316 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			316 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Control-flow instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // C's ?: operator for floating-point operands.
 | |
| def SelectF32  : SelectWrapper<FP32>;
 | |
| def SelectF64  : SelectWrapper<FP64>;
 | |
| def SelectF128 : SelectWrapper<FP128>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Move instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Load zero.
 | |
| let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
 | |
|   def LZER : InherentRRE<"lzer", 0xB374, FP32,  (fpimm0)>;
 | |
|   def LZDR : InherentRRE<"lzdr", 0xB375, FP64,  (fpimm0)>;
 | |
|   def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>;
 | |
| }
 | |
| 
 | |
| // Moves between two floating-point registers.
 | |
| let neverHasSideEffects = 1 in {
 | |
|   def LER : UnaryRR <"ler", 0x38,   null_frag, FP32,  FP32>;
 | |
|   def LDR : UnaryRR <"ldr", 0x28,   null_frag, FP64,  FP64>;
 | |
|   def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>;
 | |
| }
 | |
| 
 | |
| // Moves between 64-bit integer and floating-point registers.
 | |
| def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>;
 | |
| def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>;
 | |
| 
 | |
| // fcopysign with an FP32 result.
 | |
| let isCodeGenOnly = 1 in {
 | |
|   def CPSDRss : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>;
 | |
|   def CPSDRsd : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>;
 | |
| }
 | |
| 
 | |
| // The sign of an FP128 is in the high register.
 | |
| def : Pat<(fcopysign FP32:$src1, FP128:$src2),
 | |
|           (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_high))>;
 | |
| 
 | |
| // fcopysign with an FP64 result.
 | |
| let isCodeGenOnly = 1 in
 | |
|   def CPSDRds : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>;
 | |
| def CPSDRdd : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>;
 | |
| 
 | |
| // The sign of an FP128 is in the high register.
 | |
| def : Pat<(fcopysign FP64:$src1, FP128:$src2),
 | |
|           (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_high))>;
 | |
| 
 | |
| // fcopysign with an FP128 result.  Use "upper" as the high half and leave
 | |
| // the low half as-is.
 | |
| class CopySign128<RegisterOperand cls, dag upper>
 | |
|   : Pat<(fcopysign FP128:$src1, cls:$src2),
 | |
|         (INSERT_SUBREG FP128:$src1, upper, subreg_high)>;
 | |
| 
 | |
| def : CopySign128<FP32,  (CPSDRds (EXTRACT_SUBREG FP128:$src1, subreg_high),
 | |
|                                   FP32:$src2)>;
 | |
| def : CopySign128<FP64,  (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_high),
 | |
|                                   FP64:$src2)>;
 | |
| def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src1, subreg_high),
 | |
|                                   (EXTRACT_SUBREG FP128:$src2, subreg_high))>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Load instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
 | |
|   defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>;
 | |
|   defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>;
 | |
| 
 | |
|   // These instructions are split after register allocation, so we don't
 | |
|   // want a custom inserter.
 | |
|   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
 | |
|     def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src),
 | |
|                      [(set FP128:$dst, (load bdxaddr20only128:$src))]>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Store instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let SimpleBDXStore = 1 in {
 | |
|   defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>;
 | |
|   defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>;
 | |
| 
 | |
|   // These instructions are split after register allocation, so we don't
 | |
|   // want a custom inserter.
 | |
|   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
 | |
|     def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst),
 | |
|                      [(store FP128:$src, bdxaddr20only128:$dst)]>;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Conversion instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Convert floating-point values to narrower representations, rounding
 | |
| // according to the current mode.  The destination of LEXBR and LDXBR
 | |
| // is a 128-bit value, but only the first register of the pair is used.
 | |
| def LEDBR : UnaryRRE<"ledbr", 0xB344, fround,    FP32,  FP64>;
 | |
| def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>;
 | |
| def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>;
 | |
| 
 | |
| def : Pat<(f32 (fround FP128:$src)),
 | |
|           (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>;
 | |
| def : Pat<(f64 (fround FP128:$src)),
 | |
|           (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>;
 | |
| 
 | |
| // Extend register floating-point values to wider representations.
 | |
| def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64,  FP32>;
 | |
| def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>;
 | |
| def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>;
 | |
| 
 | |
| // Extend memory floating-point values to wider representations.
 | |
| def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>;
 | |
| def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>;
 | |
| def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>;
 | |
| 
 | |
| // Convert a signed integer register value to a floating-point one.
 | |
| let Defs = [CC] in {
 | |
|   def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32,  GR32>;
 | |
|   def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64,  GR32>;
 | |
|   def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>;
 | |
| 
 | |
|   def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32,  GR64>;
 | |
|   def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64,  GR64>;
 | |
|   def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>;
 | |
| }
 | |
| 
 | |
| // Convert a floating-point register value to a signed integer value,
 | |
| // with the second operand (modifier M3) specifying the rounding mode.
 | |
| let Defs = [CC] in {
 | |
|   def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>;
 | |
|   def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>;
 | |
|   def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>;
 | |
| 
 | |
|   def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>;
 | |
|   def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>;
 | |
|   def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>;
 | |
| }
 | |
| 
 | |
| // fp_to_sint always rounds towards zero, which is modifier value 5.
