980 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			980 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  This file implements semantic analysis for inline asm statements.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "clang/AST/ExprCXX.h"
 | 
						|
#include "clang/AST/GlobalDecl.h"
 | 
						|
#include "clang/AST/RecordLayout.h"
 | 
						|
#include "clang/AST/TypeLoc.h"
 | 
						|
#include "clang/Basic/TargetInfo.h"
 | 
						|
#include "clang/Lex/Preprocessor.h"
 | 
						|
#include "clang/Sema/Initialization.h"
 | 
						|
#include "clang/Sema/Lookup.h"
 | 
						|
#include "clang/Sema/Scope.h"
 | 
						|
#include "clang/Sema/ScopeInfo.h"
 | 
						|
#include "clang/Sema/SemaInternal.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/StringSet.h"
 | 
						|
#include "llvm/MC/MCParser/MCAsmParser.h"
 | 
						|
using namespace clang;
 | 
						|
using namespace sema;
 | 
						|
 | 
						|
/// Remove the upper-level LValueToRValue cast from an expression.
 | 
						|
static void removeLValueToRValueCast(Expr *E) {
 | 
						|
  Expr *Parent = E;
 | 
						|
  Expr *ExprUnderCast = nullptr;
 | 
						|
  SmallVector<Expr *, 8> ParentsToUpdate;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    ParentsToUpdate.push_back(Parent);
 | 
						|
    if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
 | 
						|
      Parent = ParenE->getSubExpr();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Expr *Child = nullptr;
 | 
						|
    CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
 | 
						|
    if (ParentCast)
 | 
						|
      Child = ParentCast->getSubExpr();
 | 
						|
    else
 | 
						|
      return;
 | 
						|
 | 
						|
    if (auto *CastE = dyn_cast<CastExpr>(Child))
 | 
						|
      if (CastE->getCastKind() == CK_LValueToRValue) {
 | 
						|
        ExprUnderCast = CastE->getSubExpr();
 | 
						|
        // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
 | 
						|
        ParentCast->setSubExpr(ExprUnderCast);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    Parent = Child;
 | 
						|
  }
 | 
						|
 | 
						|
  // Update parent expressions to have same ValueType as the underlying.
 | 
						|
  assert(ExprUnderCast &&
 | 
						|
         "Should be reachable only if LValueToRValue cast was found!");
 | 
						|
  auto ValueKind = ExprUnderCast->getValueKind();
 | 
						|
  for (Expr *E : ParentsToUpdate)
 | 
						|
    E->setValueKind(ValueKind);
 | 
						|
}
 | 
						|
 | 
						|
/// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
 | 
						|
/// and fix the argument with removing LValueToRValue cast from the expression.
 | 
						|
static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
 | 
						|
                                           Sema &S) {
 | 
						|
  if (!S.getLangOpts().HeinousExtensions) {
 | 
						|
    S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
 | 
						|
        << BadArgument->getSourceRange();
 | 
						|
  } else {
 | 
						|
    S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
 | 
						|
        << BadArgument->getSourceRange();
 | 
						|
  }
 | 
						|
  removeLValueToRValueCast(BadArgument);
 | 
						|
}
 | 
						|
 | 
						|
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
 | 
						|
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
 | 
						|
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
 | 
						|
/// provide a strong guidance to not use it.
 | 
						|
///
 | 
						|
/// This method checks to see if the argument is an acceptable l-value and
 | 
						|
/// returns false if it is a case we can handle.
 | 
						|
static bool CheckAsmLValue(Expr *E, Sema &S) {
 | 
						|
  // Type dependent expressions will be checked during instantiation.
 | 
						|
  if (E->isTypeDependent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (E->isLValue())
 | 
						|
    return false;  // Cool, this is an lvalue.
 | 
						|
 | 
						|
  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
 | 
						|
  // are supposed to allow.
 | 
						|
  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
 | 
						|
  if (E != E2 && E2->isLValue()) {
 | 
						|
    emitAndFixInvalidAsmCastLValue(E2, E, S);
 | 
						|
    // Accept, even if we emitted an error diagnostic.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // None of the above, just randomly invalid non-lvalue.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isOperandMentioned - Return true if the specified operand # is mentioned
 | 
						|
/// anywhere in the decomposed asm string.
 | 
						|
static bool
 | 
						|
isOperandMentioned(unsigned OpNo,
 | 
						|
                   ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
 | 
						|
  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
 | 
						|
    const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
 | 
						|
    if (!Piece.isOperand())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this is a reference to the input and if the input was the smaller
 | 
						|
    // one, then we have to reject this asm.
