966 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			966 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- UninitializedValues.cpp - Find Uninitialized Values ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements uninitialized values analysis for source-level CFGs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/Analysis/Analyses/UninitializedValues.h"
 | 
						|
#include "clang/AST/Attr.h"
 | 
						|
#include "clang/AST/Decl.h"
 | 
						|
#include "clang/AST/DeclBase.h"
 | 
						|
#include "clang/AST/Expr.h"
 | 
						|
#include "clang/AST/OperationKinds.h"
 | 
						|
#include "clang/AST/Stmt.h"
 | 
						|
#include "clang/AST/StmtObjC.h"
 | 
						|
#include "clang/AST/StmtVisitor.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
 | 
						|
#include "clang/Analysis/AnalysisDeclContext.h"
 | 
						|
#include "clang/Analysis/CFG.h"
 | 
						|
#include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
 | 
						|
#include "clang/Analysis/FlowSensitive/DataflowWorklist.h"
 | 
						|
#include "clang/Basic/LLVM.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/PackedVector.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
 | 
						|
#define DEBUG_LOGGING 0
 | 
						|
 | 
						|
static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
 | 
						|
  if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
 | 
						|
      !vd->isExceptionVariable() && !vd->isInitCapture() &&
 | 
						|
      !vd->isImplicit() && vd->getDeclContext() == dc) {
 | 
						|
    QualType ty = vd->getType();
 | 
						|
    return ty->isScalarType() || ty->isVectorType() || ty->isRecordType();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------====//
 | 
						|
// DeclToIndex: a mapping from Decls we track to value indices.
 | 
						|
//====------------------------------------------------------------------------//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class DeclToIndex {
 | 
						|
  llvm::DenseMap<const VarDecl *, unsigned> map;
 | 
						|
 | 
						|
public:
 | 
						|
  DeclToIndex() = default;
 | 
						|
 | 
						|
  /// Compute the actual mapping from declarations to bits.
 | 
						|
  void computeMap(const DeclContext &dc);
 | 
						|
 | 
						|
  /// Return the number of declarations in the map.
 | 
						|
  unsigned size() const { return map.size(); }
 | 
						|
 | 
						|
  /// Returns the bit vector index for a given declaration.
 | 
						|
  Optional<unsigned> getValueIndex(const VarDecl *d) const;
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
void DeclToIndex::computeMap(const DeclContext &dc) {
 | 
						|
  unsigned count = 0;
 | 
						|
  DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
 | 
						|
                                               E(dc.decls_end());
 | 
						|
  for ( ; I != E; ++I) {
 | 
						|
    const VarDecl *vd = *I;
 | 
						|
    if (isTrackedVar(vd, &dc))
 | 
						|
      map[vd] = count++;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
 | 
						|
  llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
 | 
						|
  if (I == map.end())
 | 
						|
    return None;
 | 
						|
  return I->second;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------====//
 | 
						|
// CFGBlockValues: dataflow values for CFG blocks.
 | 
						|
//====------------------------------------------------------------------------//
 | 
						|
 | 
						|
// These values are defined in such a way that a merge can be done using
 | 
						|
// a bitwise OR.
 | 
						|
enum Value { Unknown = 0x0,         /* 00 */
 | 
						|
             Initialized = 0x1,     /* 01 */
 | 
						|
             Uninitialized = 0x2,   /* 10 */
 | 
						|
             MayUninitialized = 0x3 /* 11 */ };
 | 
						|
 | 
						|
static bool isUninitialized(const Value v) {
 | 
						|
  return v >= Uninitialized;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAlwaysUninit(const Value v) {
 | 
						|
  return v == Uninitialized;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>;
 | 
						|
 | 
						|
class CFGBlockValues {
 | 
						|
  const CFG &cfg;
 | 
						|
  SmallVector<ValueVector, 8> vals;
 | 
						|
  ValueVector scratch;
 | 
						|
  DeclToIndex declToIndex;
 | 
						|
 | 
						|
public:
 | 
						|
  CFGBlockValues(const CFG &cfg);
 | 
						|
 | 
						|
  unsigned getNumEntries() const { return declToIndex.size(); }
 | 
						|
 | 
						|
  void computeSetOfDeclarations(const DeclContext &dc);
 | 
						|
 | 
						|
  ValueVector &getValueVector(const CFGBlock *block) {
 | 
						|
    return vals[block->getBlockID()];
 | 
