
    llvm_unreachable(
 | 
						|
        "Incomplete parameter type in isNullPointerValueTemplateArgument!");
 | 
						|
 | 
						|
  if (!S.getLangOpts().CPlusPlus11)
 | 
						|
    return NPV_NotNullPointer;
 | 
						|
 | 
						|
  // Determine whether we have a constant expression.
 | 
						|
  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
 | 
						|
  if (ArgRV.isInvalid())
 | 
						|
    return NPV_Error;
 | 
						|
  Arg = ArgRV.get();
 | 
						|
 | 
						|
  Expr::EvalResult EvalResult;
 | 
						|
  SmallVector<PartialDiagnosticAt, 8> Notes;
 | 
						|
  EvalResult.Diag = &Notes;
 | 
						|
  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
 | 
						|
      EvalResult.HasSideEffects) {
 | 
						|
    SourceLocation DiagLoc = Arg->getExprLoc();
 | 
						|
 | 
						|
    // If our only note is the usual "invalid subexpression" note, just point
 | 
						|
    // the caret at its location rather than producing an essentially
 | 
						|
    // redundant note.
 | 
						|
    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
 | 
						|
        diag::note_invalid_subexpr_in_const_expr) {
 | 
						|
      DiagLoc = Notes[0].first;
 | 
						|
      Notes.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
 | 
						|
      << Arg->getType() << Arg->getSourceRange();
 | 
						|
    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
 | 
						|
      S.Diag(Notes[I].first, Notes[I].second);
 | 
						|
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return NPV_Error;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [temp.arg.nontype]p1:
 | 
						|
  //   - an address constant expression of type std::nullptr_t
 | 
						|
  if (Arg->getType()->isNullPtrType())
 | 
						|
    return NPV_NullPointer;
 | 
						|
 | 
						|
  //   - a constant expression that evaluates to a null pointer value (4.10); or
 | 
						|
  //   - a constant expression that evaluates to a null member pointer value
 | 
						|
  //     (4.11); or
 | 
						|
  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
 | 
						|
      (EvalResult.Val.isMemberPointer() &&
 | 
						|
       !EvalResult.Val.getMemberPointerDecl())) {
 | 
						|
    // If our expression has an appropriate type, we've succeeded.
 | 
						|
    bool ObjCLifetimeConversion;
 | 
						|
    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
 | 
						|
        S.IsQualificationConversion(Arg->getType(), ParamType, false,
 | 
						|
                                     ObjCLifetimeConversion))
 | 
						|
      return NPV_NullPointer;
 | 
						|
 | 
						|
    // The types didn't match, but we know we got a null pointer; complain,
 | 
						|
    // then recover as if the types were correct.
 | 
						|
    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
 | 
						|
      << Arg->getType() << ParamType << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return NPV_NullPointer;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we don't have a null pointer value, but we do have a NULL pointer
 | 
						|
  // constant, suggest a cast to the appropriate type.
 | 
						|
  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
 | 
						|
    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
 | 
						|
    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
 | 
						|
        << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
 | 
						|
        << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
 | 
						|
                                      ")");
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return NPV_NullPointer;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: If we ever want to support general, address-constant expressions
 | 
						|
  // as non-type template arguments, we should return the ExprResult here to
 | 
						|
  // be interpreted by the caller.
 | 
						|
  return NPV_NotNullPointer;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is compatible with its
 | 
						|
/// template parameter.
 | 
						|
static bool CheckTemplateArgumentIsCompatibleWithParameter(
 | 
						|
    Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
 | 
						|
    Expr *Arg, QualType ArgType) {
 | 
						|
  bool ObjCLifetimeConversion;
 | 
						|
  if (ParamType->isPointerType() &&
 | 
						|
      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
 | 
						|
      S.IsQualificationConversion(ArgType, ParamType, false,
 | 
						|
                                  ObjCLifetimeConversion)) {
 | 
						|
    // For pointer-to-object types, qualification conversions are
 | 
						|
    // permitted.
 | 
						|
  } else {
 | 
						|
    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
 | 
						|
      if (!ParamRef->getPointeeType()->isFunctionType()) {
 | 
						|
        // C++ [temp.arg.nontype]p5b3:
 | 
						|
        //   For a non-type template-parameter of type reference to
 | 
						|
        //   object, no conversions apply. The type referred to by the
 | 
						|
        //   reference may be more cv-qualified than the (otherwise
 | 
						|
        //   identical) type of the template- argument. The
 | 
						|
        //   template-parameter is bound directly to the
 | 
						|
        //   template-argument, which shall be an lvalue.
 | 
						|
 | 
						|
        // FIXME: Other qualifiers?
 | 
						|
        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
 | 
						|
        unsigned ArgQuals = ArgType.getCVRQualifiers();
 | 
						|
 | 
						|
        if ((ParamQuals | ArgQuals) != ParamQuals) {
 | 
						|
          S.Diag(Arg->getLocStart(),
 | 
						|
                 diag::err_template_arg_ref_bind_ignores_quals)
 | 
						|
            << ParamType << Arg->getType() << Arg->getSourceRange();
 | 
						|
          S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, the template argument refers to an object or
 | 
						|
    // function with external linkage. We now need to check whether the
 | 
						|
    // argument and parameter types are compatible.
 | 
						|
    if (!S.Context.hasSameUnqualifiedType(ArgType,
 | 
						|
                                          ParamType.getNonReferenceType())) {
 | 
						|
      // We can't perform this conversion or binding.
 | 
						|
      if (ParamType->isReferenceType())
 | 
						|
        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
 | 
						|
          << ParamType << ArgIn->getType() << Arg->getSourceRange();
 | 
						|
      else
 | 
						|
        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
 | 
						|
          << ArgIn->getType() << ParamType << Arg->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is the address
 | 
						|
/// of an object or function according to C++ [temp.arg.nontype]p1.
 | 
						|
static bool
 | 
						|
CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
 | 
						|
                                               NonTypeTemplateParmDecl *Param,
 | 
						|
                                               QualType ParamType,
 | 
						|
                                               Expr *ArgIn,
 | 
						|
                                               TemplateArgument &Converted) {
 | 
						|
  bool Invalid = false;
 | 
						|
  Expr *Arg = ArgIn;
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
 | 
						|
  bool AddressTaken = false;
 | 
						|
  SourceLocation AddrOpLoc;
 | 
						|
  if (S.getLangOpts().MicrosoftExt) {
 | 
						|
    // Microsoft Visual C++ strips all casts, allows an arbitrary number of
 | 
						|
    // dereference and address-of operators.
 | 
						|
    Arg = Arg->IgnoreParenCasts();
 | 
						|
 | 
						|
    bool ExtWarnMSTemplateArg = false;
 | 
						|
    UnaryOperatorKind FirstOpKind;
 | 
						|
    SourceLocation FirstOpLoc;
 | 
						|
    while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
      UnaryOperatorKind UnOpKind = UnOp->getOpcode();
 | 
						|
      if (UnOpKind == UO_Deref)
 | 
						|
        ExtWarnMSTemplateArg = true;
 | 
						|
      if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
 | 
						|
        Arg = UnOp->getSubExpr()->IgnoreParenCasts();
 | 
						|
        if (!AddrOpLoc.isValid()) {
 | 
						|
          FirstOpKind = UnOpKind;
 | 
						|
          FirstOpLoc = UnOp->getOperatorLoc();
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (FirstOpLoc.isValid()) {
 | 
						|
      if (ExtWarnMSTemplateArg)
 | 
						|
        S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
 | 
						|
          << ArgIn->getSourceRange();
 | 
						|
 | 
						|
      if (FirstOpKind == UO_AddrOf)
 | 
						|
        AddressTaken = true;
 | 
						|
      else if (Arg->getType()->isPointerType()) {
 | 
						|
        // We cannot let pointers get dereferenced here, that is obviously not a
 | 
						|
        // constant expression.
 | 
						|
        assert(FirstOpKind == UO_Deref);
 | 
						|
        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
 | 
						|
          << Arg->getSourceRange();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // See through any implicit casts we added to fix the type.
 | 
						|
    Arg = Arg->IgnoreImpCasts();
 | 
						|
 | 
						|
    // C++ [temp.arg.nontype]p1:
 | 
						|
    //
 | 
						|
    //   A template-argument for a non-type, non-template
 | 
						|
    //   template-parameter shall be one of: [...]
 | 
						|
    //
 | 
						|
    //     -- the address of an object or function with external
 | 
						|
    //        linkage, including function templates and function
 | 
						|
    //        template-ids but excluding non-static class members,
 | 
						|
    //        expressed as & id-expression where the & is optional if
 | 
						|
    //        the name refers to a function or array, or if the
 | 
						|
    //        corresponding template-parameter is a reference; or
 | 
						|
 | 
						|
    // In C++98/03 mode, give an extension warning on any extra parentheses.
 | 
						|
    // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
 | 
						|
    bool ExtraParens = false;
 | 
						|
    while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
      if (!Invalid && !ExtraParens) {
 | 
						|
        S.Diag(Arg->getLocStart(),
 | 
						|
               S.getLangOpts().CPlusPlus11
 | 
						|
                   ? diag::warn_cxx98_compat_template_arg_extra_parens
 | 
						|
                   : diag::ext_template_arg_extra_parens)
 | 
						|
            << Arg->getSourceRange();
 | 
						|
        ExtraParens = true;
 | 
						|
      }
 | 
						|
 | 
						|
      Arg = Parens->getSubExpr();
 | 
						|
    }
 | 
						|
 | 
						|
    while (SubstNonTypeTemplateParmExpr *subst =
 | 
						|
               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | 
						|
      Arg = subst->getReplacement()->IgnoreImpCasts();
 | 
						|
 | 
						|
    if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
      if (UnOp->getOpcode() == UO_AddrOf) {
 | 
						|
        Arg = UnOp->getSubExpr();
 | 
						|
        AddressTaken = true;
 | 
						|
        AddrOpLoc = UnOp->getOperatorLoc();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    while (SubstNonTypeTemplateParmExpr *subst =
 | 
						|
               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | 
						|
      Arg = subst->getReplacement()->IgnoreImpCasts();
 | 
						|
  }
 | 
						|
 | 
						|
  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
 | 
						|
  ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
 | 
						|
 | 
						|
  // If our parameter has pointer type, check for a null template value.
 | 
						|
  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
 | 
						|
    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
 | 
						|
                                               Entity)) {
 | 
						|
    case NPV_NullPointer:
 | 
						|
      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | 
						|
      Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
 | 
						|
                                   /*isNullPtr=*/true);
 | 
						|
      return false;
 | 
						|
 | 
						|
    case NPV_Error:
 | 
						|
      return true;
 | 
						|
 | 
						|
    case NPV_NotNullPointer:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Stop checking the precise nature of the argument if it is value dependent,
 | 
						|
  // it should be checked when instantiated.
 | 
						|
  if (Arg->isValueDependent()) {
 | 
						|
    Converted = TemplateArgument(ArgIn);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<CXXUuidofExpr>(Arg)) {
 | 
						|
    if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
 | 
						|
                                                       ArgIn, Arg, ArgType))
 | 
						|
      return true;
 | 
						|
 | 
						|
    Converted = TemplateArgument(ArgIn);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DRE) {
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
 | 
						|
    << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannot refer to non-static data members
 | 
						|
  if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
 | 
						|
      << Entity << Arg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannot refer to non-static member functions
 | 
						|
  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
 | 
						|
    if (!Method->isStatic()) {
 | 
						|
      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
 | 
						|
        << Method << Arg->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
 | 
						|
  VarDecl *Var = dyn_cast<VarDecl>(Entity);
 | 
						|
 | 
						|
  // A non-type template argument must refer to an object or function.
 | 
						|
  if (!Func && !Var) {
 | 
						|
    // We found something, but we don't know specifically what it is.
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Address / reference template args must have external linkage in C++98.
 | 
						|
  if (Entity->getFormalLinkage() == InternalLinkage) {
 | 
						|
    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
 | 
						|
             diag::warn_cxx98_compat_template_arg_object_internal :
 | 
						|
             diag::ext_template_arg_object_internal)
 | 
						|
      << !Func << Entity << Arg->getSourceRange();
 | 
						|
    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
      << !Func;
 | 
						|
  } else if (!Entity->hasLinkage()) {
 | 
						|
    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
 | 
						|
      << !Func << Entity << Arg->getSourceRange();
 | 
						|
    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
 | 
						|
      << !Func;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Func) {
 | 
						|
    // If the template parameter has pointer type, the function decays.
 | 
						|
    if (ParamType->isPointerType() && !AddressTaken)
 | 
						|
      ArgType = S.Context.getPointerType(Func->getType());
 | 
						|
    else if (AddressTaken && ParamType->isReferenceType()) {
 | 
						|
      // If we originally had an address-of operator, but the
 | 
						|
      // parameter has reference type, complain and (if things look
 | 
						|
      // like they will work) drop the address-of operator.
 | 
						|
      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
 | 
						|
                                            ParamType.getNonReferenceType())) {
 | 
						|
        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
          << ParamType;
 | 
						|
        S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
        << ParamType
 | 
						|
        << FixItHint::CreateRemoval(AddrOpLoc);
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
      ArgType = Func->getType();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // A value of reference type is not an object.
 | 
						|
    if (Var->getType()->isReferenceType()) {
 | 
						|
      S.Diag(Arg->getLocStart(),
 | 
						|
             diag::err_template_arg_reference_var)
 | 
						|
        << Var->getType() << Arg->getSourceRange();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // A template argument must have static storage duration.
 | 
						|
    if (Var->getTLSKind()) {
 | 
						|
      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the template parameter has pointer type, we must have taken
 | 
						|
    // the address of this object.
 | 
						|
    if (ParamType->isReferenceType()) {
 | 
						|
      if (AddressTaken) {
 | 
						|
        // If we originally had an address-of operator, but the
 | 
						|
        // parameter has reference type, complain and (if things look
 | 
						|
        // like they will work) drop the address-of operator.
 | 
						|
        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
 | 
						|
                                            ParamType.getNonReferenceType())) {
 | 
						|
          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
            << ParamType;
 | 
						|
          S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
 | 
						|
          << ParamType
 | 
						|
          << FixItHint::CreateRemoval(AddrOpLoc);
 | 
						|
        S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
 | 
						|
        ArgType = Var->getType();
 | 
						|
      }
 | 
						|
    } else if (!AddressTaken && ParamType->isPointerType()) {
 | 
						|
      if (Var->getType()->isArrayType()) {
 | 
						|
        // Array-to-pointer decay.
 | 
						|
        ArgType = S.Context.getArrayDecayedType(Var->getType());
 | 
						|
      } else {
 | 
						|
        // If the template parameter has pointer type but the address of
 | 
						|
        // this object was not taken, complain and (possibly) recover by
 | 
						|
        // taking the address of the entity.
 | 
						|
        ArgType = S.Context.getPointerType(Var->getType());
 | 
						|
        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
 | 
						|
          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
 | 
						|
            << ParamType;
 | 
						|
          S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
 | 
						|
          << ParamType
 | 
						|
          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
 | 
						|
 | 
						|
        S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
 | 
						|
                                                     Arg, ArgType))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Create the template argument.
 | 
						|
  Converted =
 | 
						|
      TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
 | 
						|
  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Checks whether the given template argument is a pointer to
 | 
						|
/// member constant according to C++ [temp.arg.nontype]p1.
 | 
						|
static bool CheckTemplateArgumentPointerToMember(Sema &S,
 | 
						|
                                                 NonTypeTemplateParmDecl *Param,
 | 
						|
                                                 QualType ParamType,
 | 
						|
                                                 Expr *&ResultArg,
 | 
						|
                                                 TemplateArgument &Converted) {
 | 
						|
  bool Invalid = false;
 | 
						|
 | 
						|
  Expr *Arg = ResultArg;
 | 
						|
  bool ObjCLifetimeConversion;
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p1:
 | 
						|
  //
 | 
						|
  //   A template-argument for a non-type, non-template
 | 
						|
  //   template-parameter shall be one of: [...]
 | 
						|
  //
 | 
						|
  //     -- a pointer to member expressed as described in 5.3.1.
 | 
						|
  DeclRefExpr *DRE = nullptr;
 | 
						|
 | 
						|
  // In C++98/03 mode, give an extension warning on any extra parentheses.
 | 
						|
  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
 | 
						|
  bool ExtraParens = false;
 | 
						|
  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
 | 
						|
    if (!Invalid && !ExtraParens) {
 | 
						|
      S.Diag(Arg->getLocStart(),
 | 
						|
             S.getLangOpts().CPlusPlus11 ?
 | 
						|
               diag::warn_cxx98_compat_template_arg_extra_parens :
 | 
						|
               diag::ext_template_arg_extra_parens)
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      ExtraParens = true;
 | 
						|
    }
 | 
						|
 | 
						|
    Arg = Parens->getSubExpr();
 | 
						|
  }
 | 
						|
 | 
						|
  while (SubstNonTypeTemplateParmExpr *subst =
 | 
						|
           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
 | 
						|
    Arg = subst->getReplacement()->IgnoreImpCasts();
 | 
						|
 | 
						|
  // A pointer-to-member constant written &Class::member.
 | 
						|
  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
 | 
						|
    if (UnOp->getOpcode() == UO_AddrOf) {
 | 
						|
      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
 | 
						|
      if (DRE && !DRE->getQualifier())
 | 
						|
        DRE = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // A constant of pointer-to-member type.
 | 
						|
  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
 | 
						|
    ValueDecl *VD = DRE->getDecl();
 | 
						|
    if (VD->getType()->isMemberPointerType()) {
 | 
						|
      if (isa<NonTypeTemplateParmDecl>(VD)) {
 | 
						|
        if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | 
						|
          Converted = TemplateArgument(Arg);
 | 
						|
        } else {
 | 
						|
          VD = cast<ValueDecl>(VD->getCanonicalDecl());
 | 
						|
          Converted = TemplateArgument(VD, ParamType);
 | 
						|
        }
 | 
						|
        return Invalid;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DRE = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
 | 
						|
 | 
						|
  // Check for a null pointer value.
 | 
						|
  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
 | 
						|
                                             Entity)) {
 | 
						|
  case NPV_Error:
 | 
						|
    return true;
 | 
						|
  case NPV_NullPointer:
 | 
						|
    S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | 
						|
    Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
 | 
						|
                                 /*isNullPtr*/true);
 | 
						|
    return false;
 | 
						|
  case NPV_NotNullPointer:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (S.IsQualificationConversion(ResultArg->getType(),
 | 
						|
                                  ParamType.getNonReferenceType(), false,
 | 
						|
                                  ObjCLifetimeConversion)) {
 | 
						|
    ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
 | 
						|
                                    ResultArg->getValueKind())
 | 
						|
                    .get();
 | 
						|
  } else if (!S.Context.hasSameUnqualifiedType(
 | 
						|
                 ResultArg->getType(), ParamType.getNonReferenceType())) {
 | 
						|
    // We can't perform this conversion.
 | 
						|
    S.Diag(ResultArg->getLocStart(), diag::err_template_arg_not_convertible)
 | 
						|
        << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
 | 
						|
    S.Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DRE)
 | 
						|
    return S.Diag(Arg->getLocStart(),
 | 
						|
                  diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
      << Arg->getSourceRange();
 | 
						|
 | 
						|
  if (isa<FieldDecl>(DRE->getDecl()) ||
 | 
						|
      isa<IndirectFieldDecl>(DRE->getDecl()) ||
 | 
						|
      isa<CXXMethodDecl>(DRE->getDecl())) {
 | 
						|
    assert((isa<FieldDecl>(DRE->getDecl()) ||
 | 
						|
            isa<IndirectFieldDecl>(DRE->getDecl()) ||
 | 
						|
            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
 | 
						|
           "Only non-static member pointers can make it here");
 | 
						|
 | 
						|
    // Okay: this is the address of a non-static member, and therefore
 | 
						|
    // a member pointer constant.
 | 
						|
    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
    } else {
 | 
						|
      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
 | 
						|
      Converted = TemplateArgument(D, ParamType);
 | 
						|
    }
 | 
						|
    return Invalid;
 | 
						|
  }
 | 
						|
 | 
						|
  // We found something else, but we don't know specifically what it is.
 | 
						|
  S.Diag(Arg->getLocStart(),
 | 
						|
         diag::err_template_arg_not_pointer_to_member_form)
 | 
						|
    << Arg->getSourceRange();
 | 
						|
  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// non-type template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.nontype].
 | 
						|
/// If an error occurred, it returns ExprError(); otherwise, it
 | 
						|
/// returns the converted template argument. \p ParamType is the
 | 
						|
/// type of the non-type template parameter after it has been instantiated.
 | 
						|
ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
 | 
						|
                                       QualType ParamType, Expr *Arg,
 | 
						|
                                       TemplateArgument &Converted,
 | 
						|
                                       CheckTemplateArgumentKind CTAK) {
 | 
						|
  SourceLocation StartLoc = Arg->getLocStart();
 | 
						|
 | 
						|
  // If the parameter type somehow involves auto, deduce the type now.
 | 
						|
  if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
 | 
						|
    // During template argument deduction, we allow 'decltype(auto)' to
 | 
						|
    // match an arbitrary dependent argument.
 | 
						|
    // FIXME: The language rules don't say what happens in this case.
 | 
						|
    // FIXME: We get an opaque dependent type out of decltype(auto) if the
 | 
						|
    // expression is merely instantiation-dependent; is this enough?
 | 
						|
    if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
 | 
						|
      auto *AT = dyn_cast<AutoType>(ParamType);
 | 
						|
      if (AT && AT->isDecltypeAuto()) {
 | 
						|
        Converted = TemplateArgument(Arg);
 | 
						|
        return Arg;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // When checking a deduced template argument, deduce from its type even if
 | 
						|
    // the type is dependent, in order to check the types of non-type template
 | 
						|
    // arguments line up properly in partial ordering.
 | 
						|
    Optional<unsigned> Depth;
 | 
						|
    if (CTAK != CTAK_Specified)
 | 
						|
      Depth = Param->getDepth() + 1;
 | 
						|
    if (DeduceAutoType(
 | 
						|
            Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
 | 
						|
            Arg, ParamType, Depth) == DAR_Failed) {
 | 
						|
      Diag(Arg->getExprLoc(),
 | 
						|
           diag::err_non_type_template_parm_type_deduction_failure)
 | 
						|
        << Param->getDeclName() << Param->getType() << Arg->getType()
 | 
						|
        << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
    // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
 | 
						|
    // an error. The error message normally references the parameter
 | 
						|
    // declaration, but here we'll pass the argument location because that's
 | 
						|
    // where the parameter type is deduced.
