llvm-project/lldb/source/Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.cpp

3672 lines
129 KiB
C++

//===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "RenderScriptRuntime.h"
#include "lldb/Core/ConstString.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/DataFormatters/DumpValueObjectOptions.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/CommandObjectMultiword.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Expression/UserExpression.h"
#include "lldb/Symbol/VariableList.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_renderscript;
namespace {
// The empirical_type adds a basic level of validation to arbitrary data
// allowing us to track if data has been discovered and stored or not.
// An empirical_type will be marked as valid only if it has been explicitly assigned to.
template <typename type_t>
class empirical_type
{
public:
// Ctor. Contents is invalid when constructed.
empirical_type()
: valid(false)
{}
// Return true and copy contents to out if valid, else return false.
bool get(type_t& out) const
{
if (valid)
out = data;
return valid;
}
// Return a pointer to the contents or nullptr if it was not valid.
const type_t* get() const
{
return valid ? &data : nullptr;
}
// Assign data explicitly.
void set(const type_t in)
{
data = in;
valid = true;
}
// Mark contents as invalid.
void invalidate()
{
valid = false;
}
// Returns true if this type contains valid data.
bool isValid() const
{
return valid;
}
// Assignment operator.
empirical_type<type_t>& operator = (const type_t in)
{
set(in);
return *this;
}
// Dereference operator returns contents.
// Warning: Will assert if not valid so use only when you know data is valid.
const type_t& operator * () const
{
assert(valid);
return data;
}
protected:
bool valid;
type_t data;
};
} // anonymous namespace
// The ScriptDetails class collects data associated with a single script instance.
struct RenderScriptRuntime::ScriptDetails
{
~ScriptDetails() = default;
enum ScriptType
{
eScript,
eScriptC
};
// The derived type of the script.
empirical_type<ScriptType> type;
// The name of the original source file.
empirical_type<std::string> resName;
// Path to script .so file on the device.
empirical_type<std::string> scriptDyLib;
// Directory where kernel objects are cached on device.
empirical_type<std::string> cacheDir;
// Pointer to the context which owns this script.
empirical_type<lldb::addr_t> context;
// Pointer to the script object itself.
empirical_type<lldb::addr_t> script;
};
// This Element class represents the Element object in RS,
// defining the type associated with an Allocation.
struct RenderScriptRuntime::Element
{
// Taken from rsDefines.h
enum DataKind
{
RS_KIND_USER,
RS_KIND_PIXEL_L = 7,
RS_KIND_PIXEL_A,
RS_KIND_PIXEL_LA,
RS_KIND_PIXEL_RGB,
RS_KIND_PIXEL_RGBA,
RS_KIND_PIXEL_DEPTH,
RS_KIND_PIXEL_YUV,
RS_KIND_INVALID = 100
};
// Taken from rsDefines.h
enum DataType
{
RS_TYPE_NONE = 0,
RS_TYPE_FLOAT_16,
RS_TYPE_FLOAT_32,
RS_TYPE_FLOAT_64,
RS_TYPE_SIGNED_8,
RS_TYPE_SIGNED_16,
RS_TYPE_SIGNED_32,
RS_TYPE_SIGNED_64,
RS_TYPE_UNSIGNED_8,
RS_TYPE_UNSIGNED_16,
RS_TYPE_UNSIGNED_32,
RS_TYPE_UNSIGNED_64,
RS_TYPE_BOOLEAN
};
std::vector<Element> children; // Child Element fields for structs
empirical_type<lldb::addr_t> element_ptr; // Pointer to the RS Element of the Type
empirical_type<DataType> type; // Type of each data pointer stored by the allocation
empirical_type<DataKind> type_kind; // Defines pixel type if Allocation is created from an image
empirical_type<uint32_t> type_vec_size; // Vector size of each data point, e.g '4' for uchar4
empirical_type<uint32_t> field_count; // Number of Subelements
empirical_type<uint32_t> datum_size; // Size of a single Element with padding
empirical_type<uint32_t> padding; // Number of padding bytes
empirical_type<uint32_t> array_size; // Number of items in array, only needed for strucrs
ConstString type_name; // Name of type, only needed for structs
static const ConstString &GetFallbackStructName(); // Print this as the type name of a struct Element
// If we can't resolve the actual struct name
};
// This AllocationDetails class collects data associated with a single
// allocation instance.
struct RenderScriptRuntime::AllocationDetails
{
struct Dimension
{
uint32_t dim_1;
uint32_t dim_2;
uint32_t dim_3;
uint32_t cubeMap;
Dimension()
{
dim_1 = 0;
dim_2 = 0;
dim_3 = 0;
cubeMap = 0;
}
};
// Header for reading and writing allocation contents
// to a binary file.
struct FileHeader
{
uint8_t ident[4]; // ASCII 'RSAD' identifying the file
uint16_t hdr_size; // Header size in bytes, for backwards compatability
uint16_t type; // DataType enum
uint32_t kind; // DataKind enum
uint32_t dims[3]; // Dimensions
uint32_t element_size; // Size of a single element, including padding
};
// Monotonically increasing from 1
static unsigned int ID;
// Maps Allocation DataType enum and vector size to printable strings
// using mapping from RenderScript numerical types summary documentation
static const char* RsDataTypeToString[][4];
// Maps Allocation DataKind enum to printable strings
static const char* RsDataKindToString[];
// Maps allocation types to format sizes for printing.
static const unsigned int RSTypeToFormat[][3];
// Give each allocation an ID as a way
// for commands to reference it.
const unsigned int id;
RenderScriptRuntime::Element element; // Allocation Element type
empirical_type<Dimension> dimension; // Dimensions of the Allocation
empirical_type<lldb::addr_t> address; // Pointer to address of the RS Allocation
empirical_type<lldb::addr_t> data_ptr; // Pointer to the data held by the Allocation
empirical_type<lldb::addr_t> type_ptr; // Pointer to the RS Type of the Allocation
empirical_type<lldb::addr_t> context; // Pointer to the RS Context of the Allocation
empirical_type<uint32_t> size; // Size of the allocation
empirical_type<uint32_t> stride; // Stride between rows of the allocation
// Give each allocation an id, so we can reference it in user commands.
AllocationDetails(): id(ID++)
{
}
};
const ConstString &
RenderScriptRuntime::Element::GetFallbackStructName()
{
static const ConstString FallbackStructName("struct");
return FallbackStructName;
}
unsigned int RenderScriptRuntime::AllocationDetails::ID = 1;
const char* RenderScriptRuntime::AllocationDetails::RsDataKindToString[] =
{
"User",
"Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7
"Undefined", "Undefined", "Undefined",
"L Pixel",
"A Pixel",
"LA Pixel",
"RGB Pixel",
"RGBA Pixel",
"Pixel Depth",
"YUV Pixel"
};
const char* RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] =
{
{"None", "None", "None", "None"},
{"half", "half2", "half3", "half4"},
{"float", "float2", "float3", "float4"},
{"double", "double2", "double3", "double4"},
{"char", "char2", "char3", "char4"},
{"short", "short2", "short3", "short4"},
{"int", "int2", "int3", "int4"},
{"long", "long2", "long3", "long4"},
{"uchar", "uchar2", "uchar3", "uchar4"},
{"ushort", "ushort2", "ushort3", "ushort4"},
{"uint", "uint2", "uint3", "uint4"},
{"ulong", "ulong2", "ulong3", "ulong4"},
{"bool", "bool2", "bool3", "bool4"}
};
// Used as an index into the RSTypeToFormat array elements
enum TypeToFormatIndex {
eFormatSingle = 0,
eFormatVector,
eElementSize
};
// { format enum of single element, format enum of element vector, size of element}
const unsigned int RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] =
{
{eFormatHex, eFormatHex, 1}, // RS_TYPE_NONE
{eFormatFloat, eFormatVectorOfFloat16, 2}, // RS_TYPE_FLOAT_16
{eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, // RS_TYPE_FLOAT_32
{eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, // RS_TYPE_FLOAT_64
{eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, // RS_TYPE_SIGNED_8
{eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, // RS_TYPE_SIGNED_16
{eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, // RS_TYPE_SIGNED_32
{eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, // RS_TYPE_SIGNED_64
{eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, // RS_TYPE_UNSIGNED_8
{eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, // RS_TYPE_UNSIGNED_16
{eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, // RS_TYPE_UNSIGNED_32
{eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, // RS_TYPE_UNSIGNED_64
{eFormatBoolean, eFormatBoolean, sizeof(bool)} // RS_TYPE_BOOL
};
//------------------------------------------------------------------
// Static Functions
//------------------------------------------------------------------
LanguageRuntime *
RenderScriptRuntime::CreateInstance(Process *process, lldb::LanguageType language)
{
if (language == eLanguageTypeExtRenderScript)
return new RenderScriptRuntime(process);
else
return NULL;
}
// Callback with a module to search for matching symbols.
// We first check that the module contains RS kernels.
// Then look for a symbol which matches our kernel name.
// The breakpoint address is finally set using the address of this symbol.
Searcher::CallbackReturn
RSBreakpointResolver::SearchCallback(SearchFilter &filter,
SymbolContext &context,
Address*,
bool)
{
ModuleSP module = context.module_sp;
if (!module)
return Searcher::eCallbackReturnContinue;
// Is this a module containing renderscript kernels?
if (nullptr == module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData))
return Searcher::eCallbackReturnContinue;
// Attempt to set a breakpoint on the kernel name symbol within the module library.