						|
  }
 | 
						|
 | 
						|
  void setAllScratchValues(Value V);
 | 
						|
  void mergeIntoScratch(ValueVector const &source, bool isFirst);
 | 
						|
  bool updateValueVectorWithScratch(const CFGBlock *block);
 | 
						|
 | 
						|
  bool hasNoDeclarations() const {
 | 
						|
    return declToIndex.size() == 0;
 | 
						|
  }
 | 
						|
 | 
						|
  void resetScratch();
 | 
						|
 | 
						|
  ValueVector::reference operator[](const VarDecl *vd);
 | 
						|
 | 
						|
  Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
 | 
						|
                 const VarDecl *vd) {
 | 
						|
    const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
 | 
						|
    assert(idx.hasValue());
 | 
						|
    return getValueVector(block)[idx.getValue()];
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
 | 
						|
 | 
						|
void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
 | 
						|
  declToIndex.computeMap(dc);
 | 
						|
  unsigned decls = declToIndex.size();
 | 
						|
  scratch.resize(decls);
 | 
						|
  unsigned n = cfg.getNumBlockIDs();
 | 
						|
  if (!n)
 | 
						|
    return;
 | 
						|
  vals.resize(n);
 | 
						|
  for (auto &val : vals)
 | 
						|
    val.resize(decls);
 | 
						|
}
 | 
						|
 | 
						|
#if DEBUG_LOGGING
 | 
						|
static void printVector(const CFGBlock *block, ValueVector &bv,
 | 
						|
                        unsigned num) {
 | 
						|
  llvm::errs() << block->getBlockID() << " :";
 | 
						|
  for (const auto &i : bv)
 | 
						|
    llvm::errs() << ' ' << i;
 | 
						|
  llvm::errs() << " : " << num << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void CFGBlockValues::setAllScratchValues(Value V) {
 | 
						|
  for (unsigned I = 0, E = scratch.size(); I != E; ++I)
 | 
						|
    scratch[I] = V;
 | 
						|
}
 | 
						|
 | 
						|
void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
 | 
						|
                                      bool isFirst) {
 | 
						|
  if (isFirst)
 | 
						|
    scratch = source;
 | 
						|
  else
 | 
						|
    scratch |= source;
 | 
						|
}
 | 
						|
 | 
						|
bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
 | 
						|
  ValueVector &dst = getValueVector(block);
 | 
						|
  bool changed = (dst != scratch);
 | 
						|
  if (changed)
 | 
						|
    dst = scratch;
 | 
						|
#if DEBUG_LOGGING
 | 
						|
  printVector(block, scratch, 0);
 | 
						|
#endif
 | 
						|
  return changed;
 | 
						|
}
 | 
						|
 | 
						|
void CFGBlockValues::resetScratch() {
 | 
						|
  scratch.reset();
 | 
						|
}
 | 
						|
 | 
						|
ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
 | 
						|
  const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
 | 
						|
  assert(idx.hasValue());
 | 
						|
  return scratch[idx.getValue()];
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------====//
 | 
						|
// Classification of DeclRefExprs as use or initialization.
 | 
						|
//====------------------------------------------------------------------------//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class FindVarResult {
 | 
						|
  const VarDecl *vd;
 | 
						|
  const DeclRefExpr *dr;
 | 
						|
 | 
						|
public:
 | 
						|
  FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
 | 
						|
 | 
						|
  const DeclRefExpr *getDeclRefExpr() const { return dr; }
 | 
						|
  const VarDecl *getDecl() const { return vd; }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
 | 
						|
  while (Ex) {
 | 
						|
    Ex = Ex->IgnoreParenNoopCasts(C);
 | 
						|
    if (const auto *CE = dyn_cast<CastExpr>(Ex)) {
 | 
						|
      if (CE->getCastKind() == CK_LValueBitCast) {
 | 
						|
        Ex = CE->getSubExpr();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return Ex;
 | 
						|
}
 | 
						|
 | 
						|
/// If E is an expression comprising a reference to a single variable, find that
 | 
						|
/// variable.
 | 
						|
static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
 | 
						|
  if (const auto *DRE =
 | 
						|
          dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
 | 
						|
    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
 | 
						|
      if (isTrackedVar(VD, DC))
 | 
						|
        return FindVarResult(VD, DRE);
 | 
						|
  return FindVarResult(nullptr, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Classify each DeclRefExpr as an initialization or a use. Any
 | 
						|
/// DeclRefExpr which isn't explicitly classified will be assumed to have
 | 
						|
/// escaped the analysis and will be treated as an initialization.