 | 
						|
    ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
 | 
						|
    if (ParamType.isNull()) {
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We should have already dropped all cv-qualifiers by now.
 | 
						|
  assert(!ParamType.hasQualifiers() &&
 | 
						|
         "non-type template parameter type cannot be qualified");
 | 
						|
 | 
						|
  if (CTAK == CTAK_Deduced &&
 | 
						|
      !Context.hasSameType(ParamType.getNonLValueExprType(Context),
 | 
						|
                           Arg->getType())) {
 | 
						|
    // FIXME: If either type is dependent, we skip the check. This isn't
 | 
						|
    // correct, since during deduction we're supposed to have replaced each
 | 
						|
    // template parameter with some unique (non-dependent) placeholder.
 | 
						|
    // FIXME: If the argument type contains 'auto', we carry on and fail the
 | 
						|
    // type check in order to force specific types to be more specialized than
 | 
						|
    // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
 | 
						|
    // work.
 | 
						|
    if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
 | 
						|
        !Arg->getType()->getContainedAutoType()) {
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return Arg;
 | 
						|
    }
 | 
						|
    // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
 | 
						|
    // we should actually be checking the type of the template argument in P,
 | 
						|
    // not the type of the template argument deduced from A, against the
 | 
						|
    // template parameter type.
 | 
						|
    Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
 | 
						|
      << Arg->getType()
 | 
						|
      << ParamType.getUnqualifiedType();
 | 
						|
    Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  // If either the parameter has a dependent type or the argument is
 | 
						|
  // type-dependent, there's nothing we can check now.
 | 
						|
  if (ParamType->isDependentType() || Arg->isTypeDependent()) {
 | 
						|
    // FIXME: Produce a cloned, canonical expression?
 | 
						|
    Converted = TemplateArgument(Arg);
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  // The initialization of the parameter from the argument is
 | 
						|
  // a constant-evaluated context.
 | 
						|
  EnterExpressionEvaluationContext ConstantEvaluated(
 | 
						|
      *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
 | 
						|
 | 
						|
  if (getLangOpts().CPlusPlus17) {
 | 
						|
    // C++17 [temp.arg.nontype]p1:
 | 
						|
    //   A template-argument for a non-type template parameter shall be
 | 
						|
    //   a converted constant expression of the type of the template-parameter.
 | 
						|
    APValue Value;
 | 
						|
    ExprResult ArgResult = CheckConvertedConstantExpression(
 | 
						|
        Arg, ParamType, Value, CCEK_TemplateArg);
 | 
						|
    if (ArgResult.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    // For a value-dependent argument, CheckConvertedConstantExpression is
 | 
						|
    // permitted (and expected) to be unable to determine a value.
 | 
						|
    if (ArgResult.get()->isValueDependent()) {
 | 
						|
      Converted = TemplateArgument(ArgResult.get());
 | 
						|
      return ArgResult;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType CanonParamType = Context.getCanonicalType(ParamType);
 | 
						|
 | 
						|
    // Convert the APValue to a TemplateArgument.
 | 
						|
    switch (Value.getKind()) {
 | 
						|
    case APValue::Uninitialized:
 | 
						|
      assert(ParamType->isNullPtrType());
 | 
						|
      Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
 | 
						|
      break;
 | 
						|
    case APValue::Int:
 | 
						|
      assert(ParamType->isIntegralOrEnumerationType());
 | 
						|
      Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
 | 
						|
      break;
 | 
						|
    case APValue::MemberPointer: {
 | 
						|
      assert(ParamType->isMemberPointerType());
 | 
						|
 | 
						|
      // FIXME: We need TemplateArgument representation and mangling for these.
 | 
						|
      if (!Value.getMemberPointerPath().empty()) {
 | 
						|
        Diag(Arg->getLocStart(),
 | 
						|
             diag::err_template_arg_member_ptr_base_derived_not_supported)
 | 
						|
            << Value.getMemberPointerDecl() << ParamType
 | 
						|
            << Arg->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
 | 
						|
      auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
 | 
						|
      Converted = VD ? TemplateArgument(VD, CanonParamType)
 | 
						|
                     : TemplateArgument(CanonParamType, /*isNullPtr*/true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case APValue::LValue: {
 | 
						|
      //   For a non-type template-parameter of pointer or reference type,
 | 
						|
      //   the value of the constant expression shall not refer to
 | 
						|
      assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
 | 
						|
             ParamType->isNullPtrType());
 | 
						|
      // -- a temporary object
 | 
						|
      // -- a string literal
 | 
						|
      // -- the result of a typeid expression, or
 | 
						|
      // -- a predefined __func__ variable
 | 
						|
      if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
 | 
						|
        if (isa<CXXUuidofExpr>(E)) {
 | 
						|
          Converted = TemplateArgument(const_cast<Expr*>(E));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
      auto *VD = const_cast<ValueDecl *>(
 | 
						|
          Value.getLValueBase().dyn_cast<const ValueDecl *>());
 | 
						|
      // -- a subobject
 | 
						|
      if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
 | 
						|
          VD && VD->getType()->isArrayType() &&
 | 
						|
          Value.getLValuePath()[0].ArrayIndex == 0 &&
 | 
						|
          !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
 | 
						|
        // Per defect report (no number yet):
 | 
						|
        //   ... other than a pointer to the first element of a complete array
 | 
						|
        //       object.
 | 
						|
      } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
 | 
						|
                 Value.isLValueOnePastTheEnd()) {
 | 
						|
        Diag(StartLoc, diag::err_non_type_template_arg_subobject)
 | 
						|
          << Value.getAsString(Context, ParamType);
 | 
						|
        return ExprError();
 | 
						|
      }
 | 
						|
      assert((VD || !ParamType->isReferenceType()) &&
 | 
						|
             "null reference should not be a constant expression");
 | 
						|
      assert((!VD || !ParamType->isNullPtrType()) &&
 | 
						|
             "non-null value of type nullptr_t?");
 | 
						|
      Converted = VD ? TemplateArgument(VD, CanonParamType)
 | 
						|
                     : TemplateArgument(CanonParamType, /*isNullPtr*/true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case APValue::AddrLabelDiff:
 | 
						|
      return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
 | 
						|
    case APValue::Float:
 | 
						|
    case APValue::ComplexInt:
 | 
						|
    case APValue::ComplexFloat:
 | 
						|
    case APValue::Vector:
 | 
						|
    case APValue::Array:
 | 
						|
    case APValue::Struct:
 | 
						|
    case APValue::Union:
 | 
						|
      llvm_unreachable("invalid kind for template argument");
 | 
						|
    }
 | 
						|
 | 
						|
    return ArgResult.get();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.arg.nontype]p5:
 | 
						|
  //   The following conversions are performed on each expression used
 | 
						|
  //   as a non-type template-argument. If a non-type
 | 
						|
  //   template-argument cannot be converted to the type of the
 | 
						|
  //   corresponding template-parameter then the program is
 | 
						|
  //   ill-formed.
 | 
						|
  if (ParamType->isIntegralOrEnumerationType()) {
 | 
						|
    // C++11:
 | 
						|
    //   -- for a non-type template-parameter of integral or
 | 
						|
    //      enumeration type, conversions permitted in a converted
 | 
						|
    //      constant expression are applied.
 | 
						|
    //
 | 
						|
    // C++98:
 | 
						|
    //   -- for a non-type template-parameter of integral or
 | 
						|
    //      enumeration type, integral promotions (4.5) and integral
 | 
						|
    //      conversions (4.7) are applied.
 | 
						|
 | 
						|
    if (getLangOpts().CPlusPlus11) {
 | 
						|
      // C++ [temp.arg.nontype]p1:
 | 
						|
      //   A template-argument for a non-type, non-template template-parameter
 | 
						|
      //   shall be one of:
 | 
						|
      //
 | 
						|
      //     -- for a non-type template-parameter of integral or enumeration
 | 
						|
      //        type, a converted constant expression of the type of the
 | 
						|
      //        template-parameter; or
 | 
						|
      llvm::APSInt Value;
 | 
						|
      ExprResult ArgResult =
 | 
						|
        CheckConvertedConstantExpression(Arg, ParamType, Value,
 | 
						|
                                         CCEK_TemplateArg);
 | 
						|
      if (ArgResult.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      // We can't check arbitrary value-dependent arguments.
 | 
						|
      if (ArgResult.get()->isValueDependent()) {
 | 
						|
        Converted = TemplateArgument(ArgResult.get());
 | 
						|
        return ArgResult;
 | 
						|
      }
 | 
						|
 | 
						|
      // Widen the argument value to sizeof(parameter type). This is almost
 | 
						|
      // always a no-op, except when the parameter type is bool. In
 | 
						|
      // that case, this may extend the argument from 1 bit to 8 bits.
 | 
						|
      QualType IntegerType = ParamType;
 | 
						|
      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | 
						|
        IntegerType = Enum->getDecl()->getIntegerType();
 | 
						|
      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
 | 
						|
 | 
						|
      Converted = TemplateArgument(Context, Value,
 | 
						|
                                   Context.getCanonicalType(ParamType));
 | 
						|
      return ArgResult;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult ArgResult = DefaultLvalueConversion(Arg);
 | 
						|
    if (ArgResult.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
    Arg = ArgResult.get();
 | 
						|
 | 
						|
    QualType ArgType = Arg->getType();
 | 
						|
 | 
						|
    // C++ [temp.arg.nontype]p1:
 | 
						|
    //   A template-argument for a non-type, non-template
 | 
						|
    //   template-parameter shall be one of:
 | 
						|
    //
 | 
						|
    //     -- an integral constant-expression of integral or enumeration
 | 
						|
    //        type; or
 | 
						|
    //     -- the name of a non-type template-parameter; or
 | 
						|
    llvm::APSInt Value;
 | 
						|
    if (!ArgType->isIntegralOrEnumerationType()) {
 | 
						|
      Diag(Arg->getLocStart(),
 | 
						|
           diag::err_template_arg_not_integral_or_enumeral)
 | 
						|
        << ArgType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    } else if (!Arg->isValueDependent()) {
 | 
						|
      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
 | 
						|
        QualType T;
 | 
						|
 | 
						|
      public:
 | 
						|
        TmplArgICEDiagnoser(QualType T) : T(T) { }
 | 
						|
 | 
						|
        void diagnoseNotICE(Sema &S, SourceLocation Loc,
 | 
						|
                            SourceRange SR) override {
 | 
						|
          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
 | 
						|
        }
 | 
						|
      } Diagnoser(ArgType);
 | 
						|
 | 
						|
      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
 | 
						|
                                            false).get();
 | 
						|
      if (!Arg)
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    // From here on out, all we care about is the unqualified form
 | 
						|
    // of the argument type.
 | 
						|
    ArgType = ArgType.getUnqualifiedType();
 | 
						|
 | 
						|
    // Try to convert the argument to the parameter's type.
 | 
						|
    if (Context.hasSameType(ParamType, ArgType)) {
 | 
						|
      // Okay: no conversion necessary
 | 
						|
    } else if (ParamType->isBooleanType()) {
 | 
						|
      // This is an integral-to-boolean conversion.
 | 
						|
      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
 | 
						|
    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
 | 
						|
               !ParamType->isEnumeralType()) {
 | 
						|
      // This is an integral promotion or conversion.
 | 
						|
      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
 | 
						|
    } else {
 | 
						|
      // We can't perform this conversion.
 | 
						|
      Diag(Arg->getLocStart(),
 | 
						|
           diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << ParamType << Arg->getSourceRange();
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the value of this argument to the list of converted
 | 
						|
    // arguments. We use the bitwidth and signedness of the template
 | 
						|
    // parameter.
 | 
						|
    if (Arg->isValueDependent()) {
 | 
						|
      // The argument is value-dependent. Create a new
 | 
						|
      // TemplateArgument with the converted expression.
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return Arg;
 | 
						|
    }
 | 
						|
 | 
						|
    QualType IntegerType = Context.getCanonicalType(ParamType);
 | 
						|
    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
 | 
						|
      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
 | 
						|
 | 
						|
    if (ParamType->isBooleanType()) {
 | 
						|
      // Value must be zero or one.
 | 
						|
      Value = Value != 0;
 | 
						|
      unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | 
						|
      if (Value.getBitWidth() != AllowedBits)
 | 
						|
        Value = Value.extOrTrunc(AllowedBits);
 | 
						|
      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
 | 
						|
    } else {
 | 
						|
      llvm::APSInt OldValue = Value;
 | 
						|
 | 
						|
      // Coerce the template argument's value to the value it will have
 | 
						|
      // based on the template parameter's type.
 | 
						|
      unsigned AllowedBits = Context.getTypeSize(IntegerType);
 | 
						|
      if (Value.getBitWidth() != AllowedBits)
 | 
						|
        Value = Value.extOrTrunc(AllowedBits);
 | 
						|
      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
 | 
						|
 | 
						|
      // Complain if an unsigned parameter received a negative value.
 | 
						|
      if (IntegerType->isUnsignedIntegerOrEnumerationType()
 | 
						|
               && (OldValue.isSigned() && OldValue.isNegative())) {
 | 
						|
        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
 | 
						|
          << OldValue.toString(10) << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      }
 | 
						|
 | 
						|
      // Complain if we overflowed the template parameter's type.
 | 
						|
      unsigned RequiredBits;
 | 
						|
      if (IntegerType->isUnsignedIntegerOrEnumerationType())
 | 
						|
        RequiredBits = OldValue.getActiveBits();
 | 
						|
      else if (OldValue.isUnsigned())
 | 
						|
        RequiredBits = OldValue.getActiveBits() + 1;
 | 
						|
      else
 | 
						|
        RequiredBits = OldValue.getMinSignedBits();
 | 
						|
      if (RequiredBits > AllowedBits) {
 | 
						|
        Diag(Arg->getLocStart(),
 | 
						|
             diag::warn_template_arg_too_large)
 | 
						|
          << OldValue.toString(10) << Value.toString(10) << Param->getType()
 | 
						|
          << Arg->getSourceRange();
 | 
						|
        Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Converted = TemplateArgument(Context, Value,
 | 
						|
                                 ParamType->isEnumeralType()
 | 
						|
                                   ? Context.getCanonicalType(ParamType)
 | 
						|
                                   : IntegerType);
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  QualType ArgType = Arg->getType();
 | 
						|
  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
 | 
						|
 | 
						|
  // Handle pointer-to-function, reference-to-function, and
 | 
						|
  // pointer-to-member-function all in (roughly) the same way.
 | 
						|
  if (// -- For a non-type template-parameter of type pointer to
 | 
						|
      //    function, only the function-to-pointer conversion (4.3) is
 | 
						|
      //    applied. If the template-argument represents a set of
 | 
						|
      //    overloaded functions (or a pointer to such), the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      (ParamType->isPointerType() &&
 | 
						|
       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type reference to
 | 
						|
      //    function, no conversions apply. If the template-argument
 | 
						|
      //    represents a set of overloaded functions, the matching
 | 
						|
      //    function is selected from the set (13.4).
 | 
						|
      (ParamType->isReferenceType() &&
 | 
						|
       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
 | 
						|
      // -- For a non-type template-parameter of type pointer to
 | 
						|
      //    member function, no conversions apply. If the
 | 
						|
      //    template-argument represents a set of overloaded member
 | 
						|
      //    functions, the matching member function is selected from
 | 
						|
      //    the set (13.4).
 | 
						|
      (ParamType->isMemberPointerType() &&
 | 
						|
       ParamType->getAs<MemberPointerType>()->getPointeeType()
 | 
						|
         ->isFunctionType())) {
 | 
						|
 | 
						|
    if (Arg->getType() == Context.OverloadTy) {
 | 
						|
      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
 | 
						|
                                                                true,
 | 
						|
                                                                FoundResult)) {
 | 
						|
        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
 | 
						|
        ArgType = Arg->getType();
 | 
						|
      } else
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ParamType->isMemberPointerType()) {
 | 
						|
      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | 
						|
                                                         ParamType,
 | 
						|
                                                         Arg, Converted))
 | 
						|
        return ExprError();
 | 
						|
      return Arg;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
 | 
						|
                                             Converted))
 | 
						|
      return ExprError();
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParamType->isPointerType()) {
 | 
						|
    //   -- for a non-type template-parameter of type pointer to
 | 
						|
    //      object, qualification conversions (4.4) and the
 | 
						|
    //      array-to-pointer conversion (4.2) are applied.
 | 
						|
    // C++0x also allows a value of std::nullptr_t.
 | 
						|
    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
 | 
						|
           "Only object pointers allowed here");
 | 
						|
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | 
						|
                                                       ParamType,
 | 
						|
                                                       Arg, Converted))
 | 
						|
      return ExprError();
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
 | 
						|
    //   -- For a non-type template-parameter of type reference to
 | 
						|
    //      object, no conversions apply. The type referred to by the
 | 
						|
    //      reference may be more cv-qualified than the (otherwise
 | 
						|
    //      identical) type of the template-argument. The
 | 
						|
    //      template-parameter is bound directly to the
 | 
						|
    //      template-argument, which must be an lvalue.
 | 
						|
    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
 | 
						|
           "Only object references allowed here");
 | 
						|
 | 
						|
    if (Arg->getType() == Context.OverloadTy) {
 | 
						|
      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
 | 
						|
                                                 ParamRefType->getPointeeType(),
 | 
						|
                                                                true,
 | 
						|
                                                                FoundResult)) {
 | 
						|
        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
 | 
						|
          return ExprError();
 | 
						|
 | 
						|
        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
 | 
						|
        ArgType = Arg->getType();
 | 
						|
      } else
 | 
						|
        return ExprError();
 | 
						|
    }
 | 
						|
 | 
						|
    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
 | 
						|
                                                       ParamType,
 | 
						|
                                                       Arg, Converted))
 | 
						|
      return ExprError();
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  // Deal with parameters of type std::nullptr_t.
 | 
						|
  if (ParamType->isNullPtrType()) {
 | 
						|
    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
 | 
						|
      Converted = TemplateArgument(Arg);
 | 
						|
      return Arg;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
 | 
						|
    case NPV_NotNullPointer:
 | 
						|
      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
 | 
						|
        << Arg->getType() << ParamType;
 | 
						|
      Diag(Param->getLocation(), diag::note_template_param_here);
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case NPV_Error:
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    case NPV_NullPointer:
 | 
						|
      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
 | 
						|
      Converted = TemplateArgument(Context.getCanonicalType(ParamType),
 | 
						|
                                   /*isNullPtr*/true);
 | 
						|
      return Arg;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //     -- For a non-type template-parameter of type pointer to data
 | 
						|
  //        member, qualification conversions (4.4) are applied.
 | 
						|
  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
 | 
						|
 | 
						|
  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
 | 
						|
                                           Converted))
 | 
						|
    return ExprError();
 | 
						|
  return Arg;
 | 
						|
}
 | 
						|
 | 
						|
static void DiagnoseTemplateParameterListArityMismatch(
 | 
						|
    Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
 | 
						|
    Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
 | 
						|
 | 
						|
/// \brief Check a template argument against its corresponding
 | 
						|
/// template template parameter.
 | 
						|
///
 | 
						|
/// This routine implements the semantics of C++ [temp.arg.template].
 | 
						|
/// It returns true if an error occurred, and false otherwise.
 | 
						|
bool Sema::CheckTemplateTemplateArgument(TemplateParameterList *Params,
 | 
						|
                                         TemplateArgumentLoc &Arg) {
 | 
						|
  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
 | 
						|
  TemplateDecl *Template = Name.getAsTemplateDecl();
 | 
						|
  if (!Template) {
 | 
						|
    // Any dependent template name is fine.
 | 
						|
    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Template->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++0x [temp.arg.template]p1:
 | 
						|
  //   A template-argument for a template template-parameter shall be
 | 
						|
  //   the name of a class template or an alias template, expressed as an
 | 
						|
  //   id-expression. When the template-argument names a class template, only
 | 
						|
  //   primary class templates are considered when matching the
 | 
						|
  //   template template argument with the corresponding parameter;
 | 
						|
  //   partial specializations are not considered even if their
 | 
						|
  //   parameter lists match that of the template template parameter.
 | 
						|
  //
 | 
						|
  // Note that we also allow template template parameters here, which
 | 
						|
  // will happen when we are dealing with, e.g., class template
 | 
						|
  // partial specializations.
 | 
						|
  if (!isa<ClassTemplateDecl>(Template) &&
 | 
						|
      !isa<TemplateTemplateParmDecl>(Template) &&
 | 
						|
      !isa<TypeAliasTemplateDecl>(Template) &&
 | 
						|
      !isa<BuiltinTemplateDecl>(Template)) {
 | 
						|
    assert(isa<FunctionTemplateDecl>(Template) &&
 | 
						|
           "Only function templates are possible here");
 | 
						|
    Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
 | 
						|
    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
 | 
						|
      << Template;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++1z [temp.arg.template]p3: (DR 150)
 | 
						|
  //   A template-argument matches a template template-parameter P when P
 | 
						|
  //   is at least as specialized as the template-argument A.
 | 
						|
  if (getLangOpts().RelaxedTemplateTemplateArgs) {
 | 
						|
    // Quick check for the common case:
 | 
						|
    //   If P contains a parameter pack, then A [...] matches P if each of A's
 | 
						|
    //   template parameters matches the corresponding template parameter in
 | 
						|
    //   the template-parameter-list of P.
 | 
						|
    if (TemplateParameterListsAreEqual(
 | 
						|
            Template->getTemplateParameters(), Params, false,
 | 
						|
            TPL_TemplateTemplateArgumentMatch, Arg.getLocation()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
 | 
						|
                                                          Arg.getLocation()))
 | 
						|
      return false;
 | 
						|
    // FIXME: Produce better diagnostics for deduction failures.
 | 
						|
  }
 | 
						|
 | 
						|
  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
 | 
						|
                                         Params,
 | 
						|
                                         true,
 | 
						|
                                         TPL_TemplateTemplateArgumentMatch,
 | 
						|
                                         Arg.getLocation());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Given a non-type template argument that refers to a
 | 
						|
/// declaration and the type of its corresponding non-type template
 | 
						|
/// parameter, produce an expression that properly refers to that
 | 
						|
/// declaration.