 | 
						|
    if (Piece.getOperandNo() == OpNo)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CheckNakedParmReference(Expr *E, Sema &S) {
 | 
						|
  FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
 | 
						|
  if (!Func)
 | 
						|
    return false;
 | 
						|
  if (!Func->hasAttr<NakedAttr>())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallVector<Expr*, 4> WorkList;
 | 
						|
  WorkList.push_back(E);
 | 
						|
  while (WorkList.size()) {
 | 
						|
    Expr *E = WorkList.pop_back_val();
 | 
						|
    if (isa<CXXThisExpr>(E)) {
 | 
						|
      S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
 | 
						|
      S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
 | 
						|
      if (isa<ParmVarDecl>(DRE->getDecl())) {
 | 
						|
        S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
 | 
						|
        S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (Stmt *Child : E->children()) {
 | 
						|
      if (Expr *E = dyn_cast_or_null<Expr>(Child))
 | 
						|
        WorkList.push_back(E);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if given expression is not compatible with inline
 | 
						|
/// assembly's memory constraint; false otherwise.
 | 
						|
static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
 | 
						|
                                            TargetInfo::ConstraintInfo &Info,
 | 
						|
                                            bool is_input_expr) {
 | 
						|
  enum {
 | 
						|
    ExprBitfield = 0,
 | 
						|
    ExprVectorElt,
 | 
						|
    ExprGlobalRegVar,
 | 
						|
    ExprSafeType
 | 
						|
  } EType = ExprSafeType;
 | 
						|
 | 
						|
  // Bitfields, vector elements and global register variables are not
 | 
						|
  // compatible.
 | 
						|
  if (E->refersToBitField())
 | 
						|
    EType = ExprBitfield;
 | 
						|
  else if (E->refersToVectorElement())
 | 
						|
    EType = ExprVectorElt;
 | 
						|
  else if (E->refersToGlobalRegisterVar())
 | 
						|
    EType = ExprGlobalRegVar;
 | 
						|
 | 
						|
  if (EType != ExprSafeType) {
 | 
						|
    S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
 | 
						|
        << EType << is_input_expr << Info.getConstraintStr()
 | 
						|
        << E->getSourceRange();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Extracting the register name from the Expression value,
 | 
						|
// if there is no register name to extract, returns ""
 | 
						|
static StringRef extractRegisterName(const Expr *Expression,
 | 
						|
                                     const TargetInfo &Target) {
 | 
						|
  Expression = Expression->IgnoreImpCasts();
 | 
						|
  if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
 | 
						|
    // Handle cases where the expression is a variable
 | 
						|
    const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
 | 
						|
    if (Variable && Variable->getStorageClass() == SC_Register) {
 | 
						|
      if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
 | 
						|
        if (Target.isValidGCCRegisterName(Attr->getLabel()))
 | 
						|
          return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return "";
 | 
						|
}
 | 
						|
 | 
						|
// Checks if there is a conflict between the input and output lists with the
 | 
						|
// clobbers list. If there's a conflict, returns the location of the
 | 
						|
// conflicted clobber, else returns nullptr
 | 
						|
static SourceLocation
 | 
						|
getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
 | 
						|
                           StringLiteral **Clobbers, int NumClobbers,
 | 
						|
                           unsigned NumLabels,
 | 
						|
                           const TargetInfo &Target, ASTContext &Cont) {
 | 
						|
  llvm::StringSet<> InOutVars;
 | 
						|
  // Collect all the input and output registers from the extended asm
 | 
						|
  // statement in order to check for conflicts with the clobber list
 | 
						|
  for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
 | 
						|
    StringRef Constraint = Constraints[i]->getString();
 | 
						|
    StringRef InOutReg = Target.getConstraintRegister(
 | 
						|
        Constraint, extractRegisterName(Exprs[i], Target));
 | 
						|
    if (InOutReg != "")
 | 
						|
      InOutVars.insert(InOutReg);
 | 
						|
  }
 | 
						|
  // Check for each item in the clobber list if it conflicts with the input
 | 
						|
  // or output
 | 
						|
  for (int i = 0; i < NumClobbers; ++i) {
 | 
						|
    StringRef Clobber = Clobbers[i]->getString();
 | 
						|
    // We only check registers, therefore we don't check cc and memory
 | 
						|
    // clobbers
 | 
						|
    if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
 | 
						|
      continue;
 | 
						|
    Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
 | 
						|
    // Go over the output's registers we collected
 | 
						|
    if (InOutVars.count(Clobber))
 | 
						|
      return Clobbers[i]->getBeginLoc();
 | 
						|
  }
 | 
						|
  return SourceLocation();
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
 | 
						|
                                 bool IsVolatile, unsigned NumOutputs,
 | 
						|
                                 unsigned NumInputs, IdentifierInfo **Names,
 | 
						|
                                 MultiExprArg constraints, MultiExprArg Exprs,
 | 
						|
                                 Expr *asmString, MultiExprArg clobbers,
 | 
						|
                                 unsigned NumLabels,
 | 
						|
                                 SourceLocation RParenLoc) {
 | 
						|
  unsigned NumClobbers = clobbers.size();
 | 
						|
  StringLiteral **Constraints =
 | 
						|
    reinterpret_cast<StringLiteral**>(constraints.data());
 | 
						|
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
 | 
						|
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
 | 
						|
 | 
						|
  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
 | 
						|
 | 
						|
  // The parser verifies that there is a string literal here.