 | 
						|
class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
 | 
						|
public:
 | 
						|
  enum Class {
 | 
						|
    Init,
 | 
						|
    Use,
 | 
						|
    SelfInit,
 | 
						|
    ConstRefUse,
 | 
						|
    Ignore
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  const DeclContext *DC;
 | 
						|
  llvm::DenseMap<const DeclRefExpr *, Class> Classification;
 | 
						|
 | 
						|
  bool isTrackedVar(const VarDecl *VD) const {
 | 
						|
    return ::isTrackedVar(VD, DC);
 | 
						|
  }
 | 
						|
 | 
						|
  void classify(const Expr *E, Class C);
 | 
						|
 | 
						|
public:
 | 
						|
  ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
 | 
						|
 | 
						|
  void VisitDeclStmt(DeclStmt *DS);
 | 
						|
  void VisitUnaryOperator(UnaryOperator *UO);
 | 
						|
  void VisitBinaryOperator(BinaryOperator *BO);
 | 
						|
  void VisitCallExpr(CallExpr *CE);
 | 
						|
  void VisitCastExpr(CastExpr *CE);
 | 
						|
  void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
 | 
						|
 | 
						|
  void operator()(Stmt *S) { Visit(S); }
 | 
						|
 | 
						|
  Class get(const DeclRefExpr *DRE) const {
 | 
						|
    llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
 | 
						|
        = Classification.find(DRE);
 | 
						|
    if (I != Classification.end())
 | 
						|
      return I->second;
 | 
						|
 | 
						|
    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
 | 
						|
    if (!VD || !isTrackedVar(VD))
 | 
						|
      return Ignore;
 | 
						|
 | 
						|
    return Init;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
 | 
						|
  if (VD->getType()->isRecordType())
 | 
						|
    return nullptr;
 | 
						|
  if (Expr *Init = VD->getInit()) {
 | 
						|
    const auto *DRE =
 | 
						|
        dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
 | 
						|
    if (DRE && DRE->getDecl() == VD)
 | 
						|
      return DRE;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::classify(const Expr *E, Class C) {
 | 
						|
  // The result of a ?: could also be an lvalue.
 | 
						|
  E = E->IgnoreParens();
 | 
						|
  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
 | 
						|
    classify(CO->getTrueExpr(), C);
 | 
						|
    classify(CO->getFalseExpr(), C);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) {
 | 
						|
    classify(BCO->getFalseExpr(), C);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
 | 
						|
    classify(OVE->getSourceExpr(), C);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *ME = dyn_cast<MemberExpr>(E)) {
 | 
						|
    if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
 | 
						|
      if (!VD->isStaticDataMember())
 | 
						|
        classify(ME->getBase(), C);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
 | 
						|
    switch (BO->getOpcode()) {
 | 
						|
    case BO_PtrMemD:
 | 
						|
    case BO_PtrMemI:
 | 
						|
      classify(BO->getLHS(), C);
 | 
						|
      return;
 | 
						|
    case BO_Comma:
 | 
						|
      classify(BO->getRHS(), C);
 | 
						|
      return;
 | 
						|
    default:
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  FindVarResult Var = findVar(E, DC);
 | 
						|
  if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
 | 
						|
    Classification[DRE] = std::max(Classification[DRE], C);
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
 | 
						|
  for (auto *DI : DS->decls()) {
 | 
						|
    auto *VD = dyn_cast<VarDecl>(DI);
 | 
						|
    if (VD && isTrackedVar(VD))
 | 
						|
      if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
 | 
						|
        Classification[DRE] = SelfInit;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
 | 
						|
  // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
 | 
						|
  // is not a compound-assignment, we will treat it as initializing the variable
 | 
						|
  // when TransferFunctions visits it. A compound-assignment does not affect
 | 
						|
  // whether a variable is uninitialized, and there's no point counting it as a
 | 
						|
  // use.
 | 
						|
  if (BO->isCompoundAssignmentOp())
 | 
						|
    classify(BO->getLHS(), Use);
 | 
						|
  else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma)
 | 
						|
    classify(BO->getLHS(), Ignore);
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
 | 
						|
  // Increment and decrement are uses despite there being no lvalue-to-rvalue
 | 
						|
  // conversion.
 | 
						|
  if (UO->isIncrementDecrementOp())
 | 
						|
    classify(UO->getSubExpr(), Use);
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) {
 | 
						|
  for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses()))
 | 
						|
    classify(cast<Expr>(S), Use);
 | 
						|
}
 | 
						|
 | 
						|
static bool isPointerToConst(const QualType &QT) {
 | 
						|
  return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified();
 | 
						|
}
 | 
						|
 | 
						|
static bool hasTrivialBody(CallExpr *CE) {
 | 
						|
  if (FunctionDecl *FD = CE->getDirectCallee()) {
 | 
						|
    if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
 | 
						|
      return FTD->getTemplatedDecl()->hasTrivialBody();
 | 
						|
    return FD->hasTrivialBody();
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
 | 
						|
  // Classify arguments to std::move as used.
 | 
						|
  if (CE->isCallToStdMove()) {
 | 
						|
    // RecordTypes are handled in SemaDeclCXX.cpp.
 | 
						|
    if (!CE->getArg(0)->getType()->isRecordType())
 | 
						|
      classify(CE->getArg(0), Use);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  bool isTrivialBody = hasTrivialBody(CE);
 | 
						|
  // If a value is passed by const pointer to a function,
 | 
						|
  // we should not assume that it is initialized by the call, and we
 | 
						|
  // conservatively do not assume that it is used.
 | 
						|
  // If a value is passed by const reference to a function,
 | 
						|
  // it should already be initialized.