 | 
						|
ExprResult
 | 
						|
Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
 | 
						|
                                              QualType ParamType,
 | 
						|
                                              SourceLocation Loc) {
 | 
						|
  // C++ [temp.param]p8:
 | 
						|
  //
 | 
						|
  //   A non-type template-parameter of type "array of T" or
 | 
						|
  //   "function returning T" is adjusted to be of type "pointer to
 | 
						|
  //   T" or "pointer to function returning T", respectively.
 | 
						|
  if (ParamType->isArrayType())
 | 
						|
    ParamType = Context.getArrayDecayedType(ParamType);
 | 
						|
  else if (ParamType->isFunctionType())
 | 
						|
    ParamType = Context.getPointerType(ParamType);
 | 
						|
 | 
						|
  // For a NULL non-type template argument, return nullptr casted to the
 | 
						|
  // parameter's type.
 | 
						|
  if (Arg.getKind() == TemplateArgument::NullPtr) {
 | 
						|
    return ImpCastExprToType(
 | 
						|
             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
 | 
						|
                             ParamType,
 | 
						|
                             ParamType->getAs<MemberPointerType>()
 | 
						|
                               ? CK_NullToMemberPointer
 | 
						|
                               : CK_NullToPointer);
 | 
						|
  }
 | 
						|
  assert(Arg.getKind() == TemplateArgument::Declaration &&
 | 
						|
         "Only declaration template arguments permitted here");
 | 
						|
 | 
						|
  ValueDecl *VD = Arg.getAsDecl();
 | 
						|
 | 
						|
  if (VD->getDeclContext()->isRecord() &&
 | 
						|
      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
 | 
						|
       isa<IndirectFieldDecl>(VD))) {
 | 
						|
    // If the value is a class member, we might have a pointer-to-member.
 | 
						|
    // Determine whether the non-type template template parameter is of
 | 
						|
    // pointer-to-member type. If so, we need to build an appropriate
 | 
						|
    // expression for a pointer-to-member, since a "normal" DeclRefExpr
 | 
						|
    // would refer to the member itself.
 | 
						|
    if (ParamType->isMemberPointerType()) {
 | 
						|
      QualType ClassType
 | 
						|
        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
 | 
						|
      NestedNameSpecifier *Qualifier
 | 
						|
        = NestedNameSpecifier::Create(Context, nullptr, false,
 | 
						|
                                      ClassType.getTypePtr());
 | 
						|
      CXXScopeSpec SS;
 | 
						|
      SS.MakeTrivial(Context, Qualifier, Loc);
 | 
						|
 | 
						|
      // The actual value-ness of this is unimportant, but for
 | 
						|
      // internal consistency's sake, references to instance methods
 | 
						|
      // are r-values.
 | 
						|
      ExprValueKind VK = VK_LValue;
 | 
						|
      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
 | 
						|
        VK = VK_RValue;
 | 
						|
 | 
						|
      ExprResult RefExpr = BuildDeclRefExpr(VD,
 | 
						|
                                            VD->getType().getNonReferenceType(),
 | 
						|
                                            VK,
 | 
						|
                                            Loc,
 | 
						|
                                            &SS);
 | 
						|
      if (RefExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
 | 
						|
 | 
						|
      // We might need to perform a trailing qualification conversion, since
 | 
						|
      // the element type on the parameter could be more qualified than the
 | 
						|
      // element type in the expression we constructed.
 | 
						|
      bool ObjCLifetimeConversion;
 | 
						|
      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
 | 
						|
                                    ParamType.getUnqualifiedType(), false,
 | 
						|
                                    ObjCLifetimeConversion))
 | 
						|
        RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
 | 
						|
 | 
						|
      assert(!RefExpr.isInvalid() &&
 | 
						|
             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
 | 
						|
                                 ParamType.getUnqualifiedType()));
 | 
						|
      return RefExpr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = VD->getType().getNonReferenceType();
 | 
						|
 | 
						|
  if (ParamType->isPointerType()) {
 | 
						|
    // When the non-type template parameter is a pointer, take the
 | 
						|
    // address of the declaration.
 | 
						|
    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
 | 
						|
    if (RefExpr.isInvalid())
 | 
						|
      return ExprError();
 | 
						|
 | 
						|
    if (!Context.hasSameUnqualifiedType(ParamType->getPointeeType(), T) &&
 | 
						|
        (T->isFunctionType() || T->isArrayType())) {
 | 
						|
      // Decay functions and arrays unless we're forming a pointer to array.
 | 
						|
      RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
 | 
						|
      if (RefExpr.isInvalid())
 | 
						|
        return ExprError();
 | 
						|
 | 
						|
      return RefExpr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Take the address of everything else
 | 
						|
    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
 | 
						|
  }
 | 
						|
 | 
						|
  ExprValueKind VK = VK_RValue;
 | 
						|
 | 
						|
  // If the non-type template parameter has reference type, qualify the
 | 
						|
  // resulting declaration reference with the extra qualifiers on the
 | 
						|
  // type that the reference refers to.
 | 
						|
  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
 | 
						|
    VK = VK_LValue;
 | 
						|
    T = Context.getQualifiedType(T,
 | 
						|
                              TargetRef->getPointeeType().getQualifiers());
 | 
						|
  } else if (isa<FunctionDecl>(VD)) {
 | 
						|
    // References to functions are always lvalues.
 | 
						|
    VK = VK_LValue;
 | 
						|
  }
 | 
						|
 | 
						|
  return BuildDeclRefExpr(VD, T, VK, Loc);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Construct a new expression that refers to the given
 | 
						|
/// integral template argument with the given source-location
 | 
						|
/// information.
 | 
						|
///
 | 
						|
/// This routine takes care of the mapping from an integral template
 | 
						|
/// argument (which may have any integral type) to the appropriate
 | 
						|
/// literal value.
 | 
						|
ExprResult
 | 
						|
Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
 | 
						|
                                                  SourceLocation Loc) {
 | 
						|
  assert(Arg.getKind() == TemplateArgument::Integral &&
 | 
						|
         "Operation is only valid for integral template arguments");
 | 
						|
  QualType OrigT = Arg.getIntegralType();
 | 
						|
 | 
						|
  // If this is an enum type that we're instantiating, we need to use an integer
 | 
						|
  // type the same size as the enumerator.  We don't want to build an
 | 
						|
  // IntegerLiteral with enum type.  The integer type of an enum type can be of
 | 
						|
  // any integral type with C++11 enum classes, make sure we create the right
 | 
						|
  // type of literal for it.
 | 
						|
  QualType T = OrigT;
 | 
						|
  if (const EnumType *ET = OrigT->getAs<EnumType>())
 | 
						|
    T = ET->getDecl()->getIntegerType();
 | 
						|
 | 
						|
  Expr *E;
 | 
						|
  if (T->isAnyCharacterType()) {
 | 
						|
    // This does not need to handle u8 character literals because those are
 | 
						|
    // of type char, and so can also be covered by an ASCII character literal.
 | 
						|
    CharacterLiteral::CharacterKind Kind;
 | 
						|
    if (T->isWideCharType())
 | 
						|
      Kind = CharacterLiteral::Wide;
 | 
						|
    else if (T->isChar16Type())
 | 
						|
      Kind = CharacterLiteral::UTF16;
 | 
						|
    else if (T->isChar32Type())
 | 
						|
      Kind = CharacterLiteral::UTF32;
 | 
						|
    else
 | 
						|
      Kind = CharacterLiteral::Ascii;
 | 
						|
 | 
						|
    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
 | 
						|
                                       Kind, T, Loc);
 | 
						|
  } else if (T->isBooleanType()) {
 | 
						|
    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
 | 
						|
                                         T, Loc);
 | 
						|
  } else if (T->isNullPtrType()) {
 | 
						|
    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
 | 
						|
  } else {
 | 
						|
    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  if (OrigT->isEnumeralType()) {
 | 
						|
    // FIXME: This is a hack. We need a better way to handle substituted
 | 
						|
    // non-type template parameters.
 | 
						|
    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
 | 
						|
                               nullptr,
 | 
						|
                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
 | 
						|
                               Loc, Loc);
 | 
						|
  }
 | 
						|
 | 
						|
  return E;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Match two template parameters within template parameter lists.
 | 
						|
static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
 | 
						|
                                       bool Complain,
 | 
						|
                                     Sema::TemplateParameterListEqualKind Kind,
 | 
						|
                                       SourceLocation TemplateArgLoc) {
 | 
						|
  // Check the actual kind (type, non-type, template).
 | 
						|
  if (Old->getKind() != New->getKind()) {
 | 
						|
    if (Complain) {
 | 
						|
      unsigned NextDiag = diag::err_template_param_different_kind;
 | 
						|
      if (TemplateArgLoc.isValid()) {
 | 
						|
        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
        NextDiag = diag::note_template_param_different_kind;
 | 
						|
      }
 | 
						|
      S.Diag(New->getLocation(), NextDiag)
 | 
						|
        << (Kind != Sema::TPL_TemplateMatch);
 | 
						|
      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
 | 
						|
        << (Kind != Sema::TPL_TemplateMatch);
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that both are parameter packs or neither are parameter packs.
 | 
						|
  // However, if we are matching a template template argument to a
 | 
						|
  // template template parameter, the template template parameter can have
 | 
						|
  // a parameter pack where the template template argument does not.
 | 
						|
  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
 | 
						|
      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
 | 
						|
        Old->isTemplateParameterPack())) {
 | 
						|
    if (Complain) {
 | 
						|
      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
 | 
						|
      if (TemplateArgLoc.isValid()) {
 | 
						|
        S.Diag(TemplateArgLoc,
 | 
						|
             diag::err_template_arg_template_params_mismatch);
 | 
						|
        NextDiag = diag::note_template_parameter_pack_non_pack;
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
 | 
						|
                      : isa<NonTypeTemplateParmDecl>(New)? 1
 | 
						|
                      : 2;
 | 
						|
      S.Diag(New->getLocation(), NextDiag)
 | 
						|
        << ParamKind << New->isParameterPack();
 | 
						|
      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
 | 
						|
        << ParamKind << Old->isParameterPack();
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For non-type template parameters, check the type of the parameter.
 | 
						|
  if (NonTypeTemplateParmDecl *OldNTTP
 | 
						|
                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
 | 
						|
    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
 | 
						|
 | 
						|
    // If we are matching a template template argument to a template
 | 
						|
    // template parameter and one of the non-type template parameter types
 | 
						|
    // is dependent, then we must wait until template instantiation time
 | 
						|
    // to actually compare the arguments.
 | 
						|
    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
 | 
						|
        (OldNTTP->getType()->isDependentType() ||
 | 
						|
         NewNTTP->getType()->isDependentType()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
 | 
						|
      if (Complain) {
 | 
						|
        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
 | 
						|
        if (TemplateArgLoc.isValid()) {
 | 
						|
          S.Diag(TemplateArgLoc,
 | 
						|
                 diag::err_template_arg_template_params_mismatch);
 | 
						|
          NextDiag = diag::note_template_nontype_parm_different_type;
 | 
						|
        }
 | 
						|
        S.Diag(NewNTTP->getLocation(), NextDiag)
 | 
						|
          << NewNTTP->getType()
 | 
						|
          << (Kind != Sema::TPL_TemplateMatch);
 | 
						|
        S.Diag(OldNTTP->getLocation(),
 | 
						|
               diag::note_template_nontype_parm_prev_declaration)
 | 
						|
          << OldNTTP->getType();
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For template template parameters, check the template parameter types.
 | 
						|
  // The template parameter lists of template template
 | 
						|
  // parameters must agree.
 | 
						|
  if (TemplateTemplateParmDecl *OldTTP
 | 
						|
                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
 | 
						|
    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
 | 
						|
    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
 | 
						|
                                            OldTTP->getTemplateParameters(),
 | 
						|
                                            Complain,
 | 
						|
                                        (Kind == Sema::TPL_TemplateMatch
 | 
						|
                                           ? Sema::TPL_TemplateTemplateParmMatch
 | 
						|
                                           : Kind),
 | 
						|
                                            TemplateArgLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose a known arity mismatch when comparing template argument
 | 
						|
/// lists.
 | 
						|
static
 | 
						|
void DiagnoseTemplateParameterListArityMismatch(Sema &S,
 | 
						|
                                                TemplateParameterList *New,
 | 
						|
                                                TemplateParameterList *Old,
 | 
						|
                                      Sema::TemplateParameterListEqualKind Kind,
 | 
						|
                                                SourceLocation TemplateArgLoc) {
 | 
						|
  unsigned NextDiag = diag::err_template_param_list_different_arity;
 | 
						|
  if (TemplateArgLoc.isValid()) {
 | 
						|
    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
 | 
						|
    NextDiag = diag::note_template_param_list_different_arity;
 | 
						|
  }
 | 
						|
  S.Diag(New->getTemplateLoc(), NextDiag)
 | 
						|
    << (New->size() > Old->size())
 | 
						|
    << (Kind != Sema::TPL_TemplateMatch)
 | 
						|
    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
 | 
						|
  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
 | 
						|
    << (Kind != Sema::TPL_TemplateMatch)
 | 
						|
    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given template parameter lists are
 | 
						|
/// equivalent.
 | 
						|
///
 | 
						|
/// \param New  The new template parameter list, typically written in the
 | 
						|
/// source code as part of a new template declaration.
 | 
						|
///
 | 
						|
/// \param Old  The old template parameter list, typically found via
 | 
						|
/// name lookup of the template declared with this template parameter
 | 
						|
/// list.
 | 
						|
///
 | 
						|
/// \param Complain  If true, this routine will produce a diagnostic if
 | 
						|
/// the template parameter lists are not equivalent.
 | 
						|
///
 | 
						|
/// \param Kind describes how we are to match the template parameter lists.
 | 
						|
///
 | 
						|
/// \param TemplateArgLoc If this source location is valid, then we
 | 
						|
/// are actually checking the template parameter list of a template
 | 
						|
/// argument (New) against the template parameter list of its
 | 
						|
/// corresponding template template parameter (Old). We produce
 | 
						|
/// slightly different diagnostics in this scenario.
 | 
						|
///
 | 
						|
/// \returns True if the template parameter lists are equal, false
 | 
						|
/// otherwise.
 | 
						|
bool
 | 
						|
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
 | 
						|
                                     TemplateParameterList *Old,
 | 
						|
                                     bool Complain,
 | 
						|
                                     TemplateParameterListEqualKind Kind,
 | 
						|
                                     SourceLocation TemplateArgLoc) {
 | 
						|
  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
 | 
						|
    if (Complain)
 | 
						|
      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | 
						|
                                                 TemplateArgLoc);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.arg.template]p3:
 | 
						|
  //   A template-argument matches a template template-parameter (call it P)
 | 
						|
  //   when each of the template parameters in the template-parameter-list of
 | 
						|
  //   the template-argument's corresponding class template or alias template
 | 
						|
  //   (call it A) matches the corresponding template parameter in the
 | 
						|
  //   template-parameter-list of P. [...]
 | 
						|
  TemplateParameterList::iterator NewParm = New->begin();
 | 
						|
  TemplateParameterList::iterator NewParmEnd = New->end();
 | 
						|
  for (TemplateParameterList::iterator OldParm = Old->begin(),
 | 
						|
                                    OldParmEnd = Old->end();
 | 
						|
       OldParm != OldParmEnd; ++OldParm) {
 | 
						|
    if (Kind != TPL_TemplateTemplateArgumentMatch ||
 | 
						|
        !(*OldParm)->isTemplateParameterPack()) {
 | 
						|
      if (NewParm == NewParmEnd) {
 | 
						|
        if (Complain)
 | 
						|
          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | 
						|
                                                     TemplateArgLoc);
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
 | 
						|
                                      Kind, TemplateArgLoc))
 | 
						|
        return false;
 | 
						|
 | 
						|
      ++NewParm;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.arg.template]p3:
 | 
						|
    //   [...] When P's template- parameter-list contains a template parameter
 | 
						|
    //   pack (14.5.3), the template parameter pack will match zero or more
 | 
						|
    //   template parameters or template parameter packs in the
 | 
						|
    //   template-parameter-list of A with the same type and form as the
 | 
						|
    //   template parameter pack in P (ignoring whether those template
 | 
						|
    //   parameters are template parameter packs).
 | 
						|
    for (; NewParm != NewParmEnd; ++NewParm) {
 | 
						|
      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
 | 
						|
                                      Kind, TemplateArgLoc))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure we exhausted all of the arguments.
 | 
						|
  if (NewParm != NewParmEnd) {
 | 
						|
    if (Complain)
 | 
						|
      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
 | 
						|
                                                 TemplateArgLoc);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a template can be declared within this scope.
 | 
						|
///
 | 
						|
/// If the template declaration is valid in this scope, returns
 | 
						|
/// false. Otherwise, issues a diagnostic and returns true.
 | 
						|
bool
 | 
						|
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
 | 
						|
  if (!S)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the nearest enclosing declaration scope.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // C++ [temp]p4:
 | 
						|
  //   A template [...] shall not have C linkage.
 | 
						|
  DeclContext *Ctx = S->getEntity();
 | 
						|
  if (Ctx && Ctx->isExternCContext()) {
 | 
						|
    Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
 | 
						|
        << TemplateParams->getSourceRange();
 | 
						|
    if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
 | 
						|
      Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Ctx = Ctx->getRedeclContext();
 | 
						|
 | 
						|
  // C++ [temp]p2:
 | 
						|
  //   A template-declaration can appear only as a namespace scope or
 | 
						|
  //   class scope declaration.
 | 
						|
  if (Ctx) {
 | 
						|
    if (Ctx->isFileContext())
 | 
						|
      return false;
 | 
						|
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
 | 
						|
      // C++ [temp.mem]p2:
 | 
						|
      //   A local class shall not have member templates.
 | 
						|
      if (RD->isLocalClass())
 | 
						|
        return Diag(TemplateParams->getTemplateLoc(),
 | 
						|
                    diag::err_template_inside_local_class)
 | 
						|
          << TemplateParams->getSourceRange();
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Diag(TemplateParams->getTemplateLoc(),
 | 
						|
              diag::err_template_outside_namespace_or_class_scope)
 | 
						|
    << TemplateParams->getSourceRange();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine what kind of template specialization the given declaration
 | 
						|
/// is.
 | 
						|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
 | 
						|
  if (!D)
 | 
						|
    return TSK_Undeclared;
 | 
						|
 | 
						|
  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
 | 
						|
    return Record->getTemplateSpecializationKind();
 | 
						|
  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
 | 
						|
    return Function->getTemplateSpecializationKind();
 | 
						|
  if (VarDecl *Var = dyn_cast<VarDecl>(D))
 | 
						|
    return Var->getTemplateSpecializationKind();
 | 
						|
 | 
						|
  return TSK_Undeclared;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a specialization is well-formed in the current
 | 
						|
/// context.
 | 
						|
///
 | 
						|
/// This routine determines whether a template specialization can be declared
 | 
						|
/// in the current context (C++ [temp.expl.spec]p2).
 | 
						|
///
 | 
						|
/// \param S the semantic analysis object for which this check is being
 | 
						|
/// performed.
 | 
						|
///
 | 
						|
/// \param Specialized the entity being specialized or instantiated, which
 | 
						|
/// may be a kind of template (class template, function template, etc.) or
 | 
						|
/// a member of a class template (member function, static data member,
 | 
						|
/// member class).
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration of this entity, if any.
 | 
						|
///
 | 
						|
/// \param Loc the location of the explicit specialization or instantiation of
 | 
						|
/// this entity.
 | 
						|
///
 | 
						|
/// \param IsPartialSpecialization whether this is a partial specialization of
 | 
						|
/// a class template.
 | 
						|
///
 | 
						|
/// \returns true if there was an error that we cannot recover from, false
 | 
						|
/// otherwise.
 | 
						|
static bool CheckTemplateSpecializationScope(Sema &S,
 | 
						|
                                             NamedDecl *Specialized,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             SourceLocation Loc,
 | 
						|
                                             bool IsPartialSpecialization) {
 | 
						|
  // Keep these "kind" numbers in sync with the %select statements in the
 | 
						|
  // various diagnostics emitted by this routine.
 | 
						|
  int EntityKind = 0;
 | 
						|
  if (isa<ClassTemplateDecl>(Specialized))
 | 
						|
    EntityKind = IsPartialSpecialization? 1 : 0;
 | 
						|
  else if (isa<VarTemplateDecl>(Specialized))
 | 
						|
    EntityKind = IsPartialSpecialization ? 3 : 2;
 | 
						|
  else if (isa<FunctionTemplateDecl>(Specialized))
 | 
						|
    EntityKind = 4;
 | 
						|
  else if (isa<CXXMethodDecl>(Specialized))
 | 
						|
    EntityKind = 5;
 | 
						|
  else if (isa<VarDecl>(Specialized))
 | 
						|
    EntityKind = 6;
 | 
						|
  else if (isa<RecordDecl>(Specialized))
 | 
						|
    EntityKind = 7;
 | 
						|
  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
 | 
						|
    EntityKind = 8;
 | 
						|
  else {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_unknown_kind)
 | 
						|
      << S.getLangOpts().CPlusPlus11;
 | 
						|
    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p2:
 | 
						|
  //   An explicit specialization may be declared in any scope in which
 | 
						|
  //   the corresponding primary template may be defined.
 | 
						|
  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
 | 
						|
    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
 | 
						|
      << Specialized;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.class.spec]p6:
 | 
						|
  //   A class template partial specialization may be declared in any
 | 
						|
  //   scope in which the primary template may be defined.
 | 
						|
  DeclContext *SpecializedContext =
 | 
						|
      Specialized->getDeclContext()->getRedeclContext();
 | 
						|
  DeclContext *DC = S.CurContext->getRedeclContext();
 | 
						|
 | 
						|
  // Make sure that this redeclaration (or definition) occurs in the same
 | 
						|
  // scope or an enclosing namespace.
 | 
						|
  if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
 | 
						|
                            : DC->Equals(SpecializedContext))) {
 | 
						|
    if (isa<TranslationUnitDecl>(SpecializedContext))
 | 
						|
      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
 | 
						|
        << EntityKind << Specialized;
 | 
						|
    else {
 | 
						|
      auto *ND = cast<NamedDecl>(SpecializedContext);
 | 
						|
      int Diag = diag::err_template_spec_redecl_out_of_scope;
 | 
						|
      if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
 | 
						|
        Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
 | 
						|
      S.Diag(Loc, Diag) << EntityKind << Specialized
 | 
						|
                        << ND << isa<CXXRecordDecl>(ND);
 | 
						|
    }
 | 
						|
 | 
						|
    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
 | 
						|
 | 
						|
    // Don't allow specializing in the wrong class during error recovery.
 | 
						|
    // Otherwise, things can go horribly wrong.
 | 
						|
    if (DC->isRecord())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
 | 
						|
  if (!E->isTypeDependent())
 | 
						|
    return SourceLocation();
 | 
						|
  DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
 | 
						|
  Checker.TraverseStmt(E);
 | 
						|
  if (Checker.MatchLoc.isInvalid())
 | 
						|
    return E->getSourceRange();
 | 
						|
  return Checker.MatchLoc;
 | 
						|
}
 | 
						|
 | 
						|
static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
 | 
						|
  if (!TL.getType()->isDependentType())
 | 
						|
    return SourceLocation();
 | 
						|
  DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
 | 
						|
  Checker.TraverseTypeLoc(TL);
 | 
						|
  if (Checker.MatchLoc.isInvalid())
 | 
						|
    return TL.getSourceRange();
 | 
						|
  return Checker.MatchLoc;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
 | 
						|
/// that checks non-type template partial specialization arguments.
 | 
						|
static bool CheckNonTypeTemplatePartialSpecializationArgs(
 | 
						|
    Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
 | 
						|
    const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
 | 
						|
  for (unsigned I = 0; I != NumArgs; ++I) {
 | 
						|
    if (Args[I].getKind() == TemplateArgument::Pack) {
 | 
						|
      if (CheckNonTypeTemplatePartialSpecializationArgs(
 | 
						|
              S, TemplateNameLoc, Param, Args[I].pack_begin(),
 | 
						|
              Args[I].pack_size(), IsDefaultArgument))
 | 
						|
        return true;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Args[I].getKind() != TemplateArgument::Expression)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Expr *ArgExpr = Args[I].getAsExpr();
 | 
						|
 | 
						|
    // We can have a pack expansion of any of the bullets below.
 | 
						|
    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
 | 
						|
      ArgExpr = Expansion->getPattern();
 | 
						|
 | 
						|
    // Strip off any implicit casts we added as part of type checking.
 | 
						|
    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
 | 
						|
      ArgExpr = ICE->getSubExpr();
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p8:
 | 
						|
    //   A non-type argument is non-specialized if it is the name of a
 | 
						|
    //   non-type parameter. All other non-type arguments are
 | 
						|
    //   specialized.
 | 
						|
    //
 | 
						|
    // Below, we check the two conditions that only apply to
 | 
						|
    // specialized non-type arguments, so skip any non-specialized
 | 
						|
    // arguments.
