2161 lines
85 KiB
C++
2161 lines
85 KiB
C++
//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Created by Greg Clayton on 6/25/07.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
|
|
|
|
#include "MacOSX/arm/DNBArchImpl.h"
|
|
#include "MacOSX/MachProcess.h"
|
|
#include "MacOSX/MachThread.h"
|
|
#include "DNBBreakpoint.h"
|
|
#include "DNBLog.h"
|
|
#include "DNBRegisterInfo.h"
|
|
#include "DNB.h"
|
|
#include "ARM_GCC_Registers.h"
|
|
#include "ARM_DWARF_Registers.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
// BCR address match type
|
|
#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21))
|
|
#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21))
|
|
#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21))
|
|
#define BCR_M_RESERVED ((uint32_t)(3u << 21))
|
|
|
|
// Link a BVR/BCR or WVR/WCR pair to another
|
|
#define E_ENABLE_LINKING ((uint32_t)(1u << 20))
|
|
|
|
// Byte Address Select
|
|
#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5))
|
|
#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6))
|
|
#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7))
|
|
#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8))
|
|
#define BAS_IMVA_0_1 ((uint32_t)(3u << 5))
|
|
#define BAS_IMVA_2_3 ((uint32_t)(3u << 7))
|
|
#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5))
|
|
|
|
// Break only in privileged or user mode
|
|
#define S_RSVD ((uint32_t)(0u << 1))
|
|
#define S_PRIV ((uint32_t)(1u << 1))
|
|
#define S_USER ((uint32_t)(2u << 1))
|
|
#define S_PRIV_USER ((S_PRIV) | (S_USER))
|
|
|
|
#define BCR_ENABLE ((uint32_t)(1u))
|
|
#define WCR_ENABLE ((uint32_t)(1u))
|
|
|
|
// Watchpoint load/store
|
|
#define WCR_LOAD ((uint32_t)(1u << 3))
|
|
#define WCR_STORE ((uint32_t)(1u << 4))
|
|
|
|
// Definitions for the Debug Status and Control Register fields:
|
|
// [5:2] => Method of debug entry
|
|
//#define WATCHPOINT_OCCURRED ((uint32_t)(2u))
|
|
// I'm seeing this, instead.
|
|
#define WATCHPOINT_OCCURRED ((uint32_t)(10u))
|
|
|
|
// 0xE120BE70
|
|
static const uint8_t g_arm_breakpoint_opcode[] = { 0x70, 0xBE, 0x20, 0xE1 };
|
|
static const uint8_t g_thumb_breakpoint_opcode[] = { 0x70, 0xBE };
|
|
|
|
// A watchpoint may need to be implemented using two watchpoint registers.
|
|
// e.g. watching an 8-byte region when the device can only watch 4-bytes.
|
|
//
|
|
// This stores the lo->hi mappings. It's safe to initialize to all 0's
|
|
// since hi > lo and therefore LoHi[i] cannot be 0.
|
|
static uint32_t LoHi[16] = { 0 };
|
|
|
|
// ARM constants used during decoding
|
|
#define REG_RD 0
|
|
#define LDM_REGLIST 1
|
|
#define PC_REG 15
|
|
#define PC_REGLIST_BIT 0x8000
|
|
|
|
// ARM conditions
|
|
#define COND_EQ 0x0
|
|
#define COND_NE 0x1
|
|
#define COND_CS 0x2
|
|
#define COND_HS 0x2
|
|
#define COND_CC 0x3
|
|
#define COND_LO 0x3
|
|
#define COND_MI 0x4
|
|
#define COND_PL 0x5
|
|
#define COND_VS 0x6
|
|
#define COND_VC 0x7
|
|
#define COND_HI 0x8
|
|
#define COND_LS 0x9
|
|
#define COND_GE 0xA
|
|
#define COND_LT 0xB
|
|
#define COND_GT 0xC
|
|
#define COND_LE 0xD
|
|
#define COND_AL 0xE
|
|
#define COND_UNCOND 0xF
|
|
|
|
#define MASK_CPSR_T (1u << 5)
|
|
#define MASK_CPSR_J (1u << 24)
|
|
|
|
#define MNEMONIC_STRING_SIZE 32
|
|
#define OPERAND_STRING_SIZE 128
|
|
|
|
// Returns true if the first 16 bit opcode of a thumb instruction indicates
|
|
// the instruction will be a 32 bit thumb opcode
|
|
static bool
|
|
IsThumb32Opcode (uint16_t opcode)
|
|
{
|
|
if (((opcode & 0xE000) == 0xE000) && (opcode & 0x1800))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void
|
|
DNBArchMachARM::Initialize()
|
|
{
|
|
DNBArchPluginInfo arch_plugin_info =
|
|
{
|
|
CPU_TYPE_ARM,
|
|
DNBArchMachARM::Create,
|
|
DNBArchMachARM::GetRegisterSetInfo,
|
|
DNBArchMachARM::SoftwareBreakpointOpcode
|
|
};
|
|
|
|
// Register this arch plug-in with the main protocol class
|
|
DNBArchProtocol::RegisterArchPlugin (arch_plugin_info);
|
|
}
|
|
|
|
|
|
DNBArchProtocol *
|
|
DNBArchMachARM::Create (MachThread *thread)
|
|
{
|
|
DNBArchMachARM *obj = new DNBArchMachARM (thread);
|
|
return obj;
|
|
}
|
|
|
|
const uint8_t * const
|
|
DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size)
|
|
{
|
|
switch (byte_size)
|
|
{
|
|
case 2: return g_thumb_breakpoint_opcode;
|
|
case 4: return g_arm_breakpoint_opcode;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t
|
|
DNBArchMachARM::GetCPUType()
|
|
{
|
|
return CPU_TYPE_ARM;
|
|
}
|
|
|
|
uint64_t
|
|
DNBArchMachARM::GetPC(uint64_t failValue)
|
|
{
|
|
// Get program counter
|
|
if (GetGPRState(false) == KERN_SUCCESS)
|
|
return m_state.context.gpr.__pc;
|
|
return failValue;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::SetPC(uint64_t value)
|
|
{
|
|
// Get program counter
|
|
kern_return_t err = GetGPRState(false);
|
|
if (err == KERN_SUCCESS)
|
|
{
|
|
m_state.context.gpr.__pc = (uint32_t) value;
|
|
err = SetGPRState();
|
|
}
|
|
return err == KERN_SUCCESS;
|
|
}
|
|
|
|
uint64_t
|
|
DNBArchMachARM::GetSP(uint64_t failValue)
|
|
{
|
|
// Get stack pointer
|
|
if (GetGPRState(false) == KERN_SUCCESS)
|
|
return m_state.context.gpr.__sp;
|
|
return failValue;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::GetGPRState(bool force)
|
|
{
|
|
int set = e_regSetGPR;
|
|
// Check if we have valid cached registers
|
|
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
|
|
return KERN_SUCCESS;
|
|
|
|
// Read the registers from our thread
|
|
mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT;
|
|
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count);
|
|
uint32_t *r = &m_state.context.gpr.__r[0];
|
|
DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x",
|
|
m_thread->MachPortNumber(),
|
|
ARM_THREAD_STATE,
|
|
ARM_THREAD_STATE_COUNT,
|
|
kret,
|
|
count,
|
|
r[0],
|
|
r[1],
|
|
r[2],
|
|
r[3],
|
|
r[4],
|
|
r[5],
|
|
r[6],
|
|
r[7],
|
|
r[8],
|
|
r[9],
|
|
r[10],
|
|
r[11],
|
|
r[12],
|
|
r[13],
|
|
r[14],
|
|
r[15],
|
|
r[16]);
|
|
m_state.SetError(set, Read, kret);
|
|
return kret;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::GetVFPState(bool force)
|
|
{
|
|
int set = e_regSetVFP;
|
|
// Check if we have valid cached registers
|
|
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
|
|
return KERN_SUCCESS;
|
|
|
|
kern_return_t kret;
|
|
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
// Read the registers from our thread
|
|
mach_msg_type_number_t count = ARM_NEON_STATE_COUNT;
|
|
kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE, (thread_state_t)&m_state.context.vfp, &count);
|
|
if (DNBLogEnabledForAny (LOG_THREAD))
|
|
{
|
|
DNBLogThreaded("thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
|
|
"\n q0 = 0x%16.16llx%16.16llx"
|
|
"\n q1 = 0x%16.16llx%16.16llx"
|
|
"\n q2 = 0x%16.16llx%16.16llx"
|
|
"\n q3 = 0x%16.16llx%16.16llx"
|
|
"\n q4 = 0x%16.16llx%16.16llx"
|
|
"\n q5 = 0x%16.16llx%16.16llx"
|
|
"\n q6 = 0x%16.16llx%16.16llx"
|
|
"\n q7 = 0x%16.16llx%16.16llx"
|
|
"\n q8 = 0x%16.16llx%16.16llx"
|
|
"\n q9 = 0x%16.16llx%16.16llx"
|
|
"\n q10 = 0x%16.16llx%16.16llx"
|
|
"\n q11 = 0x%16.16llx%16.16llx"
|
|
"\n q12 = 0x%16.16llx%16.16llx"
|
|
"\n q13 = 0x%16.16llx%16.16llx"
|
|
"\n q14 = 0x%16.16llx%16.16llx"
|
|
"\n q15 = 0x%16.16llx%16.16llx"
|
|
"\n fpsr = 0x%8.8x"
|
|
"\n fpcr = 0x%8.8x\n\n",
|
|
m_thread->MachPortNumber(),
|
|
ARM_NEON_STATE,
|
|
ARM_NEON_STATE_COUNT,
|
|
kret,
|
|
count,
|
|
((uint64_t *)&m_state.context.vfp.__v[0])[0] , ((uint64_t *)&m_state.context.vfp.__v[0])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[1])[0] , ((uint64_t *)&m_state.context.vfp.__v[1])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[2])[0] , ((uint64_t *)&m_state.context.vfp.__v[2])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[3])[0] , ((uint64_t *)&m_state.context.vfp.__v[3])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[4])[0] , ((uint64_t *)&m_state.context.vfp.__v[4])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[5])[0] , ((uint64_t *)&m_state.context.vfp.__v[5])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[6])[0] , ((uint64_t *)&m_state.context.vfp.__v[6])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[7])[0] , ((uint64_t *)&m_state.context.vfp.__v[7])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[8])[0] , ((uint64_t *)&m_state.context.vfp.__v[8])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[9])[0] , ((uint64_t *)&m_state.context.vfp.__v[9])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[10])[0], ((uint64_t *)&m_state.context.vfp.__v[10])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[11])[0], ((uint64_t *)&m_state.context.vfp.__v[11])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[12])[0], ((uint64_t *)&m_state.context.vfp.__v[12])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[13])[0], ((uint64_t *)&m_state.context.vfp.__v[13])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[14])[0], ((uint64_t *)&m_state.context.vfp.__v[14])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[15])[0], ((uint64_t *)&m_state.context.vfp.__v[15])[1],