// If it's not found, it's likely debug info is unavailable - try to set a
// breakpoint on <name>.expand.
const Symbol* kernel_sym = module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode);
if (!kernel_sym)
{
std::string kernel_name_expanded(m_kernel_name.AsCString());
kernel_name_expanded.append(".expand");
kernel_sym = module->FindFirstSymbolWithNameAndType(ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode);
}
if (kernel_sym)
{
Address bp_addr = kernel_sym->GetAddress();
if (filter.AddressPasses(bp_addr))
m_breakpoint->AddLocation(bp_addr);
}
return Searcher::eCallbackReturnContinue;
}
void
RenderScriptRuntime::Initialize()
{
PluginManager::RegisterPlugin(GetPluginNameStatic(), "RenderScript language support", CreateInstance, GetCommandObject);
}
void
RenderScriptRuntime::Terminate()
{
PluginManager::UnregisterPlugin(CreateInstance);
}
lldb_private::ConstString
RenderScriptRuntime::GetPluginNameStatic()
{
static ConstString g_name("renderscript");
return g_name;
}
RenderScriptRuntime::ModuleKind
RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp)
{
if (module_sp)
{
// Is this a module containing renderscript kernels?
const Symbol *info_sym = module_sp->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
if (info_sym)
{
return eModuleKindKernelObj;
}
// Is this the main RS runtime library
const ConstString rs_lib("libRS.so");
if (module_sp->GetFileSpec().GetFilename() == rs_lib)
{
return eModuleKindLibRS;
}
const ConstString rs_driverlib("libRSDriver.so");
if (module_sp->GetFileSpec().GetFilename() == rs_driverlib)
{
return eModuleKindDriver;
}
const ConstString rs_cpureflib("libRSCpuRef.so");
if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib)
{
return eModuleKindImpl;
}
}
return eModuleKindIgnored;
}
bool
RenderScriptRuntime::IsRenderScriptModule(const lldb::ModuleSP &module_sp)
{
return GetModuleKind(module_sp) != eModuleKindIgnored;
}
void
RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list )
{
Mutex::Locker locker (module_list.GetMutex ());
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++)
{
auto mod = module_list.GetModuleAtIndex (i);
if (IsRenderScriptModule (mod))
{
LoadModule(mod);
}
}
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
lldb_private::ConstString
RenderScriptRuntime::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
RenderScriptRuntime::GetPluginVersion()
{
return 1;
}
bool
RenderScriptRuntime::IsVTableName(const char *name)
{
return false;
}
bool
RenderScriptRuntime::GetDynamicTypeAndAddress(ValueObject &in_value, lldb::DynamicValueType use_dynamic,
TypeAndOrName &class_type_or_name, Address &address,
Value::ValueType &value_type)
{
return false;
}
TypeAndOrName
RenderScriptRuntime::FixUpDynamicType (const TypeAndOrName& type_and_or_name,
ValueObject& static_value)
{
return type_and_or_name;
}
bool
RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value)
{
return false;
}
lldb::BreakpointResolverSP
RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bkpt, bool catch_bp, bool throw_bp)
{
BreakpointResolverSP resolver_sp;
return resolver_sp;
}
const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] =
{
//rsdScript
{
"rsdScriptInit", //name
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhjj", // symbol name 32 bit
"_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_7ScriptCEPKcS7_PKhmj", // symbol name 64 bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureScriptInit1 // handler
},
{
"rsdScriptInvokeForEach", // name
"_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvjPK12RsScriptCall", // symbol name 32bit
"_Z22rsdScriptInvokeForEachPKN7android12renderscript7ContextEPNS0_6ScriptEjPKNS0_10AllocationEPS6_PKvmPK12RsScriptCall", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdScriptInvokeForEachMulti", // name
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", // symbol name 32bit
"_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdScriptInvokeFunction", // name
"_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvj", // symbol name 32bit
"_Z23rsdScriptInvokeFunctionPKN7android12renderscript7ContextEPNS0_6ScriptEjPKvm", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
{
"rsdScriptSetGlobalVar", // name
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvj", // symbol name 32bit
"_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_6ScriptEjPvm", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureSetGlobalVar1 // handler
},
//rsdAllocation
{
"rsdAllocationInit", // name
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 32bit
"_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_10AllocationEb", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
&lldb_private::RenderScriptRuntime::CaptureAllocationInit1 // handler
},
{
"rsdAllocationRead2D", //name
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvjj", // symbol name 32bit
"_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_10AllocationEjjj23RsAllocationCubemapFacejjPvmm", // symbol name 64bit
0, // version
RenderScriptRuntime::eModuleKindDriver, // type
nullptr // handler
},
};
const size_t RenderScriptRuntime::s_runtimeHookCount = sizeof(s_runtimeHookDefns)/sizeof(s_runtimeHookDefns[0]);
bool
RenderScriptRuntime::HookCallback(void *baton, StoppointCallbackContext *ctx, lldb::user_id_t break_id, lldb::user_id_t break_loc_id)
{
RuntimeHook* hook_info = (RuntimeHook*)baton;
ExecutionContext context(ctx->exe_ctx_ref);
RenderScriptRuntime *lang_rt = (RenderScriptRuntime *)context.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
lang_rt->HookCallback(hook_info, context);
return false;
}
void
RenderScriptRuntime::HookCallback(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf ("RenderScriptRuntime::HookCallback - '%s' .", hook_info->defn->name);
if (hook_info->defn->grabber)
{
(this->*(hook_info->defn->grabber))(hook_info, context);
}
}
bool
RenderScriptRuntime::GetArgSimple(ExecutionContext &context, uint32_t arg, uint64_t *data)
{
if (!data)
return false;
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
RegisterContext* reg_ctx = context.GetRegisterContext();
Process* process = context.GetProcessPtr();
bool success = false; // return value
if (!context.GetTargetPtr())
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Invalid target");
return false;
}
switch (context.GetTargetPtr()->GetArchitecture().GetMachine())
{
case llvm::Triple::ArchType::x86:
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (1 + arg) * sizeof(uint32_t);
uint32_t result = 0;
process->ReadMemory(sp + offset, &result, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading X86 stack: %s.", error.AsCString());
}
else
{
*data = result;
success = true;
}
break;
}
case llvm::Triple::ArchType::arm:
{
// arm 32 bit
if (arg < 4)
{
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
(*data) = rVal.GetAsUInt32();
}
else
{
if (log)
log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading ARM register: %d.", arg);
}
}
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (arg-4) * sizeof(uint32_t);
process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime:: GetArgSimple - error reading ARM stack: %s.", error.AsCString());
}
else
{
success = true;
}
}
break;
}
case llvm::Triple::ArchType::aarch64:
{
// arm 64 bit
// first 8 arguments are in the registers
if (arg < 8)
{
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64();
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple() - AARCH64 - Error while reading the argument #%d", arg);
}
}
else
{
// @TODO: need to find the argument in the stack
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - AARCH64 - FOR #ARG >= 8 NOT IMPLEMENTED YET. Argument number: %d", arg);
}
break;
}
case llvm::Triple::ArchType::mipsel:
{
// read from the registers
if (arg < 4){
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
*data = rVal.GetAsUInt64();
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple() - Mips - Error while reading the argument #%d", arg);
}
}
// read from the stack
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = arg * sizeof(uint32_t);
process->ReadMemory(sp + offset, &data, sizeof(uint32_t), error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime::GetArgSimple - error reading Mips stack: %s.", error.AsCString());
}
else
{
success = true;
}
}
break;
}
case llvm::Triple::ArchType::mips64el:
{
// read from the registers
if (arg < 8)
{
const RegisterInfo* rArg = reg_ctx->GetRegisterInfoAtIndex(arg + 4);
RegisterValue rVal;
success = reg_ctx->ReadRegister(rArg, rVal);
if (success)
{
(*data) = rVal.GetAsUInt64();
}
else
{
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading the argument #%d", arg);
}
}
// read from the stack
else
{
uint64_t sp = reg_ctx->GetSP();
uint32_t offset = (arg - 8) * sizeof(uint64_t);
process->ReadMemory(sp + offset, &data, sizeof(uint64_t), error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime::GetArgSimple - Mips64 - Error reading Mips64 stack: %s.", error.AsCString());
}
else
{
success = true;
}
}
break;
}
default:
{
// invalid architecture
if (log)
log->Printf("RenderScriptRuntime::GetArgSimple - Architecture not supported");
}
}
return success;
}
void
RenderScriptRuntime::CaptureSetGlobalVar1(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
//Context, Script, int, data, length
uint64_t rs_context_u64 = 0U;
uint64_t rs_script_u64 = 0U;
uint64_t rs_id_u64 = 0U;
uint64_t rs_data_u64 = 0U;
uint64_t rs_length_u64 = 0U;
bool success =
GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_script_u64) &&
GetArgSimple(context, 2, &rs_id_u64) &&
GetArgSimple(context, 3, &rs_data_u64) &&
GetArgSimple(context, 4, &rs_length_u64);
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::CaptureSetGlobalVar1 - Error while reading the function parameters");
return;
}
if (log)
{
log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 ":%" PRIu64 "bytes.",
rs_context_u64, rs_script_u64, rs_id_u64, rs_data_u64, rs_length_u64);
addr_t script_addr = (addr_t)rs_script_u64;
if (m_scriptMappings.find( script_addr ) != m_scriptMappings.end())
{
auto rsm = m_scriptMappings[script_addr];
if (rs_id_u64 < rsm->m_globals.size())
{
auto rsg = rsm->m_globals[rs_id_u64];
log->Printf ("RenderScriptRuntime::CaptureSetGlobalVar1 - Setting of '%s' within '%s' inferred", rsg.m_name.AsCString(),
rsm->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
}
void
RenderScriptRuntime::CaptureAllocationInit1(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
//Context, Alloc, bool
uint64_t rs_context_u64 = 0U;
uint64_t rs_alloc_u64 = 0U;
uint64_t rs_forceZero_u64 = 0U;
bool success =
GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_alloc_u64) &&
GetArgSimple(context, 2, &rs_forceZero_u64);
if (!success) // error case
{
if (log)
log->Printf("RenderScriptRuntime::CaptureAllocationInit1 - Error while reading the function parameters");
return; // abort
}
if (log)
log->Printf ("RenderScriptRuntime::CaptureAllocationInit1 - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .",
rs_context_u64, rs_alloc_u64, rs_forceZero_u64);
AllocationDetails* alloc = LookUpAllocation(rs_alloc_u64, true);
if (alloc)
alloc->context = rs_context_u64;
}
void
RenderScriptRuntime::CaptureScriptInit1(RuntimeHook* hook_info, ExecutionContext& context)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
//Context, Script, resname Str, cachedir Str
Error error;
Process* process = context.GetProcessPtr();
uint64_t rs_context_u64 = 0U;
uint64_t rs_script_u64 = 0U;
uint64_t rs_resnameptr_u64 = 0U;
uint64_t rs_cachedirptr_u64 = 0U;
std::string resname;
std::string cachedir;
// read the function parameters
bool success =
GetArgSimple(context, 0, &rs_context_u64) &&
GetArgSimple(context, 1, &rs_script_u64) &&
GetArgSimple(context, 2, &rs_resnameptr_u64) &&
GetArgSimple(context, 3, &rs_cachedirptr_u64);
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::CaptureScriptInit1 - Error while reading the function parameters");
return;
}
process->ReadCStringFromMemory((lldb::addr_t)rs_resnameptr_u64, resname, error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading resname: %s.", error.AsCString());
}
process->ReadCStringFromMemory((lldb::addr_t)rs_cachedirptr_u64, cachedir, error);
if (error.Fail())
{
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - error reading cachedir: %s.", error.AsCString());
}
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .",
rs_context_u64, rs_script_u64, resname.c_str(), cachedir.c_str());
if (resname.size() > 0)
{
StreamString strm;
strm.Printf("librs.%s.so", resname.c_str());
ScriptDetails* script = LookUpScript(rs_script_u64, true);
if (script)
{
script->type = ScriptDetails::eScriptC;
script->cacheDir = cachedir;
script->resName = resname;
script->scriptDyLib = strm.GetData();
script->context = addr_t(rs_context_u64);
}
if (log)
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - '%s' tagged with context 0x%" PRIx64 " and script 0x%" PRIx64 ".",
strm.GetData(), rs_context_u64, rs_script_u64);
}
else if (log)
{
log->Printf ("RenderScriptRuntime::CaptureScriptInit1 - resource name invalid, Script not tagged");
}
}
void
RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, ModuleKind kind)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!module)
{
return;
}
Target &target = GetProcess()->GetTarget();
llvm::Triple::ArchType targetArchType = target.GetArchitecture().GetMachine();
if (targetArchType != llvm::Triple::ArchType::x86
&& targetArchType != llvm::Triple::ArchType::arm
&& targetArchType != llvm::Triple::ArchType::aarch64
&& targetArchType != llvm::Triple::ArchType::mipsel
&& targetArchType != llvm::Triple::ArchType::mips64el
)
{
if (log)
log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to hook runtime. Only X86, ARM, Mips supported currently.");
return;
}
uint32_t archByteSize = target.GetArchitecture().GetAddressByteSize();
for (size_t idx = 0; idx < s_runtimeHookCount; idx++)
{
const HookDefn* hook_defn = &s_runtimeHookDefns[idx];
if (hook_defn->kind != kind) {
continue;
}
const char* symbol_name = (archByteSize == 4) ? hook_defn->symbol_name_m32 : hook_defn->symbol_name_m64;
const Symbol *sym = module->FindFirstSymbolWithNameAndType(ConstString(symbol_name), eSymbolTypeCode);
if (!sym){
if (log){
log->Printf("RenderScriptRuntime::LoadRuntimeHooks - ERROR: Symbol '%s' related to the function %s not found", symbol_name, hook_defn->name);
}
continue;
}
addr_t addr = sym->GetLoadAddress(&target);
if (addr == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Unable to resolve the address of hook function '%s' with symbol '%s'.",
hook_defn->name, symbol_name);
continue;
}
else
{
if (log)
log->Printf("RenderScriptRuntime::LoadRuntimeHooks - Function %s, address resolved at 0x%" PRIx64, hook_defn->name, addr);
}
RuntimeHookSP hook(new RuntimeHook());
hook->address = addr;
hook->defn = hook_defn;
hook->bp_sp = target.CreateBreakpoint(addr, true, false);
hook->bp_sp->SetCallback(HookCallback, hook.get(), true);
m_runtimeHooks[addr] = hook;
if (log)
{
log->Printf ("RenderScriptRuntime::LoadRuntimeHooks - Successfully hooked '%s' in '%s' version %" PRIu64 " at 0x%" PRIx64 ".",
hook_defn->name, module->GetFileSpec().GetFilename().AsCString(), (uint64_t)hook_defn->version, (uint64_t)addr);
}
}
}
void
RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp)
{
if (!rsmodule_sp)
return;
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const ModuleSP module = rsmodule_sp->m_module;
const FileSpec& file = module->GetPlatformFileSpec();
// Iterate over all of the scripts that we currently know of.