 | 
						|
  for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if ((*I)->isGLValue()) {
 | 
						|
      if ((*I)->getType().isConstQualified())
 | 
						|
        classify((*I), isTrivialBody ? Ignore : ConstRefUse);
 | 
						|
    } else if (isPointerToConst((*I)->getType())) {
 | 
						|
      const Expr *Ex = stripCasts(DC->getParentASTContext(), *I);
 | 
						|
      const auto *UO = dyn_cast<UnaryOperator>(Ex);
 | 
						|
      if (UO && UO->getOpcode() == UO_AddrOf)
 | 
						|
        Ex = UO->getSubExpr();
 | 
						|
      classify(Ex, Ignore);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
 | 
						|
  if (CE->getCastKind() == CK_LValueToRValue)
 | 
						|
    classify(CE->getSubExpr(), Use);
 | 
						|
  else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) {
 | 
						|
    if (CSE->getType()->isVoidType()) {
 | 
						|
      // Squelch any detected load of an uninitialized value if
 | 
						|
      // we cast it to void.
 | 
						|
      // e.g. (void) x;
 | 
						|
      classify(CSE->getSubExpr(), Ignore);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------====//
 | 
						|
// Transfer function for uninitialized values analysis.
 | 
						|
//====------------------------------------------------------------------------//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class TransferFunctions : public StmtVisitor<TransferFunctions> {
 | 
						|
  CFGBlockValues &vals;
 | 
						|
  const CFG &cfg;
 | 
						|
  const CFGBlock *block;
 | 
						|
  AnalysisDeclContext ∾
 | 
						|
  const ClassifyRefs &classification;
 | 
						|
  ObjCNoReturn objCNoRet;
 | 
						|
  UninitVariablesHandler &handler;
 | 
						|
 | 
						|
public:
 | 
						|
  TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
 | 
						|
                    const CFGBlock *block, AnalysisDeclContext &ac,
 | 
						|
                    const ClassifyRefs &classification,
 | 
						|
                    UninitVariablesHandler &handler)
 | 
						|
      : vals(vals), cfg(cfg), block(block), ac(ac),
 | 
						|
        classification(classification), objCNoRet(ac.getASTContext()),
 | 
						|
        handler(handler) {}
 | 
						|
 | 
						|
  void reportUse(const Expr *ex, const VarDecl *vd);
 | 
						|
  void reportConstRefUse(const Expr *ex, const VarDecl *vd);
 | 
						|
 | 
						|
  void VisitBinaryOperator(BinaryOperator *bo);
 | 
						|
  void VisitBlockExpr(BlockExpr *be);
 | 
						|
  void VisitCallExpr(CallExpr *ce);
 | 
						|
  void VisitDeclRefExpr(DeclRefExpr *dr);
 | 
						|
  void VisitDeclStmt(DeclStmt *ds);
 | 
						|
  void VisitGCCAsmStmt(GCCAsmStmt *as);
 | 
						|
  void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
 | 
						|
  void VisitObjCMessageExpr(ObjCMessageExpr *ME);
 | 
						|
  void VisitOMPExecutableDirective(OMPExecutableDirective *ED);
 | 
						|
 | 
						|
  bool isTrackedVar(const VarDecl *vd) {
 | 
						|
    return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
 | 
						|
  }
 | 
						|
 | 
						|
  FindVarResult findVar(const Expr *ex) {
 | 
						|
    return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
 | 
						|
  }
 | 
						|
 | 
						|
  UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
 | 
						|
    UninitUse Use(ex, isAlwaysUninit(v));
 | 
						|
 | 
						|
    assert(isUninitialized(v));
 | 
						|
    if (Use.getKind() == UninitUse::Always)
 | 
						|
      return Use;
 | 
						|
 | 
						|
    // If an edge which leads unconditionally to this use did not initialize
 | 
						|
    // the variable, we can say something stronger than 'may be uninitialized':
 | 
						|
    // we can say 'either it's used uninitialized or you have dead code'.
 | 
						|
    //
 | 
						|
    // We track the number of successors of a node which have been visited, and
 | 
						|
    // visit a node once we have visited all of its successors. Only edges where
 | 
						|
    // the variable might still be uninitialized are followed. Since a variable
 | 
						|
    // can't transfer from being initialized to being uninitialized, this will
 | 
						|
    // trace out the subgraph which inevitably leads to the use and does not
 | 
						|
    // initialize the variable. We do not want to skip past loops, since their
 | 
						|
    // non-termination might be correlated with the initialization condition.