|
|
m_state.context.vfp.__fpsr,
|
|
m_state.context.vfp.__fpcr);
|
|
|
|
}
|
|
#else
|
|
// Read the registers from our thread
|
|
mach_msg_type_number_t count = ARM_VFP_STATE_COUNT;
|
|
kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count);
|
|
|
|
if (DNBLogEnabledForAny (LOG_THREAD))
|
|
{
|
|
uint32_t *r = &m_state.context.vfp.__r[0];
|
|
DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
|
|
m_thread->MachPortNumber(),
|
|
ARM_THREAD_STATE,
|
|
ARM_THREAD_STATE_COUNT,
|
|
kret,
|
|
count);
|
|
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
|
|
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
|
|
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
|
|
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
|
|
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
|
|
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
|
|
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
|
|
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
|
|
}
|
|
|
|
#endif
|
|
m_state.SetError(set, Read, kret);
|
|
return kret;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::GetEXCState(bool force)
|
|
{
|
|
int set = e_regSetEXC;
|
|
// Check if we have valid cached registers
|
|
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
|
|
return KERN_SUCCESS;
|
|
|
|
// Read the registers from our thread
|
|
mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT;
|
|
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count);
|
|
m_state.SetError(set, Read, kret);
|
|
return kret;
|
|
}
|
|
|
|
static void
|
|
DumpDBGState(const DNBArchMachARM::DBG& dbg)
|
|
{
|
|
uint32_t i = 0;
|
|
for (i=0; i<16; i++)
|
|
{
|
|
DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
|
|
i, i, dbg.__bvr[i], dbg.__bcr[i],
|
|
i, i, dbg.__wvr[i], dbg.__wcr[i]);
|
|
}
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::GetDBGState(bool force)
|
|
{
|
|
int set = e_regSetDBG;
|
|
|
|
// Check if we have valid cached registers
|
|
if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
|
|
return KERN_SUCCESS;
|
|
|
|
// Read the registers from our thread
|
|
#if defined (ARM_DEBUG_STATE32) && (defined (__arm64__) || defined (__aarch64__))
|
|
mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT;
|
|
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, &count);
|
|
#else
|
|
mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT;
|
|
kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count);
|
|
#endif
|
|
m_state.SetError(set, Read, kret);
|
|
|
|
return kret;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::SetGPRState()
|
|
{
|
|
int set = e_regSetGPR;
|
|
kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT);
|
|
m_state.SetError(set, Write, kret); // Set the current write error for this register set
|
|
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
|
|
return kret; // Return the error code
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::SetVFPState()
|
|
{
|
|
int set = e_regSetVFP;
|
|
kern_return_t kret;
|
|
mach_msg_type_number_t count;
|
|
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
count = ARM_NEON_STATE_COUNT;
|
|
kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_NEON_STATE, (thread_state_t)&m_state.context.vfp, count);
|
|
#else
|
|
count = ARM_VFP_STATE_COUNT;
|
|
kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, count);
|
|
#endif
|
|
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
if (DNBLogEnabledForAny (LOG_THREAD))
|
|
{
|
|
DNBLogThreaded("thread_set_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
|
|
"\n q0 = 0x%16.16llx%16.16llx"
|
|
"\n q1 = 0x%16.16llx%16.16llx"
|
|
"\n q2 = 0x%16.16llx%16.16llx"
|
|
"\n q3 = 0x%16.16llx%16.16llx"
|
|
"\n q4 = 0x%16.16llx%16.16llx"
|
|
"\n q5 = 0x%16.16llx%16.16llx"
|
|
"\n q6 = 0x%16.16llx%16.16llx"
|
|
"\n q7 = 0x%16.16llx%16.16llx"
|
|
"\n q8 = 0x%16.16llx%16.16llx"
|
|
"\n q9 = 0x%16.16llx%16.16llx"
|
|
"\n q10 = 0x%16.16llx%16.16llx"
|
|
"\n q11 = 0x%16.16llx%16.16llx"
|
|
"\n q12 = 0x%16.16llx%16.16llx"
|
|
"\n q13 = 0x%16.16llx%16.16llx"
|
|
"\n q14 = 0x%16.16llx%16.16llx"
|
|
"\n q15 = 0x%16.16llx%16.16llx"
|
|
"\n fpsr = 0x%8.8x"
|
|
"\n fpcr = 0x%8.8x\n\n",
|
|
m_thread->MachPortNumber(),
|
|
ARM_NEON_STATE,
|
|
ARM_NEON_STATE_COUNT,
|
|
kret,
|
|
count,
|
|
((uint64_t *)&m_state.context.vfp.__v[0])[0] , ((uint64_t *)&m_state.context.vfp.__v[0])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[1])[0] , ((uint64_t *)&m_state.context.vfp.__v[1])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[2])[0] , ((uint64_t *)&m_state.context.vfp.__v[2])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[3])[0] , ((uint64_t *)&m_state.context.vfp.__v[3])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[4])[0] , ((uint64_t *)&m_state.context.vfp.__v[4])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[5])[0] , ((uint64_t *)&m_state.context.vfp.__v[5])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[6])[0] , ((uint64_t *)&m_state.context.vfp.__v[6])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[7])[0] , ((uint64_t *)&m_state.context.vfp.__v[7])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[8])[0] , ((uint64_t *)&m_state.context.vfp.__v[8])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[9])[0] , ((uint64_t *)&m_state.context.vfp.__v[9])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[10])[0], ((uint64_t *)&m_state.context.vfp.__v[10])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[11])[0], ((uint64_t *)&m_state.context.vfp.__v[11])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[12])[0], ((uint64_t *)&m_state.context.vfp.__v[12])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[13])[0], ((uint64_t *)&m_state.context.vfp.__v[13])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[14])[0], ((uint64_t *)&m_state.context.vfp.__v[14])[1],
|
|
((uint64_t *)&m_state.context.vfp.__v[15])[0], ((uint64_t *)&m_state.context.vfp.__v[15])[1],
|
|
m_state.context.vfp.__fpsr,
|
|
m_state.context.vfp.__fpcr);
|
|
}
|
|
#else
|
|
if (DNBLogEnabledForAny (LOG_THREAD))
|
|
{
|
|
uint32_t *r = &m_state.context.vfp.__r[0];
|
|
DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)",
|
|
m_thread->MachPortNumber(),
|
|
ARM_THREAD_STATE,
|
|
ARM_THREAD_STATE_COUNT,
|
|
kret,
|
|
count);
|
|
DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]);
|
|
DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]);
|
|
DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]);
|
|
DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]);
|
|
DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]);
|
|
DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]);
|
|
DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]);
|
|
DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]);
|
|
}
|
|
#endif
|
|
|
|
m_state.SetError(set, Write, kret); // Set the current write error for this register set
|
|
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
|
|
return kret; // Return the error code
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::SetEXCState()
|
|
{
|
|
int set = e_regSetEXC;
|
|
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT);
|
|
m_state.SetError(set, Write, kret); // Set the current write error for this register set
|
|
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
|
|
return kret; // Return the error code
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::SetDBGState(bool also_set_on_task)
|
|
{
|
|
int set = e_regSetDBG;
|
|
#if defined (ARM_DEBUG_STATE32) && (defined (__arm64__) || defined (__aarch64__))
|
|
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
|
|
if (also_set_on_task)
|
|
{
|
|
kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT);
|
|
if (task_kret != KERN_SUCCESS)
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret);
|
|
}
|
|
#else
|
|
kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
|
|
if (also_set_on_task)
|
|
{
|
|
kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT);
|
|
if (task_kret != KERN_SUCCESS)
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret);
|
|
}
|
|
#endif
|
|
|
|
m_state.SetError(set, Write, kret); // Set the current write error for this register set
|
|
m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently
|
|
return kret; // Return the error code
|
|
}
|
|
|
|
void
|
|
DNBArchMachARM::ThreadWillResume()
|
|
{
|
|
// Do we need to step this thread? If so, let the mach thread tell us so.