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
 | 
						|
      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
 | 
						|
        continue;
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p9:
 | 
						|
    //   Within the argument list of a class template partial
 | 
						|
    //   specialization, the following restrictions apply:
 | 
						|
    //     -- A partially specialized non-type argument expression
 | 
						|
    //        shall not involve a template parameter of the partial
 | 
						|
    //        specialization except when the argument expression is a
 | 
						|
    //        simple identifier.
 | 
						|
    //     -- The type of a template parameter corresponding to a
 | 
						|
    //        specialized non-type argument shall not be dependent on a
 | 
						|
    //        parameter of the specialization.
 | 
						|
    // DR1315 removes the first bullet, leaving an incoherent set of rules.
 | 
						|
    // We implement a compromise between the original rules and DR1315:
 | 
						|
    //     --  A specialized non-type template argument shall not be
 | 
						|
    //         type-dependent and the corresponding template parameter
 | 
						|
    //         shall have a non-dependent type.
 | 
						|
    SourceRange ParamUseRange =
 | 
						|
        findTemplateParameterInType(Param->getDepth(), ArgExpr);
 | 
						|
    if (ParamUseRange.isValid()) {
 | 
						|
      if (IsDefaultArgument) {
 | 
						|
        S.Diag(TemplateNameLoc,
 | 
						|
               diag::err_dependent_non_type_arg_in_partial_spec);
 | 
						|
        S.Diag(ParamUseRange.getBegin(),
 | 
						|
               diag::note_dependent_non_type_default_arg_in_partial_spec)
 | 
						|
          << ParamUseRange;
 | 
						|
      } else {
 | 
						|
        S.Diag(ParamUseRange.getBegin(),
 | 
						|
               diag::err_dependent_non_type_arg_in_partial_spec)
 | 
						|
          << ParamUseRange;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    ParamUseRange = findTemplateParameter(
 | 
						|
        Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
 | 
						|
    if (ParamUseRange.isValid()) {
 | 
						|
      S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
 | 
						|
             diag::err_dependent_typed_non_type_arg_in_partial_spec)
 | 
						|
        << Param->getType();
 | 
						|
      S.Diag(Param->getLocation(), diag::note_template_param_here)
 | 
						|
        << (IsDefaultArgument ? ParamUseRange : SourceRange())
 | 
						|
        << ParamUseRange;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the non-type template arguments of a class template
 | 
						|
/// partial specialization according to C++ [temp.class.spec]p9.
 | 
						|
///
 | 
						|
/// \param TemplateNameLoc the location of the template name.
 | 
						|
/// \param PrimaryTemplate the template parameters of the primary class
 | 
						|
///        template.
 | 
						|
/// \param NumExplicit the number of explicitly-specified template arguments.
 | 
						|
/// \param TemplateArgs the template arguments of the class template
 | 
						|
///        partial specialization.
 | 
						|
///
 | 
						|
/// \returns \c true if there was an error, \c false otherwise.
 | 
						|
bool Sema::CheckTemplatePartialSpecializationArgs(
 | 
						|
    SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
 | 
						|
    unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
 | 
						|
  // We have to be conservative when checking a template in a dependent
 | 
						|
  // context.
 | 
						|
  if (PrimaryTemplate->getDeclContext()->isDependentContext())
 | 
						|
    return false;
 | 
						|
 | 
						|
  TemplateParameterList *TemplateParams =
 | 
						|
      PrimaryTemplate->getTemplateParameters();
 | 
						|
  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
    NonTypeTemplateParmDecl *Param
 | 
						|
      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
 | 
						|
    if (!Param)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
 | 
						|
                                                      Param, &TemplateArgs[I],
 | 
						|
                                                      1, I >= NumExplicit))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
DeclResult
 | 
						|
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
 | 
						|
                                       TagUseKind TUK,
 | 
						|
                                       SourceLocation KWLoc,
 | 
						|
                                       SourceLocation ModulePrivateLoc,
 | 
						|
                                       TemplateIdAnnotation &TemplateId,
 | 
						|
                                       AttributeList *Attr,
 | 
						|
                                       MultiTemplateParamsArg
 | 
						|
                                           TemplateParameterLists,
 | 
						|
                                       SkipBodyInfo *SkipBody) {
 | 
						|
  assert(TUK != TUK_Reference && "References are not specializations");
 | 
						|
 | 
						|
  CXXScopeSpec &SS = TemplateId.SS;
 | 
						|
 | 
						|
  // NOTE: KWLoc is the location of the tag keyword. This will instead
 | 
						|
  // store the location of the outermost template keyword in the declaration.
 | 
						|
  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
 | 
						|
    ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
 | 
						|
  SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
 | 
						|
  SourceLocation LAngleLoc = TemplateId.LAngleLoc;
 | 
						|
  SourceLocation RAngleLoc = TemplateId.RAngleLoc;
 | 
						|
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateId.Template.get();
 | 
						|
  ClassTemplateDecl *ClassTemplate
 | 
						|
    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
 | 
						|
 | 
						|
  if (!ClassTemplate) {
 | 
						|
    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
 | 
						|
      << (Name.getAsTemplateDecl() &&
 | 
						|
          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isMemberSpecialization = false;
 | 
						|
  bool isPartialSpecialization = false;
 | 
						|
 | 
						|
  // Check the validity of the template headers that introduce this
 | 
						|
  // template.
 | 
						|
  // FIXME: We probably shouldn't complain about these headers for
 | 
						|
  // friend declarations.
 | 
						|
  bool Invalid = false;
 | 
						|
  TemplateParameterList *TemplateParams =
 | 
						|
      MatchTemplateParametersToScopeSpecifier(
 | 
						|
          KWLoc, TemplateNameLoc, SS, &TemplateId,
 | 
						|
          TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
 | 
						|
          Invalid);
 | 
						|
  if (Invalid)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (TemplateParams && TemplateParams->size() > 0) {
 | 
						|
    isPartialSpecialization = true;
 | 
						|
 | 
						|
    if (TUK == TUK_Friend) {
 | 
						|
      Diag(KWLoc, diag::err_partial_specialization_friend)
 | 
						|
        << SourceRange(LAngleLoc, RAngleLoc);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [temp.class.spec]p10:
 | 
						|
    //   The template parameter list of a specialization shall not
 | 
						|
    //   contain default template argument values.
 | 
						|
    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
 | 
						|
      Decl *Param = TemplateParams->getParam(I);
 | 
						|
      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgumentLoc(),
 | 
						|
               diag::err_default_arg_in_partial_spec);
 | 
						|
          TTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      } else if (NonTypeTemplateParmDecl *NTTP
 | 
						|
                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
 | 
						|
        if (Expr *DefArg = NTTP->getDefaultArgument()) {
 | 
						|
          Diag(NTTP->getDefaultArgumentLoc(),
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << DefArg->getSourceRange();
 | 
						|
          NTTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
 | 
						|
        if (TTP->hasDefaultArgument()) {
 | 
						|
          Diag(TTP->getDefaultArgument().getLocation(),
 | 
						|
               diag::err_default_arg_in_partial_spec)
 | 
						|
            << TTP->getDefaultArgument().getSourceRange();
 | 
						|
          TTP->removeDefaultArgument();
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (TemplateParams) {
 | 
						|
    if (TUK == TUK_Friend)
 | 
						|
      Diag(KWLoc, diag::err_template_spec_friend)
 | 
						|
        << FixItHint::CreateRemoval(
 | 
						|
                                SourceRange(TemplateParams->getTemplateLoc(),
 | 
						|
                                            TemplateParams->getRAngleLoc()))
 | 
						|
        << SourceRange(LAngleLoc, RAngleLoc);
 | 
						|
  } else {
 | 
						|
    assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, TUK == TUK_Definition, KWLoc,
 | 
						|
                                    ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
      << ClassTemplate
 | 
						|
      << FixItHint::CreateReplacement(KWLoc,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs =
 | 
						|
      makeTemplateArgumentListInfo(*this, TemplateId);
 | 
						|
 | 
						|
  // Check for unexpanded parameter packs in any of the template arguments.
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
 | 
						|
                                        UPPC_PartialSpecialization))
 | 
						|
      return true;
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | 
						|
                                TemplateArgs, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Find the class template (partial) specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  if (isPartialSpecialization) {
 | 
						|
    if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
 | 
						|
                                               TemplateArgs.size(), Converted))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
 | 
						|
    // also do it during instantiation.
 | 
						|
    bool InstantiationDependent;
 | 
						|
    if (!Name.isDependent() &&
 | 
						|
        !TemplateSpecializationType::anyDependentTemplateArguments(
 | 
						|
            TemplateArgs.arguments(), InstantiationDependent)) {
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
 | 
						|
        << ClassTemplate->getDeclName();
 | 
						|
      isPartialSpecialization = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void *InsertPos = nullptr;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl = nullptr;
 | 
						|
 | 
						|
  if (isPartialSpecialization)
 | 
						|
    // FIXME: Template parameter list matters, too
 | 
						|
    PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
 | 
						|
  else
 | 
						|
    PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = nullptr;
 | 
						|
 | 
						|
  // Check whether we can declare a class template specialization in
 | 
						|
  // the current scope.
 | 
						|
  if (TUK != TUK_Friend &&
 | 
						|
      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
 | 
						|
                                       TemplateNameLoc,
 | 
						|
                                       isPartialSpecialization))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The canonical type
 | 
						|
  QualType CanonType;
 | 
						|
  if (isPartialSpecialization) {
 | 
						|
    // Build the canonical type that describes the converted template
 | 
						|
    // arguments of the class template partial specialization.
 | 
						|
    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
 | 
						|
    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
 | 
						|
                                                      Converted);
 | 
						|
 | 
						|
    if (Context.hasSameType(CanonType,
 | 
						|
                        ClassTemplate->getInjectedClassNameSpecialization())) {
 | 
						|
      // C++ [temp.class.spec]p9b3:
 | 
						|
      //
 | 
						|
      //   -- The argument list of the specialization shall not be identical
 | 
						|
      //      to the implicit argument list of the primary template.
 | 
						|
      //
 | 
						|
      // This rule has since been removed, because it's redundant given DR1495,
 | 
						|
      // but we keep it because it produces better diagnostics and recovery.
 | 
						|
      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
 | 
						|
        << /*class template*/0 << (TUK == TUK_Definition)
 | 
						|
        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
 | 
						|
      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
 | 
						|
                                ClassTemplate->getIdentifier(),
 | 
						|
                                TemplateNameLoc,
 | 
						|
                                Attr,
 | 
						|
                                TemplateParams,
 | 
						|
                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
 | 
						|
                                /*FriendLoc*/SourceLocation(),
 | 
						|
                                TemplateParameterLists.size() - 1,
 | 
						|
                                TemplateParameterLists.data());
 | 
						|
    }
 | 
						|
 | 
						|
    // Create a new class template partial specialization declaration node.
 | 
						|
    ClassTemplatePartialSpecializationDecl *PrevPartial
 | 
						|
      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
 | 
						|
    ClassTemplatePartialSpecializationDecl *Partial
 | 
						|
      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                       KWLoc, TemplateNameLoc,
 | 
						|
                                                       TemplateParams,
 | 
						|
                                                       ClassTemplate,
 | 
						|
                                                       Converted,
 | 
						|
                                                       TemplateArgs,
 | 
						|
                                                       CanonType,
 | 
						|
                                                       PrevPartial);
 | 
						|
    SetNestedNameSpecifier(Partial, SS);
 | 
						|
    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
 | 
						|
      Partial->setTemplateParameterListsInfo(
 | 
						|
          Context, TemplateParameterLists.drop_back(1));
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrevPartial)
 | 
						|
      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
 | 
						|
    Specialization = Partial;
 | 
						|
 | 
						|
    // If we are providing an explicit specialization of a member class
 | 
						|
    // template specialization, make a note of that.
 | 
						|
    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
 | 
						|
      PrevPartial->setMemberSpecialization();
 | 
						|
 | 
						|
    CheckTemplatePartialSpecialization(Partial);
 | 
						|
  } else {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization or friend declaration.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context, Kind,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                KWLoc, TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted,
 | 
						|
                                                PrevDecl);
 | 
						|
    SetNestedNameSpecifier(Specialization, SS);
 | 
						|
    if (TemplateParameterLists.size() > 0) {
 | 
						|
      Specialization->setTemplateParameterListsInfo(Context,
 | 
						|
                                                    TemplateParameterLists);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PrevDecl)
 | 
						|
      ClassTemplate->AddSpecialization(Specialization, InsertPos);
 | 
						|
 | 
						|
    if (CurContext->isDependentContext()) {
 | 
						|
      // -fms-extensions permits specialization of nested classes without
 | 
						|
      // fully specializing the outer class(es).
 | 
						|
      assert(getLangOpts().MicrosoftExt &&
 | 
						|
             "Only possible with -fms-extensions!");
 | 
						|
      TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
 | 
						|
      CanonType = Context.getTemplateSpecializationType(
 | 
						|
          CanonTemplate, Converted);
 | 
						|
    } else {
 | 
						|
      CanonType = Context.getTypeDeclType(Specialization);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
 | 
						|
    bool Okay = false;
 | 
						|
    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
      // Is there any previous explicit specialization declaration?
 | 
						|
      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | 
						|
        Okay = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Okay) {
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
 | 
						|
        << Context.getTypeDeclType(Specialization) << Range;
 | 
						|
 | 
						|
      Diag(PrevDecl->getPointOfInstantiation(),
 | 
						|
           diag::note_instantiation_required_here)
 | 
						|
        << (PrevDecl->getTemplateSpecializationKind()
 | 
						|
                                                != TSK_ImplicitInstantiation);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is not a friend, note that this is an explicit specialization.
 | 
						|
  if (TUK != TUK_Friend)
 | 
						|
    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
 | 
						|
  // Check that this isn't a redefinition of this specialization.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    RecordDecl *Def = Specialization->getDefinition();
 | 
						|
    NamedDecl *Hidden = nullptr;
 | 
						|
    if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
 | 
						|
      SkipBody->ShouldSkip = true;
 | 
						|
      makeMergedDefinitionVisible(Hidden);
 | 
						|
      // From here on out, treat this as just a redeclaration.
 | 
						|
      TUK = TUK_Declaration;
 | 
						|
    } else if (Def) {
 | 
						|
      SourceRange Range(TemplateNameLoc, RAngleLoc);
 | 
						|
      Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
 | 
						|
      Diag(Def->getLocation(), diag::note_previous_definition);
 | 
						|
      Specialization->setInvalidDecl();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Specialization, Attr);
 | 
						|
 | 
						|
  // Add alignment attributes if necessary; these attributes are checked when
 | 
						|
  // the ASTContext lays out the structure.
 | 
						|
  if (TUK == TUK_Definition) {
 | 
						|
    AddAlignmentAttributesForRecord(Specialization);
 | 
						|
    AddMsStructLayoutForRecord(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ModulePrivateLoc.isValid())
 | 
						|
    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
 | 
						|
      << (isPartialSpecialization? 1 : 0)
 | 
						|
      << FixItHint::CreateRemoval(ModulePrivateLoc);
 | 
						|
 | 
						|
  // Build the fully-sugared type for this class template
 | 
						|
  // specialization as the user wrote in the specialization
 | 
						|
  // itself. This means that we'll pretty-print the type retrieved
 | 
						|
  // from the specialization's declaration the way that the user
 | 
						|
  // actually wrote the specialization, rather than formatting the
 | 
						|
  // name based on the "canonical" representation used to store the
 | 
						|
  // template arguments in the specialization.
 | 
						|
  TypeSourceInfo *WrittenTy
 | 
						|
    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
 | 
						|
                                                TemplateArgs, CanonType);
 | 
						|
  if (TUK != TUK_Friend) {
 | 
						|
    Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p9:
 | 
						|
  //   A template explicit specialization is in the scope of the
 | 
						|
  //   namespace in which the template was defined.
 | 
						|
  //
 | 
						|
  // We actually implement this paragraph where we set the semantic
 | 
						|
  // context (in the creation of the ClassTemplateSpecializationDecl),
 | 
						|
  // but we also maintain the lexical context where the actual
 | 
						|
  // definition occurs.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
 | 
						|
  // We may be starting the definition of this specialization.
 | 
						|
  if (TUK == TUK_Definition)
 | 
						|
    Specialization->startDefinition();
 | 
						|
 | 
						|
  if (TUK == TUK_Friend) {
 | 
						|
    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
 | 
						|
                                            TemplateNameLoc,
 | 
						|
                                            WrittenTy,
 | 
						|
                                            /*FIXME:*/KWLoc);
 | 
						|
    Friend->setAccess(AS_public);
 | 
						|
    CurContext->addDecl(Friend);
 | 
						|
  } else {
 | 
						|
    // Add the specialization into its lexical context, so that it can
 | 
						|
    // be seen when iterating through the list of declarations in that
 | 
						|
    // context. However, specializations are not found by name lookup.
 | 
						|
    CurContext->addDecl(Specialization);
 | 
						|
  }
 | 
						|
  return Specialization;
 | 
						|
}
 | 
						|
 | 
						|
Decl *Sema::ActOnTemplateDeclarator(Scope *S,
 | 
						|
                              MultiTemplateParamsArg TemplateParameterLists,
 | 
						|
                                    Declarator &D) {
 | 
						|
  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
 | 
						|
  ActOnDocumentableDecl(NewDecl);
 | 
						|
  return NewDecl;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Strips various properties off an implicit instantiation
 | 
						|
/// that has just been explicitly specialized.
 | 
						|
static void StripImplicitInstantiation(NamedDecl *D) {
 | 
						|
  D->dropAttr<DLLImportAttr>();
 | 
						|
  D->dropAttr<DLLExportAttr>();
 | 
						|
 | 
						|
  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
 | 
						|
    FD->setInlineSpecified(false);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute the diagnostic location for an explicit instantiation
 | 
						|
//  declaration or definition.
 | 
						|
static SourceLocation DiagLocForExplicitInstantiation(
 | 
						|
    NamedDecl* D, SourceLocation PointOfInstantiation) {
 | 
						|
  // Explicit instantiations following a specialization have no effect and
 | 
						|
  // hence no PointOfInstantiation. In that case, walk decl backwards
 | 
						|
  // until a valid name loc is found.
 | 
						|
  SourceLocation PrevDiagLoc = PointOfInstantiation;
 | 
						|
  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
 | 
						|
       Prev = Prev->getPreviousDecl()) {
 | 
						|
    PrevDiagLoc = Prev->getLocation();
 | 
						|
  }
 | 
						|
  assert(PrevDiagLoc.isValid() &&
 | 
						|
         "Explicit instantiation without point of instantiation?");
 | 
						|
  return PrevDiagLoc;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Diagnose cases where we have an explicit template specialization
 | 
						|
/// before/after an explicit template instantiation, producing diagnostics
 | 
						|
/// for those cases where they are required and determining whether the
 | 
						|
/// new specialization/instantiation will have any effect.
 | 
						|
///
 | 
						|
/// \param NewLoc the location of the new explicit specialization or
 | 
						|
/// instantiation.
 | 
						|
///
 | 
						|
/// \param NewTSK the kind of the new explicit specialization or instantiation.
 | 
						|
///
 | 
						|
/// \param PrevDecl the previous declaration of the entity.
 | 
						|
///
 | 
						|
/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
 | 
						|
///
 | 
						|
/// \param PrevPointOfInstantiation if valid, indicates where the previus
 | 
						|
/// declaration was instantiated (either implicitly or explicitly).
 | 
						|
///
 | 
						|
/// \param HasNoEffect will be set to true to indicate that the new
 | 
						|
/// specialization or instantiation has no effect and should be ignored.
 | 
						|
///
 | 
						|
/// \returns true if there was an error that should prevent the introduction of
 | 
						|
/// the new declaration into the AST, false otherwise.
 | 
						|
bool
 | 
						|
Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
 | 
						|
                                             TemplateSpecializationKind NewTSK,
 | 
						|
                                             NamedDecl *PrevDecl,
 | 
						|
                                             TemplateSpecializationKind PrevTSK,
 | 
						|
                                        SourceLocation PrevPointOfInstantiation,
 | 
						|
                                             bool &HasNoEffect) {
 | 
						|
  HasNoEffect = false;
 | 
						|
 | 
						|
  switch (NewTSK) {
 | 
						|
  case TSK_Undeclared:
 | 
						|
  case TSK_ImplicitInstantiation:
 | 
						|
    assert(
 | 
						|
        (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
 | 
						|
        "previous declaration must be implicit!");
 | 
						|
    return false;
 | 
						|
 | 
						|
  case TSK_ExplicitSpecialization:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // Okay, we're just specializing something that is either already
 | 
						|
      // explicitly specialized or has merely been mentioned without any
 | 
						|
      // instantiation.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      if (PrevPointOfInstantiation.isInvalid()) {
 | 
						|
        // The declaration itself has not actually been instantiated, so it is
 | 
						|
        // still okay to specialize it.
 | 
						|
        StripImplicitInstantiation(PrevDecl);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // Fall through
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      assert((PrevTSK == TSK_ImplicitInstantiation ||
 | 
						|
              PrevPointOfInstantiation.isValid()) &&
 | 
						|
             "Explicit instantiation without point of instantiation?");
 | 
						|
 | 
						|
      // C++ [temp.expl.spec]p6:
 | 
						|
      //   If a template, a member template or the member of a class template
 | 
						|
      //   is explicitly specialized then that specialization shall be declared
 | 
						|
      //   before the first use of that specialization that would cause an
 | 
						|
      //   implicit instantiation to take place, in every translation unit in
 | 
						|
      //   which such a use occurs; no diagnostic is required.
 | 
						|
      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
        // Is there any previous explicit specialization declaration?
 | 
						|
        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
 | 
						|
      Diag(NewLoc, diag::err_specialization_after_instantiation)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
 | 
						|
        << (PrevTSK != TSK_ImplicitInstantiation);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    llvm_unreachable("The switch over PrevTSK must be exhaustive.");
 | 
						|
 | 
						|
  case TSK_ExplicitInstantiationDeclaration:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // This explicit instantiation declaration is redundant (that's okay).