 | 
						|
  assert(AsmString->isAscii());
 | 
						|
 | 
						|
  FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
 | 
						|
  llvm::StringMap<bool> FeatureMap;
 | 
						|
  Context.getFunctionFeatureMap(FeatureMap, FD);
 | 
						|
 | 
						|
  for (unsigned i = 0; i != NumOutputs; i++) {
 | 
						|
    StringLiteral *Literal = Constraints[i];
 | 
						|
    assert(Literal->isAscii());
 | 
						|
 | 
						|
    StringRef OutputName;
 | 
						|
    if (Names[i])
 | 
						|
      OutputName = Names[i]->getName();
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
 | 
						|
    if (!Context.getTargetInfo().validateOutputConstraint(Info)) {
 | 
						|
      targetDiag(Literal->getBeginLoc(),
 | 
						|
                 diag::err_asm_invalid_output_constraint)
 | 
						|
          << Info.getConstraintStr();
 | 
						|
      return new (Context)
 | 
						|
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | 
						|
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
 | 
						|
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
 | 
						|
    if (ER.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
    Exprs[i] = ER.get();
 | 
						|
 | 
						|
    // Check that the output exprs are valid lvalues.
 | 
						|
    Expr *OutputExpr = Exprs[i];
 | 
						|
 | 
						|
    // Referring to parameters is not allowed in naked functions.
 | 
						|
    if (CheckNakedParmReference(OutputExpr, *this))
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    // Check that the output expression is compatible with memory constraint.
 | 
						|
    if (Info.allowsMemory() &&
 | 
						|
        checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    // Disallow _ExtInt, since the backends tend to have difficulties with
 | 
						|
    // non-normal sizes.
 | 
						|
    if (OutputExpr->getType()->isExtIntType())
 | 
						|
      return StmtError(
 | 
						|
          Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
 | 
						|
          << OutputExpr->getType() << 0 /*Input*/
 | 
						|
          << OutputExpr->getSourceRange());
 | 
						|
 | 
						|
    OutputConstraintInfos.push_back(Info);
 | 
						|
 | 
						|
    // If this is dependent, just continue.
 | 
						|
    if (OutputExpr->isTypeDependent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Expr::isModifiableLvalueResult IsLV =
 | 
						|
        OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
 | 
						|
    switch (IsLV) {
 | 
						|
    case Expr::MLV_Valid:
 | 
						|
      // Cool, this is an lvalue.
 | 
						|
      break;
 | 
						|
    case Expr::MLV_ArrayType:
 | 
						|
      // This is OK too.
 | 
						|
      break;
 | 
						|
    case Expr::MLV_LValueCast: {
 | 
						|
      const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
 | 
						|
      emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
 | 
						|
      // Accept, even if we emitted an error diagnostic.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Expr::MLV_IncompleteType:
 | 
						|
    case Expr::MLV_IncompleteVoidType:
 | 
						|
      if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
 | 
						|
                              diag::err_dereference_incomplete_type))
 | 
						|
        return StmtError();
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    default:
 | 
						|
      return StmtError(Diag(OutputExpr->getBeginLoc(),
 | 
						|
                            diag::err_asm_invalid_lvalue_in_output)
 | 
						|
                       << OutputExpr->getSourceRange());
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Size = Context.getTypeSize(OutputExpr->getType());
 | 
						|
    if (!Context.getTargetInfo().validateOutputSize(
 | 
						|
            FeatureMap, Literal->getString(), Size)) {
 | 
						|
      targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
 | 
						|
          << Info.getConstraintStr();
 | 
						|
      return new (Context)
 | 
						|
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | 
						|
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
 | 
						|
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
 | 
						|
 | 
						|
  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
 | 
						|
    StringLiteral *Literal = Constraints[i];
 | 
						|
    assert(Literal->isAscii());
 | 
						|
 | 
						|
    StringRef InputName;
 | 
						|
    if (Names[i])
 | 
						|
      InputName = Names[i]->getName();
 | 
						|
 | 
						|
    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
 | 
						|
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
 | 
						|
                                                         Info)) {
 | 
						|
      targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
 | 
						|
          << Info.getConstraintStr();
 | 
						|
      return new (Context)
 | 
						|
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | 
						|
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
 | 
						|
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
 | 
						|
    if (ER.isInvalid())
 | 
						|
      return StmtError();
 | 
						|
    Exprs[i] = ER.get();
 | 
						|
 | 
						|
    Expr *InputExpr = Exprs[i];
 | 
						|
 | 
						|
    // Referring to parameters is not allowed in naked functions.