|
|
if (m_thread->IsStepping())
|
|
{
|
|
// This is the primary thread, let the arch do anything it needs
|
|
if (NumSupportedHardwareBreakpoints() > 0)
|
|
{
|
|
if (EnableHardwareSingleStep(true) != KERN_SUCCESS)
|
|
{
|
|
DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Disable the triggered watchpoint temporarily before we resume.
|
|
// Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint.
|
|
if (m_watchpoint_did_occur)
|
|
{
|
|
if (m_watchpoint_hw_index >= 0)
|
|
{
|
|
kern_return_t kret = GetDBGState(false);
|
|
if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
|
|
// The watchpoint might have been disabled by the user. We don't need to do anything at all
|
|
// to enable hardware single stepping.
|
|
m_watchpoint_did_occur = false;
|
|
m_watchpoint_hw_index = -1;
|
|
return;
|
|
}
|
|
|
|
DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called",
|
|
m_watchpoint_hw_index);
|
|
|
|
// Enable hardware single step to move past the watchpoint-triggering instruction.
|
|
m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS);
|
|
|
|
// If we are not able to enable single step to move past the watchpoint-triggering instruction,
|
|
// at least we should reset the two watchpoint member variables so that the next time around
|
|
// this callback function is invoked, the enclosing logical branch is skipped.
|
|
if (!m_watchpoint_resume_single_step_enabled) {
|
|
// Reset the two watchpoint member variables.
|
|
m_watchpoint_did_occur = false;
|
|
m_watchpoint_hw_index = -1;
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step");
|
|
}
|
|
else
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step");
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::ThreadDidStop()
|
|
{
|
|
bool success = true;
|
|
|
|
m_state.InvalidateRegisterSetState (e_regSetALL);
|
|
|
|
if (m_watchpoint_resume_single_step_enabled)
|
|
{
|
|
// Great! We now disable the hardware single step as well as re-enable the hardware watchpoint.
|
|
// See also ThreadWillResume().
|
|
if (EnableHardwareSingleStep(false) == KERN_SUCCESS)
|
|
{
|
|
if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0)
|
|
{
|
|
ReenableHardwareWatchpoint(m_watchpoint_hw_index);
|
|
m_watchpoint_resume_single_step_enabled = false;
|
|
m_watchpoint_did_occur = false;
|
|
m_watchpoint_hw_index = -1;
|
|
}
|
|
else
|
|
{
|
|
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!");
|
|
}
|
|
}
|
|
|
|
// Are we stepping a single instruction?
|
|
if (GetGPRState(true) == KERN_SUCCESS)
|
|
{
|
|
// We are single stepping, was this the primary thread?
|
|
if (m_thread->IsStepping())
|
|
{
|
|
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
|
|
}
|
|
else
|
|
{
|
|
// The MachThread will automatically restore the suspend count
|
|
// in ThreadDidStop(), so we don't need to do anything here if
|
|
// we weren't the primary thread the last time
|
|
}
|
|
}
|
|
return success;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::NotifyException(MachException::Data& exc)
|
|
{
|
|
switch (exc.exc_type)
|
|
{
|
|
default:
|
|
break;
|
|
case EXC_BREAKPOINT:
|
|
if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG)
|
|
{
|
|
// The data break address is passed as exc_data[1].
|
|
nub_addr_t addr = exc.exc_data[1];
|
|
// Find the hardware index with the side effect of possibly massaging the
|
|
// addr to return the starting address as seen from the debugger side.
|
|
uint32_t hw_index = GetHardwareWatchpointHit(addr);
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException watchpoint %d was hit on address 0x%llx", hw_index, (uint64_t) addr);
|
|
const int num_watchpoints = NumSupportedHardwareWatchpoints ();
|
|
for (int i = 0; i < num_watchpoints; i++)
|
|
{
|
|
if (LoHi[i] != 0
|
|
&& LoHi[i] == hw_index
|
|
&& LoHi[i] != i
|
|
&& GetWatchpointAddressByIndex (i) != INVALID_NUB_ADDRESS)
|
|
{
|
|
addr = GetWatchpointAddressByIndex (i);
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException It is a linked watchpoint; rewritten to index %d addr 0x%llx", LoHi[i], (uint64_t) addr);
|
|
}
|
|
}
|
|
if (hw_index != INVALID_NUB_HW_INDEX)
|
|
{
|
|
m_watchpoint_did_occur = true;
|
|
m_watchpoint_hw_index = hw_index;
|
|
exc.exc_data[1] = addr;
|
|
// Piggyback the hw_index in the exc.data.
|
|
exc.exc_data.push_back(hw_index);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::StepNotComplete ()
|
|
{
|
|
if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS)
|
|
{
|
|
kern_return_t kret = KERN_INVALID_ARGUMENT;
|
|
kret = GetGPRState(false);
|
|
if (kret == KERN_SUCCESS)
|
|
{
|
|
if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr)
|
|
{
|
|
DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx", (uint64_t) m_hw_single_chained_step_addr);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
|
|
return false;
|
|
}
|
|
|
|
// Set the single step bit in the processor status register.
|
|
kern_return_t
|
|
DNBArchMachARM::EnableHardwareSingleStep (bool enable)
|
|
{
|
|
DNBError err;
|
|
DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
|
|
|
|
err = GetGPRState(false);
|
|
|
|
if (err.Fail())
|
|
{
|
|
err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
|
|
return err.Error();
|
|
}
|
|
|
|
err = GetDBGState(false);
|
|
|
|
if (err.Fail())
|
|
{
|
|
err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
|
|
return err.Error();
|
|
}
|
|
|
|
// The use of __arm64__ here is not ideal. If debugserver is running on
|
|
// an armv8 device, regardless of whether it was built for arch arm or arch arm64,
|
|
// it needs to use the MDSCR_EL1 SS bit to single instruction step.
|
|
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
if (enable)
|
|
{
|
|
DNBLogThreadedIf(LOG_STEP, "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
|
|
m_state.dbg.__mdscr_el1 |= 1; // Set bit 0 (single step, SS) in the MDSCR_EL1.
|
|
}
|
|
else
|
|
{
|
|
DNBLogThreadedIf(LOG_STEP, "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc);
|
|
m_state.dbg.__mdscr_el1 &= ~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1.
|
|
}
|
|
#else
|
|
const uint32_t i = 0;
|
|
if (enable)
|
|
{
|
|
m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS;
|
|
|
|
// Save our previous state
|
|
m_dbg_save = m_state.dbg;
|
|
// Set a breakpoint that will stop when the PC doesn't match the current one!
|
|
m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address
|
|
m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch
|
|
S_USER | // Stop only in user mode
|
|
BCR_ENABLE; // Enable this breakpoint
|
|
if (m_state.context.gpr.__cpsr & 0x20)
|
|
{
|
|
// Thumb breakpoint
|
|
if (m_state.context.gpr.__pc & 2)
|
|
m_state.dbg.__bcr[i] |= BAS_IMVA_2_3;
|
|
else
|
|
m_state.dbg.__bcr[i] |= BAS_IMVA_0_1;
|
|
|
|
uint16_t opcode;
|
|
if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode))
|
|
{
|
|
if (IsThumb32Opcode(opcode))
|
|
{
|
|
// 32 bit thumb opcode...
|
|
if (m_state.context.gpr.__pc & 2)
|
|
{
|
|
// We can't take care of a 32 bit thumb instruction single step
|
|
// with just IVA mismatching. We will need to chain an extra
|
|
// hardware single step in order to complete this single step...
|
|
m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2;
|
|
}
|
|
else
|
|
{
|
|
// Extend the number of bits to ignore for the mismatch
|
|
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// ARM breakpoint
|
|
m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change
|
|
}
|
|
|
|
DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]);
|
|
|
|
for (uint32_t j=i+1; j<16; ++j)
|
|
{
|
|
// Disable all others
|
|
m_state.dbg.__bvr[j] = 0;
|
|
m_state.dbg.__bcr[j] = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Just restore the state we had before we did single stepping
|
|
m_state.dbg = m_dbg_save;
|
|
}
|
|
#endif
|
|
|
|
return SetDBGState(false);
|
|
}
|
|
|
|
// return 1 if bit "BIT" is set in "value"
|
|
static inline uint32_t bit(uint32_t value, uint32_t bit)
|
|
{
|
|
return (value >> bit) & 1u;
|
|
}
|
|
|
|
// return the bitfield "value[msbit:lsbit]".