// Note: We cant push or pop to m_scripts here or it may invalidate rs_script.
for (const auto & rs_script : m_scripts)
{
// Extract the expected .so file path for this script.
std::string dylib;
if (!rs_script->scriptDyLib.get(dylib))
continue;
// Only proceed if the module that has loaded corresponds to this script.
if (file.GetFilename() != ConstString(dylib.c_str()))
continue;
// Obtain the script address which we use as a key.
lldb::addr_t script;
if (!rs_script->script.get(script))
continue;
// If we have a script mapping for the current script.
if (m_scriptMappings.find(script) != m_scriptMappings.end())
{
// if the module we have stored is different to the one we just received.
if (m_scriptMappings[script] != rsmodule_sp)
{
if (log)
log->Printf ("RenderScriptRuntime::FixupScriptDetails - Error: script %" PRIx64 " wants reassigned to new rsmodule '%s'.",
(uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
// We don't have a script mapping for the current script.
else
{
// Obtain the script resource name.
std::string resName;
if (rs_script->resName.get(resName))
// Set the modules resource name.
rsmodule_sp->m_resname = resName;
// Add Script/Module pair to map.
m_scriptMappings[script] = rsmodule_sp;
if (log)
log->Printf ("RenderScriptRuntime::FixupScriptDetails - script %" PRIx64 " associated with rsmodule '%s'.",
(uint64_t)script, rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString());
}
}
}
// Uses the Target API to evaluate the expression passed as a parameter to the function
// The result of that expression is returned an unsigned 64 bit int, via the result* paramter.
// Function returns true on success, and false on failure
bool
RenderScriptRuntime::EvalRSExpression(const char* expression, StackFrame* frame_ptr, uint64_t* result)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression(%s)", expression);
ValueObjectSP expr_result;
// Perform the actual expression evaluation
GetProcess()->GetTarget().EvaluateExpression(expression, frame_ptr, expr_result);
if (!expr_result)
{
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Error: Couldn't evaluate expression");
return false;
}
// The result of the expression is invalid
if (!expr_result->GetError().Success())
{
Error err = expr_result->GetError();
if (err.GetError() == UserExpression::kNoResult) // Expression returned void, so this is actually a success
{
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Expression returned void");
result = nullptr;
return true;
}
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Error evaluating expression result: %s", err.AsCString());
return false;
}
bool success = false;
*result = expr_result->GetValueAsUnsigned(0, &success); // We only read the result as an unsigned int.
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::EvalRSExpression - Error: Couldn't convert expression result to unsigned int");
return false;
}
return true;
}
// Used to index expression format strings
enum ExpressionStrings
{
eExprGetOffsetPtr = 0,
eExprAllocGetType,
eExprTypeDimX,
eExprTypeDimY,
eExprTypeDimZ,
eExprTypeElemPtr,
eExprElementType,
eExprElementKind,
eExprElementVec,
eExprElementFieldCount,
eExprSubelementsId,
eExprSubelementsName,
eExprSubelementsArrSize
};
// Format strings containing the expressions we may need to evaluate.
const char runtimeExpressions[][256] =
{
// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap)
"(int*)_Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocationCubemapFace(0x%lx, %u, %u, %u, 0, 0)",
// Type* rsaAllocationGetType(Context*, Allocation*)
"(void*)rsaAllocationGetType(0x%lx, 0x%lx)",
// rsaTypeGetNativeData(Context*, Type*, void* typeData, size)
// Pack the data in the following way mHal.state.dimX; mHal.state.dimY; mHal.state.dimZ;
// mHal.state.lodCount; mHal.state.faces; mElement; into typeData
// Need to specify 32 or 64 bit for uint_t since this differs between devices
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[0]", // X dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[1]", // Y dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[2]", // Z dim
"uint%u_t data[6]; (void*)rsaTypeGetNativeData(0x%lx, 0x%lx, data, 6); data[5]", // Element ptr
// rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size)
// Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into elemData
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[0]", // Type
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[1]", // Kind
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[3]", // Vector Size
"uint32_t data[5]; (void*)rsaElementGetNativeData(0x%lx, 0x%lx, data, 5); data[4]", // Field Count
// rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t *ids, const char **names,
// size_t *arraySizes, uint32_t dataSize)
// Needed for Allocations of structs to gather details about fields/Subelements
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); ids[%u]", // Element* of field
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); names[%u]", // Name of field
"void* ids[%u]; const char* names[%u]; size_t arr_size[%u];"
"(void*)rsaElementGetSubElements(0x%lx, 0x%lx, ids, names, arr_size, %u); arr_size[%u]" // Array size of field
};
// JITs the RS runtime for the internal data pointer of an allocation.
// Is passed x,y,z coordinates for the pointer to a specific element.
// Then sets the data_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITDataPointer(AllocationDetails* allocation, StackFrame* frame_ptr,
unsigned int x, unsigned int y, unsigned int z)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Failed to find allocation details");
return false;
}
const char* expr_cstr = runtimeExpressions[eExprGetOffsetPtr];
const int max_expr_size = 512; // Max expression size
char buffer[max_expr_size];
int chars_written = snprintf(buffer, max_expr_size, expr_cstr, *allocation->address.get(), x, y, z);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->data_ptr = mem_ptr;
return true;
}
// JITs the RS runtime for the internal pointer to the RS Type of an allocation
// Then sets the type_ptr member in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITTypePointer(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->context.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePointer - Failed to find allocation details");
return false;
}
const char* expr_cstr = runtimeExpressions[eExprAllocGetType];
const int max_expr_size = 512; // Max expression size
char buffer[max_expr_size];
int chars_written = snprintf(buffer, max_expr_size, expr_cstr, *allocation->context.get(), *allocation->address.get());
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePointer - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t type_ptr = static_cast<lldb::addr_t>(result);
allocation->type_ptr = type_ptr;
return true;
}
// JITs the RS runtime for information about the dimensions and type of an allocation
// Then sets dimension and element_ptr members in Allocation with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITTypePacked(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->type_ptr.isValid() || !allocation->context.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePacked - Failed to find allocation details");
return false;
}
// Expression is different depending on if device is 32 or 64 bit
uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
const unsigned int bits = archByteSize == 4 ? 32 : 64;
// We want 4 elements from packed data
const unsigned int num_exprs = 4;
assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1) && "Invalid number of expressions");
const int max_expr_size = 512; // Max expression size
char buffer[num_exprs][max_expr_size];
uint64_t results[num_exprs];
for (unsigned int i = 0; i < num_exprs; ++i)
{
int chars_written = snprintf(buffer[i], max_expr_size, runtimeExpressions[eExprTypeDimX + i], bits,
*allocation->context.get(), *allocation->type_ptr.get());
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITDataPointer - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITTypePacked - Expression too long");
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
AllocationDetails::Dimension dims;
dims.dim_1 = static_cast<uint32_t>(results[0]);
dims.dim_2 = static_cast<uint32_t>(results[1]);
dims.dim_3 = static_cast<uint32_t>(results[2]);
allocation->dimension = dims;
addr_t elem_ptr = static_cast<lldb::addr_t>(results[3]);
allocation->element.element_ptr = elem_ptr;
if (log)
log->Printf("RenderScriptRuntime::JITTypePacked - dims (%u, %u, %u) Element*: 0x%" PRIx64,
dims.dim_1, dims.dim_2, dims.dim_3, elem_ptr);
return true;
}
// JITs the RS runtime for information about the Element of an allocation
// Then sets type, type_vec_size, field_count and type_kind members in Element with the result.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITElementPacked(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - Failed to find allocation details");
return false;
}
// We want 4 elements from packed data
const unsigned int num_exprs = 4;
assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1) && "Invalid number of expressions");
const int max_expr_size = 512; // Max expression size
char buffer[num_exprs][max_expr_size];
uint64_t results[num_exprs];
for (unsigned int i = 0; i < num_exprs; i++)
{
int chars_written = snprintf(buffer[i], max_expr_size, runtimeExpressions[eExprElementType + i], context, *elem.element_ptr.get());
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - Expression too long");
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(buffer[i], frame_ptr, &results[i]))
return false;
}
// Assign results to allocation members
elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]);
elem.type_kind = static_cast<RenderScriptRuntime::Element::DataKind>(results[1]);
elem.type_vec_size = static_cast<uint32_t>(results[2]);
elem.field_count = static_cast<uint32_t>(results[3]);
if (log)
log->Printf("RenderScriptRuntime::JITElementPacked - data type %u, pixel type %u, vector size %u, field count %u",
*elem.type.get(), *elem.type_kind.get(), *elem.type_vec_size.get(), *elem.field_count.get());
// If this Element has subelements then JIT rsaElementGetSubElements() for details about its fields
if (*elem.field_count.get() > 0 && !JITSubelements(elem, context, frame_ptr))
return false;
return true;
}
// JITs the RS runtime for information about the subelements/fields of a struct allocation
// This is necessary for infering the struct type so we can pretty print the allocation's contents.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITSubelements(Element& elem, const lldb::addr_t context, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.element_ptr.isValid() || !elem.field_count.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Failed to find allocation details");
return false;
}
const short num_exprs = 3;
assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1) && "Invalid number of expressions");
const int max_expr_size = 512; // Max expression size
char expr_buffer[max_expr_size];
uint64_t results;
// Iterate over struct fields.
