424 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			424 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//=-- lsan_common.cc ------------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file is a part of LeakSanitizer.
 | 
						|
// Implementation of common leak checking functionality.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "lsan_common.h"
 | 
						|
 | 
						|
#include "sanitizer_common/sanitizer_common.h"
 | 
						|
#include "sanitizer_common/sanitizer_flags.h"
 | 
						|
#include "sanitizer_common/sanitizer_stackdepot.h"
 | 
						|
#include "sanitizer_common/sanitizer_stacktrace.h"
 | 
						|
#include "sanitizer_common/sanitizer_stoptheworld.h"
 | 
						|
 | 
						|
#if CAN_SANITIZE_LEAKS
 | 
						|
namespace __lsan {
 | 
						|
 | 
						|
// This mutex is used to prevent races between DoLeakCheck and SuppressObject.
 | 
						|
BlockingMutex global_mutex(LINKER_INITIALIZED);
 | 
						|
 | 
						|
Flags lsan_flags;
 | 
						|
 | 
						|
static void InitializeFlags() {
 | 
						|
  Flags *f = flags();
 | 
						|
  // Default values.
 | 
						|
  f->report_objects = false;
 | 
						|
  f->resolution = 0;
 | 
						|
  f->max_leaks = 0;
 | 
						|
  f->exitcode = 23;
 | 
						|
  f->use_registers = true;
 | 
						|
  f->use_globals = true;
 | 
						|
  f->use_stacks = true;
 | 
						|
  f->use_tls = true;
 | 
						|
  f->use_unaligned = false;
 | 
						|
  f->verbosity = 0;
 | 
						|
  f->log_pointers = false;
 | 
						|
  f->log_threads = false;
 | 
						|
 | 
						|
  const char *options = GetEnv("LSAN_OPTIONS");
 | 
						|
  if (options) {
 | 
						|
    ParseFlag(options, &f->use_registers, "use_registers");
 | 
						|
    ParseFlag(options, &f->use_globals, "use_globals");
 | 
						|
    ParseFlag(options, &f->use_stacks, "use_stacks");
 | 
						|
    ParseFlag(options, &f->use_tls, "use_tls");
 | 
						|
    ParseFlag(options, &f->use_unaligned, "use_unaligned");
 | 
						|
    ParseFlag(options, &f->report_objects, "report_objects");
 | 
						|
    ParseFlag(options, &f->resolution, "resolution");
 | 
						|
    CHECK_GE(&f->resolution, 0);
 | 
						|
    ParseFlag(options, &f->max_leaks, "max_leaks");
 | 
						|
    CHECK_GE(&f->max_leaks, 0);
 | 
						|
    ParseFlag(options, &f->verbosity, "verbosity");
 | 
						|
    ParseFlag(options, &f->log_pointers, "log_pointers");
 | 
						|
    ParseFlag(options, &f->log_threads, "log_threads");
 | 
						|
    ParseFlag(options, &f->exitcode, "exitcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void InitCommonLsan() {
 | 
						|
  InitializeFlags();
 | 
						|
  InitializePlatformSpecificModules();
 | 
						|
}
 | 
						|
 | 
						|
static inline bool CanBeAHeapPointer(uptr p) {
 | 
						|
  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
 | 
						|
  // boundary on heap addresses.
 | 
						|
  const uptr kMinAddress = 4 * 4096;
 | 
						|
  if (p < kMinAddress) return false;
 | 
						|
#ifdef __x86_64__
 | 
						|
  // Accept only canonical form user-space addresses.
 | 
						|
  return ((p >> 47) == 0);
 | 
						|
#else
 | 
						|
  return true;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Scan the memory range, looking for byte patterns that point into allocator
 | 
						|
// chunks. Mark those chunks with tag and add them to the frontier.
 | 
						|
// There are two usage modes for this function: finding reachable or suppressed
 | 
						|
// chunks (tag = kReachable or kIgnored) and finding indirectly leaked chunks
 | 
						|
// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
 | 
						|
// so frontier = 0.