|
|
static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit)
|
|
{
|
|
assert(msbit >= lsbit);
|
|
uint32_t shift_left = sizeof(value) * 8 - 1 - msbit;
|
|
value <<= shift_left; // shift anything above the msbit off of the unsigned edge
|
|
value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above)
|
|
return value; // return our result
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr)
|
|
{
|
|
uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag
|
|
uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag
|
|
uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag
|
|
uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag
|
|
|
|
switch (condition) {
|
|
case COND_EQ: // (0x0)
|
|
if (cpsr_z == 1) return true;
|
|
break;
|
|
case COND_NE: // (0x1)
|
|
if (cpsr_z == 0) return true;
|
|
break;
|
|
case COND_CS: // (0x2)
|
|
if (cpsr_c == 1) return true;
|
|
break;
|
|
case COND_CC: // (0x3)
|
|
if (cpsr_c == 0) return true;
|
|
break;
|
|
case COND_MI: // (0x4)
|
|
if (cpsr_n == 1) return true;
|
|
break;
|
|
case COND_PL: // (0x5)
|
|
if (cpsr_n == 0) return true;
|
|
break;
|
|
case COND_VS: // (0x6)
|
|
if (cpsr_v == 1) return true;
|
|
break;
|
|
case COND_VC: // (0x7)
|
|
if (cpsr_v == 0) return true;
|
|
break;
|
|
case COND_HI: // (0x8)
|
|
if ((cpsr_c == 1) && (cpsr_z == 0)) return true;
|
|
break;
|
|
case COND_LS: // (0x9)
|
|
if ((cpsr_c == 0) || (cpsr_z == 1)) return true;
|
|
break;
|
|
case COND_GE: // (0xA)
|
|
if (cpsr_n == cpsr_v) return true;
|
|
break;
|
|
case COND_LT: // (0xB)
|
|
if (cpsr_n != cpsr_v) return true;
|
|
break;
|
|
case COND_GT: // (0xC)
|
|
if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true;
|
|
break;
|
|
case COND_LE: // (0xD)
|
|
if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true;
|
|
break;
|
|
default:
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
uint32_t
|
|
DNBArchMachARM::NumSupportedHardwareBreakpoints()
|
|
{
|
|
// Set the init value to something that will let us know that we need to
|
|
// autodetect how many breakpoints are supported dynamically...
|
|
static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
|
|
if (g_num_supported_hw_breakpoints == UINT_MAX)
|
|
{
|
|
// Set this to zero in case we can't tell if there are any HW breakpoints
|
|
g_num_supported_hw_breakpoints = 0;
|
|
|
|
size_t len;
|
|
uint32_t n = 0;
|
|
len = sizeof (n);
|
|
if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0)
|
|
{
|
|
g_num_supported_hw_breakpoints = n;
|
|
DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
|
|
}
|
|
else
|
|
{
|
|
#if !defined (__arm64__) && !defined (__aarch64__)
|
|
// Read the DBGDIDR to get the number of available hardware breakpoints
|
|
// However, in some of our current armv7 processors, hardware
|
|
// breakpoints/watchpoints were not properly connected. So detect those
|
|
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
|
|
// field to distinguish CPU architectures. This is a hack until we can
|
|
// get <rdar://problem/6372672> fixed, at which point we will switch to
|
|
// using a different sysctl string that will tell us how many BRPs
|
|
// are available to us directly without having to read DBGDIDR.
|
|
uint32_t register_DBGDIDR;
|
|
|
|
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
|
|
uint32_t numBRPs = bits(register_DBGDIDR, 27, 24);
|
|
// Zero is reserved for the BRP count, so don't increment it if it is zero
|
|
if (numBRPs > 0)
|
|
numBRPs++;
|
|
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs);
|
|
|
|
if (numBRPs > 0)
|
|
{
|
|
uint32_t cpusubtype;
|
|
len = sizeof(cpusubtype);
|
|
// TODO: remove this hack and change to using hw.optional.xx when implmented
|
|
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
|
|
{
|
|
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype);
|
|
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
|
|
DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)");
|
|
else
|
|
g_num_supported_hw_breakpoints = numBRPs;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
return g_num_supported_hw_breakpoints;
|
|
}
|
|
|
|
|
|
uint32_t
|
|
DNBArchMachARM::NumSupportedHardwareWatchpoints()
|
|
{
|
|
// Set the init value to something that will let us know that we need to
|
|
// autodetect how many watchpoints are supported dynamically...
|
|
static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
|
|
if (g_num_supported_hw_watchpoints == UINT_MAX)
|
|
{
|
|
// Set this to zero in case we can't tell if there are any HW breakpoints
|
|
g_num_supported_hw_watchpoints = 0;
|
|
|
|
|
|
size_t len;
|
|
uint32_t n = 0;
|
|
len = sizeof (n);
|
|
if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0)
|
|
{
|
|
g_num_supported_hw_watchpoints = n;
|
|
DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
|
|
}
|
|
else
|
|
{
|
|
#if !defined (__arm64__) && !defined (__aarch64__)
|
|
// Read the DBGDIDR to get the number of available hardware breakpoints
|
|
// However, in some of our current armv7 processors, hardware
|
|
// breakpoints/watchpoints were not properly connected. So detect those
|
|
// cases using a field in a sysctl. For now we are using "hw.cpusubtype"
|
|
// field to distinguish CPU architectures. This is a hack until we can
|
|
// get <rdar://problem/6372672> fixed, at which point we will switch to
|
|
// using a different sysctl string that will tell us how many WRPs
|
|
// are available to us directly without having to read DBGDIDR.
|
|
|
|
uint32_t register_DBGDIDR;
|
|
asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR));
|
|
uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1;
|
|
DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs);
|
|
|
|
if (numWRPs > 0)
|
|
{
|
|
uint32_t cpusubtype;
|
|
size_t len;
|
|
len = sizeof(cpusubtype);
|
|
// TODO: remove this hack and change to using hw.optional.xx when implmented
|
|
if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0)
|
|
{
|
|
DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype);
|
|
|
|
if (cpusubtype == CPU_SUBTYPE_ARM_V7)
|
|
DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)");
|
|
else
|
|
g_num_supported_hw_watchpoints = numWRPs;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
return g_num_supported_hw_watchpoints;
|
|
}
|
|
|
|
|
|
uint32_t
|
|
DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size)
|
|
{
|
|
// Make sure our address isn't bogus
|
|
if (addr & 1)
|
|
return INVALID_NUB_HW_INDEX;
|
|
|
|
kern_return_t kret = GetDBGState(false);
|
|
|
|
if (kret == KERN_SUCCESS)
|
|
{
|
|
const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
|
|
uint32_t i;
|
|
for (i=0; i<num_hw_breakpoints; ++i)
|
|
{
|
|
if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
|
|
break; // We found an available hw breakpoint slot (in i)
|
|
}
|
|
|
|
// See if we found an available hw breakpoint slot above
|
|
if (i < num_hw_breakpoints)
|
|
{
|
|
// Make sure bits 1:0 are clear in our address
|
|
m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3);
|
|
|
|
if (size == 2 || addr & 2)
|
|
{
|
|
uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1;
|
|
|
|
// We have a thumb breakpoint
|
|
// We have an ARM breakpoint
|
|
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
|
|
byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode
|
|
S_USER | // Which modes should this breakpoint stop in?
|
|
BCR_ENABLE; // Enable this hardware breakpoint
|
|
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)",
|
|
(uint64_t)addr,
|
|
(uint64_t)size,
|
|
i,
|
|
i,
|
|
m_state.dbg.__bvr[i],
|
|
m_state.dbg.__bcr[i]);
|
|
}
|
|
else if (size == 4)
|
|
{
|
|
// We have an ARM breakpoint
|
|
m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch
|
|
BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA
|
|
S_USER | // Which modes should this breakpoint stop in?
|
|
BCR_ENABLE; // Enable this hardware breakpoint
|
|
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)",
|
|
(uint64_t)addr,
|
|
(uint64_t)size,
|
|
i,
|
|
i,
|
|
m_state.dbg.__bvr[i],
|
|
m_state.dbg.__bcr[i]);
|
|
}
|
|
|
|
kret = SetDBGState(false);
|
|
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret);
|
|
|
|
if (kret == KERN_SUCCESS)
|
|
return i;
|
|
}
|
|
else
|
|
{
|
|
DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size);
|
|
}
|
|
}
|
|
|
|
return INVALID_NUB_HW_INDEX;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index)
|
|
{
|
|
kern_return_t kret = GetDBGState(false);
|
|
|
|
const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
|
|
if (kret == KERN_SUCCESS)
|
|
{
|
|
if (hw_index < num_hw_points)
|
|
{
|
|
m_state.dbg.__bcr[hw_index] = 0;
|
|
DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x",
|
|
hw_index,
|
|
hw_index,
|
|
m_state.dbg.__bvr[hw_index],
|
|
hw_index,
|
|
m_state.dbg.__bcr[hw_index]);
|
|
|
|
kret = SetDBGState(false);
|
|
|
|
if (kret == KERN_SUCCESS)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ARM v7 watchpoints may be either word-size or double-word-size.
|
|
// It's implementation defined which they can handle. It looks like on an
|
|
// armv8 device, armv7 processes can watch dwords. But on a genuine armv7
|
|
// device I tried, only word watchpoints are supported.
|
|
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
#define WATCHPOINTS_ARE_DWORD 1
|
|
#else
|
|
#undef WATCHPOINTS_ARE_DWORD
|
|
#endif
|
|
|
|
uint32_t
|
|
DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task)
|
|
{
|
|
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write);
|
|
|
|
const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
|
|
|
|
// Can't watch zero bytes
|
|
if (size == 0)
|
|
return INVALID_NUB_HW_INDEX;
|
|
|
|
// We must watch for either read or write
|
|
if (read == false && write == false)
|
|
return INVALID_NUB_HW_INDEX;
|
|
|
|
// Otherwise, can't watch more than 8 bytes per WVR/WCR pair
|
|
if (size > 8)
|
|
return INVALID_NUB_HW_INDEX;
|
|
|
|
// Treat arm watchpoints as having an 8-byte alignment requirement. You can put a watchpoint on a 4-byte
|
|
// offset address but you can only watch 4 bytes with that watchpoint.
|
|
|
|
// arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes in that
|
|
// 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd byte, etc, or any
|
|
// combination therein by setting the bits in the BAS [12:5] (Byte Address Select) field of
|
|
// the DBGWCRn_EL1 reg for the watchpoint.