const uint32_t field_count = *elem.field_count.get();
for (unsigned int field_index = 0; field_index < field_count; ++field_index)
{
Element child;
for (unsigned int expr_index = 0; expr_index < num_exprs; ++expr_index)
{
int chars_written = snprintf(expr_buffer, max_expr_size, runtimeExpressions[eExprSubelementsId + expr_index],
field_count, field_count, field_count,
context, *elem.element_ptr.get(), field_count, field_index);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Expression too long");
return false;
}
// Perform expression evaluation
if (!EvalRSExpression(expr_buffer, frame_ptr, &results))
return false;
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Expr result 0x%" PRIx64, results);
switch(expr_index)
{
case 0: // Element* of child
child.element_ptr = static_cast<addr_t>(results);
break;
case 1: // Name of child
{
lldb::addr_t address = static_cast<addr_t>(results);
Error err;
std::string name;
GetProcess()->ReadCStringFromMemory(address, name, err);
if (!err.Fail())
child.type_name = ConstString(name);
else
{
if (log)
log->Printf("RenderScriptRuntime::JITSubelements - Warning: Couldn't read field name");
}
break;
}
case 2: // Array size of child
child.array_size = static_cast<uint32_t>(results);
break;
}
}
// We need to recursively JIT each Element field of the struct since
// structs can be nested inside structs.
if (!JITElementPacked(child, context, frame_ptr))
return false;
elem.children.push_back(child);
}
// Try to infer the name of the struct type so we can pretty print the allocation contents.
FindStructTypeName(elem, frame_ptr);
return true;
}
// JITs the RS runtime for the address of the last element in the allocation.
// The `elem_size` paramter represents the size of a single element, including padding.
// Which is needed as an offset from the last element pointer.
// Using this offset minus the starting address we can calculate the size of the allocation.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITAllocationSize(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->dimension.isValid()
|| !allocation->data_ptr.isValid() || !allocation->element.datum_size.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Failed to find allocation details");
return false;
}
// Find dimensions
unsigned int dim_x = allocation->dimension.get()->dim_1;
unsigned int dim_y = allocation->dimension.get()->dim_2;
unsigned int dim_z = allocation->dimension.get()->dim_3;
// Our plan of jitting the last element address doesn't seem to work for struct Allocations
// Instead try to infer the size ourselves without any inter element padding.
if (allocation->element.children.size() > 0)
{
if (dim_x == 0) dim_x = 1;
if (dim_y == 0) dim_y = 1;
if (dim_z == 0) dim_z = 1;
allocation->size = dim_x * dim_y * dim_z * *allocation->element.datum_size.get();
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Infered size of struct allocation %u", *allocation->size.get());
return true;
}
const char* expr_cstr = runtimeExpressions[eExprGetOffsetPtr];
const int max_expr_size = 512;
char buffer[max_expr_size];
// Calculate last element
dim_x = dim_x == 0 ? 0 : dim_x - 1;
dim_y = dim_y == 0 ? 0 : dim_y - 1;
dim_z = dim_z == 0 ? 0 : dim_z - 1;
int chars_written = snprintf(buffer, max_expr_size, expr_cstr, *allocation->address.get(),
dim_x, dim_y, dim_z);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationSize - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
// Find pointer to last element and add on size of an element
allocation->size = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get()) + *allocation->element.datum_size.get();
return true;
}
// JITs the RS runtime for information about the stride between rows in the allocation.
// This is done to detect padding, since allocated memory is 16-byte aligned.
// Returns true on success, false otherwise
bool
RenderScriptRuntime::JITAllocationStride(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!allocation->address.isValid() || !allocation->data_ptr.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationStride - Failed to find allocation details");
return false;
}
const char* expr_cstr = runtimeExpressions[eExprGetOffsetPtr];
const int max_expr_size = 512; // Max expression size
char buffer[max_expr_size];
int chars_written = snprintf(buffer, max_expr_size, expr_cstr, *allocation->address.get(),
0, 1, 0);
if (chars_written < 0)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationStride - Encoding error in snprintf()");
return false;
}
else if (chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::JITAllocationStride - Expression too long");
return false;
}
uint64_t result = 0;
if (!EvalRSExpression(buffer, frame_ptr, &result))
return false;
addr_t mem_ptr = static_cast<lldb::addr_t>(result);
allocation->stride = static_cast<uint32_t>(mem_ptr - *allocation->data_ptr.get());
return true;
}
// JIT all the current runtime info regarding an allocation
bool
RenderScriptRuntime::RefreshAllocation(AllocationDetails* allocation, StackFrame* frame_ptr)
{
// GetOffsetPointer()
if (!JITDataPointer(allocation, frame_ptr))
return false;
// rsaAllocationGetType()
if (!JITTypePointer(allocation, frame_ptr))
return false;
// rsaTypeGetNativeData()
if (!JITTypePacked(allocation, frame_ptr))
return false;
// rsaElementGetNativeData()
if (!JITElementPacked(allocation->element, *allocation->context.get(), frame_ptr))
return false;
// Sets the datum_size member in Element
SetElementSize(allocation->element);
// Use GetOffsetPointer() to infer size of the allocation
if (!JITAllocationSize(allocation, frame_ptr))
return false;
return true;
}
// Function attempts to set the type_name member of the paramaterised Element object.
// This string should be the name of the struct type the Element represents.
// We need this string for pretty printing the Element to users.
void
RenderScriptRuntime::FindStructTypeName(Element& elem, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (!elem.type_name.IsEmpty()) // Name already set
return;
else
elem.type_name = Element::GetFallbackStructName(); // Default type name if we don't succeed
// Find all the global variables from the script rs modules
VariableList variable_list;
for (auto module_sp : m_rsmodules)
module_sp->m_module->FindGlobalVariables(RegularExpression("."), true, UINT32_MAX, variable_list);
// Iterate over all the global variables looking for one with a matching type to the Element.
// We make the assumption a match exists since there needs to be a global variable to reflect the
// struct type back into java host code.
for (uint32_t var_index = 0; var_index < variable_list.GetSize(); ++var_index)
{
const VariableSP var_sp(variable_list.GetVariableAtIndex(var_index));
if (!var_sp)
continue;
ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp);
if (!valobj_sp)
continue;
// Find the number of variable fields.
// If it has no fields, or more fields than our Element, then it can't be the struct we're looking for.
// Don't check for equality since RS can add extra struct members for padding.
size_t num_children = valobj_sp->GetNumChildren();
if (num_children > elem.children.size() || num_children == 0)
continue;
// Iterate over children looking for members with matching field names.
// If all the field names match, this is likely the struct we want.
//
// TODO: This could be made more robust by also checking children data sizes, or array size
bool found = true;
for (size_t child_index = 0; child_index < num_children; ++child_index)
{
ValueObjectSP child = valobj_sp->GetChildAtIndex(child_index, true);
if (!child || (child->GetName() != elem.children[child_index].type_name))
{
found = false;
break;
}
}
// RS can add extra struct members for padding in the format '#rs_padding_[0-9]+'
if (found && num_children < elem.children.size())
{
const unsigned int size_diff = elem.children.size() - num_children;
if (log)
log->Printf("RenderScriptRuntime::FindStructTypeName - %u padding struct entries", size_diff);
for (unsigned int padding_index = 0; padding_index < size_diff; ++padding_index)
{
const ConstString& name = elem.children[num_children + padding_index].type_name;
if (strcmp(name.AsCString(), "#rs_padding") < 0)
found = false;
}
}
// We've found a global var with matching type
if (found)
{
// Dereference since our Element type isn't a pointer.
if (valobj_sp->IsPointerType())
{
Error err;
ValueObjectSP deref_valobj = valobj_sp->Dereference(err);
if (!err.Fail())
valobj_sp = deref_valobj;
}
// Save name of variable in Element.
elem.type_name = valobj_sp->GetTypeName();
if (log)
log->Printf("RenderScriptRuntime::FindStructTypeName - Element name set to %s", elem.type_name.AsCString());
return;
}
}
}
// Function sets the datum_size member of Element. Representing the size of a single instance including padding.
// Assumes the relevant allocation information has already been jitted.
void
RenderScriptRuntime::SetElementSize(Element& elem)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
const Element::DataType type = *elem.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_BOOLEAN
&& "Invalid allocation type");
const unsigned int vec_size = *elem.type_vec_size.get();
unsigned int data_size = 0;
const unsigned int padding = vec_size == 3 ? AllocationDetails::RSTypeToFormat[type][eElementSize] : 0;
// Element is of a struct type, calculate size recursively.
if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0))
{
for (Element& child : elem.children)
{
SetElementSize(child);
const unsigned int array_size = child.array_size.isValid() ? *child.array_size.get() : 1;
data_size += *child.datum_size.get() * array_size;
}
}
else
data_size = vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize];
elem.padding = padding;
elem.datum_size = data_size + padding;
if (log)
log->Printf("RenderScriptRuntime::SetElementSize - element size set to %u", data_size + padding);
}
// Given an allocation, this function copies the allocation contents from device into a buffer on the heap.