 | 
						|
void ScanRangeForPointers(uptr begin, uptr end,
 | 
						|
                          Frontier *frontier,
 | 
						|
                          const char *region_type, ChunkTag tag) {
 | 
						|
  const uptr alignment = flags()->pointer_alignment();
 | 
						|
  if (flags()->log_pointers)
 | 
						|
    Report("Scanning %s range %p-%p.\n", region_type, begin, end);
 | 
						|
  uptr pp = begin;
 | 
						|
  if (pp % alignment)
 | 
						|
    pp = pp + alignment - pp % alignment;
 | 
						|
  for (; pp + sizeof(uptr) <= end; pp += alignment) {
 | 
						|
    void *p = *reinterpret_cast<void**>(pp);
 | 
						|
    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
 | 
						|
    void *chunk = PointsIntoChunk(p);
 | 
						|
    if (!chunk) continue;
 | 
						|
    LsanMetadata m(chunk);
 | 
						|
    // Reachable beats suppressed beats leaked.
 | 
						|
    if (m.tag() == kReachable) continue;
 | 
						|
    if (m.tag() == kIgnored && tag != kReachable) continue;
 | 
						|
    m.set_tag(tag);
 | 
						|
    if (flags()->log_pointers)
 | 
						|
      Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p,
 | 
						|
             chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
 | 
						|
             m.requested_size());
 | 
						|
    if (frontier)
 | 
						|
      frontier->push_back(reinterpret_cast<uptr>(chunk));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Scan thread data (stacks and TLS) for heap pointers.
 | 
						|
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
 | 
						|
                           Frontier *frontier) {
 | 
						|
  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
 | 
						|
  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
 | 
						|
  uptr registers_end = registers_begin + registers.size();
 | 
						|
  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
 | 
						|
    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
 | 
						|
    if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
 | 
						|
    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
 | 
						|
    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
 | 
						|
                                              &tls_begin, &tls_end,
 | 
						|
                                              &cache_begin, &cache_end);
 | 
						|
    if (!thread_found) {
 | 
						|
      // If a thread can't be found in the thread registry, it's probably in the
 | 
						|
      // process of destruction. Log this event and move on.
 | 
						|
      if (flags()->log_threads)
 | 
						|
        Report("Thread %d not found in registry.\n", os_id);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    uptr sp;
 | 
						|
    bool have_registers =
 | 
						|
        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
 | 
						|
    if (!have_registers) {
 | 
						|
      Report("Unable to get registers from thread %d.\n");
 | 
						|
      // If unable to get SP, consider the entire stack to be reachable.
 | 
						|
      sp = stack_begin;
 | 
						|
    }
 | 
						|
 | 
						|
    if (flags()->use_registers && have_registers)
 | 
						|
      ScanRangeForPointers(registers_begin, registers_end, frontier,
 | 
						|
                           "REGISTERS", kReachable);
 | 
						|
 | 
						|
    if (flags()->use_stacks) {
 | 
						|
      if (flags()->log_threads)
 | 
						|
        Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
 | 
						|
      if (sp < stack_begin || sp >= stack_end) {
 | 
						|
        // SP is outside the recorded stack range (e.g. the thread is running a
 | 
						|
        // signal handler on alternate stack). Again, consider the entire stack
 | 
						|
        // range to be reachable.
 | 
						|
        if (flags()->log_threads)
 | 
						|
          Report("WARNING: stack_pointer not in stack_range.\n");
 | 
						|
      } else {
 | 
						|
        // Shrink the stack range to ignore out-of-scope values.
 | 
						|
        stack_begin = sp;
 | 
						|
      }
 | 
						|
      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
 | 
						|
                           kReachable);
 | 
						|
    }
 | 
						|
 | 
						|
    if (flags()->use_tls) {
 | 
						|
      if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
 | 
						|
      if (cache_begin == cache_end) {
 | 
						|
        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
 | 
						|
      } else {
 | 
						|
        // Because LSan should not be loaded with dlopen(), we can assume
 | 
						|
        // that allocator cache will be part of static TLS image.