|
|
|
|
// If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to monitor a larger region
|
|
// of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield then selects a larger
|
|
// range of bytes, instead of individual bytes. See the ARMv8 Debug Architecture manual for details.
|
|
// This implementation does not currently use the MASK bits; the largest single region watched by a single
|
|
// watchpoint right now is 8-bytes.
|
|
|
|
#if defined (WATCHPOINTS_ARE_DWORD)
|
|
nub_addr_t aligned_wp_address = addr & ~0x7;
|
|
uint32_t addr_dword_offset = addr & 0x7;
|
|
const int max_watchpoint_size = 8;
|
|
#else
|
|
nub_addr_t aligned_wp_address = addr & ~0x3;
|
|
uint32_t addr_dword_offset = addr & 0x3;
|
|
const int max_watchpoint_size = 4;
|
|
#endif
|
|
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint aligned_wp_address is 0x%llx and addr_dword_offset is 0x%x", (uint64_t)aligned_wp_address, addr_dword_offset);
|
|
|
|
// Do we need to split up this logical watchpoint into two hardware watchpoint
|
|
// registers?
|
|
// e.g. a watchpoint of length 4 on address 6. We need do this with
|
|
// one watchpoint on address 0 with bytes 6 & 7 being monitored
|
|
// one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
|
|
|
|
if (addr_dword_offset + size > max_watchpoint_size)
|
|
{
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu) needs two hardware watchpoints slots to monitor", (uint64_t)addr, size);
|
|
int low_watchpoint_size = max_watchpoint_size - addr_dword_offset;
|
|
int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size;
|
|
|
|
uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read, write, also_set_on_task);
|
|
if (lo == INVALID_NUB_HW_INDEX)
|
|
return INVALID_NUB_HW_INDEX;
|
|
uint32_t hi = EnableHardwareWatchpoint (aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read, write, also_set_on_task);
|
|
if (hi == INVALID_NUB_HW_INDEX)
|
|
{
|
|
DisableHardwareWatchpoint (lo, also_set_on_task);
|
|
return INVALID_NUB_HW_INDEX;
|
|
}
|
|
// Tag this lo->hi mapping in our database.
|
|
LoHi[lo] = hi;
|
|
return lo;
|
|
}
|
|
|
|
// At this point
|
|
// 1 aligned_wp_address is the requested address rounded down to 8-byte alignment
|
|
// 2 addr_dword_offset is the offset into that double word (8-byte) region that we are watching
|
|
// 3 size is the number of bytes within that 8-byte region that we are watching
|
|
|
|
// Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the above.
|
|
// The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, etc, up to 0b11111111 for 8.
|
|
// then we shift those bits left by the offset into this dword that we are interested in.
|
|
// e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of 0b11110000.
|
|
uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
|
|
|
|
// Read the debug state
|
|
kern_return_t kret = GetDBGState(true);
|
|
|
|
if (kret == KERN_SUCCESS)
|
|
{
|
|
// Check to make sure we have the needed hardware support
|
|
uint32_t i = 0;
|
|
|
|
for (i=0; i<num_hw_watchpoints; ++i)
|
|
{
|
|
if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
|
|
break; // We found an available hw watchpoint slot (in i)
|
|
}
|
|
|
|
// See if we found an available hw watchpoint slot above
|
|
if (i < num_hw_watchpoints)
|
|
{
|
|
//DumpDBGState(m_state.dbg);
|
|
|
|
// Clear any previous LoHi joined-watchpoint that may have been in use
|
|
LoHi[i] = 0;
|
|
|
|
// shift our Byte Address Select bits up to the correct bit range for the DBGWCRn_EL1
|
|
byte_address_select = byte_address_select << 5;
|
|
|
|
// Make sure bits 1:0 are clear in our address
|
|
m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address)
|
|
m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch
|
|
S_USER | // Stop only in user mode
|
|
(read ? WCR_LOAD : 0) | // Stop on read access?
|
|
(write ? WCR_STORE : 0) | // Stop on write access?
|
|
WCR_ENABLE; // Enable this watchpoint;
|
|
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]);
|
|
|
|
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
|
|
|
|
kret = SetDBGState(also_set_on_task);
|
|
//DumpDBGState(m_state.dbg);
|
|
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret);
|
|
|
|
if (kret == KERN_SUCCESS)
|
|
return i;
|
|
}
|
|
else
|
|
{
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints);
|
|
}
|
|
}
|
|
return INVALID_NUB_HW_INDEX;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::ReenableHardwareWatchpoint (uint32_t hw_index)
|
|
{
|
|
// If this logical watchpoint # is actually implemented using
|
|
// two hardware watchpoint registers, re-enable both of them.
|
|
|
|
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
|
|
{
|
|
return ReenableHardwareWatchpoint_helper (hw_index) && ReenableHardwareWatchpoint_helper (LoHi[hw_index]);
|
|
}
|
|
else
|
|
{
|
|
return ReenableHardwareWatchpoint_helper (hw_index);
|
|
}
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::ReenableHardwareWatchpoint_helper (uint32_t hw_index)
|
|
{
|
|
kern_return_t kret = GetDBGState(false);
|
|
if (kret != KERN_SUCCESS)
|
|
return false;
|
|
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
|
|
if (hw_index >= num_hw_points)
|
|
return false;
|
|
|
|
m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
|
|
m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
|
|
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
|
|
hw_index,
|
|
hw_index,
|
|
(uint64_t) m_state.dbg.__wvr[hw_index],
|
|
hw_index,
|
|
(uint64_t) m_state.dbg.__wcr[hw_index]);
|
|
|
|
// The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here.
|
|
|
|
kret = SetDBGState(false);
|
|
|
|
return (kret == KERN_SUCCESS);
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task)
|
|
{
|
|
if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index])
|
|
{
|
|
return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task) && DisableHardwareWatchpoint_helper (LoHi[hw_index], also_set_on_task);
|
|
}
|
|
else
|
|
{
|
|
return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task);
|
|
}
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::DisableHardwareWatchpoint_helper (uint32_t hw_index, bool also_set_on_task)
|
|
{
|
|
kern_return_t kret = GetDBGState(false);
|
|
if (kret != KERN_SUCCESS)
|
|
return false;
|
|
|
|
const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
|
|
if (hw_index >= num_hw_points)
|
|
return false;
|
|
|
|
m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
|
|
m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
|
|
|
|
m_state.dbg.__wvr[hw_index] = 0;
|
|
m_state.dbg.__wcr[hw_index] = 0;
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx",
|
|
hw_index,
|
|
hw_index,
|
|
(uint64_t) m_state.dbg.__wvr[hw_index],
|
|
hw_index,
|
|
(uint64_t) m_state.dbg.__wcr[hw_index]);
|
|
|
|
kret = SetDBGState(also_set_on_task);
|
|
|
|
return (kret == KERN_SUCCESS);
|
|
}
|
|
|
|
// Returns -1 if the trailing bit patterns are not one of:
|
|
// { 0b???1, 0b??10, 0b?100, 0b1000 }.
|
|
static inline
|
|
int32_t
|
|
LowestBitSet(uint32_t val)
|
|
{
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
if (bit(val, i))
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Iterate through the debug registers; return the index of the first watchpoint whose address matches.
|
|
// As a side effect, the starting address as understood by the debugger is returned which could be
|
|
// different from 'addr' passed as an in/out argument.
|
|
uint32_t
|
|
DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr)
|
|
{
|
|
// Read the debug state
|
|
kern_return_t kret = GetDBGState(true);
|
|
//DumpDBGState(m_state.dbg);
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret);
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr);
|
|
|
|
// This is the watchpoint value to match against, i.e., word address.
|
|
#if defined (WATCHPOINTS_ARE_DWORD)
|
|
nub_addr_t wp_val = addr & ~((nub_addr_t)7);
|
|
#else
|
|
nub_addr_t wp_val = addr & ~((nub_addr_t)3);
|
|
#endif
|
|
if (kret == KERN_SUCCESS)
|
|
{
|
|
DBG &debug_state = m_state.dbg;
|
|
uint32_t i, num = NumSupportedHardwareWatchpoints();
|
|
for (i = 0; i < num; ++i)
|
|
{
|
|
nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
|
|
DNBLogThreadedIf(LOG_WATCHPOINTS,
|
|
"DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).",
|
|
i, (uint64_t)wp_addr);
|
|
if (wp_val == wp_addr) {
|
|
#if defined (WATCHPOINTS_ARE_DWORD)
|
|
uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
|
|
#else
|
|
uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5);
|
|
#endif
|
|
|
|
// Sanity check the byte_mask, first.
|
|
if (LowestBitSet(byte_mask) < 0)
|
|
continue;
|
|
|
|
// Compute the starting address (from the point of view of the debugger).
|
|
addr = wp_addr + LowestBitSet(byte_mask);
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return INVALID_NUB_HW_INDEX;
|
|
}
|
|
|
|
nub_addr_t
|
|
DNBArchMachARM::GetWatchpointAddressByIndex (uint32_t hw_index)
|
|
{
|
|
kern_return_t kret = GetDBGState(true);
|
|
if (kret != KERN_SUCCESS)
|
|
return INVALID_NUB_ADDRESS;
|
|
const uint32_t num = NumSupportedHardwareWatchpoints();
|
|
if (hw_index >= num)
|
|
return INVALID_NUB_ADDRESS;
|
|
if (IsWatchpointEnabled (m_state.dbg, hw_index))
|
|
return GetWatchAddress (m_state.dbg, hw_index);
|
|
return INVALID_NUB_ADDRESS;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index)
|
|
{
|
|
// Watchpoint Control Registers, bitfield definitions
|
|
// ...