// Returning a shared pointer to the buffer containing the data.
std::shared_ptr<uint8_t>
RenderScriptRuntime::GetAllocationData(AllocationDetails* allocation, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// JIT all the allocation details
if (!allocation->data_ptr.isValid() || !allocation->element.type.isValid()
|| !allocation->element.type_vec_size.isValid() || !allocation->size.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - Allocation details not calculated yet, jitting info");
if (!RefreshAllocation(allocation, frame_ptr))
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't JIT allocation details");
return nullptr;
}
}
assert(allocation->data_ptr.isValid() && allocation->element.type.isValid() && allocation->element.type_vec_size.isValid()
&& allocation->size.isValid() && "Allocation information not available");
// Allocate a buffer to copy data into
const unsigned int size = *allocation->size.get();
std::shared_ptr<uint8_t> buffer(new uint8_t[size]);
if (!buffer)
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - Couldn't allocate a %u byte buffer", size);
return nullptr;
}
// Read the inferior memory
Error error;
lldb::addr_t data_ptr = *allocation->data_ptr.get();
GetProcess()->ReadMemory(data_ptr, buffer.get(), size, error);
if (error.Fail())
{
if (log)
log->Printf("RenderScriptRuntime::GetAllocationData - '%s' Couldn't read %u bytes of allocation data from 0x%" PRIx64,
error.AsCString(), size, data_ptr);
return nullptr;
}
return buffer;
}
// Function copies data from a binary file into an allocation.
// There is a header at the start of the file, FileHeader, before the data content itself.
// Information from this header is used to display warnings to the user about incompatabilities
bool
RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
// JIT all the allocation details
if (!alloc->data_ptr.isValid() || !alloc->element.type.isValid() || !alloc->element.datum_size.isValid()
|| !alloc->element.type_vec_size.isValid() || !alloc->size.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - Allocation details not calculated yet, jitting info");
if (!RefreshAllocation(alloc, frame_ptr))
{
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - Couldn't JIT allocation details");
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid()
&& alloc->size.isValid() && alloc->element.datum_size.isValid() && "Allocation information not available");
// Check we can read from file
FileSpec file(filename, true);
if (!file.Exists())
{
strm.Printf("Error: File %s does not exist", filename);
strm.EOL();
return false;
}
if (!file.Readable())
{
strm.Printf("Error: File %s does not have readable permissions", filename);
strm.EOL();
return false;
}
// Read file into data buffer
DataBufferSP data_sp(file.ReadFileContents());
// Cast start of buffer to FileHeader and use pointer to read metadata
void* file_buffer = data_sp->GetBytes();
const AllocationDetails::FileHeader* head = static_cast<AllocationDetails::FileHeader*>(file_buffer);
// Advance buffer past header
file_buffer = static_cast<uint8_t*>(file_buffer) + head->hdr_size;
if (log)
log->Printf("RenderScriptRuntime::LoadAllocation - header type %u, element size %u",
head->type, head->element_size);
// Check if the target allocation and file both have the same number of bytes for an Element
if (*alloc->element.datum_size.get() != head->element_size)
{
strm.Printf("Warning: Mismatched Element sizes - file %u bytes, allocation %u bytes",
head->element_size, *alloc->element.datum_size.get());
strm.EOL();
}
// Check if the target allocation and file both have the same integral type
const unsigned int type = static_cast<unsigned int>(*alloc->element.type.get());
if (type != head->type)
{
const char* file_type_cstr = AllocationDetails::RsDataTypeToString[head->type][0];
const char* alloc_type_cstr = AllocationDetails::RsDataTypeToString[type][0];
strm.Printf("Warning: Mismatched Types - file '%s' type, allocation '%s' type",
file_type_cstr, alloc_type_cstr);
strm.EOL();
}
// Calculate size of allocation data in file
size_t length = data_sp->GetByteSize() - head->hdr_size;
// Check if the target allocation and file both have the same total data size.
const unsigned int alloc_size = *alloc->size.get();
if (alloc_size != length)
{
strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 " bytes, allocation 0x%x bytes",
(uint64_t) length, alloc_size);
strm.EOL();
length = alloc_size < length ? alloc_size : length; // Set length to copy to minimum
}
// Copy file data from our buffer into the target allocation.
lldb::addr_t alloc_data = *alloc->data_ptr.get();
Error error;
size_t bytes_written = GetProcess()->WriteMemory(alloc_data, file_buffer, length, error);
if (!error.Success() || bytes_written != length)
{
strm.Printf("Error: Couldn't write data to allocation %s", error.AsCString());
strm.EOL();
return false;
}
strm.Printf("Contents of file '%s' read into allocation %u", filename, alloc->id);
strm.EOL();
return true;
}
// Function copies allocation contents into a binary file.
// This file can then be loaded later into a different allocation.
// There is a header, FileHeader, before the allocation data containing meta-data.
bool
RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, const char* filename, StackFrame* frame_ptr)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Find allocation with the given id
AllocationDetails* alloc = FindAllocByID(strm, alloc_id);
if (!alloc)
return false;
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
// JIT all the allocation details
if (!alloc->data_ptr.isValid() || !alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid()
|| !alloc->element.type_kind.isValid() || !alloc->dimension.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Allocation details not calculated yet, jitting info");
if (!RefreshAllocation(alloc, frame_ptr))
{
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Couldn't JIT allocation details");
return false;
}
}
assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && alloc->element.type_vec_size.isValid() && alloc->element.datum_size.get()
&& alloc->element.type_kind.isValid() && alloc->dimension.isValid() && "Allocation information not available");
// Check we can create writable file
FileSpec file_spec(filename, true);
File file(file_spec, File::eOpenOptionWrite | File::eOpenOptionCanCreate | File::eOpenOptionTruncate);
if (!file)
{
strm.Printf("Error: Failed to open '%s' for writing", filename);
strm.EOL();
return false;
}
// Read allocation into buffer of heap memory
const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer)
{
strm.Printf("Error: Couldn't read allocation data into buffer");
strm.EOL();
return false;
}
// Create the file header
AllocationDetails::FileHeader head;
head.ident[0] = 'R'; head.ident[1] = 'S'; head.ident[2] = 'A'; head.ident[3] = 'D';
head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader));
head.type = static_cast<uint16_t>(*alloc->element.type.get());
head.kind = static_cast<uint32_t>(*alloc->element.type_kind.get());
head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1);
head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2);
head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3);
head.element_size = static_cast<uint32_t>(*alloc->element.datum_size.get());
// Write the file header
size_t num_bytes = sizeof(AllocationDetails::FileHeader);
Error err = file.Write(static_cast<const void*>(&head), num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
// Write allocation data to file
num_bytes = static_cast<size_t>(*alloc->size.get());
if (log)
log->Printf("RenderScriptRuntime::SaveAllocation - Writing 0x%" PRIx64 " bytes from %p", (uint64_t) num_bytes, buffer.get());
err = file.Write(buffer.get(), num_bytes);
if (!err.Success())
{
strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), filename);
strm.EOL();
return false;
}
strm.Printf("Allocation written to file '%s'", filename);
strm.EOL();
return true;
}
bool
RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
if (module_sp)
{
for (const auto &rs_module : m_rsmodules)
{
if (rs_module->m_module == module_sp)
{
// Check if the user has enabled automatically breaking on
// all RS kernels.
if (m_breakAllKernels)
BreakOnModuleKernels(rs_module);
return false;
}
}
bool module_loaded = false;
switch (GetModuleKind(module_sp))
{
case eModuleKindKernelObj:
{
RSModuleDescriptorSP module_desc;
module_desc.reset(new RSModuleDescriptor(module_sp));
if (module_desc->ParseRSInfo())
{
m_rsmodules.push_back(module_desc);
module_loaded = true;
}
if (module_loaded)
{
FixupScriptDetails(module_desc);
}
break;
}
case eModuleKindDriver:
{
if (!m_libRSDriver)
{
m_libRSDriver = module_sp;
LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver);
}
break;
}
case eModuleKindImpl:
{
m_libRSCpuRef = module_sp;
break;
}
case eModuleKindLibRS:
{
if (!m_libRS)
{
m_libRS = module_sp;
static ConstString gDbgPresentStr("gDebuggerPresent");
const Symbol* debug_present = m_libRS->FindFirstSymbolWithNameAndType(gDbgPresentStr, eSymbolTypeData);
if (debug_present)
{
Error error;
uint32_t flag = 0x00000001U;
Target &target = GetProcess()->GetTarget();
addr_t addr = debug_present->GetLoadAddress(&target);
GetProcess()->WriteMemory(addr, &flag, sizeof(flag), error);
if(error.Success())
{
if (log)
log->Printf ("RenderScriptRuntime::LoadModule - Debugger present flag set on debugee");
m_debuggerPresentFlagged = true;
}
else if (log)
{
log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags '%s' ", error.AsCString());
}
}
else if (log)
{
log->Printf ("RenderScriptRuntime::LoadModule - Error writing debugger present flags - symbol not found");
}
}
break;
}
default:
break;
}
if (module_loaded)
Update();
return module_loaded;
}
return false;
}
void
RenderScriptRuntime::Update()
{
if (m_rsmodules.size() > 0)
{
if (!m_initiated)
{
Initiate();
}
}
}
// The maximum line length of an .rs.info packet
#define MAXLINE 500
// The .rs.info symbol in renderscript modules contains a string which needs to be parsed.
// The string is basic and is parsed on a line by line basis.
bool
RSModuleDescriptor::ParseRSInfo()
{
const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), eSymbolTypeData);
if (info_sym)
{
const addr_t addr = info_sym->GetAddressRef().GetFileAddress();
const addr_t size = info_sym->GetByteSize();
const FileSpec fs = m_module->GetFileSpec();
DataBufferSP buffer = fs.ReadFileContents(addr, size);
if (!buffer)
return false;
std::string info((const char *)buffer->GetBytes());
std::vector<std::string> info_lines;
size_t lpos = info.find('\n');
while (lpos != std::string::npos)
{
info_lines.push_back(info.substr(0, lpos));
info = info.substr(lpos + 1);
lpos = info.find('\n');
}
size_t offset = 0;
while (offset < info_lines.size())
{
std::string line = info_lines[offset];
// Parse directives
uint32_t numDefns = 0;
if (sscanf(line.c_str(), "exportVarCount: %u", &numDefns) == 1)
{
while (numDefns--)
m_globals.push_back(RSGlobalDescriptor(this, info_lines[++offset].c_str()));
}
else if (sscanf(line.c_str(), "exportFuncCount: %u", &numDefns) == 1)
{
}
else if (sscanf(line.c_str(), "exportForEachCount: %u", &numDefns) == 1)
{
char name[MAXLINE];
while (numDefns--)
{
uint32_t slot = 0;
name[0] = '\0';
if (sscanf(info_lines[++offset].c_str(), "%u - %s", &slot, &name[0]) == 2)
{
m_kernels.push_back(RSKernelDescriptor(this, name, slot));
}
}
}
else if (sscanf(line.c_str(), "pragmaCount: %u", &numDefns) == 1)
{
char name[MAXLINE];
char value[MAXLINE];
while (numDefns--)
{
name[0] = '\0';
value[0] = '\0';
if (sscanf(info_lines[++offset].c_str(), "%s - %s", &name[0], &value[0]) != 0
&& (name[0] != '\0'))
{
m_pragmas[std::string(name)] = value;
}
}
}
else if (sscanf(line.c_str(), "objectSlotCount: %u", &numDefns) == 1)
{
}
offset++;
}
return m_kernels.size() > 0;
}
return false;
}
bool
RenderScriptRuntime::ProbeModules(const ModuleList module_list)
{
bool rs_found = false;
size_t num_modules = module_list.GetSize();
for (size_t i = 0; i < num_modules; i++)
{
auto module = module_list.GetModuleAtIndex(i);
rs_found |= LoadModule(module);
}
return rs_found;
}
void
RenderScriptRuntime::Status(Stream &strm) const
{
if (m_libRS)
{
strm.Printf("Runtime Library discovered.");
strm.EOL();
}
if (m_libRSDriver)
{
strm.Printf("Runtime Driver discovered.");
strm.EOL();
}
if (m_libRSCpuRef)
{
strm.Printf("CPU Reference Implementation discovered.");
strm.EOL();
}
if (m_runtimeHooks.size())
{
strm.Printf("Runtime functions hooked:");
strm.EOL();
for (auto b : m_runtimeHooks)
{
strm.Indent(b.second->defn->name);
strm.EOL();
}
strm.EOL();
}
else
{
strm.Printf("Runtime is not hooked.");
strm.EOL();
}
}
void
RenderScriptRuntime::DumpContexts(Stream &strm) const
{
strm.Printf("Inferred RenderScript Contexts:");
strm.EOL();
strm.IndentMore();
std::map<addr_t, uint64_t> contextReferences;
// Iterate over all of the currently discovered scripts.