 | 
						|
        CHECK_LE(tls_begin, cache_begin);
 | 
						|
        CHECK_GE(tls_end, cache_end);
 | 
						|
        if (tls_begin < cache_begin)
 | 
						|
          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
 | 
						|
                               kReachable);
 | 
						|
        if (tls_end > cache_end)
 | 
						|
          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
 | 
						|
  while (frontier->size()) {
 | 
						|
    uptr next_chunk = frontier->back();
 | 
						|
    frontier->pop_back();
 | 
						|
    LsanMetadata m(reinterpret_cast<void *>(next_chunk));
 | 
						|
    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
 | 
						|
                         "HEAP", tag);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Mark leaked chunks which are reachable from other leaked chunks.
 | 
						|
void MarkIndirectlyLeakedCb::operator()(void *p) const {
 | 
						|
  p = GetUserBegin(p);
 | 
						|
  LsanMetadata m(p);
 | 
						|
  if (m.allocated() && m.tag() != kReachable) {
 | 
						|
    ScanRangeForPointers(reinterpret_cast<uptr>(p),
 | 
						|
                         reinterpret_cast<uptr>(p) + m.requested_size(),
 | 
						|
                         /* frontier */ 0, "HEAP", kIndirectlyLeaked);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CollectSuppressedCb::operator()(void *p) const {
 | 
						|
  p = GetUserBegin(p);
 | 
						|
  LsanMetadata m(p);
 | 
						|
  if (m.allocated() && m.tag() == kIgnored)
 | 
						|
    frontier_->push_back(reinterpret_cast<uptr>(p));
 | 
						|
}
 | 
						|
 | 
						|
// Set the appropriate tag on each chunk.
 | 
						|
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
 | 
						|
  // Holds the flood fill frontier.
 | 
						|
  Frontier frontier(GetPageSizeCached());
 | 
						|
 | 
						|
  if (flags()->use_globals)
 | 
						|
    ProcessGlobalRegions(&frontier);
 | 
						|
  ProcessThreads(suspended_threads, &frontier);
 | 
						|
  FloodFillTag(&frontier, kReachable);
 | 
						|
  // The check here is relatively expensive, so we do this in a separate flood
 | 
						|
  // fill. That way we can skip the check for chunks that are reachable
 | 
						|
  // otherwise.
 | 
						|
  ProcessPlatformSpecificAllocations(&frontier);
 | 
						|
  FloodFillTag(&frontier, kReachable);
 | 
						|
 | 
						|
  if (flags()->log_pointers)
 | 
						|
    Report("Scanning ignored chunks.\n");
 | 
						|
  CHECK_EQ(0, frontier.size());
 | 
						|
  ForEachChunk(CollectSuppressedCb(&frontier));
 | 
						|
  FloodFillTag(&frontier, kIgnored);
 | 
						|
 | 
						|
  // Iterate over leaked chunks and mark those that are reachable from other
 | 
						|
  // leaked chunks.