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      // We're explicitly instantiating something that may have already been
 | 
						|
      // implicitly instantiated; that's fine.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit instantiation
 | 
						|
      //   of a template appears after a declaration of an explicit
 | 
						|
      //   specialization for that template, the explicit instantiation has no
 | 
						|
      //   effect.
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      // C++0x [temp.explicit]p10:
 | 
						|
      //   If an entity is the subject of both an explicit instantiation
 | 
						|
      //   declaration and an explicit instantiation definition in the same
 | 
						|
      //   translation unit, the definition shall follow the declaration.
 | 
						|
      Diag(NewLoc,
 | 
						|
           diag::err_explicit_instantiation_declaration_after_definition);
 | 
						|
 | 
						|
      // Explicit instantiations following a specialization have no effect and
 | 
						|
      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
 | 
						|
      // until a valid name loc is found.
 | 
						|
      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
 | 
						|
           diag::note_explicit_instantiation_definition_here);
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  case TSK_ExplicitInstantiationDefinition:
 | 
						|
    switch (PrevTSK) {
 | 
						|
    case TSK_Undeclared:
 | 
						|
    case TSK_ImplicitInstantiation:
 | 
						|
      // We're explicitly instantiating something that may have already been
 | 
						|
      // implicitly instantiated; that's fine.
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitSpecialization:
 | 
						|
      // C++ DR 259, C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit
 | 
						|
      //   instantiation of a template appears after a declaration of
 | 
						|
      //   an explicit specialization for that template, the explicit
 | 
						|
      //   instantiation has no effect.
 | 
						|
      Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
 | 
						|
        << PrevDecl;
 | 
						|
      Diag(PrevDecl->getLocation(),
 | 
						|
           diag::note_previous_template_specialization);
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDeclaration:
 | 
						|
      // We're explicitly instantiating a definition for something for which we
 | 
						|
      // were previously asked to suppress instantiations. That's fine.
 | 
						|
 | 
						|
      // C++0x [temp.explicit]p4:
 | 
						|
      //   For a given set of template parameters, if an explicit instantiation
 | 
						|
      //   of a template appears after a declaration of an explicit
 | 
						|
      //   specialization for that template, the explicit instantiation has no
 | 
						|
      //   effect.
 | 
						|
      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
 | 
						|
        // Is there any previous explicit specialization declaration?
 | 
						|
        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
 | 
						|
          HasNoEffect = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
 | 
						|
    case TSK_ExplicitInstantiationDefinition:
 | 
						|
      // C++0x [temp.spec]p5:
 | 
						|
      //   For a given template and a given set of template-arguments,
 | 
						|
      //     - an explicit instantiation definition shall appear at most once
 | 
						|
      //       in a program,
 | 
						|
 | 
						|
      // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
 | 
						|
      Diag(NewLoc, (getLangOpts().MSVCCompat)
 | 
						|
                       ? diag::ext_explicit_instantiation_duplicate
 | 
						|
                       : diag::err_explicit_instantiation_duplicate)
 | 
						|
          << PrevDecl;
 | 
						|
      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
 | 
						|
           diag::note_previous_explicit_instantiation);
 | 
						|
      HasNoEffect = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Missing specialization/instantiation case?");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given dependent function
 | 
						|
/// template specialization.
 | 
						|
///
 | 
						|
/// The only possible way to get a dependent function template specialization
 | 
						|
/// is with a friend declaration, like so:
 | 
						|
///
 | 
						|
/// \code
 | 
						|
///   template \<class T> void foo(T);
 | 
						|
///   template \<class T> class A {
 | 
						|
///     friend void foo<>(T);
 | 
						|
///   };
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// There really isn't any useful analysis we can do here, so we
 | 
						|
/// just store the information.
 | 
						|
bool
 | 
						|
Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
 | 
						|
                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
 | 
						|
                                                   LookupResult &Previous) {
 | 
						|
  // Remove anything from Previous that isn't a function template in
 | 
						|
  // the correct context.
 | 
						|
  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
 | 
						|
  LookupResult::Filter F = Previous.makeFilter();
 | 
						|
  while (F.hasNext()) {
 | 
						|
    NamedDecl *D = F.next()->getUnderlyingDecl();
 | 
						|
    if (!isa<FunctionTemplateDecl>(D) ||
 | 
						|
        !FDLookupContext->InEnclosingNamespaceSetOf(
 | 
						|
                              D->getDeclContext()->getRedeclContext()))
 | 
						|
      F.erase();
 | 
						|
  }
 | 
						|
  F.done();
 | 
						|
 | 
						|
  // Should this be diagnosed here?
 | 
						|
  if (Previous.empty()) return true;
 | 
						|
 | 
						|
  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
 | 
						|
                                         ExplicitTemplateArgs);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given function template
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// This routine performs all of the semantic analysis required for an
 | 
						|
/// explicit function template specialization. On successful completion,
 | 
						|
/// the function declaration \p FD will become a function template
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param FD the function declaration, which will be updated to become a
 | 
						|
/// function template specialization.
 | 
						|
///
 | 
						|
/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
 | 
						|
/// if any. Note that this may be valid info even when 0 arguments are
 | 
						|
/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
 | 
						|
/// as it anyway contains info on the angle brackets locations.
 | 
						|
///
 | 
						|
/// \param Previous the set of declarations that may be specialized by
 | 
						|
/// this function specialization.
 | 
						|
bool Sema::CheckFunctionTemplateSpecialization(
 | 
						|
    FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
 | 
						|
    LookupResult &Previous) {
 | 
						|
  // The set of function template specializations that could match this
 | 
						|
  // explicit function template specialization.
 | 
						|
  UnresolvedSet<8> Candidates;
 | 
						|
  TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
 | 
						|
                                            /*ForTakingAddress=*/false);
 | 
						|
 | 
						|
  llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
 | 
						|
      ConvertedTemplateArgs;
 | 
						|
 | 
						|
  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
 | 
						|
  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
         I != E; ++I) {
 | 
						|
    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
 | 
						|
    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
 | 
						|
      // Only consider templates found within the same semantic lookup scope as
 | 
						|
      // FD.
 | 
						|
      if (!FDLookupContext->InEnclosingNamespaceSetOf(
 | 
						|
                                Ovl->getDeclContext()->getRedeclContext()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // When matching a constexpr member function template specialization
 | 
						|
      // against the primary template, we don't yet know whether the
 | 
						|
      // specialization has an implicit 'const' (because we don't know whether
 | 
						|
      // it will be a static member function until we know which template it
 | 
						|
      // specializes), so adjust it now assuming it specializes this template.
 | 
						|
      QualType FT = FD->getType();
 | 
						|
      if (FD->isConstexpr()) {
 | 
						|
        CXXMethodDecl *OldMD =
 | 
						|
          dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
 | 
						|
        if (OldMD && OldMD->isConst()) {
 | 
						|
          const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
 | 
						|
          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
 | 
						|
          EPI.TypeQuals |= Qualifiers::Const;
 | 
						|
          FT = Context.getFunctionType(FPT->getReturnType(),
 | 
						|
                                       FPT->getParamTypes(), EPI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      TemplateArgumentListInfo Args;
 | 
						|
      if (ExplicitTemplateArgs)
 | 
						|
        Args = *ExplicitTemplateArgs;
 | 
						|
 | 
						|
      // C++ [temp.expl.spec]p11:
 | 
						|
      //   A trailing template-argument can be left unspecified in the
 | 
						|
      //   template-id naming an explicit function template specialization
 | 
						|
      //   provided it can be deduced from the function argument type.
 | 
						|
      // Perform template argument deduction to determine whether we may be
 | 
						|
      // specializing this template.
 | 
						|
      // FIXME: It is somewhat wasteful to build
 | 
						|
      TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | 
						|
      FunctionDecl *Specialization = nullptr;
 | 
						|
      if (TemplateDeductionResult TDK = DeduceTemplateArguments(
 | 
						|
              cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
 | 
						|
              ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
 | 
						|
              Info)) {
 | 
						|
        // Template argument deduction failed; record why it failed, so
 | 
						|
        // that we can provide nifty diagnostics.
 | 
						|
        FailedCandidates.addCandidate().set(
 | 
						|
            I.getPair(), FunTmpl->getTemplatedDecl(),
 | 
						|
            MakeDeductionFailureInfo(Context, TDK, Info));
 | 
						|
        (void)TDK;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Target attributes are part of the cuda function signature, so
 | 
						|
      // the deduced template's cuda target must match that of the
 | 
						|
      // specialization.  Given that C++ template deduction does not
 | 
						|
      // take target attributes into account, we reject candidates
 | 
						|
      // here that have a different target.
 | 
						|
      if (LangOpts.CUDA &&
 | 
						|
          IdentifyCUDATarget(Specialization,
 | 
						|
                             /* IgnoreImplicitHDAttributes = */ true) !=
 | 
						|
              IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttributes = */ true)) {
 | 
						|
        FailedCandidates.addCandidate().set(
 | 
						|
            I.getPair(), FunTmpl->getTemplatedDecl(),
 | 
						|
            MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Record this candidate.
 | 
						|
      if (ExplicitTemplateArgs)
 | 
						|
        ConvertedTemplateArgs[Specialization] = std::move(Args);
 | 
						|
      Candidates.addDecl(Specialization, I.getAccess());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the most specialized function template.
 | 
						|
  UnresolvedSetIterator Result = getMostSpecialized(
 | 
						|
      Candidates.begin(), Candidates.end(), FailedCandidates,
 | 
						|
      FD->getLocation(),
 | 
						|
      PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
 | 
						|
      PDiag(diag::err_function_template_spec_ambiguous)
 | 
						|
          << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
 | 
						|
      PDiag(diag::note_function_template_spec_matched));
 | 
						|
 | 
						|
  if (Result == Candidates.end())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Ignore access information;  it doesn't figure into redeclaration checking.
 | 
						|
  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
 | 
						|
 | 
						|
  FunctionTemplateSpecializationInfo *SpecInfo
 | 
						|
    = Specialization->getTemplateSpecializationInfo();
 | 
						|
  assert(SpecInfo && "Function template specialization info missing?");
 | 
						|
 | 
						|
  // Note: do not overwrite location info if previous template
 | 
						|
  // specialization kind was explicit.
 | 
						|
  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
 | 
						|
  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
 | 
						|
    Specialization->setLocation(FD->getLocation());
 | 
						|
    Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
 | 
						|
    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
 | 
						|
    // function can differ from the template declaration with respect to
 | 
						|
    // the constexpr specifier.
 | 
						|
    // FIXME: We need an update record for this AST mutation.
 | 
						|
    // FIXME: What if there are multiple such prior declarations (for instance,
 | 
						|
    // from different modules)?
 | 
						|
    Specialization->setConstexpr(FD->isConstexpr());
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Check if the prior specialization has a point of instantiation.
 | 
						|
  // If so, we have run afoul of .
 | 
						|
 | 
						|
  // If this is a friend declaration, then we're not really declaring
 | 
						|
  // an explicit specialization.
 | 
						|
  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
 | 
						|
 | 
						|
  // Check the scope of this explicit specialization.
 | 
						|
  if (!isFriend &&
 | 
						|
      CheckTemplateSpecializationScope(*this,
 | 
						|
                                       Specialization->getPrimaryTemplate(),
 | 
						|
                                       Specialization, FD->getLocation(),
 | 
						|
                                       false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  bool HasNoEffect = false;
 | 
						|
  if (!isFriend &&
 | 
						|
      CheckSpecializationInstantiationRedecl(FD->getLocation(),
 | 
						|
                                             TSK_ExplicitSpecialization,
 | 
						|
                                             Specialization,
 | 
						|
                                   SpecInfo->getTemplateSpecializationKind(),
 | 
						|
                                         SpecInfo->getPointOfInstantiation(),
 | 
						|
                                             HasNoEffect))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Mark the prior declaration as an explicit specialization, so that later
 | 
						|
  // clients know that this is an explicit specialization.
 | 
						|
  if (!isFriend) {
 | 
						|
    // Since explicit specializations do not inherit '=delete' from their
 | 
						|
    // primary function template - check if the 'specialization' that was
 | 
						|
    // implicitly generated (during template argument deduction for partial
 | 
						|
    // ordering) from the most specialized of all the function templates that
 | 
						|
    // 'FD' could have been specializing, has a 'deleted' definition.  If so,
 | 
						|
    // first check that it was implicitly generated during template argument
 | 
						|
    // deduction by making sure it wasn't referenced, and then reset the deleted
 | 
						|
    // flag to not-deleted, so that we can inherit that information from 'FD'.
 | 
						|
    if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
 | 
						|
        !Specialization->getCanonicalDecl()->isReferenced()) {
 | 
						|
      // FIXME: This assert will not hold in the presence of modules.
 | 
						|
      assert(
 | 
						|
          Specialization->getCanonicalDecl() == Specialization &&
 | 
						|
          "This must be the only existing declaration of this specialization");
 | 
						|
      // FIXME: We need an update record for this AST mutation.
 | 
						|
      Specialization->setDeletedAsWritten(false);
 | 
						|
    }
 | 
						|
    // FIXME: We need an update record for this AST mutation.
 | 
						|
    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
    MarkUnusedFileScopedDecl(Specialization);
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn the given function declaration into a function template
 | 
						|
  // specialization, with the template arguments from the previous
 | 
						|
  // specialization.
 | 
						|
  // Take copies of (semantic and syntactic) template argument lists.
 | 
						|
  const TemplateArgumentList* TemplArgs = new (Context)
 | 
						|
    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
 | 
						|
  FD->setFunctionTemplateSpecialization(
 | 
						|
      Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
 | 
						|
      SpecInfo->getTemplateSpecializationKind(),
 | 
						|
      ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
 | 
						|
 | 
						|
  // A function template specialization inherits the target attributes
 | 
						|
  // of its template.  (We require the attributes explicitly in the
 | 
						|
  // code to match, but a template may have implicit attributes by
 | 
						|
  // virtue e.g. of being constexpr, and it passes these implicit
 | 
						|
  // attributes on to its specializations.)
 | 
						|
  if (LangOpts.CUDA)
 | 
						|
    inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
 | 
						|
 | 
						|
  // The "previous declaration" for this function template specialization is
 | 
						|
  // the prior function template specialization.
 | 
						|
  Previous.clear();
 | 
						|
  Previous.addDecl(Specialization);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform semantic analysis for the given non-template member
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// This routine performs all of the semantic analysis required for an
 | 
						|
/// explicit member function specialization. On successful completion,
 | 
						|
/// the function declaration \p FD will become a member function
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param Member the member declaration, which will be updated to become a
 | 
						|
/// specialization.
 | 
						|
///
 | 
						|
/// \param Previous the set of declarations, one of which may be specialized
 | 
						|
/// by this function specialization;  the set will be modified to contain the
 | 
						|
/// redeclared member.
 | 
						|
bool
 | 
						|
Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
 | 
						|
  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
 | 
						|
 | 
						|
  // Try to find the member we are instantiating.
 | 
						|
  NamedDecl *FoundInstantiation = nullptr;
 | 
						|
  NamedDecl *Instantiation = nullptr;
 | 
						|
  NamedDecl *InstantiatedFrom = nullptr;
 | 
						|
  MemberSpecializationInfo *MSInfo = nullptr;
 | 
						|
 | 
						|
  if (Previous.empty()) {
 | 
						|
    // Nowhere to look anyway.
 | 
						|
  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
 | 
						|
    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
 | 
						|
           I != E; ++I) {
 | 
						|
      NamedDecl *D = (*I)->getUnderlyingDecl();
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
 | 
						|
        QualType Adjusted = Function->getType();
 | 
						|
        if (!hasExplicitCallingConv(Adjusted))
 | 
						|
          Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
 | 
						|
        if (Context.hasSameType(Adjusted, Method->getType())) {
 | 
						|
          FoundInstantiation = *I;
 | 
						|
          Instantiation = Method;
 | 
						|
          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
 | 
						|
          MSInfo = Method->getMemberSpecializationInfo();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (isa<VarDecl>(Member)) {
 | 
						|
    VarDecl *PrevVar;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
 | 
						|
      if (PrevVar->isStaticDataMember()) {
 | 
						|
        FoundInstantiation = Previous.getRepresentativeDecl();
 | 
						|
        Instantiation = PrevVar;
 | 
						|
        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
 | 
						|
        MSInfo = PrevVar->getMemberSpecializationInfo();
 | 
						|
      }
 | 
						|
  } else if (isa<RecordDecl>(Member)) {
 | 
						|
    CXXRecordDecl *PrevRecord;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
 | 
						|
      FoundInstantiation = Previous.getRepresentativeDecl();
 | 
						|
      Instantiation = PrevRecord;
 | 
						|
      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
 | 
						|
      MSInfo = PrevRecord->getMemberSpecializationInfo();
 | 
						|
    }
 | 
						|
  } else if (isa<EnumDecl>(Member)) {
 | 
						|
    EnumDecl *PrevEnum;
 | 
						|
    if (Previous.isSingleResult() &&
 | 
						|
        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
 | 
						|
      FoundInstantiation = Previous.getRepresentativeDecl();
 | 
						|
      Instantiation = PrevEnum;
 | 
						|
      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
 | 
						|
      MSInfo = PrevEnum->getMemberSpecializationInfo();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Instantiation) {
 | 
						|
    // There is no previous declaration that matches. Since member
 | 
						|
    // specializations are always out-of-line, the caller will complain about
 | 
						|
    // this mismatch later.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // A member specialization in a friend declaration isn't really declaring
 | 
						|
  // an explicit specialization, just identifying a specific (possibly implicit)
 | 
						|
  // specialization. Don't change the template specialization kind.
 | 
						|
  //
 | 
						|
  // FIXME: Is this really valid? Other compilers reject.
 | 
						|
  if (Member->getFriendObjectKind() != Decl::FOK_None) {
 | 
						|
    // Preserve instantiation information.
 | 
						|
    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
 | 
						|
      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
 | 
						|
                                      cast<CXXMethodDecl>(InstantiatedFrom),
 | 
						|
        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
 | 
						|
    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
 | 
						|
      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
 | 
						|
                                      cast<CXXRecordDecl>(InstantiatedFrom),
 | 
						|
        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
 | 
						|
    }
 | 
						|
 | 
						|
    Previous.clear();
 | 
						|
    Previous.addDecl(FoundInstantiation);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that this is a specialization of a member.
 | 
						|
  if (!InstantiatedFrom) {
 | 
						|
    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
 | 
						|
      << Member;
 | 
						|
    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.expl.spec]p6:
 | 
						|
  //   If a template, a member template or the member of a class template is
 | 
						|
  //   explicitly specialized then that specialization shall be declared
 | 
						|
  //   before the first use of that specialization that would cause an implicit
 | 
						|
  //   instantiation to take place, in every translation unit in which such a
 | 
						|
  //   use occurs; no diagnostic is required.
 | 
						|
  assert(MSInfo && "Member specialization info missing?");
 | 
						|
 | 
						|
  bool HasNoEffect = false;
 | 
						|
  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
 | 
						|
                                             TSK_ExplicitSpecialization,
 | 
						|
                                             Instantiation,
 | 
						|
                                     MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                           MSInfo->getPointOfInstantiation(),
 | 
						|
                                             HasNoEffect))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check the scope of this explicit specialization.
 | 
						|
  if (CheckTemplateSpecializationScope(*this,
 | 
						|
                                       InstantiatedFrom,
 | 
						|
                                       Instantiation, Member->getLocation(),
 | 
						|
                                       false))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Note that this member specialization is an "instantiation of" the
 | 
						|
  // corresponding member of the original template.
 | 
						|
  if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
 | 
						|
    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
 | 
						|
    if (InstantiationFunction->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ImplicitInstantiation) {
 | 
						|
      // Explicit specializations of member functions of class templates do not
 | 
						|
      // inherit '=delete' from the member function they are specializing.
 | 
						|
      if (InstantiationFunction->isDeleted()) {
 | 
						|
        // FIXME: This assert will not hold in the presence of modules.
 | 
						|
        assert(InstantiationFunction->getCanonicalDecl() ==
 | 
						|
               InstantiationFunction);
 | 
						|
        // FIXME: We need an update record for this AST mutation.