 | 
						|
    //
 | 
						|
    // For example:
 | 
						|
    //
 | 
						|
    //         void f(bool a, bool b) {
 | 
						|
    // block1:   int n;
 | 
						|
    //           if (a) {
 | 
						|
    // block2:     if (b)
 | 
						|
    // block3:       n = 1;
 | 
						|
    // block4:   } else if (b) {
 | 
						|
    // block5:     while (!a) {
 | 
						|
    // block6:       do_work(&a);
 | 
						|
    //               n = 2;
 | 
						|
    //             }
 | 
						|
    //           }
 | 
						|
    // block7:   if (a)
 | 
						|
    // block8:     g();
 | 
						|
    // block9:   return n;
 | 
						|
    //         }
 | 
						|
    //
 | 
						|
    // Starting from the maybe-uninitialized use in block 9:
 | 
						|
    //  * Block 7 is not visited because we have only visited one of its two
 | 
						|
    //    successors.
 | 
						|
    //  * Block 8 is visited because we've visited its only successor.
 | 
						|
    // From block 8:
 | 
						|
    //  * Block 7 is visited because we've now visited both of its successors.
 | 
						|
    // From block 7:
 | 
						|
    //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
 | 
						|
    //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
 | 
						|
    //  * Block 3 is not visited because it initializes 'n'.
 | 
						|
    // Now the algorithm terminates, having visited blocks 7 and 8, and having
 | 
						|
    // found the frontier is blocks 2, 4, and 5.
 | 
						|
    //
 | 
						|
    // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
 | 
						|
    // and 4), so we report that any time either of those edges is taken (in
 | 
						|
    // each case when 'b == false'), 'n' is used uninitialized.
 | 
						|
    SmallVector<const CFGBlock*, 32> Queue;
 | 
						|
    SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
 | 
						|
    Queue.push_back(block);
 | 
						|
    // Specify that we've already visited all successors of the starting block.
 | 
						|
    // This has the dual purpose of ensuring we never add it to the queue, and
 | 
						|
    // of marking it as not being a candidate element of the frontier.
 | 
						|
    SuccsVisited[block->getBlockID()] = block->succ_size();
 | 
						|
    while (!Queue.empty()) {
 | 
						|
      const CFGBlock *B = Queue.pop_back_val();
 | 
						|
 | 
						|
      // If the use is always reached from the entry block, make a note of that.
 | 
						|
      if (B == &cfg.getEntry())
 | 
						|
        Use.setUninitAfterCall();
 | 
						|
 | 
						|
      for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        const CFGBlock *Pred = *I;
 | 
						|
        if (!Pred)
 | 
						|
          continue;
 | 
						|
 | 
						|
        Value AtPredExit = vals.getValue(Pred, B, vd);
 | 
						|
        if (AtPredExit == Initialized)
 | 
						|
          // This block initializes the variable.
 | 
						|
          continue;
 | 
						|
        if (AtPredExit == MayUninitialized &&
 | 
						|
            vals.getValue(B, nullptr, vd) == Uninitialized) {
 | 
						|
          // This block declares the variable (uninitialized), and is reachable
 | 
						|
          // from a block that initializes the variable. We can't guarantee to
 | 
						|
          // give an earlier location for the diagnostic (and it appears that
 | 
						|
          // this code is intended to be reachable) so give a diagnostic here
 | 
						|
          // and go no further down this path.
 | 
						|
          Use.setUninitAfterDecl();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (AtPredExit == MayUninitialized) {
 | 
						|
          // If the predecessor's terminator is an "asm goto" that initializes
 | 
						|
          // the variable, then it won't be counted as "initialized" on the
 | 
						|
          // non-fallthrough paths.
 | 
						|
          CFGTerminator term = Pred->getTerminator();
 | 
						|
          if (const auto *as = dyn_cast_or_null<GCCAsmStmt>(term.getStmt())) {
 | 
						|
            const CFGBlock *fallthrough = *Pred->succ_begin();
 | 
						|
            if (as->isAsmGoto() &&
 | 
						|
                llvm::any_of(as->outputs(), [&](const Expr *output) {
 | 
						|
                    return vd == findVar(output).getDecl() &&
 | 
						|
                        llvm::any_of(as->labels(),
 | 
						|
                                     [&](const AddrLabelExpr *label) {
 | 
						|
                          return label->getLabel()->getStmt() == B->Label &&
 | 
						|
                              B != fallthrough;
 | 
						|
                        });
 | 
						|
                })) {
 | 
						|
              Use.setUninitAfterDecl();
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned &SV = SuccsVisited[Pred->getBlockID()];
 | 
						|
        if (!SV) {
 | 
						|
          // When visiting the first successor of a block, mark all NULL
 | 
						|
          // successors as having been visited.
 | 
						|
          for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
 | 
						|
                                             SE = Pred->succ_end();
 | 
						|
               SI != SE; ++SI)
 | 
						|
            if (!*SI)
 | 
						|
              ++SV;
 | 
						|
        }
 | 
						|
 | 
						|
        if (++SV == Pred->succ_size())
 | 
						|
          // All paths from this block lead to the use and don't initialize the
 | 
						|
          // variable.