 | 
						|
  if (flags()->log_pointers)
 | 
						|
    Report("Scanning leaked chunks.\n");
 | 
						|
  ForEachChunk(MarkIndirectlyLeakedCb());
 | 
						|
}
 | 
						|
 | 
						|
static void PrintStackTraceById(u32 stack_trace_id) {
 | 
						|
  CHECK(stack_trace_id);
 | 
						|
  uptr size = 0;
 | 
						|
  const uptr *trace = StackDepotGet(stack_trace_id, &size);
 | 
						|
  StackTrace::PrintStack(trace, size, common_flags()->symbolize,
 | 
						|
                         common_flags()->strip_path_prefix, 0);
 | 
						|
}
 | 
						|
 | 
						|
void CollectLeaksCb::operator()(void *p) const {
 | 
						|
  p = GetUserBegin(p);
 | 
						|
  LsanMetadata m(p);
 | 
						|
  if (!m.allocated()) return;
 | 
						|
  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
 | 
						|
    uptr resolution = flags()->resolution;
 | 
						|
    if (resolution > 0) {
 | 
						|
      uptr size = 0;
 | 
						|
      const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
 | 
						|
      size = Min(size, resolution);
 | 
						|
      leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
 | 
						|
                        m.tag());
 | 
						|
    } else {
 | 
						|
      leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void CollectLeaks(LeakReport *leak_report) {
 | 
						|
  ForEachChunk(CollectLeaksCb(leak_report));
 | 
						|
}
 | 
						|
 | 
						|
void PrintLeakedCb::operator()(void *p) const {
 | 
						|
  p = GetUserBegin(p);
 | 
						|
  LsanMetadata m(p);
 | 
						|
  if (!m.allocated()) return;
 | 
						|
  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
 | 
						|
    Printf("%s leaked %llu byte object at %p\n",
 | 
						|
           m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
 | 
						|
           m.requested_size(), p);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void PrintLeaked() {
 | 
						|
  Printf("Reporting individual objects:\n");
 | 
						|
  Printf("============================\n");
 | 
						|
  ForEachChunk(PrintLeakedCb());
 | 
						|
  Printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
enum LeakCheckResult {
 | 
						|
  kFatalError,
 | 
						|
  kLeaksFound,
 | 
						|
  kNoLeaks
 | 
						|
};
 | 
						|
 | 
						|
static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
 | 
						|
                                void *arg) {
 | 
						|
  LeakCheckResult *result = reinterpret_cast<LeakCheckResult *>(arg);
 | 
						|
  CHECK_EQ(*result, kFatalError);
 | 
						|
  ClassifyAllChunks(suspended_threads);
 | 
						|
  LeakReport leak_report;
 | 
						|
  CollectLeaks(&leak_report);
 | 
						|
  if (leak_report.IsEmpty()) {
 | 
						|
    *result = kNoLeaks;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  Printf("\n");
 | 
						|
  Printf("=================================================================\n");
 | 
						|
  Report("ERROR: LeakSanitizer: detected memory leaks\n");
 | 
						|
  leak_report.PrintLargest(flags()->max_leaks);
 | 
						|
  if (flags()->report_objects)
 | 
						|
    PrintLeaked();
 | 
						|
  leak_report.PrintSummary();
 | 
						|
  Printf("\n");
 | 
						|
  *result = kLeaksFound;
 | 
						|
}
 | 
						|
 | 
						|
void DoLeakCheck() {
 | 
						|
  BlockingMutexLock l(&global_mutex);
 | 
						|
  static bool already_done;
 | 
						|
  CHECK(!already_done);
 | 
						|
  already_done = true;
 | 
						|
  LeakCheckResult result = kFatalError;
 | 
						|
  LockThreadRegistry();
 | 
						|
  LockAllocator();
 | 
						|
  StopTheWorld(DoLeakCheckCallback, &result);
 | 
						|
  UnlockAllocator();
 | 
						|
  UnlockThreadRegistry();
 | 
						|
  if (result == kFatalError) {
 | 
						|
    Report("LeakSanitizer has encountered a fatal error.\n");
 | 
						|
    Die();
 | 
						|
  } else if (result == kLeaksFound) {
 | 
						|
    if (flags()->exitcode)
 | 
						|
      internal__exit(flags()->exitcode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
///// LeakReport implementation. /////
 | 
						|
 | 
						|
// A hard limit on the number of distinct leaks, to avoid quadratic complexity
 | 
						|
// in LeakReport::Add(). We don't expect to ever see this many leaks in
 | 
						|
// real-world applications.
 | 
						|
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
 | 
						|
// use a hash table.