// Note: We cant push or pop from m_scripts inside this loop or it may invalidate script.
for (const auto & script : m_scripts)
{
if (!script->context.isValid())
continue;
lldb::addr_t context = *script->context;
if (contextReferences.find(context) != contextReferences.end())
{
contextReferences[context]++;
}
else
{
contextReferences[context] = 1;
}
}
for (const auto& cRef : contextReferences)
{
strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", cRef.first, cRef.second);
strm.EOL();
}
strm.IndentLess();
}
void
RenderScriptRuntime::DumpKernels(Stream &strm) const
{
strm.Printf("RenderScript Kernels:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules)
{
strm.Printf("Resource '%s':",module->m_resname.c_str());
strm.EOL();
for (const auto &kernel : module->m_kernels)
{
strm.Indent(kernel.m_name.AsCString());
strm.EOL();
}
}
strm.IndentLess();
}
RenderScriptRuntime::AllocationDetails*
RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id)
{
AllocationDetails* alloc = nullptr;
// See if we can find allocation using id as an index;
if (alloc_id <= m_allocations.size() && alloc_id != 0
&& m_allocations[alloc_id-1]->id == alloc_id)
{
alloc = m_allocations[alloc_id-1].get();
return alloc;
}
// Fallback to searching
for (const auto & a : m_allocations)
{
if (a->id == alloc_id)
{
alloc = a.get();
break;
}
}
if (alloc == nullptr)
{
strm.Printf("Error: Couldn't find allocation with id matching %u", alloc_id);
strm.EOL();
}
return alloc;
}
// Prints the contents of an allocation to the output stream, which may be a file
bool
RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame* frame_ptr, const uint32_t id)
{
Log* log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE));
// Check we can find the desired allocation
AllocationDetails* alloc = FindAllocByID(strm, id);
if (!alloc)
return false; // FindAllocByID() will print error message for us here
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - Found allocation 0x%" PRIx64, *alloc->address.get());
// Check we have information about the allocation, if not calculate it
if (!alloc->data_ptr.isValid() || !alloc->element.type.isValid() ||
!alloc->element.type_vec_size.isValid() || !alloc->dimension.isValid() || !alloc->element.datum_size.isValid())
{
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - Allocation details not calculated yet, jitting info");
// JIT all the allocation information
if (!RefreshAllocation(alloc, frame_ptr))
{
strm.Printf("Error: Couldn't JIT allocation details");
strm.EOL();
return false;
}
}
// Establish format and size of each data element
const unsigned int vec_size = *alloc->element.type_vec_size.get();
const Element::DataType type = *alloc->element.type.get();
assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_BOOLEAN
&& "Invalid allocation type");
lldb::Format format = vec_size == 1 ? static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatSingle])
: static_cast<lldb::Format>(AllocationDetails::RSTypeToFormat[type][eFormatVector]);
const unsigned int data_size = *alloc->element.datum_size.get();
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - Element size %u bytes, including padding", data_size);
// Allocate a buffer to copy data into
std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr);
if (!buffer)
{
strm.Printf("Error: Couldn't allocate a read allocation data into memory");
strm.EOL();
return false;
}
// Calculate stride between rows as there may be padding at end of rows since
// allocated memory is 16-byte aligned
if (!alloc->stride.isValid())
{
if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension
alloc->stride = 0;
else if (!JITAllocationStride(alloc, frame_ptr))
{
strm.Printf("Error: Couldn't calculate allocation row stride");
strm.EOL();
return false;
}
}
const unsigned int stride = *alloc->stride.get();
const unsigned int size = *alloc->size.get(); // Size of whole allocation
const unsigned int padding = alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0;
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation - stride %u bytes, size %u bytes, padding %u", stride, size, padding);
// Find dimensions used to index loops, so need to be non-zero
unsigned int dim_x = alloc->dimension.get()->dim_1;
dim_x = dim_x == 0 ? 1 : dim_x;
unsigned int dim_y = alloc->dimension.get()->dim_2;
dim_y = dim_y == 0 ? 1 : dim_y;
unsigned int dim_z = alloc->dimension.get()->dim_3;
dim_z = dim_z == 0 ? 1 : dim_z;
// Use data extractor to format output
const uint32_t archByteSize = GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize();
DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), archByteSize);
unsigned int offset = 0; // Offset in buffer to next element to be printed
unsigned int prev_row = 0; // Offset to the start of the previous row
// Iterate over allocation dimensions, printing results to user
strm.Printf("Data (X, Y, Z):");
for (unsigned int z = 0; z < dim_z; ++z)
{
for (unsigned int y = 0; y < dim_y; ++y)
{
// Use stride to index start of next row.
if (!(y==0 && z==0))
offset = prev_row + stride;
prev_row = offset;
// Print each element in the row individually
for (unsigned int x = 0; x < dim_x; ++x)
{
strm.Printf("\n(%u, %u, %u) = ", x, y, z);
if ((type == Element::RS_TYPE_NONE) && (alloc->element.children.size() > 0) &&
(alloc->element.type_name != Element::GetFallbackStructName()))
{
// Here we are dumping an Element of struct type.
// This is done using expression evaluation with the name of the struct type and pointer to element.
// Don't print the name of the resulting expression, since this will be '$[0-9]+'
DumpValueObjectOptions expr_options;
expr_options.SetHideName(true);
// Setup expression as derefrencing a pointer cast to element address.
const int max_expr_size = 512;
char expr_char_buffer[max_expr_size];
int chars_written = snprintf(expr_char_buffer, max_expr_size, "*(%s*) 0x%" PRIx64,
alloc->element.type_name.AsCString(), *alloc->data_ptr.get() + offset);
if (chars_written < 0 || chars_written >= max_expr_size)
{
if (log)
log->Printf("RenderScriptRuntime::DumpAllocation- Error in snprintf()");
continue;
}
// Evaluate expression
ValueObjectSP expr_result;
GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, frame_ptr, expr_result);
// Print the results to our stream.
expr_result->Dump(strm, expr_options);
}
else
{
alloc_data.Dump(&strm, offset, format, data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 0);
}
offset += data_size;
}
}
}
strm.EOL();
return true;
}
// Prints infomation regarding all the currently loaded allocations.
// These details are gathered by jitting the runtime, which has as latency.
void
RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame* frame_ptr, bool recompute)
{
strm.Printf("RenderScript Allocations:");
strm.EOL();
strm.IndentMore();
for (auto &alloc : m_allocations)
{
// JIT the allocation info if we haven't done it, or the user forces us to.
bool do_refresh = !alloc->data_ptr.isValid() || recompute;
// JIT current allocation information
if (do_refresh && !RefreshAllocation(alloc.get(), frame_ptr))
{
strm.Printf("Error: Couldn't evaluate details for allocation %u\n", alloc->id);
continue;
}
strm.Printf("%u:\n",alloc->id);
strm.IndentMore();
strm.Indent("Context: ");
if (!alloc->context.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->context.get());
strm.Indent("Address: ");
if (!alloc->address.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->address.get());
strm.Indent("Data pointer: ");
if (!alloc->data_ptr.isValid())
strm.Printf("unknown\n");
else
strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get());
strm.Indent("Dimensions: ");
if (!alloc->dimension.isValid())
strm.Printf("unknown\n");
else
strm.Printf("(%d, %d, %d)\n", alloc->dimension.get()->dim_1,
alloc->dimension.get()->dim_2,
alloc->dimension.get()->dim_3);
strm.Indent("Data Type: ");
if (!alloc->element.type.isValid() || !alloc->element.type_vec_size.isValid())
strm.Printf("unknown\n");
else
{
const int vector_size = *alloc->element.type_vec_size.get();
const Element::DataType type = *alloc->element.type.get();
if (!alloc->element.type_name.IsEmpty())
strm.Printf("%s\n", alloc->element.type_name.AsCString());
else if (vector_size > 4 || vector_size < 1 ||
type < Element::RS_TYPE_NONE || type > Element::RS_TYPE_BOOLEAN)
strm.Printf("invalid type\n");
else
strm.Printf("%s\n", AllocationDetails::RsDataTypeToString[static_cast<unsigned int>(type)][vector_size-1]);
}
strm.Indent("Data Kind: ");
if (!alloc->element.type_kind.isValid())
strm.Printf("unknown\n");
else
{
const Element::DataKind kind = *alloc->element.type_kind.get();
if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV)
strm.Printf("invalid kind\n");
else
strm.Printf("%s\n", AllocationDetails::RsDataKindToString[static_cast<unsigned int>(kind)]);
}
strm.EOL();
strm.IndentLess();
}
strm.IndentLess();
}
// Set breakpoints on every kernel found in RS module
void
RenderScriptRuntime::BreakOnModuleKernels(const RSModuleDescriptorSP rsmodule_sp)
{
for (const auto &kernel : rsmodule_sp->m_kernels)
{
// Don't set breakpoint on 'root' kernel
if (strcmp(kernel.m_name.AsCString(), "root") == 0)
continue;
CreateKernelBreakpoint(kernel.m_name);
}
}
// Method is internally called by the 'kernel breakpoint all' command to
// enable or disable breaking on all kernels.
//
// When do_break is true we want to enable this functionality.