 | 
						|
          Queue.push_back(Pred);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Scan the frontier, looking for blocks where the variable was
 | 
						|
    // uninitialized.
 | 
						|
    for (const auto *Block : cfg) {
 | 
						|
      unsigned BlockID = Block->getBlockID();
 | 
						|
      const Stmt *Term = Block->getTerminatorStmt();
 | 
						|
      if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
 | 
						|
          Term) {
 | 
						|
        // This block inevitably leads to the use. If we have an edge from here
 | 
						|
        // to a post-dominator block, and the variable is uninitialized on that
 | 
						|
        // edge, we have found a bug.
 | 
						|
        for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
 | 
						|
             E = Block->succ_end(); I != E; ++I) {
 | 
						|
          const CFGBlock *Succ = *I;
 | 
						|
          if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
 | 
						|
              vals.getValue(Block, Succ, vd) == Uninitialized) {
 | 
						|
            // Switch cases are a special case: report the label to the caller
 | 
						|
            // as the 'terminator', not the switch statement itself. Suppress
 | 
						|
            // situations where no label matched: we can't be sure that's
 | 
						|
            // possible.
 | 
						|
            if (isa<SwitchStmt>(Term)) {
 | 
						|
              const Stmt *Label = Succ->getLabel();
 | 
						|
              if (!Label || !isa<SwitchCase>(Label))
 | 
						|
                // Might not be possible.
 | 
						|
                continue;
 | 
						|
              UninitUse::Branch Branch;
 | 
						|
              Branch.Terminator = Label;
 | 
						|
              Branch.Output = 0; // Ignored.
 | 
						|
              Use.addUninitBranch(Branch);
 | 
						|
            } else {
 | 
						|
              UninitUse::Branch Branch;
 | 
						|
              Branch.Terminator = Term;
 | 
						|
              Branch.Output = I - Block->succ_begin();
 | 
						|
              Use.addUninitBranch(Branch);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Use;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
 | 
						|
  Value v = vals[vd];
 | 
						|
  if (isUninitialized(v))
 | 
						|
    handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) {
 | 
						|
  Value v = vals[vd];
 | 
						|
  if (isAlwaysUninit(v))
 | 
						|
    handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
 | 
						|
  // This represents an initialization of the 'element' value.
 | 
						|
  if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) {
 | 
						|
    const auto *VD = cast<VarDecl>(DS->getSingleDecl());
 | 
						|
    if (isTrackedVar(VD))
 | 
						|
      vals[VD] = Initialized;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitOMPExecutableDirective(
 | 
						|
    OMPExecutableDirective *ED) {
 | 
						|
  for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) {
 | 
						|
    assert(S && "Expected non-null used-in-clause child.");
 | 
						|
    Visit(S);
 | 
						|
  }
 | 
						|
  if (!ED->isStandaloneDirective())
 | 
						|
    Visit(ED->getStructuredBlock());
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
 | 
						|
  const BlockDecl *bd = be->getBlockDecl();
 | 
						|
  for (const auto &I : bd->captures()) {
 | 
						|
    const VarDecl *vd = I.getVariable();
 | 
						|
    if (!isTrackedVar(vd))
 | 
						|
      continue;
 | 
						|
    if (I.isByRef()) {
 | 
						|
      vals[vd] = Initialized;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    reportUse(be, vd);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitCallExpr(CallExpr *ce) {
 | 
						|
  if (Decl *Callee = ce->getCalleeDecl()) {
 | 
						|
    if (Callee->hasAttr<ReturnsTwiceAttr>()) {
 | 
						|
      // After a call to a function like setjmp or vfork, any variable which is
 | 
						|
      // initialized anywhere within this function may now be initialized. For
 | 
						|
      // now, just assume such a call initializes all variables.  FIXME: Only
 | 
						|
      // mark variables as initialized if they have an initializer which is
 | 
						|
      // reachable from here.
 | 
						|
      vals.setAllScratchValues(Initialized);
 | 
						|
    }
 | 
						|
    else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
 | 
						|
      // Functions labeled like "analyzer_noreturn" are often used to denote
 | 
						|
      // "panic" functions that in special debug situations can still return,
 | 
						|
      // but for the most part should not be treated as returning.  This is a
 | 
						|
      // useful annotation borrowed from the static analyzer that is useful for
 | 
						|
      // suppressing branch-specific false positives when we call one of these
 | 
						|
      // functions but keep pretending the path continues (when in reality the
 | 
						|
      // user doesn't care).