|
|
// Bits Value Description
|
|
// [0] 0 Watchpoint disabled
|
|
// 1 Watchpoint enabled.
|
|
return (debug_state.__wcr[hw_index] & 1u);
|
|
}
|
|
|
|
nub_addr_t
|
|
DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index)
|
|
{
|
|
// Watchpoint Value Registers, bitfield definitions
|
|
// Bits Description
|
|
// [31:2] Watchpoint value (word address, i.e., 4-byte aligned)
|
|
// [1:0] RAZ/SBZP
|
|
return bits(debug_state.__wvr[hw_index], 31, 0);
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Register information definitions for 32 bit ARMV7.
|
|
//----------------------------------------------------------------------
|
|
enum gpr_regnums
|
|
{
|
|
gpr_r0 = 0,
|
|
gpr_r1,
|
|
gpr_r2,
|
|
gpr_r3,
|
|
gpr_r4,
|
|
gpr_r5,
|
|
gpr_r6,
|
|
gpr_r7,
|
|
gpr_r8,
|
|
gpr_r9,
|
|
gpr_r10,
|
|
gpr_r11,
|
|
gpr_r12,
|
|
gpr_sp,
|
|
gpr_lr,
|
|
gpr_pc,
|
|
gpr_cpsr
|
|
};
|
|
|
|
enum
|
|
{
|
|
vfp_s0 = 0,
|
|
vfp_s1,
|
|
vfp_s2,
|
|
vfp_s3,
|
|
vfp_s4,
|
|
vfp_s5,
|
|
vfp_s6,
|
|
vfp_s7,
|
|
vfp_s8,
|
|
vfp_s9,
|
|
vfp_s10,
|
|
vfp_s11,
|
|
vfp_s12,
|
|
vfp_s13,
|
|
vfp_s14,
|
|
vfp_s15,
|
|
vfp_s16,
|
|
vfp_s17,
|
|
vfp_s18,
|
|
vfp_s19,
|
|
vfp_s20,
|
|
vfp_s21,
|
|
vfp_s22,
|
|
vfp_s23,
|
|
vfp_s24,
|
|
vfp_s25,
|
|
vfp_s26,
|
|
vfp_s27,
|
|
vfp_s28,
|
|
vfp_s29,
|
|
vfp_s30,
|
|
vfp_s31,
|
|
vfp_d0,
|
|
vfp_d1,
|
|
vfp_d2,
|
|
vfp_d3,
|
|
vfp_d4,
|
|
vfp_d5,
|
|
vfp_d6,
|
|
vfp_d7,
|
|
vfp_d8,
|
|
vfp_d9,
|
|
vfp_d10,
|
|
vfp_d11,
|
|
vfp_d12,
|
|
vfp_d13,
|
|
vfp_d14,
|
|
vfp_d15,
|
|
vfp_d16,
|
|
vfp_d17,
|
|
vfp_d18,
|
|
vfp_d19,
|
|
vfp_d20,
|
|
vfp_d21,
|
|
vfp_d22,
|
|
vfp_d23,
|
|
vfp_d24,
|
|
vfp_d25,
|
|
vfp_d26,
|
|
vfp_d27,
|
|
vfp_d28,
|
|
vfp_d29,
|
|
vfp_d30,
|
|
vfp_d31,
|
|
vfp_q0,
|
|
vfp_q1,
|
|
vfp_q2,
|
|
vfp_q3,
|
|
vfp_q4,
|
|
vfp_q5,
|
|
vfp_q6,
|
|
vfp_q7,
|
|
vfp_q8,
|
|
vfp_q9,
|
|
vfp_q10,
|
|
vfp_q11,
|
|
vfp_q12,
|
|
vfp_q13,
|
|
vfp_q14,
|
|
vfp_q15,
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
vfp_fpsr,
|
|
vfp_fpcr,
|
|
#else
|
|
vfp_fpscr
|
|
#endif
|
|
};
|
|
|
|
enum
|
|
{
|
|
exc_exception,
|
|
exc_fsr,
|
|
exc_far,
|
|
};
|
|
|
|
#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx]))
|
|
#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg))
|
|
|
|
#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM::EXC, __##reg) + offsetof (DNBArchMachARM::Context, exc))
|
|
|
|
// These macros will auto define the register name, alt name, register size,
|
|
// register offset, encoding, format and native register. This ensures that
|
|
// the register state structures are defined correctly and have the correct
|
|
// sizes and offsets.
|
|
#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL}
|
|
#define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), gcc_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval}
|
|
|
|
// In case we are debugging to a debug target that the ability to
|
|
// change into the protected modes with folded registers (ABT, IRQ,
|
|
// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR
|
|
// gets modified.
|
|
|
|
const char * g_invalidate_cpsr[] = { "r8", "r9", "r10", "r11", "r12", "sp", "lr", NULL };
|
|
|
|
// General purpose registers
|
|
const DNBRegisterInfo
|
|
DNBArchMachARM::g_gpr_registers[] =
|
|
{
|
|
DEFINE_GPR_IDX ( 0, r0,"arg1", GENERIC_REGNUM_ARG1 ),
|
|
DEFINE_GPR_IDX ( 1, r1,"arg2", GENERIC_REGNUM_ARG2 ),
|
|
DEFINE_GPR_IDX ( 2, r2,"arg3", GENERIC_REGNUM_ARG3 ),
|
|
DEFINE_GPR_IDX ( 3, r3,"arg4", GENERIC_REGNUM_ARG4 ),
|
|
DEFINE_GPR_IDX ( 4, r4, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX ( 5, r5, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX ( 6, r6, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX ( 7, r7, "fp", GENERIC_REGNUM_FP ),
|
|
DEFINE_GPR_IDX ( 8, r8, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX ( 9, r9, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX (10, r10, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX (11, r11, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_IDX (12, r12, NULL, INVALID_NUB_REGNUM ),
|
|
DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL),
|
|
DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL),
|
|
DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL),
|
|
DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr)
|
|
};
|
|
|
|
const char *g_contained_q0 [] { "q0", NULL };
|
|
const char *g_contained_q1 [] { "q1", NULL };
|
|
const char *g_contained_q2 [] { "q2", NULL };
|
|
const char *g_contained_q3 [] { "q3", NULL };
|
|
const char *g_contained_q4 [] { "q4", NULL };
|
|
const char *g_contained_q5 [] { "q5", NULL };
|
|
const char *g_contained_q6 [] { "q6", NULL };
|
|
const char *g_contained_q7 [] { "q7", NULL };
|
|
const char *g_contained_q8 [] { "q8", NULL };
|
|
const char *g_contained_q9 [] { "q9", NULL };
|
|
const char *g_contained_q10[] { "q10", NULL };
|
|
const char *g_contained_q11[] { "q11", NULL };
|
|
const char *g_contained_q12[] { "q12", NULL };
|
|
const char *g_contained_q13[] { "q13", NULL };
|
|
const char *g_contained_q14[] { "q14", NULL };
|
|
const char *g_contained_q15[] { "q15", NULL };
|
|
|
|
const char *g_invalidate_q0[] { "q0", "d0" , "d1" , "s0" , "s1" , "s2" , "s3" , NULL };
|
|
const char *g_invalidate_q1[] { "q1", "d2" , "d3" , "s4" , "s5" , "s6" , "s7" , NULL };
|
|
const char *g_invalidate_q2[] { "q2", "d4" , "d5" , "s8" , "s9" , "s10", "s11", NULL };
|
|
const char *g_invalidate_q3[] { "q3", "d6" , "d7" , "s12", "s13", "s14", "s15", NULL };
|
|
const char *g_invalidate_q4[] { "q4", "d8" , "d9" , "s16", "s17", "s18", "s19", NULL };
|
|
const char *g_invalidate_q5[] { "q5", "d10", "d11", "s20", "s21", "s22", "s23", NULL };
|
|
const char *g_invalidate_q6[] { "q6", "d12", "d13", "s24", "s25", "s26", "s27", NULL };
|
|
const char *g_invalidate_q7[] { "q7", "d14", "d15", "s28", "s29", "s30", "s31", NULL };
|
|
const char *g_invalidate_q8[] { "q8", "d16", "d17", NULL };
|
|
const char *g_invalidate_q9[] { "q9", "d18", "d19", NULL };
|
|
const char *g_invalidate_q10[] { "q10", "d20", "d21", NULL };
|
|
const char *g_invalidate_q11[] { "q11", "d22", "d23", NULL };
|
|
const char *g_invalidate_q12[] { "q12", "d24", "d25", NULL };
|
|
const char *g_invalidate_q13[] { "q13", "d26", "d27", NULL };
|
|
const char *g_invalidate_q14[] { "q14", "d28", "d29", NULL };
|
|
const char *g_invalidate_q15[] { "q15", "d30", "d31", NULL };
|
|
|
|
#define VFP_S_OFFSET_IDX(idx) (((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12
|
|
#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8
|
|
#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4))
|
|
|
|
#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp))
|
|
|
|
#define FLOAT_FORMAT Float
|
|
|
|
#define DEFINE_VFP_S_IDX(idx) e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
|
|
#define DEFINE_VFP_D_IDX(idx) e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
|
|
#define DEFINE_VFP_Q_IDX(idx) e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM
|
|
|
|
// Floating point registers
|
|
const DNBRegisterInfo
|
|
DNBArchMachARM::g_vfp_registers[] =
|
|
{
|
|
{ DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 },
|
|
{ DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 },
|
|
{ DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 },
|
|
{ DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 },
|
|
{ DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 },
|
|
{ DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 },
|
|
{ DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 },
|
|
{ DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 },
|
|
{ DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 },
|
|
{ DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 },
|
|
{ DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 },
|
|
{ DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 },
|
|
{ DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 },
|
|
{ DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 },
|
|
{ DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 },
|
|
{ DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 },
|
|
{ DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 },
|
|
{ DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 },
|
|
{ DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 },
|
|
{ DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 },
|
|
{ DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 },
|
|
{ DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 },
|
|
{ DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 },
|
|
{ DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 },
|
|
{ DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 },
|
|
{ DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 },
|
|
{ DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 },
|
|
{ DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 },
|
|
{ DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 },
|
|
{ DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 },
|
|
{ DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 },
|
|
{ DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 },
|
|
|
|
{ DEFINE_VFP_D_IDX (0), g_contained_q0, g_invalidate_q0 },
|
|
{ DEFINE_VFP_D_IDX (1), g_contained_q0, g_invalidate_q0 },