// When do_break is false we want to disable it.
void
RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
InitSearchFilter(target);
// Set breakpoints on all the kernels
if (do_break && !m_breakAllKernels)
{
m_breakAllKernels = true;
for (const auto &module : m_rsmodules)
BreakOnModuleKernels(module);
if (log)
log->Printf("RenderScriptRuntime::SetBreakAllKernels(True)"
"- breakpoints set on all currently loaded kernels");
}
else if (!do_break && m_breakAllKernels) // Breakpoints won't be set on any new kernels.
{
m_breakAllKernels = false;
if (log)
log->Printf("RenderScriptRuntime::SetBreakAllKernels(False) - breakpoints no longer automatically set");
}
}
// Given the name of a kernel this function creates a breakpoint using our
// own breakpoint resolver, and returns the Breakpoint shared pointer.
BreakpointSP
RenderScriptRuntime::CreateKernelBreakpoint(const ConstString& name)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
if (!m_filtersp)
{
if (log)
log->Printf("RenderScriptRuntime::CreateKernelBreakpoint - Error: No breakpoint search filter set");
return nullptr;
}
BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name));
BreakpointSP bp = GetProcess()->GetTarget().CreateBreakpoint(m_filtersp, resolver_sp, false, false, false);
// Give RS breakpoints a specific name, so the user can manipulate them as a group.
Error err;
if (!bp->AddName("RenderScriptKernel", err) && log)
log->Printf("RenderScriptRuntime::CreateKernelBreakpoint: Error setting break name, %s", err.AsCString());
return bp;
}
// Given an expression for a variable this function tries to calculate the variable's value.
// If this is possible it returns true and sets the uint64_t parameter to the variables unsigned value.
// Otherwise function returns false.
bool
RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, const char* var_name, uint64_t& val)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE));
Error error;
VariableSP var_sp;
// Find variable in stack frame
ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath(var_name,
eNoDynamicValues,
StackFrame::eExpressionPathOptionCheckPtrVsMember |
StackFrame::eExpressionPathOptionsAllowDirectIVarAccess,
var_sp,
error));
if (!error.Success())
{
if (log)
log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't find '%s' in frame", var_name);
return false;
}
// Find the unsigned int value for the variable
bool success = false;
val = value_sp->GetValueAsUnsigned(0, &success);
if (!success)
{
if (log)
log->Printf("RenderScriptRuntime::GetFrameVarAsUnsigned - Error, couldn't parse '%s' as an unsigned int", var_name);
return false;
}
return true;
}
// Callback when a kernel breakpoint hits and we're looking for a specific coordinate.
// Baton parameter contains a pointer to the target coordinate we want to break on.
// Function then checks the .expand frame for the current coordinate and breaks to user if it matches.
// Parameter 'break_id' is the id of the Breakpoint which made the callback.
// Parameter 'break_loc_id' is the id for the BreakpointLocation which was hit,
// a single logical breakpoint can have multiple addresses.
bool
RenderScriptRuntime::KernelBreakpointHit(void *baton, StoppointCallbackContext *ctx,
user_id_t break_id, user_id_t break_loc_id)
{
Log* log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS));
assert(baton && "Error: null baton in conditional kernel breakpoint callback");
// Coordinate we want to stop on
const int* target_coord = static_cast<const int*>(baton);
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit - Break ID %" PRIu64 ", target coord (%d, %d, %d)",
break_id, target_coord[0], target_coord[1], target_coord[2]);
// Go up one stack frame to .expand kernel
ExecutionContext context(ctx->exe_ctx_ref);
ThreadSP thread_sp = context.GetThreadSP();
if (!thread_sp->SetSelectedFrameByIndex(1))
{
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't go up stack frame");
return false;
}
StackFrameSP frame_sp = thread_sp->GetSelectedFrame();
if (!frame_sp)
{
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit - Error, couldn't select .expand stack frame");
return false;
}
// Get values for variables in .expand frame that tell us the current kernel invocation
const char* coord_expressions[] = {"rsIndex", "p->current.y", "p->current.z"};
uint64_t current_coord[3] = {0, 0, 0};
for(int i = 0; i < 3; ++i)
{
if (!GetFrameVarAsUnsigned(frame_sp, coord_expressions[i], current_coord[i]))
return false;
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit, %s = %" PRIu64, coord_expressions[i], current_coord[i]);
}
// Check if the current kernel invocation coordinate matches our target coordinate
if (current_coord[0] == static_cast<uint64_t>(target_coord[0]) &&
current_coord[1] == static_cast<uint64_t>(target_coord[1]) &&
current_coord[2] == static_cast<uint64_t>(target_coord[2]))
{
if (log)
log->Printf("RenderScriptRuntime::KernelBreakpointHit, BREAKING %" PRIu64 ", %" PRIu64 ", %" PRIu64,
current_coord[0], current_coord[1], current_coord[2]);
BreakpointSP breakpoint_sp = context.GetTargetPtr()->GetBreakpointByID(break_id);
assert(breakpoint_sp != nullptr && "Error: Couldn't find breakpoint matching break id for callback");
breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint should only be hit once.
return true;
}
// No match on coordinate
return false;
}
// Tries to set a breakpoint on the start of a kernel, resolved using the kernel name.
// Argument 'coords', represents a three dimensional coordinate which can be used to specify
// a single kernel instance to break on. If this is set then we add a callback to the breakpoint.
void
RenderScriptRuntime::PlaceBreakpointOnKernel(Stream &strm, const char* name, const std::array<int,3> coords,
Error& error, TargetSP target)
{
if (!name)
{
error.SetErrorString("invalid kernel name");
return;
}
InitSearchFilter(target);
ConstString kernel_name(name);
BreakpointSP bp = CreateKernelBreakpoint(kernel_name);
// We have a conditional breakpoint on a specific coordinate
if (coords[0] != -1)
{
strm.Printf("Conditional kernel breakpoint on coordinate %d, %d, %d", coords[0], coords[1], coords[2]);
strm.EOL();
// Allocate memory for the baton, and copy over coordinate
int* baton = new int[3];
baton[0] = coords[0]; baton[1] = coords[1]; baton[2] = coords[2];
// Create a callback that will be invoked everytime the breakpoint is hit.
// The baton object passed to the handler is the target coordinate we want to break on.
bp->SetCallback(KernelBreakpointHit, baton, true);
// Store a shared pointer to the baton, so the memory will eventually be cleaned up after destruction
m_conditional_breaks[bp->GetID()] = std::shared_ptr<int>(baton);
}
if (bp)
bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false);
}
void
RenderScriptRuntime::DumpModules(Stream &strm) const
{
strm.Printf("RenderScript Modules:");
strm.EOL();
strm.IndentMore();
for (const auto &module : m_rsmodules)
{
module->Dump(strm);
}
strm.IndentLess();
}
RenderScriptRuntime::ScriptDetails*
RenderScriptRuntime::LookUpScript(addr_t address, bool create)
{
for (const auto & s : m_scripts)
{
if (s->script.isValid())
if (*s->script == address)
return s.get();
}
if (create)
{
std::unique_ptr<ScriptDetails> s(new ScriptDetails);
s->script = address;
m_scripts.push_back(std::move(s));
return m_scripts.back().get();
}
return nullptr;
}
RenderScriptRuntime::AllocationDetails*
RenderScriptRuntime::LookUpAllocation(addr_t address, bool create)
{
for (const auto & a : m_allocations)
{
if (a->address.isValid())
if (*a->address == address)
return a.get();
}
if (create)
{
std::unique_ptr<AllocationDetails> a(new AllocationDetails);
a->address = address;
m_allocations.push_back(std::move(a));
return m_allocations.back().get();
}
return nullptr;
}
void
RSModuleDescriptor::Dump(Stream &strm) const
{
strm.Indent();
m_module->GetFileSpec().Dump(&strm);
if(m_module->GetNumCompileUnits())
{
strm.Indent("Debug info loaded.");
}
else
{
strm.Indent("Debug info does not exist.");
}
strm.EOL();
strm.IndentMore();
strm.Indent();
strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size()));
strm.EOL();
strm.IndentMore();
for (const auto &global : m_globals)
{
global.Dump(strm);
}
strm.IndentLess();
strm.Indent();
strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size()));
strm.EOL();
strm.IndentMore();
for (const auto &kernel : m_kernels)
{
kernel.Dump(strm);
}
strm.Printf("Pragmas: %" PRIu64 , static_cast<uint64_t>(m_pragmas.size()));
strm.EOL();
strm.IndentMore();
for (const auto &key_val : m_pragmas)
{
strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str());
strm.EOL();
}
strm.IndentLess(4);
}
void
RSGlobalDescriptor::Dump(Stream &strm) const
{
strm.Indent(m_name.AsCString());
VariableList var_list;
m_module->m_module->FindGlobalVariables(m_name, nullptr, true, 1U, var_list);
if (var_list.GetSize() == 1)
{
auto var = var_list.GetVariableAtIndex(0);
auto type = var->GetType();
if(type)
{
strm.Printf(" - ");
type->DumpTypeName(&strm);
}
else
{
strm.Printf(" - Unknown Type");
}
}
else
{
strm.Printf(" - variable identified, but not found in binary");
const Symbol* s = m_module->m_module->FindFirstSymbolWithNameAndType(m_name, eSymbolTypeData);
if (s)
{
strm.Printf(" (symbol exists) ");
}
}
strm.EOL();
}
void
RSKernelDescriptor::Dump(Stream &strm) const
{
strm.Indent(m_name.AsCString());
strm.EOL();
}
class CommandObjectRenderScriptRuntimeModuleProbe : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeModuleProbe(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript module probe",
"Initiates a Probe of all loaded modules for kernels and other renderscript objects.",
"renderscript module probe",
eCommandRequiresTarget | eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeModuleProbe() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc == 0)
{
Target *target = m_exe_ctx.GetTargetPtr();
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
auto module_list = target->GetImages();
bool new_rs_details = runtime->ProbeModules(module_list);
if (new_rs_details)
{
result.AppendMessage("New renderscript modules added to runtime model.");
}
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
result.AppendErrorWithFormat("'%s' takes no arguments", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
};
class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript module dump",
"Dumps renderscript specific information for all modules.", "renderscript module dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeModuleDump() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpModules(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript module", "Commands that deal with renderscript modules.",
NULL)
{
LoadSubCommand("probe", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleProbe(interpreter)));
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump(interpreter)));
}
~CommandObjectRenderScriptRuntimeModule() override = default;
};
class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel list",
"Lists renderscript kernel names and associated script resources.", "renderscript kernel list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeKernelList() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpKernels(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpointSet : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpointSet(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel breakpoint set",
"Sets a breakpoint on a renderscript kernel.", "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused), m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default;
Options*
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
{
}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'c':
if (!ParseCoordinate(option_arg))
error.SetErrorStringWithFormat("Couldn't parse coordinate '%s', should be in format 'x,y,z'.", option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
// -c takes an argument of the form 'num[,num][,num]'.