 | 
						|
      vals.setAllScratchValues(Unknown);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
 | 
						|
  switch (classification.get(dr)) {
 | 
						|
  case ClassifyRefs::Ignore:
 | 
						|
    break;
 | 
						|
  case ClassifyRefs::Use:
 | 
						|
    reportUse(dr, cast<VarDecl>(dr->getDecl()));
 | 
						|
    break;
 | 
						|
  case ClassifyRefs::Init:
 | 
						|
    vals[cast<VarDecl>(dr->getDecl())] = Initialized;
 | 
						|
    break;
 | 
						|
  case ClassifyRefs::SelfInit:
 | 
						|
    handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
 | 
						|
    break;
 | 
						|
  case ClassifyRefs::ConstRefUse:
 | 
						|
    reportConstRefUse(dr, cast<VarDecl>(dr->getDecl()));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
 | 
						|
  if (BO->getOpcode() == BO_Assign) {
 | 
						|
    FindVarResult Var = findVar(BO->getLHS());
 | 
						|
    if (const VarDecl *VD = Var.getDecl())
 | 
						|
      vals[VD] = Initialized;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
 | 
						|
  for (auto *DI : DS->decls()) {
 | 
						|
    auto *VD = dyn_cast<VarDecl>(DI);
 | 
						|
    if (VD && isTrackedVar(VD)) {
 | 
						|
      if (getSelfInitExpr(VD)) {
 | 
						|
        // If the initializer consists solely of a reference to itself, we
 | 
						|
        // explicitly mark the variable as uninitialized. This allows code
 | 
						|
        // like the following:
 | 
						|
        //
 | 
						|
        //   int x = x;
 | 
						|
        //
 | 
						|
        // to deliberately leave a variable uninitialized. Different analysis
 | 
						|
        // clients can detect this pattern and adjust their reporting
 | 
						|
        // appropriately, but we need to continue to analyze subsequent uses
 | 
						|
        // of the variable.
 | 
						|
        vals[VD] = Uninitialized;
 | 
						|
      } else if (VD->getInit()) {
 | 
						|
        // Treat the new variable as initialized.
 | 
						|
        vals[VD] = Initialized;
 | 
						|
      } else {
 | 
						|
        // No initializer: the variable is now uninitialized. This matters
 | 
						|
        // for cases like:
 | 
						|
        //   while (...) {
 | 
						|
        //     int n;
 | 
						|
        //     use(n);
 | 
						|
        //     n = 0;
 | 
						|
        //   }
 | 
						|
        // FIXME: Mark the variable as uninitialized whenever its scope is
 | 
						|
        // left, since its scope could be re-entered by a jump over the
 | 
						|
        // declaration.
 | 
						|
        vals[VD] = Uninitialized;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) {
 | 
						|
  // An "asm goto" statement is a terminator that may initialize some variables.
 | 
						|
  if (!as->isAsmGoto())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (const Expr *o : as->outputs())
 | 
						|
    if (const VarDecl *VD = findVar(o).getDecl())
 | 
						|
      if (vals[VD] != Initialized)
 | 
						|
        // If the variable isn't initialized by the time we get here, then we
 | 
						|
        // mark it as potentially uninitialized for those cases where it's used
 | 
						|
        // on an indirect path, where it's not guaranteed to be defined.
 | 
						|
        vals[VD] = MayUninitialized;
 | 
						|
}
 | 
						|
 | 
						|
void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
 | 
						|
  // If the Objective-C message expression is an implicit no-return that
 | 
						|
  // is not modeled in the CFG, set the tracked dataflow values to Unknown.
 | 
						|
  if (objCNoRet.isImplicitNoReturn(ME)) {
 | 
						|
    vals.setAllScratchValues(Unknown);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------====//
 | 
						|
// High-level "driver" logic for uninitialized values analysis.
 | 
						|
//====------------------------------------------------------------------------//
 | 
						|
 | 
						|
static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
 | 
						|
                       AnalysisDeclContext &ac, CFGBlockValues &vals,
 | 
						|
                       const ClassifyRefs &classification,
 | 
						|
                       llvm::BitVector &wasAnalyzed,
 | 
						|
                       UninitVariablesHandler &handler) {
 | 
						|
  wasAnalyzed[block->getBlockID()] = true;
 | 
						|
  vals.resetScratch();
 | 
						|
  // Merge in values of predecessor blocks.
 | 
						|
  bool isFirst = true;
 | 
						|
  for (CFGBlock::const_pred_iterator I = block->pred_begin(),
 | 
						|
       E = block->pred_end(); I != E; ++I) {
 | 
						|
    const CFGBlock *pred = *I;
 | 
						|
    if (!pred)
 | 
						|
      continue;
 | 
						|
    if (wasAnalyzed[pred->getBlockID()]) {
 | 
						|
      vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
 | 
						|
      isFirst = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Apply the transfer function.