|
|
{ DEFINE_VFP_D_IDX (2), g_contained_q1, g_invalidate_q1 },
|
|
{ DEFINE_VFP_D_IDX (3), g_contained_q1, g_invalidate_q1 },
|
|
{ DEFINE_VFP_D_IDX (4), g_contained_q2, g_invalidate_q2 },
|
|
{ DEFINE_VFP_D_IDX (5), g_contained_q2, g_invalidate_q2 },
|
|
{ DEFINE_VFP_D_IDX (6), g_contained_q3, g_invalidate_q3 },
|
|
{ DEFINE_VFP_D_IDX (7), g_contained_q3, g_invalidate_q3 },
|
|
{ DEFINE_VFP_D_IDX (8), g_contained_q4, g_invalidate_q4 },
|
|
{ DEFINE_VFP_D_IDX (9), g_contained_q4, g_invalidate_q4 },
|
|
{ DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 },
|
|
{ DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 },
|
|
{ DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 },
|
|
{ DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 },
|
|
{ DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 },
|
|
{ DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 },
|
|
{ DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 },
|
|
{ DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 },
|
|
{ DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 },
|
|
{ DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 },
|
|
{ DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 },
|
|
{ DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 },
|
|
{ DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 },
|
|
{ DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 },
|
|
{ DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 },
|
|
{ DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 },
|
|
{ DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 },
|
|
{ DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 },
|
|
{ DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 },
|
|
{ DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 },
|
|
{ DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 },
|
|
{ DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 },
|
|
|
|
{ DEFINE_VFP_Q_IDX (0), NULL, g_invalidate_q0 },
|
|
{ DEFINE_VFP_Q_IDX (1), NULL, g_invalidate_q1 },
|
|
{ DEFINE_VFP_Q_IDX (2), NULL, g_invalidate_q2 },
|
|
{ DEFINE_VFP_Q_IDX (3), NULL, g_invalidate_q3 },
|
|
{ DEFINE_VFP_Q_IDX (4), NULL, g_invalidate_q4 },
|
|
{ DEFINE_VFP_Q_IDX (5), NULL, g_invalidate_q5 },
|
|
{ DEFINE_VFP_Q_IDX (6), NULL, g_invalidate_q6 },
|
|
{ DEFINE_VFP_Q_IDX (7), NULL, g_invalidate_q7 },
|
|
{ DEFINE_VFP_Q_IDX (8), NULL, g_invalidate_q8 },
|
|
{ DEFINE_VFP_Q_IDX (9), NULL, g_invalidate_q9 },
|
|
{ DEFINE_VFP_Q_IDX (10), NULL, g_invalidate_q10 },
|
|
{ DEFINE_VFP_Q_IDX (11), NULL, g_invalidate_q11 },
|
|
{ DEFINE_VFP_Q_IDX (12), NULL, g_invalidate_q12 },
|
|
{ DEFINE_VFP_Q_IDX (13), NULL, g_invalidate_q13 },
|
|
{ DEFINE_VFP_Q_IDX (14), NULL, g_invalidate_q14 },
|
|
{ DEFINE_VFP_Q_IDX (15), NULL, g_invalidate_q15 },
|
|
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
{ e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL },
|
|
{ e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpcr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
|
|
#else
|
|
{ e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }
|
|
#endif
|
|
};
|
|
|
|
// Exception registers
|
|
|
|
const DNBRegisterInfo
|
|
DNBArchMachARM::g_exc_registers[] =
|
|
{
|
|
{ e_regSetVFP, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
|
|
{ e_regSetVFP, exc_fsr , "fsr" , NULL, Uint, Hex, 4, EXC_OFFSET(fsr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM },
|
|
{ e_regSetVFP, exc_far , "far" , NULL, Uint, Hex, 4, EXC_OFFSET(far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }
|
|
};
|
|
|
|
// Number of registers in each register set
|
|
const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
|
|
const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo);
|
|
const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
|
|
const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
|
|
|
|
//----------------------------------------------------------------------
|
|
// Register set definitions. The first definitions at register set index
|
|
// of zero is for all registers, followed by other registers sets. The
|
|
// register information for the all register set need not be filled in.
|
|
//----------------------------------------------------------------------
|
|
const DNBRegisterSetInfo
|
|
DNBArchMachARM::g_reg_sets[] =
|
|
{
|
|
{ "ARM Registers", NULL, k_num_all_registers },
|
|
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
|
|
{ "Floating Point Registers", g_vfp_registers, k_num_vfp_registers },
|
|
{ "Exception State Registers", g_exc_registers, k_num_exc_registers }
|
|
};
|
|
// Total number of register sets for this architecture
|
|
const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
|
|
|
|
|
|
const DNBRegisterSetInfo *
|
|
DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets)
|
|
{
|
|
*num_reg_sets = k_num_register_sets;
|
|
return g_reg_sets;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::GetRegisterValue(uint32_t set, uint32_t reg, DNBRegisterValue *value)
|
|
{
|
|
if (set == REGISTER_SET_GENERIC)
|
|
{
|
|
switch (reg)
|
|
{
|
|
case GENERIC_REGNUM_PC: // Program Counter
|
|
set = e_regSetGPR;
|
|
reg = gpr_pc;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_SP: // Stack Pointer
|
|
set = e_regSetGPR;
|
|
reg = gpr_sp;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_FP: // Frame Pointer
|
|
set = e_regSetGPR;
|
|
reg = gpr_r7; // is this the right reg?
|
|
break;
|
|
|
|
case GENERIC_REGNUM_RA: // Return Address
|
|
set = e_regSetGPR;
|
|
reg = gpr_lr;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_FLAGS: // Processor flags register
|
|
set = e_regSetGPR;
|
|
reg = gpr_cpsr;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (GetRegisterState(set, false) != KERN_SUCCESS)
|
|
return false;
|
|
|
|
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
|
|
if (regInfo)
|
|
{
|
|
value->info = *regInfo;
|
|
switch (set)
|
|
{
|
|
case e_regSetGPR:
|
|
if (reg < k_num_gpr_registers)
|
|
{
|
|
value->value.uint32 = m_state.context.gpr.__r[reg];
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case e_regSetVFP:
|
|
// "reg" is an index into the floating point register set at this point.
|
|
// We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
|
|
// in the enumerated values for case statement below.
|
|
if (reg >= vfp_s0 && reg <= vfp_s31)
|
|
{
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
uint32_t *s_reg = ((uint32_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_s0);
|
|
memcpy (&value->value.v_uint8, s_reg, 4);
|
|
#else
|
|
value->value.uint32 = m_state.context.vfp.__r[reg];
|
|
#endif
|
|
return true;
|
|
}
|
|
else if (reg >= vfp_d0 && reg <= vfp_d31)
|
|
{
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
uint64_t *d_reg = ((uint64_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_d0);
|
|
memcpy (&value->value.v_uint8, d_reg, 8);
|
|
#else
|
|
uint32_t d_reg_idx = reg - vfp_d0;
|
|
uint32_t s_reg_idx = d_reg_idx * 2;
|
|
value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0];
|
|
value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1];
|
|
#endif
|
|
return true;
|
|
}
|
|
else if (reg >= vfp_q0 && reg <= vfp_q15)
|
|
{
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__v[reg - vfp_q0], 16);
|
|
#else
|
|
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
|
|
memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16);
|
|
#endif
|
|
return true;
|
|
}
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
else if (reg == vfp_fpsr)
|
|
{
|
|
value->value.uint32 = m_state.context.vfp.__fpsr;
|
|
return true;
|
|
}
|
|
else if (reg == vfp_fpcr)
|
|
{
|
|
value->value.uint32 = m_state.context.vfp.__fpcr;
|
|
return true;
|
|
}
|
|
#else
|
|
else if (reg == vfp_fpscr)
|
|
{
|
|
value->value.uint32 = m_state.context.vfp.__fpscr;
|
|
return true;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case e_regSetEXC:
|
|
if (reg < k_num_exc_registers)
|
|
{
|
|
value->value.uint32 = (&m_state.context.exc.__exception)[reg];
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::SetRegisterValue(uint32_t set, uint32_t reg, const DNBRegisterValue *value)
|
|
{
|
|
if (set == REGISTER_SET_GENERIC)
|
|
{
|
|
switch (reg)
|
|
{
|
|
case GENERIC_REGNUM_PC: // Program Counter
|
|
set = e_regSetGPR;
|
|
reg = gpr_pc;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_SP: // Stack Pointer
|
|
set = e_regSetGPR;
|
|
reg = gpr_sp;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_FP: // Frame Pointer
|
|
set = e_regSetGPR;
|
|
reg = gpr_r7;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_RA: // Return Address
|
|
set = e_regSetGPR;
|
|
reg = gpr_lr;
|
|
break;
|
|
|
|
case GENERIC_REGNUM_FLAGS: // Processor flags register
|
|
set = e_regSetGPR;
|
|
reg = gpr_cpsr;
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (GetRegisterState(set, false) != KERN_SUCCESS)
|
|
return false;
|
|
|
|
bool success = false;
|
|
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
|
|
if (regInfo)
|
|
{
|
|
switch (set)
|
|
{
|
|
case e_regSetGPR:
|
|
if (reg < k_num_gpr_registers)
|
|
{
|
|
m_state.context.gpr.__r[reg] = value->value.uint32;
|
|
success = true;
|
|
}
|
|
break;
|
|
|
|
case e_regSetVFP:
|
|
// "reg" is an index into the floating point register set at this point.