 | 
						|
const uptr kMaxLeaksConsidered = 1000;
 | 
						|
 | 
						|
void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
 | 
						|
  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
 | 
						|
  bool is_directly_leaked = (tag == kDirectlyLeaked);
 | 
						|
  for (uptr i = 0; i < leaks_.size(); i++)
 | 
						|
    if (leaks_[i].stack_trace_id == stack_trace_id &&
 | 
						|
        leaks_[i].is_directly_leaked == is_directly_leaked) {
 | 
						|
      leaks_[i].hit_count++;
 | 
						|
      leaks_[i].total_size += leaked_size;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  if (leaks_.size() == kMaxLeaksConsidered) return;
 | 
						|
  Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
 | 
						|
                is_directly_leaked };
 | 
						|
  leaks_.push_back(leak);
 | 
						|
}
 | 
						|
 | 
						|
static bool IsLarger(const Leak &leak1, const Leak &leak2) {
 | 
						|
  return leak1.total_size > leak2.total_size;
 | 
						|
}
 | 
						|
 | 
						|
void LeakReport::PrintLargest(uptr max_leaks) {
 | 
						|
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
 | 
						|
  Printf("\n");
 | 
						|
  if (leaks_.size() == kMaxLeaksConsidered)
 | 
						|
    Printf("Too many leaks! Only the first %llu leaks encountered will be "
 | 
						|
           "reported.\n",
 | 
						|
           kMaxLeaksConsidered);
 | 
						|
  if (max_leaks > 0 && max_leaks < leaks_.size())
 | 
						|
    Printf("The %llu largest leak(s):\n", max_leaks);
 | 
						|
  InternalSort(&leaks_, leaks_.size(), IsLarger);
 | 
						|
  max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
 | 
						|
  for (uptr i = 0; i < max_leaks; i++) {
 | 
						|
    Printf("%s leak of %llu byte(s) in %llu object(s) allocated from:\n",
 | 
						|
           leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
 | 
						|
           leaks_[i].total_size, leaks_[i].hit_count);
 | 
						|
    PrintStackTraceById(leaks_[i].stack_trace_id);
 | 
						|
    Printf("\n");
 | 
						|
  }
 | 
						|
  if (max_leaks < leaks_.size()) {
 | 
						|
    uptr remaining = leaks_.size() - max_leaks;
 | 
						|
    Printf("Omitting %llu more leak(s).\n", remaining);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LeakReport::PrintSummary() {
 | 
						|
  CHECK(leaks_.size() <= kMaxLeaksConsidered);
 | 
						|
  uptr bytes = 0, allocations = 0;
 | 
						|
  for (uptr i = 0; i < leaks_.size(); i++) {
 | 
						|
      bytes += leaks_[i].total_size;
 | 
						|
      allocations += leaks_[i].hit_count;
 | 
						|
  }
 | 
						|
  Printf("SUMMARY: LeakSanitizer: %llu byte(s) leaked in %llu allocation(s).\n",
 | 
						|
         bytes, allocations);
 | 
						|
}
 | 
						|
 | 
						|
}  // namespace __lsan
 | 
						|
 | 
						|
using namespace __lsan;  // NOLINT
 | 
						|
 | 
						|
extern "C" {
 | 
						|
SANITIZER_INTERFACE_ATTRIBUTE
 | 
						|
void __lsan_ignore_object(const void *p) {
 | 
						|
  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
 | 
						|
  // locked.
 | 
						|
  BlockingMutexLock l(&global_mutex);
 | 
						|
  IgnoreObjectResult res = IgnoreObjectLocked(p);
 | 
						|
  if (res == kIgnoreObjectInvalid && flags()->verbosity >= 1)
 | 
						|
    Report("__lsan_ignore_object(): no heap object found at %p", p);
 | 
						|
  if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 1)
 | 
						|
    Report("__lsan_ignore_object(): "
 | 
						|
           "heap object at %p is already being ignored\n", p);
 | 
						|
  if (res == kIgnoreObjectSuccess && flags()->verbosity >= 2)
 | 
						|
    Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
 | 
						|
}
 | 
						|
}  // extern "C"
 | 
						|
#endif  // CAN_SANITIZE_LEAKS
 |