 | 
						|
  TransferFunctions tf(vals, cfg, block, ac, classification, handler);
 | 
						|
  for (const auto &I : *block) {
 | 
						|
    if (Optional<CFGStmt> cs = I.getAs<CFGStmt>())
 | 
						|
      tf.Visit(const_cast<Stmt *>(cs->getStmt()));
 | 
						|
  }
 | 
						|
  CFGTerminator terminator = block->getTerminator();
 | 
						|
  if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt()))
 | 
						|
    if (as->isAsmGoto())
 | 
						|
      tf.Visit(as);
 | 
						|
  return vals.updateValueVectorWithScratch(block);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// PruneBlocksHandler is a special UninitVariablesHandler that is used
 | 
						|
/// to detect when a CFGBlock has any *potential* use of an uninitialized
 | 
						|
/// variable.  It is mainly used to prune out work during the final
 | 
						|
/// reporting pass.
 | 
						|
struct PruneBlocksHandler : public UninitVariablesHandler {
 | 
						|
  /// Records if a CFGBlock had a potential use of an uninitialized variable.
 | 
						|
  llvm::BitVector hadUse;
 | 
						|
 | 
						|
  /// Records if any CFGBlock had a potential use of an uninitialized variable.
 | 
						|
  bool hadAnyUse = false;
 | 
						|
 | 
						|
  /// The current block to scribble use information.
 | 
						|
  unsigned currentBlock = 0;
 | 
						|
 | 
						|
  PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {}
 | 
						|
 | 
						|
  ~PruneBlocksHandler() override = default;
 | 
						|
 | 
						|
  void handleUseOfUninitVariable(const VarDecl *vd,
 | 
						|
                                 const UninitUse &use) override {
 | 
						|
    hadUse[currentBlock] = true;
 | 
						|
    hadAnyUse = true;
 | 
						|
  }
 | 
						|
 | 
						|
  void handleConstRefUseOfUninitVariable(const VarDecl *vd,
 | 
						|
                                         const UninitUse &use) override {
 | 
						|
    hadUse[currentBlock] = true;
 | 
						|
    hadAnyUse = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// Called when the uninitialized variable analysis detects the
 | 
						|
  /// idiom 'int x = x'.  All other uses of 'x' within the initializer
 | 
						|
  /// are handled by handleUseOfUninitVariable.
 | 
						|
  void handleSelfInit(const VarDecl *vd) override {
 | 
						|
    hadUse[currentBlock] = true;
 | 
						|
    hadAnyUse = true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
void clang::runUninitializedVariablesAnalysis(
 | 
						|
    const DeclContext &dc,
 | 
						|
    const CFG &cfg,
 | 
						|
    AnalysisDeclContext &ac,
 | 
						|
    UninitVariablesHandler &handler,
 | 
						|
    UninitVariablesAnalysisStats &stats) {
 | 
						|
  CFGBlockValues vals(cfg);
 | 
						|
  vals.computeSetOfDeclarations(dc);
 | 
						|
  if (vals.hasNoDeclarations())
 | 
						|
    return;
 | 
						|
 | 
						|
  stats.NumVariablesAnalyzed = vals.getNumEntries();
 | 
						|
 | 
						|
  // Precompute which expressions are uses and which are initializations.
 | 
						|
  ClassifyRefs classification(ac);
 | 
						|
  cfg.VisitBlockStmts(classification);
 | 
						|
 | 
						|
  // Mark all variables uninitialized at the entry.
 | 
						|
  const CFGBlock &entry = cfg.getEntry();
 | 
						|
  ValueVector &vec = vals.getValueVector(&entry);
 | 
						|
  const unsigned n = vals.getNumEntries();
 | 
						|
  for (unsigned j = 0; j < n; ++j) {
 | 
						|
    vec[j] = Uninitialized;
 | 
						|
  }
 | 
						|
 | 
						|
  // Proceed with the workist.
 | 
						|
  ForwardDataflowWorklist worklist(cfg, ac);
 | 
						|
  llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
 | 
						|
  worklist.enqueueSuccessors(&cfg.getEntry());
 | 
						|
  llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
 | 
						|
  wasAnalyzed[cfg.getEntry().getBlockID()] = true;
 | 
						|
  PruneBlocksHandler PBH(cfg.getNumBlockIDs());
 | 
						|
 | 
						|
  while (const CFGBlock *block = worklist.dequeue()) {
 | 
						|
    PBH.currentBlock = block->getBlockID();
 | 
						|
 | 
						|
    // Did the block change?
 | 
						|
    bool changed = runOnBlock(block, cfg, ac, vals,
 | 
						|
                              classification, wasAnalyzed, PBH);
 | 
						|
    ++stats.NumBlockVisits;
 | 
						|
    if (changed || !previouslyVisited[block->getBlockID()])
 | 
						|
      worklist.enqueueSuccessors(block);
 | 
						|
    previouslyVisited[block->getBlockID()] = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PBH.hadAnyUse)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Run through the blocks one more time, and report uninitialized variables.
 | 
						|
  for (const auto *block : cfg)
 | 
						|
    if (PBH.hadUse[block->getBlockID()]) {
 | 
						|
      runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
 | 
						|
      ++stats.NumBlockVisits;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
UninitVariablesHandler::~UninitVariablesHandler() = default;
 |