|
|
// We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0
|
|
// in the enumerated values for case statement below.
|
|
if (reg >= vfp_s0 && reg <= vfp_s31)
|
|
{
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
uint32_t *s_reg = ((uint32_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_s0);
|
|
memcpy (s_reg, &value->value.v_uint8, 4);
|
|
#else
|
|
m_state.context.vfp.__r[reg] = value->value.uint32;
|
|
#endif
|
|
success = true;
|
|
}
|
|
else if (reg >= vfp_d0 && reg <= vfp_d31)
|
|
{
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
uint64_t *d_reg = ((uint64_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_d0);
|
|
memcpy (d_reg, &value->value.v_uint8, 8);
|
|
#else
|
|
uint32_t d_reg_idx = reg - vfp_d0;
|
|
uint32_t s_reg_idx = d_reg_idx * 2;
|
|
m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0];
|
|
m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1];
|
|
#endif
|
|
success = true;
|
|
}
|
|
else if (reg >= vfp_q0 && reg <= vfp_q15)
|
|
{
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
memcpy ((uint8_t *) &m_state.context.vfp.__v[reg - vfp_q0], &value->value.v_uint8, 16);
|
|
#else
|
|
uint32_t s_reg_idx = (reg - vfp_q0) * 4;
|
|
memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16);
|
|
#endif
|
|
success = true;
|
|
}
|
|
#if defined (__arm64__) || defined (__aarch64__)
|
|
else if (reg == vfp_fpsr)
|
|
{
|
|
m_state.context.vfp.__fpsr = value->value.uint32;
|
|
success = true;
|
|
}
|
|
else if (reg == vfp_fpcr)
|
|
{
|
|
m_state.context.vfp.__fpcr = value->value.uint32;
|
|
success = true;
|
|
}
|
|
#else
|
|
else if (reg == vfp_fpscr)
|
|
{
|
|
m_state.context.vfp.__fpscr = value->value.uint32;
|
|
success = true;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case e_regSetEXC:
|
|
if (reg < k_num_exc_registers)
|
|
{
|
|
(&m_state.context.exc.__exception)[reg] = value->value.uint32;
|
|
success = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
if (success)
|
|
return SetRegisterState(set) == KERN_SUCCESS;
|
|
return false;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::GetRegisterState(int set, bool force)
|
|
{
|
|
switch (set)
|
|
{
|
|
case e_regSetALL: return GetGPRState(force) |
|
|
GetVFPState(force) |
|
|
GetEXCState(force) |
|
|
GetDBGState(force);
|
|
case e_regSetGPR: return GetGPRState(force);
|
|
case e_regSetVFP: return GetVFPState(force);
|
|
case e_regSetEXC: return GetEXCState(force);
|
|
case e_regSetDBG: return GetDBGState(force);
|
|
default: break;
|
|
}
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
kern_return_t
|
|
DNBArchMachARM::SetRegisterState(int set)
|
|
{
|
|
// Make sure we have a valid context to set.
|
|
kern_return_t err = GetRegisterState(set, false);
|
|
if (err != KERN_SUCCESS)
|
|
return err;
|
|
|
|
switch (set)
|
|
{
|
|
case e_regSetALL: return SetGPRState() |
|
|
SetVFPState() |
|
|
SetEXCState() |
|
|
SetDBGState(false);
|
|
case e_regSetGPR: return SetGPRState();
|
|
case e_regSetVFP: return SetVFPState();
|
|
case e_regSetEXC: return SetEXCState();
|
|
case e_regSetDBG: return SetDBGState(false);
|
|
default: break;
|
|
}
|
|
return KERN_INVALID_ARGUMENT;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::RegisterSetStateIsValid (int set) const
|
|
{
|
|
return m_state.RegsAreValid(set);
|
|
}
|
|
|
|
|
|
nub_size_t
|
|
DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len)
|
|
{
|
|
nub_size_t size = sizeof (m_state.context.gpr) +
|
|
sizeof (m_state.context.vfp) +
|
|
sizeof (m_state.context.exc);
|
|
|
|
if (buf && buf_len)
|
|
{
|
|
if (size > buf_len)
|
|
size = buf_len;
|
|
|
|
bool force = false;
|
|
if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
|
|
return 0;
|
|
|
|
// Copy each struct individually to avoid any padding that might be between the structs in m_state.context
|
|
uint8_t *p = (uint8_t *)buf;
|
|
::memcpy (p, &m_state.context.gpr, sizeof(m_state.context.gpr));
|
|
p += sizeof(m_state.context.gpr);
|
|
::memcpy (p, &m_state.context.vfp, sizeof(m_state.context.vfp));
|
|
p += sizeof(m_state.context.vfp);
|
|
::memcpy (p, &m_state.context.exc, sizeof(m_state.context.exc));
|
|
p += sizeof(m_state.context.exc);
|
|
|
|
size_t bytes_written = p - (uint8_t *)buf;
|
|
assert (bytes_written == size);
|
|
|
|
}
|
|
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
|
|
// Return the size of the register context even if NULL was passed in
|
|
return size;
|
|
}
|
|
|
|
nub_size_t
|
|
DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len)
|
|
{
|
|
nub_size_t size = sizeof (m_state.context.gpr) +
|
|
sizeof (m_state.context.vfp) +
|
|
sizeof (m_state.context.exc);
|
|
|
|
if (buf == NULL || buf_len == 0)
|
|
size = 0;
|
|
|
|
if (size)
|
|
{
|
|
if (size > buf_len)
|
|
size = buf_len;
|
|
|
|
// Copy each struct individually to avoid any padding that might be between the structs in m_state.context
|
|
uint8_t *p = (uint8_t *)buf;
|
|
::memcpy (&m_state.context.gpr, p, sizeof(m_state.context.gpr));
|
|
p += sizeof(m_state.context.gpr);
|
|
::memcpy (&m_state.context.vfp, p, sizeof(m_state.context.vfp));
|
|
p += sizeof(m_state.context.vfp);
|
|
::memcpy (&m_state.context.exc, p, sizeof(m_state.context.exc));
|
|
p += sizeof(m_state.context.exc);
|
|
|
|
size_t bytes_written = p - (uint8_t *)buf;
|
|
assert (bytes_written == size);
|
|
|
|
if (SetGPRState() | SetVFPState() | SetEXCState())
|
|
return 0;
|
|
}
|
|
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size);
|
|
return size;
|
|
}
|
|
|
|
|
|
uint32_t
|
|
DNBArchMachARM::SaveRegisterState ()
|
|
{
|
|
kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
|
|
DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
|
|
|
|
// Always re-read the registers because above we call thread_abort_safely();
|
|
bool force = true;
|
|
|
|
if ((kret = GetGPRState(force)) != KERN_SUCCESS)
|
|
{
|
|
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: GPR regs failed to read: %u ", kret);
|
|
}
|
|
else if ((kret = GetVFPState(force)) != KERN_SUCCESS)
|
|
{
|
|
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: %s regs failed to read: %u", "VFP", kret);
|
|
}
|
|
else
|
|
{
|
|
const uint32_t save_id = GetNextRegisterStateSaveID ();
|
|
m_saved_register_states[save_id] = m_state.context;
|
|
return save_id;
|
|
}
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
bool
|
|
DNBArchMachARM::RestoreRegisterState (uint32_t save_id)
|
|
{
|
|
SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
|
|
if (pos != m_saved_register_states.end())
|
|
{
|
|
m_state.context.gpr = pos->second.gpr;
|
|
m_state.context.vfp = pos->second.vfp;
|
|
kern_return_t kret;
|
|
bool success = true;
|
|
if ((kret = SetGPRState()) != KERN_SUCCESS)
|
|
{
|
|
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::RestoreRegisterState (save_id = %u) error: GPR regs failed to write: %u", save_id, kret);
|
|
success = false;
|
|
}
|
|
else if ((kret = SetVFPState()) != KERN_SUCCESS)
|
|
{
|
|
DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::RestoreRegisterState (save_id = %u) error: %s regs failed to write: %u", save_id, "VFP", kret);
|
|
success = false;
|
|
}
|
|
m_saved_register_states.erase(pos);
|
|
return success;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
#endif // #if defined (__arm__)
|
|
|