 | |
| def : Pat<(i32 (fp_to_sint FP32:$src)),  (CFEBR 5, FP32:$src)>;
 | |
| def : Pat<(i32 (fp_to_sint FP64:$src)),  (CFDBR 5, FP64:$src)>;
 | |
| def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>;
 | |
| 
 | |
| def : Pat<(i64 (fp_to_sint FP32:$src)),  (CGEBR 5, FP32:$src)>;
 | |
| def : Pat<(i64 (fp_to_sint FP64:$src)),  (CGDBR 5, FP64:$src)>;
 | |
| def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Unary arithmetic
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Negation (Load Complement).
 | |
| let Defs = [CC] in {
 | |
|   def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32,  FP32>;
 | |
|   def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64,  FP64>;
 | |
|   def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>;
 | |
| }
 | |
| 
 | |
| // Absolute value (Load Positive).
 | |
| let Defs = [CC] in {
 | |
|   def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32,  FP32>;
 | |
|   def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64,  FP64>;
 | |
|   def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>;
 | |
| }
 | |
| 
 | |
| // Negative absolute value (Load Negative).
 | |
| let Defs = [CC] in {
 | |
|   def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32,  FP32>;
 | |
|   def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64,  FP64>;
 | |
|   def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>;
 | |
| }
 | |
| 
 | |
| // Square root.
 | |
| def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32,  FP32>;
 | |
| def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64,  FP64>;
 | |
| def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>;
 | |
| 
 | |
| def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32>;
 | |
| def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64>;
 | |
| 
 | |
| // Round to an integer, with the second operand (modifier M3) specifying
 | |
| // the rounding mode.
 | |
| //
 | |
| // These forms always check for inexact conditions.  z196 added versions
 | |
| // that allow this to suppressed (as for fnearbyint), but we don't yet
 | |
| // support -march=z196.
 | |
| let Defs = [CC] in {
 | |
|   def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32,  FP32>;
 | |
|   def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64,  FP64>;
 | |
|   def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>;
 | |
| }
 | |
| 
 | |
| // frint rounds according to the current mode (modifier 0) and detects
 | |
| // inexact conditions.
 | |
| def : Pat<(frint FP32:$src),  (FIEBR 0, FP32:$src)>;
 | |
| def : Pat<(frint FP64:$src),  (FIDBR 0, FP64:$src)>;
 | |
| def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Binary arithmetic
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Addition.
 | |
| let Defs = [CC] in {
 | |
|   let isCommutable = 1 in {
 | |
|     def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32,  FP32>;
 | |
|     def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64,  FP64>;
 | |
|     def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>;
 | |
|   }
 | |
|   def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>;
 | |
|   def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>;
 | |
| }
 | |
| 
 | |
| // Subtraction.
 | |
| let Defs = [CC] in {
 | |
|   def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32,  FP32>;
 | |
|   def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64,  FP64>;
 | |
|   def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>;
 | |
| 
 | |
|   def SEB : BinaryRXE<"seb",  0xED0B, fsub, FP32, load>;
 | |
|   def SDB : BinaryRXE<"sdb",  0xED1B, fsub, FP64, load>;
 | |
| }
 | |
| 
 | |
| // Multiplication.
 | |
| let isCommutable = 1 in {
 | |
|   def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32,  FP32>;
 | |
|   def MDBR  : BinaryRRE<"mdbr",  0xB31C, fmul, FP64,  FP64>;
 | |
|   def MXBR  : BinaryRRE<"mxbr",  0xB34C, fmul, FP128, FP128>;
 | |
| }
 | |
| def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>;
 | |
| def MDB  : BinaryRXE<"mdb",  0xED1C, fmul, FP64, load>;
 | |
| 
 | |
| // f64 multiplication of two FP32 registers.
 | |
| def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>;
 | |
| def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))),
 | |
|           (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
 | |
|                                 FP32:$src1, subreg_32bit), FP32:$src2)>;
 | |
| 
 | |
| // f64 multiplication of an FP32 register and an f32 memory.
 | |
| def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>;
 | |
| def : Pat<(fmul (f64 (fextend FP32:$src1)),
 | |
|                 (f64 (extloadf32 bdxaddr12only:$addr))),
 | |
|           (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit),
 | |
|                 bdxaddr12only:$addr)>;
 | |
| 
 | |
| // f128 multiplication of two FP64 registers.
 | |
| def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>;
 | |
| def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))),
 | |
|           (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)),
 | |
|                                 FP64:$src1, subreg_high), FP64:$src2)>;
 | |
| 
 | |
| // f128 multiplication of an FP64 register and an f64 memory.
 | |
| def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>;
 | |
| def : Pat<(fmul (f128 (fextend FP64:$src1)),
 | |
|                 (f128 (extloadf64 bdxaddr12only:$addr))),
 | |
|           (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high),
 | |
|                 bdxaddr12only:$addr)>;
 | |
| 
 | |
| // Fused multiply-add.
 | |
| def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>;
 | |
| def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>;
 | |
| 
 | |
| def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>;
 | |
| def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>;
 | |
| 
 | |
| // Fused multiply-subtract.
 | |
| def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>;
 | |
| def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>;
 | |
| 
 | |
| def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>;
 | |
| def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>;
 | |
| 
 | |
| // Division.
 | |
| def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32,  FP32>;
 | |
| def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64,  FP64>;
 | |
| def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>;
 | |
| 
 | |
| def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>;
 | |
| def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Comparisons
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32,  FP32>;
 | |
|   def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64,  FP64>;
 | |
|   def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>;
 | |
| 
 | |
|   def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>;
 | |
|   def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Peepholes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def : Pat<(f32  fpimmneg0), (LCEBR (LZER))>;
 | |
| def : Pat<(f64  fpimmneg0), (LCDBR (LZDR))>;
 | |
| def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;
 |