 | 
						|
        InstantiationFunction->setDeletedAsWritten(false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MemberFunction->setInstantiationOfMemberFunction(
 | 
						|
        cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | 
						|
  } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
 | 
						|
    MemberVar->setInstantiationOfStaticDataMember(
 | 
						|
        cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | 
						|
  } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
 | 
						|
    MemberClass->setInstantiationOfMemberClass(
 | 
						|
        cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | 
						|
  } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
 | 
						|
    MemberEnum->setInstantiationOfMemberEnum(
 | 
						|
        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("unknown member specialization kind");
 | 
						|
  }
 | 
						|
 | 
						|
  // Save the caller the trouble of having to figure out which declaration
 | 
						|
  // this specialization matches.
 | 
						|
  Previous.clear();
 | 
						|
  Previous.addDecl(FoundInstantiation);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Complete the explicit specialization of a member of a class template by
 | 
						|
/// updating the instantiated member to be marked as an explicit specialization.
 | 
						|
///
 | 
						|
/// \param OrigD The member declaration instantiated from the template.
 | 
						|
/// \param Loc The location of the explicit specialization of the member.
 | 
						|
template<typename DeclT>
 | 
						|
static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
 | 
						|
                                             SourceLocation Loc) {
 | 
						|
  if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
 | 
						|
    return;
 | 
						|
 | 
						|
  // FIXME: Inform AST mutation listeners of this AST mutation.
 | 
						|
  // FIXME: If there are multiple in-class declarations of the member (from
 | 
						|
  // multiple modules, or a declaration and later definition of a member type),
 | 
						|
  // should we update all of them?
 | 
						|
  OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
 | 
						|
  OrigD->setLocation(Loc);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::CompleteMemberSpecialization(NamedDecl *Member,
 | 
						|
                                        LookupResult &Previous) {
 | 
						|
  NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
 | 
						|
  if (Instantiation == Member)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
 | 
						|
    completeMemberSpecializationImpl(*this, Function, Member->getLocation());
 | 
						|
  else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
 | 
						|
    completeMemberSpecializationImpl(*this, Var, Member->getLocation());
 | 
						|
  else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
 | 
						|
    completeMemberSpecializationImpl(*this, Record, Member->getLocation());
 | 
						|
  else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
 | 
						|
    completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
 | 
						|
  else
 | 
						|
    llvm_unreachable("unknown member specialization kind");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check the scope of an explicit instantiation.
 | 
						|
///
 | 
						|
/// \returns true if a serious error occurs, false otherwise.
 | 
						|
static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
 | 
						|
                                            SourceLocation InstLoc,
 | 
						|
                                            bool WasQualifiedName) {
 | 
						|
  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
 | 
						|
  DeclContext *CurContext = S.CurContext->getRedeclContext();
 | 
						|
 | 
						|
  if (CurContext->isRecord()) {
 | 
						|
    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
 | 
						|
      << D;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [temp.explicit]p3:
 | 
						|
  //   An explicit instantiation shall appear in an enclosing namespace of its
 | 
						|
  //   template. If the name declared in the explicit instantiation is an
 | 
						|
  //   unqualified name, the explicit instantiation shall appear in the
 | 
						|
  //   namespace where its template is declared or, if that namespace is inline
 | 
						|
  //   (7.3.1), any namespace from its enclosing namespace set.
 | 
						|
  //
 | 
						|
  // This is DR275, which we do not retroactively apply to C++98/03.
 | 
						|
  if (WasQualifiedName) {
 | 
						|
    if (CurContext->Encloses(OrigContext))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
 | 
						|
    if (WasQualifiedName)
 | 
						|
      S.Diag(InstLoc,
 | 
						|
             S.getLangOpts().CPlusPlus11?
 | 
						|
               diag::err_explicit_instantiation_out_of_scope :
 | 
						|
               diag::warn_explicit_instantiation_out_of_scope_0x)
 | 
						|
        << D << NS;
 | 
						|
    else
 | 
						|
      S.Diag(InstLoc,
 | 
						|
             S.getLangOpts().CPlusPlus11?
 | 
						|
               diag::err_explicit_instantiation_unqualified_wrong_namespace :
 | 
						|
               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
 | 
						|
        << D << NS;
 | 
						|
  } else
 | 
						|
    S.Diag(InstLoc,
 | 
						|
           S.getLangOpts().CPlusPlus11?
 | 
						|
             diag::err_explicit_instantiation_must_be_global :
 | 
						|
             diag::warn_explicit_instantiation_must_be_global_0x)
 | 
						|
      << D;
 | 
						|
  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Determine whether the given scope specifier has a template-id in it.
 | 
						|
static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
 | 
						|
  if (!SS.isSet())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // C++11 [temp.explicit]p3:
 | 
						|
  //   If the explicit instantiation is for a member function, a member class
 | 
						|
  //   or a static data member of a class template specialization, the name of
 | 
						|
  //   the class template specialization in the qualified-id for the member
 | 
						|
  //   name shall be a simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
 | 
						|
       NNS = NNS->getPrefix())
 | 
						|
    if (const Type *T = NNS->getAsType())
 | 
						|
      if (isa<TemplateSpecializationType>(T))
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Make a dllexport or dllimport attr on a class template specialization take
 | 
						|
/// effect.
 | 
						|
static void dllExportImportClassTemplateSpecialization(
 | 
						|
    Sema &S, ClassTemplateSpecializationDecl *Def) {
 | 
						|
  auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
 | 
						|
  assert(A && "dllExportImportClassTemplateSpecialization called "
 | 
						|
              "on Def without dllexport or dllimport");
 | 
						|
 | 
						|
  // We reject explicit instantiations in class scope, so there should
 | 
						|
  // never be any delayed exported classes to worry about.
 | 
						|
  assert(S.DelayedDllExportClasses.empty() &&
 | 
						|
         "delayed exports present at explicit instantiation");
 | 
						|
  S.checkClassLevelDLLAttribute(Def);
 | 
						|
 | 
						|
  // Propagate attribute to base class templates.
 | 
						|
  for (auto &B : Def->bases()) {
 | 
						|
    if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
            B.getType()->getAsCXXRecordDecl()))
 | 
						|
      S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
 | 
						|
  }
 | 
						|
 | 
						|
  S.referenceDLLExportedClassMethods();
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a class template specialization
 | 
						|
DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec,
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 const CXXScopeSpec &SS,
 | 
						|
                                 TemplateTy TemplateD,
 | 
						|
                                 SourceLocation TemplateNameLoc,
 | 
						|
                                 SourceLocation LAngleLoc,
 | 
						|
                                 ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                                 SourceLocation RAngleLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
  // Find the class template we're specializing
 | 
						|
  TemplateName Name = TemplateD.get();
 | 
						|
  TemplateDecl *TD = Name.getAsTemplateDecl();
 | 
						|
  // Check that the specialization uses the same tag kind as the
 | 
						|
  // original template.
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
  assert(Kind != TTK_Enum &&
 | 
						|
         "Invalid enum tag in class template explicit instantiation!");
 | 
						|
 | 
						|
  ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
 | 
						|
 | 
						|
  if (!ClassTemplate) {
 | 
						|
    NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
 | 
						|
    Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
 | 
						|
    Diag(TD->getLocation(), diag::note_previous_use);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
 | 
						|
                                    Kind, /*isDefinition*/false, KWLoc,
 | 
						|
                                    ClassTemplate->getIdentifier())) {
 | 
						|
    Diag(KWLoc, diag::err_use_with_wrong_tag)
 | 
						|
      << ClassTemplate
 | 
						|
      << FixItHint::CreateReplacement(KWLoc,
 | 
						|
                            ClassTemplate->getTemplatedDecl()->getKindName());
 | 
						|
    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
 | 
						|
         diag::note_previous_use);
 | 
						|
    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK = ExternLoc.isInvalid()
 | 
						|
                                       ? TSK_ExplicitInstantiationDefinition
 | 
						|
                                       : TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDeclaration) {
 | 
						|
    // Check for dllexport class template instantiation declarations.
 | 
						|
    for (AttributeList *A = Attr; A; A = A->getNext()) {
 | 
						|
      if (A->getKind() == AttributeList::AT_DLLExport) {
 | 
						|
        Diag(ExternLoc,
 | 
						|
             diag::warn_attribute_dllexport_explicit_instantiation_decl);
 | 
						|
        Diag(A->getLoc(), diag::note_attribute);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
 | 
						|
      Diag(ExternLoc,
 | 
						|
           diag::warn_attribute_dllexport_explicit_instantiation_decl);
 | 
						|
      Diag(A->getLocation(), diag::note_attribute);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In MSVC mode, dllimported explicit instantiation definitions are treated as
 | 
						|
  // instantiation declarations for most purposes.
 | 
						|
  bool DLLImportExplicitInstantiationDef = false;
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDefinition &&
 | 
						|
      Context.getTargetInfo().getCXXABI().isMicrosoft()) {
 | 
						|
    // Check for dllimport class template instantiation definitions.
 | 
						|
    bool DLLImport =
 | 
						|
        ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
 | 
						|
    for (AttributeList *A = Attr; A; A = A->getNext()) {
 | 
						|
      if (A->getKind() == AttributeList::AT_DLLImport)
 | 
						|
        DLLImport = true;
 | 
						|
      if (A->getKind() == AttributeList::AT_DLLExport) {
 | 
						|
        // dllexport trumps dllimport here.
 | 
						|
        DLLImport = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (DLLImport) {
 | 
						|
      TSK = TSK_ExplicitInstantiationDeclaration;
 | 
						|
      DLLImportExplicitInstantiationDef = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  // Check that the template argument list is well-formed for this
 | 
						|
  // template.
 | 
						|
  SmallVector<TemplateArgument, 4> Converted;
 | 
						|
  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
 | 
						|
                                TemplateArgs, false, Converted))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Find the class template specialization declaration that
 | 
						|
  // corresponds to these arguments.
 | 
						|
  void *InsertPos = nullptr;
 | 
						|
  ClassTemplateSpecializationDecl *PrevDecl
 | 
						|
    = ClassTemplate->findSpecialization(Converted, InsertPos);
 | 
						|
 | 
						|
  TemplateSpecializationKind PrevDecl_TSK
 | 
						|
    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
 | 
						|
                                      SS.isSet()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ClassTemplateSpecializationDecl *Specialization = nullptr;
 | 
						|
 | 
						|
  bool HasNoEffect = false;
 | 
						|
  if (PrevDecl) {
 | 
						|
    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
 | 
						|
                                               PrevDecl, PrevDecl_TSK,
 | 
						|
                                            PrevDecl->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return PrevDecl;
 | 
						|
 | 
						|
    // Even though HasNoEffect == true means that this explicit instantiation
 | 
						|
    // has no effect on semantics, we go on to put its syntax in the AST.
 | 
						|
 | 
						|
    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
 | 
						|
        PrevDecl_TSK == TSK_Undeclared) {
 | 
						|
      // Since the only prior class template specialization with these
 | 
						|
      // arguments was referenced but not declared, reuse that
 | 
						|
      // declaration node as our own, updating the source location
 | 
						|
      // for the template name to reflect our new declaration.
 | 
						|
      // (Other source locations will be updated later.)
 | 
						|
      Specialization = PrevDecl;
 | 
						|
      Specialization->setLocation(TemplateNameLoc);
 | 
						|
      PrevDecl = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
 | 
						|
        DLLImportExplicitInstantiationDef) {
 | 
						|
      // The new specialization might add a dllimport attribute.
 | 
						|
      HasNoEffect = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Specialization) {
 | 
						|
    // Create a new class template specialization declaration node for
 | 
						|
    // this explicit specialization.
 | 
						|
    Specialization
 | 
						|
      = ClassTemplateSpecializationDecl::Create(Context, Kind,
 | 
						|
                                             ClassTemplate->getDeclContext(),
 | 
						|
                                                KWLoc, TemplateNameLoc,
 | 
						|
                                                ClassTemplate,
 | 
						|
                                                Converted,
 | 
						|
                                                PrevDecl);
 | 
						|
    SetNestedNameSpecifier(Specialization, SS);
 | 
						|
 | 
						|
    if (!HasNoEffect && !PrevDecl) {
 | 
						|
      // Insert the new specialization.
 | 
						|
      ClassTemplate->AddSpecialization(Specialization, InsertPos);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build the fully-sugared type for this explicit instantiation as
 | 
						|
  // the user wrote in the explicit instantiation itself. This means
 | 
						|
  // that we'll pretty-print the type retrieved from the
 | 
						|
  // specialization's declaration the way that the user actually wrote
 | 
						|
  // the explicit instantiation, rather than formatting the name based
 | 
						|
  // on the "canonical" representation used to store the template
 | 
						|
  // arguments in the specialization.
 | 
						|
  TypeSourceInfo *WrittenTy
 | 
						|
    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
 | 
						|
                                                TemplateArgs,
 | 
						|
                                  Context.getTypeDeclType(Specialization));
 | 
						|
  Specialization->setTypeAsWritten(WrittenTy);
 | 
						|
 | 
						|
  // Set source locations for keywords.
 | 
						|
  Specialization->setExternLoc(ExternLoc);
 | 
						|
  Specialization->setTemplateKeywordLoc(TemplateLoc);
 | 
						|
  Specialization->setBraceRange(SourceRange());
 | 
						|
 | 
						|
  bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Specialization, Attr);
 | 
						|
 | 
						|
  // Add the explicit instantiation into its lexical context. However,
 | 
						|
  // since explicit instantiations are never found by name lookup, we
 | 
						|
  // just put it into the declaration context directly.
 | 
						|
  Specialization->setLexicalDeclContext(CurContext);
 | 
						|
  CurContext->addDecl(Specialization);
 | 
						|
 | 
						|
  // Syntax is now OK, so return if it has no other effect on semantics.
 | 
						|
  if (HasNoEffect) {
 | 
						|
    // Set the template specialization kind.
 | 
						|
    Specialization->setTemplateSpecializationKind(TSK);
 | 
						|
    return Specialization;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.explicit]p3:
 | 
						|
  //   A definition of a class template or class member template
 | 
						|
  //   shall be in scope at the point of the explicit instantiation of
 | 
						|
  //   the class template or class member template.
 | 
						|
  //
 | 
						|
  // This check comes when we actually try to perform the
 | 
						|
  // instantiation.
 | 
						|
  ClassTemplateSpecializationDecl *Def
 | 
						|
    = cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
                                              Specialization->getDefinition());
 | 
						|
  if (!Def)
 | 
						|
    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
 | 
						|
  else if (TSK == TSK_ExplicitInstantiationDefinition) {
 | 
						|
    MarkVTableUsed(TemplateNameLoc, Specialization, true);
 | 
						|
    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
 | 
						|
  }
 | 
						|
 | 
						|
  // Instantiate the members of this class template specialization.
 | 
						|
  Def = cast_or_null<ClassTemplateSpecializationDecl>(
 | 
						|
                                       Specialization->getDefinition());
 | 
						|
  if (Def) {
 | 
						|
    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
 | 
						|
    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
 | 
						|
    // TSK_ExplicitInstantiationDefinition
 | 
						|
    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
 | 
						|
        (TSK == TSK_ExplicitInstantiationDefinition ||
 | 
						|
         DLLImportExplicitInstantiationDef)) {
 | 
						|
      // FIXME: Need to notify the ASTMutationListener that we did this.
 | 
						|
      Def->setTemplateSpecializationKind(TSK);
 | 
						|
 | 
						|
      if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
 | 
						|
          (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | 
						|
           Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
 | 
						|
        // In the MS ABI, an explicit instantiation definition can add a dll
 | 
						|
        // attribute to a template with a previous instantiation declaration.
 | 
						|
        // MinGW doesn't allow this.
 | 
						|
        auto *A = cast<InheritableAttr>(
 | 
						|
            getDLLAttr(Specialization)->clone(getASTContext()));
 | 
						|
        A->setInherited(true);
 | 
						|
        Def->addAttr(A);
 | 
						|
        dllExportImportClassTemplateSpecialization(*this, Def);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Fix a TSK_ImplicitInstantiation followed by a
 | 
						|
    // TSK_ExplicitInstantiationDefinition
 | 
						|
    bool NewlyDLLExported =
 | 
						|
        !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
 | 
						|
    if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
 | 
						|
        (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
 | 
						|
         Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
 | 
						|
      // In the MS ABI, an explicit instantiation definition can add a dll
 | 
						|
      // attribute to a template with a previous implicit instantiation.
 | 
						|
      // MinGW doesn't allow this. We limit clang to only adding dllexport, to
 | 
						|
      // avoid potentially strange codegen behavior.  For example, if we extend
 | 
						|
      // this conditional to dllimport, and we have a source file calling a
 | 
						|
      // method on an implicitly instantiated template class instance and then
 | 
						|
      // declaring a dllimport explicit instantiation definition for the same
 | 
						|
      // template class, the codegen for the method call will not respect the
 | 
						|
      // dllimport, while it will with cl. The Def will already have the DLL
 | 
						|
      // attribute, since the Def and Specialization will be the same in the
 | 
						|
      // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
 | 
						|
      // attribute to the Specialization; we just need to make it take effect.
 | 
						|
      assert(Def == Specialization &&
 | 
						|
             "Def and Specialization should match for implicit instantiation");
 | 
						|
      dllExportImportClassTemplateSpecialization(*this, Def);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set the template specialization kind. Make sure it is set before
 | 
						|
    // instantiating the members which will trigger ASTConsumer callbacks.
 | 
						|
    Specialization->setTemplateSpecializationKind(TSK);
 | 
						|
    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
 | 
						|
  } else {
 | 
						|
 | 
						|
    // Set the template specialization kind.
 | 
						|
    Specialization->setTemplateSpecializationKind(TSK);
 | 
						|
  }
 | 
						|
 | 
						|
  return Specialization;
 | 
						|
}
 | 
						|
 | 
						|
// Explicit instantiation of a member class of a class template.
 | 
						|
DeclResult
 | 
						|
Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                 SourceLocation ExternLoc,
 | 
						|
                                 SourceLocation TemplateLoc,
 | 
						|
                                 unsigned TagSpec,
 | 
						|
                                 SourceLocation KWLoc,
 | 
						|
                                 CXXScopeSpec &SS,
 | 
						|
                                 IdentifierInfo *Name,
 | 
						|
                                 SourceLocation NameLoc,
 | 
						|
                                 AttributeList *Attr) {
 | 
						|
 | 
						|
  bool Owned = false;
 | 
						|
  bool IsDependent = false;
 | 
						|
  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
 | 
						|
                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
 | 
						|
                        /*ModulePrivateLoc=*/SourceLocation(),
 | 
						|
                        MultiTemplateParamsArg(), Owned, IsDependent,
 | 
						|
                        SourceLocation(), false, TypeResult(),
 | 
						|
                        /*IsTypeSpecifier*/false,
 | 
						|
                        /*IsTemplateParamOrArg*/false);
 | 
						|
  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
 | 
						|
 | 
						|
  if (!TagD)
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagDecl *Tag = cast<TagDecl>(TagD);
 | 
						|
  assert(!Tag->isEnum() && "shouldn't see enumerations here");
 | 
						|
 | 
						|
  if (Tag->isInvalidDecl())
 | 
						|
    return true;
 | 
						|
 | 
						|
  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
 | 
						|
  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
 | 
						|
  if (!Pattern) {
 | 
						|
    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
 | 
						|
      << Context.getTypeDeclType(Record);
 | 
						|
    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a class or member class, the
 | 
						|
  //   elaborated-type-specifier in the declaration shall include a
 | 
						|
  //   simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  if (!ScopeSpecifierHasTemplateId(SS))
 | 
						|
    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
 | 
						|
      << Record << SS.getRange();
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   [...] An explicit instantiation shall appear in an enclosing
 | 
						|
  //   namespace of its template. [...]
 | 
						|
  //
 | 
						|
  // This is C++ DR 275.
 | 
						|
  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
 | 
						|
 | 
						|
  // Verify that it is okay to explicitly instantiate here.
 | 
						|
  CXXRecordDecl *PrevDecl
 | 
						|
    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
 | 
						|
  if (!PrevDecl && Record->getDefinition())
 | 
						|
    PrevDecl = Record;
 | 
						|
  if (PrevDecl) {
 | 
						|
    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
 | 
						|
    bool HasNoEffect = false;
 | 
						|
    assert(MSInfo && "No member specialization information?");
 | 
						|
    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
 | 
						|
                                               PrevDecl,
 | 
						|
                                        MSInfo->getTemplateSpecializationKind(),
 | 
						|
                                             MSInfo->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return true;
 | 
						|
    if (HasNoEffect)
 | 
						|
      return TagD;
 | 
						|
  }
 | 
						|
 | 
						|
  CXXRecordDecl *RecordDef
 | 
						|
    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
 | 
						|
  if (!RecordDef) {
 | 
						|
    // C++ [temp.explicit]p3:
 | 
						|
    //   A definition of a member class of a class template shall be in scope
 | 
						|
    //   at the point of an explicit instantiation of the member class.
 | 
						|
    CXXRecordDecl *Def
 | 
						|
      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
 | 
						|
    if (!Def) {
 | 
						|
      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
 | 
						|
        << 0 << Record->getDeclName() << Record->getDeclContext();
 | 
						|
      Diag(Pattern->getLocation(), diag::note_forward_declaration)
 | 
						|
        << Pattern;
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      if (InstantiateClass(NameLoc, Record, Def,
 | 
						|
                           getTemplateInstantiationArgs(Record),
 | 
						|
                           TSK))
 | 
						|
        return true;
 | 
						|
 | 
						|
      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
 | 
						|
      if (!RecordDef)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Instantiate all of the members of the class.
 | 
						|
  InstantiateClassMembers(NameLoc, RecordDef,
 | 
						|
                          getTemplateInstantiationArgs(Record), TSK);
 | 
						|
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    MarkVTableUsed(NameLoc, RecordDef, true);
 | 
						|
 | 
						|
  // FIXME: We don't have any representation for explicit instantiations of
 | 
						|
  // member classes. Such a representation is not needed for compilation, but it
 | 
						|
  // should be available for clients that want to see all of the declarations in
 | 
						|
  // the source code.
 | 
						|
  return TagD;
 | 
						|
}
 | 
						|
 | 
						|
DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
 | 
						|
                                            SourceLocation ExternLoc,
 | 
						|
                                            SourceLocation TemplateLoc,
 | 
						|
                                            Declarator &D) {
 | 
						|
  // Explicit instantiations always require a name.