// Where 'id_cstr' is this argument with the whitespace trimmed.
// Missing coordinates are defaulted to zero.
bool
ParseCoordinate(const char* id_cstr)
{
RegularExpression regex;
RegularExpression::Match regex_match(3);
bool matched = false;
if(regex.Compile("^([0-9]+),([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
else if(regex.Compile("^([0-9]+),([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
else if(regex.Compile("^([0-9]+)$") && regex.Execute(id_cstr, &regex_match))
matched = true;
for(uint32_t i = 0; i < 3; i++)
{
std::string group;
if(regex_match.GetMatchAtIndex(id_cstr, i + 1, group))
m_coord[i] = (uint32_t)strtoul(group.c_str(), NULL, 0);
else
m_coord[i] = 0;
}
return matched;
}
void
OptionParsingStarting() override
{
// -1 means the -c option hasn't been set
m_coord[0] = -1;
m_coord[1] = -1;
m_coord[2] = -1;
}
const OptionDefinition*
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
std::array<int,3> m_coord;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc < 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument of kernel name, and an optional coordinate.", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
Error error;
runtime->PlaceBreakpointOnKernel(result.GetOutputStream(), command.GetArgumentAtIndex(0), m_options.m_coord,
error, m_exe_ctx.GetTargetSP());
if (error.Success())
{
result.AppendMessage("Breakpoint(s) created");
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
result.SetStatus(eReturnStatusFailed);
result.AppendErrorWithFormat("Error: %s", error.AsCString());
return false;
}
private:
CommandOptions m_options;
};
OptionDefinition
CommandObjectRenderScriptRuntimeKernelBreakpointSet::CommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeValue,
"Set a breakpoint on a single invocation of the kernel with specified coordinate.\n"
"Coordinate takes the form 'x[,y][,z] where x,y,z are positive integers representing kernel dimensions. "
"Any unset dimensions will be defaulted to zero."},
{ 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
class CommandObjectRenderScriptRuntimeKernelBreakpointAll : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpointAll(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript kernel breakpoint all",
"Automatically sets a breakpoint on all renderscript kernels that are or will be loaded.\n"
"Disabling option means breakpoints will no longer be set on any kernels loaded in the future, "
"but does not remove currently set breakpoints.",
"renderscript kernel breakpoint all <enable/disable>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched | eCommandProcessMustBePaused)
{
}
~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
bool do_break = false;
const char* argument = command.GetArgumentAtIndex(0);
if (strcmp(argument, "enable") == 0)
{
do_break = true;
result.AppendMessage("Breakpoints will be set on all kernels.");
}
else if (strcmp(argument, "disable") == 0)
{
do_break = false;
result.AppendMessage("Breakpoints will not be set on any new kernels.");
}
else
{
result.AppendErrorWithFormat("Argument must be either 'enable' or 'disable'");
result.SetStatus(eReturnStatusFailed);
return false;
}
runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeKernelBreakpoint : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeKernelBreakpoint(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that generate breakpoints on renderscript kernels.",
nullptr)
{
LoadSubCommand("set", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet(interpreter)));
LoadSubCommand("all", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default;
};
class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript kernel", "Commands that deal with renderscript kernels.",
NULL)
{
LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList(interpreter)));
LoadSubCommand("breakpoint", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter)));
}
~CommandObjectRenderScriptRuntimeKernel() override = default;
};
class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript context dump",
"Dumps renderscript context information.", "renderscript context dump",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeContextDump() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->DumpContexts(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript context", "Commands that deal with renderscript contexts.",
NULL)
{
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump(interpreter)));
}
~CommandObjectRenderScriptRuntimeContext() override = default;
};
class CommandObjectRenderScriptRuntimeAllocationDump : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationDump(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation dump",
"Displays the contents of a particular allocation", "renderscript allocation dump <ID>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeAllocationDump() override = default;
Options*
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter)
{
}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'f':
m_outfile.SetFile(option_arg, true);
if (m_outfile.Exists())
{
m_outfile.Clear();
error.SetErrorStringWithFormat("file already exists: '%s'", option_arg);
}
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void
OptionParsingStarting() override
{
m_outfile.Clear();
}
const OptionDefinition*
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
FileSpec m_outfile;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc < 1)
{
result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. As well as an optional -f argument",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char* id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat("invalid allocation id argument '%s'", id_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
Stream* output_strm = nullptr;
StreamFile outfile_stream;
const FileSpec &outfile_spec = m_options.m_outfile; // Dump allocation to file instead
if (outfile_spec)
{
// Open output file
char path[256];
outfile_spec.GetPath(path, sizeof(path));
if (outfile_stream.GetFile().Open(path, File::eOpenOptionWrite | File::eOpenOptionCanCreate).Success())
{
output_strm = &outfile_stream;
result.GetOutputStream().Printf("Results written to '%s'", path);
result.GetOutputStream().EOL();
}
else
{
result.AppendErrorWithFormat("Couldn't open file '%s'", path);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
else
output_strm = &result.GetOutputStream();
assert(output_strm != nullptr);
bool success = runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id);
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition
CommandObjectRenderScriptRuntimeAllocationDump::CommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, NULL, NULL, 0, eArgTypeFilename,
"Print results to specified file instead of command line."},
{ 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
class CommandObjectRenderScriptRuntimeAllocationList : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationList(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation list",
"List renderscript allocations and their information.", "renderscript allocation list",
eCommandRequiresProcess | eCommandProcessMustBeLaunched), m_options(interpreter)
{
}
~CommandObjectRenderScriptRuntimeAllocationList() override = default;
Options*
GetOptions() override
{
return &m_options;
}
class CommandOptions : public Options
{
public:
CommandOptions(CommandInterpreter &interpreter) : Options(interpreter), m_refresh(false)
{
}
~CommandOptions() override = default;
Error
SetOptionValue(uint32_t option_idx, const char *option_arg) override
{
Error error;
const int short_option = m_getopt_table[option_idx].val;
switch (short_option)
{
case 'r':
m_refresh = true;
break;
default:
error.SetErrorStringWithFormat("unrecognized option '%c'", short_option);
break;
}
return error;
}
void
OptionParsingStarting() override
{
m_refresh = false;
}
const OptionDefinition*
GetDefinitions() override
{
return g_option_table;
}
static OptionDefinition g_option_table[];
bool m_refresh;
};
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), m_options.m_refresh);
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
private:
CommandOptions m_options;
};
OptionDefinition
CommandObjectRenderScriptRuntimeAllocationList::CommandOptions::g_option_table[] =
{
{ LLDB_OPT_SET_1, false, "refresh", 'r', OptionParser::eNoArgument, NULL, NULL, 0, eArgTypeNone,
"Recompute allocation details."},
{ 0, false, NULL, 0, 0, NULL, NULL, 0, eArgTypeNone, NULL }
};
class CommandObjectRenderScriptRuntimeAllocationLoad : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationLoad(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation load",
"Loads renderscript allocation contents from a file.", "renderscript allocation load <ID> <filename>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationLoad() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 2)
{
result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char* id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
result.SetStatus (eReturnStatusFailed);
return false;
}
const char* filename = command.GetArgumentAtIndex(1);
bool success = runtime->LoadAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocationSave : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeAllocationSave(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript allocation save",
"Write renderscript allocation contents to a file.", "renderscript allocation save <ID> <filename>",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeAllocationSave() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
const size_t argc = command.GetArgumentCount();
if (argc != 2)
{
result.AppendErrorWithFormat("'%s' takes 2 arguments, an allocation ID and filename to read from.", m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
RenderScriptRuntime *runtime =
static_cast<RenderScriptRuntime *>(m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript));
const char* id_cstr = command.GetArgumentAtIndex(0);
bool convert_complete = false;
const uint32_t id = StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &convert_complete);
if (!convert_complete)
{
result.AppendErrorWithFormat ("invalid allocation id argument '%s'", id_cstr);
result.SetStatus (eReturnStatusFailed);
return false;
}
const char* filename = command.GetArgumentAtIndex(1);
bool success = runtime->SaveAllocation(result.GetOutputStream(), id, filename, m_exe_ctx.GetFramePtr());
if (success)
result.SetStatus(eReturnStatusSuccessFinishResult);
else
result.SetStatus(eReturnStatusFailed);
return true;
}
};
class CommandObjectRenderScriptRuntimeAllocation : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript allocation", "Commands that deal with renderscript allocations.",
NULL)
{
LoadSubCommand("list", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationList(interpreter)));
LoadSubCommand("dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationDump(interpreter)));
LoadSubCommand("save", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationSave(interpreter)));
LoadSubCommand("load", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter)));
}
~CommandObjectRenderScriptRuntimeAllocation() override = default;
};
class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed
{
public:
CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "renderscript status",
"Displays current renderscript runtime status.", "renderscript status",
eCommandRequiresProcess | eCommandProcessMustBeLaunched)
{
}
~CommandObjectRenderScriptRuntimeStatus() override = default;
bool
DoExecute(Args &command, CommandReturnObject &result) override
{
RenderScriptRuntime *runtime =
(RenderScriptRuntime *)m_exe_ctx.GetProcessPtr()->GetLanguageRuntime(eLanguageTypeExtRenderScript);
runtime->Status(result.GetOutputStream());
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
class CommandObjectRenderScriptRuntime : public CommandObjectMultiword
{
public:
CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter)
: CommandObjectMultiword(interpreter, "renderscript", "A set of commands for operating on renderscript.",
"renderscript <subcommand> [<subcommand-options>]")
{
LoadSubCommand("module", CommandObjectSP(new CommandObjectRenderScriptRuntimeModule(interpreter)));
LoadSubCommand("status", CommandObjectSP(new CommandObjectRenderScriptRuntimeStatus(interpreter)));
LoadSubCommand("kernel", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernel(interpreter)));
LoadSubCommand("context", CommandObjectSP(new CommandObjectRenderScriptRuntimeContext(interpreter)));
LoadSubCommand("allocation", CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocation(interpreter)));
}
~CommandObjectRenderScriptRuntime() override = default;
};
void
RenderScriptRuntime::Initiate()
{
assert(!m_initiated);
}
RenderScriptRuntime::RenderScriptRuntime(Process *process)
: lldb_private::CPPLanguageRuntime(process), m_initiated(false), m_debuggerPresentFlagged(false),
m_breakAllKernels(false)
{
ModulesDidLoad(process->GetTarget().GetImages());
}
lldb::CommandObjectSP
RenderScriptRuntime::GetCommandObject(lldb_private::CommandInterpreter& interpreter)
{
static CommandObjectSP command_object;
if(!command_object)
{
command_object.reset(new CommandObjectRenderScriptRuntime(interpreter));
}
return command_object;
}
RenderScriptRuntime::~RenderScriptRuntime() = default;