 | 
						|
  // TODO: check if/when DNInfo should replace Name.
 | 
						|
  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
 | 
						|
  DeclarationName Name = NameInfo.getName();
 | 
						|
  if (!Name) {
 | 
						|
    if (!D.isInvalidType())
 | 
						|
      Diag(D.getDeclSpec().getLocStart(),
 | 
						|
           diag::err_explicit_instantiation_requires_name)
 | 
						|
        << D.getDeclSpec().getSourceRange()
 | 
						|
        << D.getSourceRange();
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The scope passed in may not be a decl scope.  Zip up the scope tree until
 | 
						|
  // we find one that is.
 | 
						|
  while ((S->getFlags() & Scope::DeclScope) == 0 ||
 | 
						|
         (S->getFlags() & Scope::TemplateParamScope) != 0)
 | 
						|
    S = S->getParent();
 | 
						|
 | 
						|
  // Determine the type of the declaration.
 | 
						|
  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
 | 
						|
  QualType R = T->getType();
 | 
						|
  if (R.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // C++ [dcl.stc]p1:
 | 
						|
  //   A storage-class-specifier shall not be specified in [...] an explicit
 | 
						|
  //   instantiation (14.7.2) directive.
 | 
						|
  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
 | 
						|
      << Name;
 | 
						|
    return true;
 | 
						|
  } else if (D.getDeclSpec().getStorageClassSpec()
 | 
						|
                                                != DeclSpec::SCS_unspecified) {
 | 
						|
    // Complain about then remove the storage class specifier.
 | 
						|
    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
 | 
						|
 | 
						|
    D.getMutableDeclSpec().ClearStorageClassSpecs();
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p1:
 | 
						|
  //   [...] An explicit instantiation of a function template shall not use the
 | 
						|
  //   inline or constexpr specifiers.
 | 
						|
  // Presumably, this also applies to member functions of class templates as
 | 
						|
  // well.
 | 
						|
  if (D.getDeclSpec().isInlineSpecified())
 | 
						|
    Diag(D.getDeclSpec().getInlineSpecLoc(),
 | 
						|
         getLangOpts().CPlusPlus11 ?
 | 
						|
           diag::err_explicit_instantiation_inline :
 | 
						|
           diag::warn_explicit_instantiation_inline_0x)
 | 
						|
      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
 | 
						|
  if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
 | 
						|
    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
 | 
						|
    // not already specified.
 | 
						|
    Diag(D.getDeclSpec().getConstexprSpecLoc(),
 | 
						|
         diag::err_explicit_instantiation_constexpr);
 | 
						|
 | 
						|
  // A deduction guide is not on the list of entities that can be explicitly
 | 
						|
  // instantiated.
 | 
						|
  if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
 | 
						|
    Diag(D.getDeclSpec().getLocStart(), diag::err_deduction_guide_specialized)
 | 
						|
      << /*explicit instantiation*/ 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   There are two forms of explicit instantiation: an explicit instantiation
 | 
						|
  //   definition and an explicit instantiation declaration. An explicit
 | 
						|
  //   instantiation declaration begins with the extern keyword. [...]
 | 
						|
  TemplateSpecializationKind TSK
 | 
						|
    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
 | 
						|
                           : TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
 | 
						|
  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
 | 
						|
 | 
						|
  if (!R->isFunctionType()) {
 | 
						|
    // C++ [temp.explicit]p1:
 | 
						|
    //   A [...] static data member of a class template can be explicitly
 | 
						|
    //   instantiated from the member definition associated with its class
 | 
						|
    //   template.
 | 
						|
    // C++1y [temp.explicit]p1:
 | 
						|
    //   A [...] variable [...] template specialization can be explicitly
 | 
						|
    //   instantiated from its template.
 | 
						|
    if (Previous.isAmbiguous())
 | 
						|
      return true;
 | 
						|
 | 
						|
    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
 | 
						|
    VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
 | 
						|
 | 
						|
    if (!PrevTemplate) {
 | 
						|
      if (!Prev || !Prev->isStaticDataMember()) {
 | 
						|
        // We expect to see a data data member here.
 | 
						|
        Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
 | 
						|
            << Name;
 | 
						|
        for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | 
						|
             P != PEnd; ++P)
 | 
						|
          Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Prev->getInstantiatedFromStaticDataMember()) {
 | 
						|
        // FIXME: Check for explicit specialization?
 | 
						|
        Diag(D.getIdentifierLoc(),
 | 
						|
             diag::err_explicit_instantiation_data_member_not_instantiated)
 | 
						|
            << Prev;
 | 
						|
        Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
        // FIXME: Can we provide a note showing where this was declared?
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Explicitly instantiate a variable template.
 | 
						|
 | 
						|
      // C++1y [dcl.spec.auto]p6:
 | 
						|
      //   ... A program that uses auto or decltype(auto) in a context not
 | 
						|
      //   explicitly allowed in this section is ill-formed.
 | 
						|
      //
 | 
						|
      // This includes auto-typed variable template instantiations.
 | 
						|
      if (R->isUndeducedType()) {
 | 
						|
        Diag(T->getTypeLoc().getLocStart(),
 | 
						|
             diag::err_auto_not_allowed_var_inst);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
 | 
						|
        // C++1y [temp.explicit]p3:
 | 
						|
        //   If the explicit instantiation is for a variable, the unqualified-id
 | 
						|
        //   in the declaration shall be a template-id.
 | 
						|
        Diag(D.getIdentifierLoc(),
 | 
						|
             diag::err_explicit_instantiation_without_template_id)
 | 
						|
          << PrevTemplate;
 | 
						|
        Diag(PrevTemplate->getLocation(),
 | 
						|
             diag::note_explicit_instantiation_here);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // Translate the parser's template argument list into our AST format.
 | 
						|
      TemplateArgumentListInfo TemplateArgs =
 | 
						|
          makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
 | 
						|
 | 
						|
      DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
 | 
						|
                                          D.getIdentifierLoc(), TemplateArgs);
 | 
						|
      if (Res.isInvalid())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Ignore access control bits, we don't need them for redeclaration
 | 
						|
      // checking.
 | 
						|
      Prev = cast<VarDecl>(Res.get());
 | 
						|
    }
 | 
						|
 | 
						|
    // C++0x [temp.explicit]p2:
 | 
						|
    //   If the explicit instantiation is for a member function, a member class
 | 
						|
    //   or a static data member of a class template specialization, the name of
 | 
						|
    //   the class template specialization in the qualified-id for the member
 | 
						|
    //   name shall be a simple-template-id.
 | 
						|
    //
 | 
						|
    // C++98 has the same restriction, just worded differently.
 | 
						|
    //
 | 
						|
    // This does not apply to variable template specializations, where the
 | 
						|
    // template-id is in the unqualified-id instead.
 | 
						|
    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
 | 
						|
      Diag(D.getIdentifierLoc(),
 | 
						|
           diag::ext_explicit_instantiation_without_qualified_id)
 | 
						|
        << Prev << D.getCXXScopeSpec().getRange();
 | 
						|
 | 
						|
    // Check the scope of this explicit instantiation.
 | 
						|
    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
 | 
						|
 | 
						|
    // Verify that it is okay to explicitly instantiate here.
 | 
						|
    TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
 | 
						|
    SourceLocation POI = Prev->getPointOfInstantiation();
 | 
						|
    bool HasNoEffect = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
 | 
						|
                                               PrevTSK, POI, HasNoEffect))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!HasNoEffect) {
 | 
						|
      // Instantiate static data member or variable template.
 | 
						|
      Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | 
						|
      if (PrevTemplate) {
 | 
						|
        // Merge attributes.
 | 
						|
        if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
 | 
						|
          ProcessDeclAttributeList(S, Prev, Attr);
 | 
						|
      }
 | 
						|
      if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
        InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check the new variable specialization against the parsed input.
 | 
						|
    if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
 | 
						|
      Diag(T->getTypeLoc().getLocStart(),
 | 
						|
           diag::err_invalid_var_template_spec_type)
 | 
						|
          << 0 << PrevTemplate << R << Prev->getType();
 | 
						|
      Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
 | 
						|
          << 2 << PrevTemplate->getDeclName();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Create an ExplicitInstantiation node?
 | 
						|
    return (Decl*) nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the declarator is a template-id, translate the parser's template
 | 
						|
  // argument list into our AST format.
 | 
						|
  bool HasExplicitTemplateArgs = false;
 | 
						|
  TemplateArgumentListInfo TemplateArgs;
 | 
						|
  if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
 | 
						|
    TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
 | 
						|
    HasExplicitTemplateArgs = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // C++ [temp.explicit]p1:
 | 
						|
  //   A [...] function [...] can be explicitly instantiated from its template.
 | 
						|
  //   A member function [...] of a class template can be explicitly
 | 
						|
  //  instantiated from the member definition associated with its class
 | 
						|
  //  template.
 | 
						|
  UnresolvedSet<8> TemplateMatches;
 | 
						|
  FunctionDecl *NonTemplateMatch = nullptr;
 | 
						|
  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
 | 
						|
  TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
 | 
						|
  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
 | 
						|
       P != PEnd; ++P) {
 | 
						|
    NamedDecl *Prev = *P;
 | 
						|
    if (!HasExplicitTemplateArgs) {
 | 
						|
      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
 | 
						|
        QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
 | 
						|
                                                /*AdjustExceptionSpec*/true);
 | 
						|
        if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
 | 
						|
          if (Method->getPrimaryTemplate()) {
 | 
						|
            TemplateMatches.addDecl(Method, P.getAccess());
 | 
						|
          } else {
 | 
						|
            // FIXME: Can this assert ever happen?  Needs a test.
 | 
						|
            assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
 | 
						|
            NonTemplateMatch = Method;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
 | 
						|
    if (!FunTmpl)
 | 
						|
      continue;
 | 
						|
 | 
						|
    TemplateDeductionInfo Info(FailedCandidates.getLocation());
 | 
						|
    FunctionDecl *Specialization = nullptr;
 | 
						|
    if (TemplateDeductionResult TDK
 | 
						|
          = DeduceTemplateArguments(FunTmpl,
 | 
						|
                               (HasExplicitTemplateArgs ? &TemplateArgs
 | 
						|
                                                        : nullptr),
 | 
						|
                                    R, Specialization, Info)) {
 | 
						|
      // Keep track of almost-matches.
 | 
						|
      FailedCandidates.addCandidate()
 | 
						|
          .set(P.getPair(), FunTmpl->getTemplatedDecl(),
 | 
						|
               MakeDeductionFailureInfo(Context, TDK, Info));
 | 
						|
      (void)TDK;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Target attributes are part of the cuda function signature, so
 | 
						|
    // the cuda target of the instantiated function must match that of its
 | 
						|
    // template.  Given that C++ template deduction does not take
 | 
						|
    // target attributes into account, we reject candidates here that
 | 
						|
    // have a different target.
 | 
						|
    if (LangOpts.CUDA &&
 | 
						|
        IdentifyCUDATarget(Specialization,
 | 
						|
                           /* IgnoreImplicitHDAttributes = */ true) !=
 | 
						|
            IdentifyCUDATarget(Attr)) {
 | 
						|
      FailedCandidates.addCandidate().set(
 | 
						|
          P.getPair(), FunTmpl->getTemplatedDecl(),
 | 
						|
          MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    TemplateMatches.addDecl(Specialization, P.getAccess());
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *Specialization = NonTemplateMatch;
 | 
						|
  if (!Specialization) {
 | 
						|
    // Find the most specialized function template specialization.
 | 
						|
    UnresolvedSetIterator Result = getMostSpecialized(
 | 
						|
        TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
 | 
						|
        D.getIdentifierLoc(),
 | 
						|
        PDiag(diag::err_explicit_instantiation_not_known) << Name,
 | 
						|
        PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
 | 
						|
        PDiag(diag::note_explicit_instantiation_candidate));
 | 
						|
 | 
						|
    if (Result == TemplateMatches.end())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Ignore access control bits, we don't need them for redeclaration checking.
 | 
						|
    Specialization = cast<FunctionDecl>(*Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // C++11 [except.spec]p4
 | 
						|
  // In an explicit instantiation an exception-specification may be specified,
 | 
						|
  // but is not required.
 | 
						|
  // If an exception-specification is specified in an explicit instantiation
 | 
						|
  // directive, it shall be compatible with the exception-specifications of
 | 
						|
  // other declarations of that function.
 | 
						|
  if (auto *FPT = R->getAs<FunctionProtoType>())
 | 
						|
    if (FPT->hasExceptionSpec()) {
 | 
						|
      unsigned DiagID =
 | 
						|
          diag::err_mismatched_exception_spec_explicit_instantiation;
 | 
						|
      if (getLangOpts().MicrosoftExt)
 | 
						|
        DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
 | 
						|
      bool Result = CheckEquivalentExceptionSpec(
 | 
						|
          PDiag(DiagID) << Specialization->getType(),
 | 
						|
          PDiag(diag::note_explicit_instantiation_here),
 | 
						|
          Specialization->getType()->getAs<FunctionProtoType>(),
 | 
						|
          Specialization->getLocation(), FPT, D.getLocStart());
 | 
						|
      // In Microsoft mode, mismatching exception specifications just cause a
 | 
						|
      // warning.
 | 
						|
      if (!getLangOpts().MicrosoftExt && Result)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
 | 
						|
    Diag(D.getIdentifierLoc(),
 | 
						|
         diag::err_explicit_instantiation_member_function_not_instantiated)
 | 
						|
      << Specialization
 | 
						|
      << (Specialization->getTemplateSpecializationKind() ==
 | 
						|
          TSK_ExplicitSpecialization);
 | 
						|
    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
 | 
						|
  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
 | 
						|
    PrevDecl = Specialization;
 | 
						|
 | 
						|
  if (PrevDecl) {
 | 
						|
    bool HasNoEffect = false;
 | 
						|
    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
 | 
						|
                                               PrevDecl,
 | 
						|
                                     PrevDecl->getTemplateSpecializationKind(),
 | 
						|
                                          PrevDecl->getPointOfInstantiation(),
 | 
						|
                                               HasNoEffect))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // FIXME: We may still want to build some representation of this
 | 
						|
    // explicit specialization.
 | 
						|
    if (HasNoEffect)
 | 
						|
      return (Decl*) nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attr)
 | 
						|
    ProcessDeclAttributeList(S, Specialization, Attr);
 | 
						|
 | 
						|
  // In MSVC mode, dllimported explicit instantiation definitions are treated as
 | 
						|
  // instantiation declarations.
 | 
						|
  if (TSK == TSK_ExplicitInstantiationDefinition &&
 | 
						|
      Specialization->hasAttr<DLLImportAttr>() &&
 | 
						|
      Context.getTargetInfo().getCXXABI().isMicrosoft())
 | 
						|
    TSK = TSK_ExplicitInstantiationDeclaration;
 | 
						|
 | 
						|
  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
 | 
						|
 | 
						|
  if (Specialization->isDefined()) {
 | 
						|
    // Let the ASTConsumer know that this function has been explicitly
 | 
						|
    // instantiated now, and its linkage might have changed.
 | 
						|
    Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
 | 
						|
  } else if (TSK == TSK_ExplicitInstantiationDefinition)
 | 
						|
    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
 | 
						|
 | 
						|
  // C++0x [temp.explicit]p2:
 | 
						|
  //   If the explicit instantiation is for a member function, a member class
 | 
						|
  //   or a static data member of a class template specialization, the name of
 | 
						|
  //   the class template specialization in the qualified-id for the member
 | 
						|
  //   name shall be a simple-template-id.
 | 
						|
  //
 | 
						|
  // C++98 has the same restriction, just worded differently.
 | 
						|
  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
 | 
						|
  if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
 | 
						|
      D.getCXXScopeSpec().isSet() &&
 | 
						|
      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
 | 
						|
    Diag(D.getIdentifierLoc(),
 | 
						|
         diag::ext_explicit_instantiation_without_qualified_id)
 | 
						|
    << Specialization << D.getCXXScopeSpec().getRange();
 | 
						|
 | 
						|
  CheckExplicitInstantiationScope(*this,
 | 
						|
                   FunTmpl? (NamedDecl *)FunTmpl
 | 
						|
                          : Specialization->getInstantiatedFromMemberFunction(),
 | 
						|
                                  D.getIdentifierLoc(),
 | 
						|
                                  D.getCXXScopeSpec().isSet());
 | 
						|
 | 
						|
  // FIXME: Create some kind of ExplicitInstantiationDecl here.
 | 
						|
  return (Decl*) nullptr;
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
 | 
						|
                        const CXXScopeSpec &SS, IdentifierInfo *Name,
 | 
						|
                        SourceLocation TagLoc, SourceLocation NameLoc) {
 | 
						|
  // This has to hold, because SS is expected to be defined.
 | 
						|
  assert(Name && "Expected a name in a dependent tag");
 | 
						|
 | 
						|
  NestedNameSpecifier *NNS = SS.getScopeRep();
 | 
						|
  if (!NNS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
 | 
						|
 | 
						|
  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
 | 
						|
    Diag(NameLoc, diag::err_dependent_tag_decl)
 | 
						|
      << (TUK == TUK_Definition) << Kind << SS.getRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the resulting type.
 | 
						|
  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
 | 
						|
  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
 | 
						|
 | 
						|
  // Create type-source location information for this type.
 | 
						|
  TypeLocBuilder TLB;
 | 
						|
  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
 | 
						|
  TL.setElaboratedKeywordLoc(TagLoc);
 | 
						|
  TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
  TL.setNameLoc(NameLoc);
 | 
						|
  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
 | 
						|
                        const CXXScopeSpec &SS, const IdentifierInfo &II,
 | 
						|
                        SourceLocation IdLoc) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
 | 
						|
    Diag(TypenameLoc,
 | 
						|
         getLangOpts().CPlusPlus11 ?
 | 
						|
           diag::warn_cxx98_compat_typename_outside_of_template :
 | 
						|
           diag::ext_typename_outside_of_template)
 | 
						|
      << FixItHint::CreateRemoval(TypenameLoc);
 | 
						|
 | 
						|
  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | 
						|
  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
 | 
						|
                                 TypenameLoc, QualifierLoc, II, IdLoc);
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
 | 
						|
  if (isa<DependentNameType>(T)) {
 | 
						|
    DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
 | 
						|
    TL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
    TL.setQualifierLoc(QualifierLoc);
 | 
						|
    TL.setNameLoc(IdLoc);
 | 
						|
  } else {
 | 
						|
    ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
 | 
						|
    TL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
    TL.setQualifierLoc(QualifierLoc);
 | 
						|
    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  return CreateParsedType(T, TSI);
 | 
						|
}
 | 
						|
 | 
						|
TypeResult
 | 
						|
Sema::ActOnTypenameType(Scope *S,
 | 
						|
                        SourceLocation TypenameLoc,
 | 
						|
                        const CXXScopeSpec &SS,
 | 
						|
                        SourceLocation TemplateKWLoc,
 | 
						|
                        TemplateTy TemplateIn,
 | 
						|
                        IdentifierInfo *TemplateII,
 | 
						|
                        SourceLocation TemplateIILoc,
 | 
						|
                        SourceLocation LAngleLoc,
 | 
						|
                        ASTTemplateArgsPtr TemplateArgsIn,
 | 
						|
                        SourceLocation RAngleLoc) {
 | 
						|
  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
 | 
						|
    Diag(TypenameLoc,
 | 
						|
         getLangOpts().CPlusPlus11 ?
 | 
						|
           diag::warn_cxx98_compat_typename_outside_of_template :
 | 
						|
           diag::ext_typename_outside_of_template)
 | 
						|
      << FixItHint::CreateRemoval(TypenameLoc);
 | 
						|
 | 
						|
  // Strangely, non-type results are not ignored by this lookup, so the
 | 
						|
  // program is ill-formed if it finds an injected-class-name.
 | 
						|
  if (TypenameLoc.isValid()) {
 | 
						|
    auto *LookupRD =
 | 
						|
        dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
 | 
						|
    if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
 | 
						|
      Diag(TemplateIILoc,
 | 
						|
           diag::ext_out_of_line_qualified_id_type_names_constructor)
 | 
						|
        << TemplateII << 0 /*injected-class-name used as template name*/
 | 
						|
        << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Translate the parser's template argument list in our AST format.
 | 
						|
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
 | 
						|
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
 | 
						|
 | 
						|
  TemplateName Template = TemplateIn.get();
 | 
						|
  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
 | 
						|
    // Construct a dependent template specialization type.
 | 
						|
    assert(DTN && "dependent template has non-dependent name?");
 | 
						|
    assert(DTN->getQualifier() == SS.getScopeRep());
 | 
						|
    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
 | 
						|
                                                          DTN->getQualifier(),
 | 
						|
                                                          DTN->getIdentifier(),
 | 
						|
                                                                TemplateArgs);
 | 
						|
 | 
						|
    // Create source-location information for this type.
 | 
						|
    TypeLocBuilder Builder;
 | 
						|
    DependentTemplateSpecializationTypeLoc SpecTL
 | 
						|
    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
 | 
						|
    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
    SpecTL.setTemplateNameLoc(TemplateIILoc);
 | 
						|
    SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
    SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
 | 
						|
  }
 | 
						|
 | 
						|
  QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
 | 
						|
  if (T.isNull())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Provide source-location information for the template specialization type.
 | 
						|
  TypeLocBuilder Builder;
 | 
						|
  TemplateSpecializationTypeLoc SpecTL
 | 
						|
    = Builder.push<TemplateSpecializationTypeLoc>(T);
 | 
						|
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
 | 
						|
  SpecTL.setTemplateNameLoc(TemplateIILoc);
 | 
						|
  SpecTL.setLAngleLoc(LAngleLoc);
 | 
						|
  SpecTL.setRAngleLoc(RAngleLoc);
 | 
						|
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
 | 
						|
    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
 | 
						|
 | 
						|
  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
 | 
						|
  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
 | 
						|
  TL.setElaboratedKeywordLoc(TypenameLoc);
 | 
						|
  TL.setQualifierLoc(SS.getWithLocInContext(Context));
 | 
						|
 | 
						|
  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
 | 
						|
  return CreateParsedType(T, TSI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Determine whether this failed name lookup should be treated as being
 | 
						|
/// disabled by a usage of std::enable_if.
 | 
						|
static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
 | 
						|
                       SourceRange &CondRange, Expr *&Cond) {
 | 
						|
  // We must be looking for a ::type...
 | 
						|
  if (!II.isStr("type"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // ... within an explicitly-written template specialization...
 | 
						|
  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
 | 
						|
    return false;
 | 
						|
  TypeLoc EnableIfTy = NNS.getTypeLoc();
 | 
						|
  TemplateSpecializationTypeLoc EnableIfTSTLoc =
 | 
						|
      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
 | 
						|
  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
 | 
						|
    return false;
 | 
						|
  const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
 | 
						|
 | 
						|
  // ... which names a complete class template declaration...
 | 
						|
  const TemplateDecl *EnableIfDecl =
 | 
						|
    EnableIfTST->getTemplateName().getAsTemplateDecl();
 | 
						|
  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // ... called "enable_if".
 | 
						|
  const IdentifierInfo *EnableIfII =
 | 
						|
    EnableIfDecl->getDeclName().getAsIdentifierInfo();
 | 
						|
  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Assume the first template argument is the condition.
 | 
						|
  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
 | 
						|
 | 
						|
  // Dig out the condition.
 | 
						|
  Cond = nullptr;
 | 
						|
  if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
 | 
						|
        != TemplateArgument::Expression)
 | 
						|
    return true;
 | 
						|
 | 
						|
  Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
 | 
						|
 | 
						|
  // Ignore Boolean literals; they add no value.
 | 
						|
  if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
 | 
						|
    Cond = nullptr;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Build the type that describes a C++ typename specifier,
 | 
						|
/// e.g., "typename T::type".
 | 
						|
QualType
 | 
						|
Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
 | 
						|
                        SourceLocation KeywordLoc,
 | 
						|
                        NestedNameSpecifierLoc QualifierLoc,
 | 
						|
                        const IdentifierInfo &II,
 | 
						|
                        SourceLocation IILoc) {
 | 
						|
  CXXScopeSpec SS;
 | 
						|
  SS.Adopt(QualifierLoc);
 | 
						|
 | 
						|
  DeclContext *Ctx = computeDeclContext(SS);
 | 
						|
  if (!Ctx) {
 | 
						|
    // If the nested-name-specifier is dependent and couldn't be
 | 
						|
    // resolved to a type, build a typename type.
 | 
						|
    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
 | 
						|
    return Context.getDependentNameType(Keyword,
 | 
						|
                                        QualifierLoc.getNestedNameSpecifier(),
 | 
						|
                                        &II);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the nested-name-specifier refers to the current instantiation,
 | 
						|
  // the "typename" keyword itself is superfluous. In C++03, the
 | 
						|
  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
 | 
						|
  // allows such extraneous "typename" keywords, and we retroactively
 | 
						|
  // apply this DR to C++03 code with only a warning. In any case we continue.
 | 
						|
 | 
						|
  if (RequireCompleteDeclContext(SS, Ctx))
 | 
						|
    return QualType();
 | 
						|
 | 
						|
  DeclarationName Name(&II);
 | 
						|
  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
 | 
						|
  LookupQualifiedName(Result, Ctx, SS);
 | 
						|
  unsigned DiagID = 0;
 | 
						|
  Decl *Referenced = nullptr;
 | 
						|
  switch (Result.getResultKind()) {
 | 
						|
  case LookupResult::NotFound: {
 | 
						|
    // If we're looking up 'type' within a template named 'enable_if', produce
 | 
						|
    // a more specific diagnostic.
 | 
						|
    SourceRange CondRange;
 | 
						|
    Expr *Cond = nullptr;
 | 
						|
    if (isEnableIf(QualifierLoc, II, CondRange, Cond)) {
 | 
						|
      // If we have a condition, narrow it down to the specific failed
 | 
						|
      // condition.
 | 
						|
      if (Cond) {
 | 
						|
        Expr *FailedCond;
 | 
						|
        std::string FailedDescription;
 | 
						|
        std::tie(FailedCond, FailedDescription) =
 | 
						|
          findFailedBooleanCondition(Cond, /*AllowTopLevelCond=*/true);
 | 
						|
 | 
						|
        Diag(FailedCond->getExprLoc(),
 | 
						|
             diag::err_typename_nested_not_found_requirement)
 | 
						|
          << FailedDescription
 | 
						|
          << FailedCond->getSourceRange();
 | 
						|
        return QualType();
 | 
						|
      }
 | 
						|
 | 
						|
      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
 | 
						|
          << Ctx << CondRange;
 | 
						|
      return QualType();
 | 
						|
    }
 | 
						|
 | 
						|
    DiagID = diag::err_typename_nested_not_found;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case LookupResult::FoundUnresolvedValue: {
 | 
						|
    // We found a using declaration that is a value. Most likely, the using
 | 
						|
    // declaration itself is meant to have the 'typename' keyword.
 | 
						|
    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
 | 
						|
                          IILoc);
 | 
						|
    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
 | 
						|
      << Name << Ctx << FullRange;
 | 
						|
    if (UnresolvedUsingValueDecl *Using
 | 
						|
          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
 | 
						|
      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
 | 
						|
      Diag(Loc, diag::note_using_value_decl_missing_typename)
 | 
						|
        << FixItHint::CreateInsertion(Loc, "typename ");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Fall through to create a dependent typename type, from which we can recover
 | 
						|
  // better.
 | 
						|
  LLVM_FALLTHROUGH;
 | 
						|
 | 
						|
  case LookupResult::NotFoundInCurrentInstantiation:
 | 
						|
    // Okay, it's a member of an unknown instantiation.
 | 
						|
    return Context.getDependentNameType(Keyword,
 | 
						|
                                        QualifierLoc.getNestedNameSpecifier(),
 | 
						|
                                        &II);
 | 
						|
 | 
						|
  case LookupResult::Found:
 | 
						|
    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
 | 
						|
      // C++ [class.qual]p2:
 | 
						|
      //   In a lookup in which function names are not ignored and the
 | 
						|
      //   nested-name-specifier nominates a class C, if the name specified
 | 
						|
      //   after the nested-name-specifier, when looked up in C, is the
 | 
						|
      //   injected-class-name of C [...] then the name is instead considered
 | 
						|
      //   to name the constructor of class C.
 | 
						|
      //
 | 
						|
      // Unlike in an elaborated-type-specifier, function names are not ignored
 | 
						|
      // in typename-specifier lookup. However, they are ignored in all the
 | 
						|
      // contexts where we form a typename type with no keyword (that is, in
 | 
						|
      // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
 | 
						|
      //
 | 
						|
      // FIXME: That's not strictly true: mem-initializer-id lookup does not
 | 
						|
      // ignore functions, but that appears to be an oversight.
 | 
						|
      auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
 | 
						|
      auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
 | 
						|
      if (Keyword == ETK_Typename && LookupRD && FoundRD &&
 | 
						|
          FoundRD->isInjectedClassName() &&
 | 
						|
          declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
 | 
						|
        Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
 | 
						|
            << &II << 1 << 0 /*'typename' keyword used*/;
 | 
						|
 | 
						|
      // We found a type. Build an ElaboratedType, since the
 | 
						|
      // typename-specifier was just sugar.
 | 
						|
      MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
 | 
						|
      return Context.getElaboratedType(Keyword,
 | 
						|
                                       QualifierLoc.getNestedNameSpecifier(),
 | 
						|
                                       Context.getTypeDeclType(Type));
 | 
						|
    }
 | 
						|
 | 
						|
    // C++ [dcl.type.simple]p2:
 | 
						|
    //   A type-specifier of the form
 | 
						|
    //     typename[opt] nested-name-specifier[opt] template-name
 | 
						|
    //   is a placeholder for a deduced class type [...].
 | 
						|
    if (getLangOpts().CPlusPlus17) {
 | 
						|
      if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
 | 
						|
        return Context.getElaboratedType(
 | 
						|
            Keyword, QualifierLoc.getNestedNameSpecifier(),
 | 
						|
            Context.getDeducedTemplateSpecializationType(TemplateName(TD),
 | 
						|
                                                         QualType(), false));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = Result.getFoundDecl();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::FoundOverloaded:
 | 
						|
    DiagID = diag::err_typename_nested_not_type;
 | 
						|
    Referenced = *Result.begin();
 | 
						|
    break;
 | 
						|
 | 
						|
  case LookupResult::Ambiguous:
 | 
						|
    return QualType();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we get here, it's because name lookup did not find a
 | 
						|
  // type. Emit an appropriate diagnostic and return an error.
 | 
						|
  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
 | 
						|
                        IILoc);
 | 
						|
  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
 | 
						|
  if (Referenced)
 | 
						|
    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
 | 
						|
      << Name;
 | 
						|
  return QualType();
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  // See Sema::RebuildTypeInCurrentInstantiation
 | 
						|
  class CurrentInstantiationRebuilder
 | 
						|
    : public TreeTransform<CurrentInstantiationRebuilder> {
 | 
						|
    SourceLocation Loc;
 | 
						|
    DeclarationName Entity;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
 | 
						|
 | 
						|
    CurrentInstantiationRebuilder(Sema &SemaRef,
 | 
						|
                                  SourceLocation Loc,
 | 
						|
                                  DeclarationName Entity)
 | 
						|
    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
 | 
						|
      Loc(Loc), Entity(Entity) { }
 | 
						|
 | 
						|
    /// \brief Determine whether the given type \p T has already been
 | 
						|
    /// transformed.
 | 
						|
    ///
 | 
						|
    /// For the purposes of type reconstruction, a type has already been
 | 
						|
    /// transformed if it is NULL or if it is not dependent.
 | 
						|
    bool AlreadyTransformed(QualType T) {
 | 
						|
      return T.isNull() || !T->isDependentType();
 | 
						|
    }
 | 
						|
 | 
						|
    /// \brief Returns the location of the entity whose type is being
 | 
						|
    /// rebuilt.
 | 
						|
    SourceLocation getBaseLocation() { return Loc; }
 | 
						|
 | 
						|
    /// \brief Returns the name of the entity whose type is being rebuilt.
 | 
						|
    DeclarationName getBaseEntity() { return Entity; }
 | 
						|
 | 
						|
    /// \brief Sets the "base" location and entity when that
 | 
						|
    /// information is known based on another transformation.
 | 
						|
    void setBase(SourceLocation Loc, DeclarationName Entity) {
 | 
						|
      this->Loc = Loc;
 | 
						|
      this->Entity = Entity;
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult TransformLambdaExpr(LambdaExpr *E) {
 | 
						|
      // Lambdas never need to be transformed.
 | 
						|
      return E;
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// \brief Rebuilds a type within the context of the current instantiation.
 | 
						|
///
 | 
						|
/// The type \p T is part of the type of an out-of-line member definition of
 | 
						|
/// a class template (or class template partial specialization) that was parsed
 | 
						|
/// and constructed before we entered the scope of the class template (or
 | 
						|
/// partial specialization thereof). This routine will rebuild that type now
 | 
						|
/// that we have entered the declarator's scope, which may produce different
 | 
						|
/// canonical types, e.g.,
 | 
						|
///
 | 
						|
/// \code
 | 
						|
/// template<typename T>
 | 
						|
/// struct X {
 | 
						|
///   typedef T* pointer;
 | 
						|
///   pointer data();
 | 
						|
/// };
 | 
						|
///
 | 
						|
/// template<typename T>
 | 
						|
/// typename X<T>::pointer X<T>::data() { ... }
 | 
						|
/// \endcode
 | 
						|
///
 | 
						|
/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
 | 
						|
/// since we do not know that we can look into X<T> when we parsed the type.
 | 
						|
/// This function will rebuild the type, performing the lookup of "pointer"
 | 
						|
/// in X<T> and returning an ElaboratedType whose canonical type is the same
 | 
						|
/// as the canonical type of T*, allowing the return types of the out-of-line
 | 
						|
/// definition and the declaration to match.
 | 
						|
TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
 | 
						|
                                                        SourceLocation Loc,
 | 
						|
                                                        DeclarationName Name) {
 | 
						|
  if (!T || !T->getType()->isDependentType())
 | 
						|
    return T;
 | 
						|
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
 | 
						|
  return Rebuilder.TransformType(T);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
 | 
						|
                                          DeclarationName());
 | 
						|
  return Rebuilder.TransformExpr(E);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
 | 
						|
  if (SS.isInvalid())
 | 
						|
    return true;
 | 
						|
 | 
						|
  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
 | 
						|
  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
 | 
						|
                                          DeclarationName());
 | 
						|
  NestedNameSpecifierLoc Rebuilt
 | 
						|
    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
 | 
						|
  if (!Rebuilt)
 | 
						|
    return true;
 | 
						|
 | 
						|
  SS.Adopt(Rebuilt);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Rebuild the template parameters now that we know we're in a current
 | 
						|
/// instantiation.
 | 
						|
bool Sema::RebuildTemplateParamsInCurrentInstantiation(
 | 
						|
                                               TemplateParameterList *Params) {
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    Decl *Param = Params->getParam(I);
 | 
						|
 | 
						|
    // There is nothing to rebuild in a type parameter.
 | 
						|
    if (isa<TemplateTypeParmDecl>(Param))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Rebuild the template parameter list of a template template parameter.
 | 
						|
    if (TemplateTemplateParmDecl *TTP
 | 
						|
        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
 | 
						|
      if (RebuildTemplateParamsInCurrentInstantiation(
 | 
						|
            TTP->getTemplateParameters()))
 | 
						|
        return true;
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Rebuild the type of a non-type template parameter.
 | 
						|
    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
 | 
						|
    TypeSourceInfo *NewTSI
 | 
						|
      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
 | 
						|
                                          NTTP->getLocation(),
 | 
						|
                                          NTTP->getDeclName());
 | 
						|
    if (!NewTSI)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (NewTSI != NTTP->getTypeSourceInfo()) {
 | 
						|
      NTTP->setTypeSourceInfo(NewTSI);
 | 
						|
      NTTP->setType(NewTSI->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Produces a formatted string that describes the binding of
 | 
						|
/// template parameters to template arguments.
 | 
						|
std::string
 | 
						|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | 
						|
                                      const TemplateArgumentList &Args) {
 | 
						|
  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
 | 
						|
}
 | 
						|
 | 
						|
std::string
 | 
						|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
 | 
						|
                                      const TemplateArgument *Args,
 | 
						|
                                      unsigned NumArgs) {
 | 
						|
  SmallString<128> Str;
 | 
						|
  llvm::raw_svector_ostream Out(Str);
 | 
						|
 | 
						|
  if (!Params || Params->size() == 0 || NumArgs == 0)
 | 
						|
    return std::string();
 | 
						|
 | 
						|
  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
 | 
						|
    if (I >= NumArgs)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (I == 0)
 | 
						|
      Out << "[with ";
 | 
						|
    else
 | 
						|
      Out << ", ";
 | 
						|
 | 
						|
    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
 | 
						|
      Out << Id->getName();
 | 
						|
    } else {
 | 
						|
      Out << '$' << I;
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " = ";
 | 
						|
    Args[I].print(getPrintingPolicy(), Out);
 | 
						|
  }
 | 
						|
 | 
						|
  Out << ']';
 | 
						|
  return Out.str();
 | 
						|
}
 | 
						|
 | 
						|
void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
 | 
						|
                                    CachedTokens &Toks) {
 | 
						|
  if (!FD)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto LPT = llvm::make_unique<LateParsedTemplate>();
 | 
						|
 | 
						|
  // Take tokens to avoid allocations
 | 
						|
  LPT->Toks.swap(Toks);
 | 
						|
  LPT->D = FnD;
 | 
						|
  LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
 | 
						|
 | 
						|
  FD->setLateTemplateParsed(true);
 | 
						|
}
 | 
						|
 | 
						|
void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
 | 
						|
  if (!FD)
 | 
						|
    return;
 | 
						|
  FD->setLateTemplateParsed(false);
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::IsInsideALocalClassWithinATemplateFunction() {
 | 
						|
  DeclContext *DC = CurContext;
 | 
						|
 | 
						|
  while (DC) {
 | 
						|
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
 | 
						|
      const FunctionDecl *FD = RD->isLocalClass();
 | 
						|
      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
 | 
						|
    } else if (DC->isTranslationUnit() || DC->isNamespace())
 | 
						|
      return false;
 | 
						|
 | 
						|
    DC = DC->getParent();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Walk the path from which a declaration was instantiated, and check
 | 
						|
/// that every explicit specialization along that path is visible. This enforces
 | 
						|
/// C++ [temp.expl.spec]/6:
 | 
						|
///
 | 
						|
///   If a template, a member template or a member of a class template is
 | 
						|
///   explicitly specialized then that specialization shall be declared before
 | 
						|
///   the first use of that specialization that would cause an implicit
 | 
						|
///   instantiation to take place, in every translation unit in which such a
 | 
						|
///   use occurs; no diagnostic is required.
 | 
						|
///
 | 
						|
/// and also C++ [temp.class.spec]/1:
 | 
						|
///
 | 
						|
///   A partial specialization shall be declared before the first use of a
 | 
						|
///   class template specialization that would make use of the partial
 | 
						|
///   specialization as the result of an implicit or explicit instantiation
 | 
						|
///   in every translation unit in which such a use occurs; no diagnostic is
 | 
						|
///   required.
 | 
						|
class ExplicitSpecializationVisibilityChecker {
 | 
						|
  Sema &S;
 | 
						|
  SourceLocation Loc;
 | 
						|
  llvm::SmallVector<Module *, 8> Modules;
 | 
						|
 | 
						|
public:
 | 
						|
  ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
 | 
						|
      : S(S), Loc(Loc) {}
 | 
						|
 | 
						|
  void check(NamedDecl *ND) {
 | 
						|
    if (auto *FD = dyn_cast<FunctionDecl>(ND))
 | 
						|
      return checkImpl(FD);
 | 
						|
    if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
 | 
						|
      return checkImpl(RD);
 | 
						|
    if (auto *VD = dyn_cast<VarDecl>(ND))
 | 
						|
      return checkImpl(VD);
 | 
						|
    if (auto *ED = dyn_cast<EnumDecl>(ND))
 | 
						|
      return checkImpl(ED);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void diagnose(NamedDecl *D, bool IsPartialSpec) {
 | 
						|
    auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
 | 
						|
                              : Sema::MissingImportKind::ExplicitSpecialization;
 | 
						|
    const bool Recover = true;
 | 
						|
 | 
						|
    // If we got a custom set of modules (because only a subset of the
 | 
						|
    // declarations are interesting), use them, otherwise let
 | 
						|
    // diagnoseMissingImport intelligently pick some.
 | 
						|
    if (Modules.empty())
 | 
						|
      S.diagnoseMissingImport(Loc, D, Kind, Recover);
 | 
						|
    else
 | 
						|
      S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check a specific declaration. There are three problematic cases:
 | 
						|
  //
 | 
						|
  //  1) The declaration is an explicit specialization of a template
 | 
						|
  //     specialization.
 | 
						|
  //  2) The declaration is an explicit specialization of a member of an
 | 
						|
  //     templated class.
 | 
						|
  //  3) The declaration is an instantiation of a template, and that template
 | 
						|
  //     is an explicit specialization of a member of a templated class.
 | 
						|
  //
 | 
						|
  // We don't need to go any deeper than that, as the instantiation of the
 | 
						|
  // surrounding class / etc is not triggered by whatever triggered this
 | 
						|
  // instantiation, and thus should be checked elsewhere.
 | 
						|
  template<typename SpecDecl>
 | 
						|
  void checkImpl(SpecDecl *Spec) {
 | 
						|
    bool IsHiddenExplicitSpecialization = false;
 | 
						|
    if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
 | 
						|
      IsHiddenExplicitSpecialization =
 | 
						|
          Spec->getMemberSpecializationInfo()
 | 
						|
              ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
 | 
						|
              : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
 | 
						|
    } else {
 | 
						|
      checkInstantiated(Spec);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsHiddenExplicitSpecialization)
 | 
						|
      diagnose(Spec->getMostRecentDecl(), false);
 | 
						|
  }
 | 
						|
 | 
						|
  void checkInstantiated(FunctionDecl *FD) {
 | 
						|
    if (auto *TD = FD->getPrimaryTemplate())
 | 
						|
      checkTemplate(TD);
 | 
						|
  }
 | 
						|
 | 
						|
  void checkInstantiated(CXXRecordDecl *RD) {
 | 
						|
    auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
 | 
						|
    if (!SD)
 | 
						|
      return;
 | 
						|
 | 
						|
    auto From = SD->getSpecializedTemplateOrPartial();
 | 
						|
    if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
 | 
						|
      checkTemplate(TD);
 | 
						|
    else if (auto *TD =
 | 
						|
                 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
 | 
						|
      if (!S.hasVisibleDeclaration(TD))
 | 
						|
        diagnose(TD, true);
 | 
						|
      checkTemplate(TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void checkInstantiated(VarDecl *RD) {
 | 
						|
    auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
 | 
						|
    if (!SD)
 | 
						|
      return;
 | 
						|
 | 
						|
    auto From = SD->getSpecializedTemplateOrPartial();
 | 
						|
    if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
 | 
						|
      checkTemplate(TD);
 | 
						|
    else if (auto *TD =
 | 
						|
                 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
 | 
						|
      if (!S.hasVisibleDeclaration(TD))
 | 
						|
        diagnose(TD, true);
 | 
						|
      checkTemplate(TD);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void checkInstantiated(EnumDecl *FD) {}
 | 
						|
 | 
						|
  template<typename TemplDecl>
 | 
						|
  void checkTemplate(TemplDecl *TD) {
 | 
						|
    if (TD->isMemberSpecialization()) {
 | 
						|
      if (!S.hasVisibleMemberSpecialization(TD, &Modules))
 | 
						|
        diagnose(TD->getMostRecentDecl(), false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
 | 
						|
  if (!getLangOpts().Modules)
 | 
						|
    return;
 | 
						|
 | 
						|
  ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check whether a template partial specialization that we've discovered
 | 
						|
/// is hidden, and produce suitable diagnostics if so.
 | 
						|
void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
 | 
						|
                                                NamedDecl *Spec) {
 | 
						|
  llvm::SmallVector<Module *, 8> Modules;
 | 
						|
  if (!hasVisibleDeclaration(Spec, &Modules))
 | 
						|
    diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
 | 
						|
                          MissingImportKind::PartialSpecialization,
 | 
						|
                          /*Recover*/true);
 | 
						|
}
 |