 | 
						|
    if (CheckNakedParmReference(InputExpr, *this))
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    // Check that the input expression is compatible with memory constraint.
 | 
						|
    if (Info.allowsMemory() &&
 | 
						|
        checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
 | 
						|
      return StmtError();
 | 
						|
 | 
						|
    // Only allow void types for memory constraints.
 | 
						|
    if (Info.allowsMemory() && !Info.allowsRegister()) {
 | 
						|
      if (CheckAsmLValue(InputExpr, *this))
 | 
						|
        return StmtError(Diag(InputExpr->getBeginLoc(),
 | 
						|
                              diag::err_asm_invalid_lvalue_in_input)
 | 
						|
                         << Info.getConstraintStr()
 | 
						|
                         << InputExpr->getSourceRange());
 | 
						|
    } else {
 | 
						|
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
 | 
						|
      if (Result.isInvalid())
 | 
						|
        return StmtError();
 | 
						|
 | 
						|
      InputExpr = Exprs[i] = Result.get();
 | 
						|
 | 
						|
      if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
 | 
						|
        if (!InputExpr->isValueDependent()) {
 | 
						|
          Expr::EvalResult EVResult;
 | 
						|
          if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
 | 
						|
            // For compatibility with GCC, we also allow pointers that would be
 | 
						|
            // integral constant expressions if they were cast to int.
 | 
						|
            llvm::APSInt IntResult;
 | 
						|
            if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
 | 
						|
                                                Context))
 | 
						|
              if (!Info.isValidAsmImmediate(IntResult))
 | 
						|
                return StmtError(
 | 
						|
                    Diag(InputExpr->getBeginLoc(),
 | 
						|
                         diag::err_invalid_asm_value_for_constraint)
 | 
						|
                    << toString(IntResult, 10) << Info.getConstraintStr()
 | 
						|
                    << InputExpr->getSourceRange());
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Info.allowsRegister()) {
 | 
						|
      if (InputExpr->getType()->isVoidType()) {
 | 
						|
        return StmtError(
 | 
						|
            Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
 | 
						|
            << InputExpr->getType() << Info.getConstraintStr()
 | 
						|
            << InputExpr->getSourceRange());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InputExpr->getType()->isExtIntType())
 | 
						|
      return StmtError(
 | 
						|
          Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
 | 
						|
          << InputExpr->getType() << 1 /*Output*/
 | 
						|
          << InputExpr->getSourceRange());
 | 
						|
 | 
						|
    InputConstraintInfos.push_back(Info);
 | 
						|
 | 
						|
    const Type *Ty = Exprs[i]->getType().getTypePtr();
 | 
						|
    if (Ty->isDependentType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!Ty->isVoidType() || !Info.allowsMemory())
 | 
						|
      if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
 | 
						|
                              diag::err_dereference_incomplete_type))
 | 
						|
        return StmtError();
 | 
						|
 | 
						|
    unsigned Size = Context.getTypeSize(Ty);
 | 
						|
    if (!Context.getTargetInfo().validateInputSize(FeatureMap,
 | 
						|
                                                   Literal->getString(), Size))
 | 
						|
      return targetDiag(InputExpr->getBeginLoc(),
 | 
						|
                        diag::err_asm_invalid_input_size)
 | 
						|
             << Info.getConstraintStr();
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<SourceLocation> UnwindClobberLoc;
 | 
						|
 | 
						|
  // Check that the clobbers are valid.
 | 
						|
  for (unsigned i = 0; i != NumClobbers; i++) {
 | 
						|
    StringLiteral *Literal = Clobbers[i];
 | 
						|
    assert(Literal->isAscii());
 | 
						|
 | 
						|
    StringRef Clobber = Literal->getString();
 | 
						|
 | 
						|
    if (!Context.getTargetInfo().isValidClobber(Clobber)) {
 | 
						|
      targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
 | 
						|
          << Clobber;
 | 
						|
      return new (Context)
 | 
						|
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | 
						|
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
 | 
						|
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Clobber == "unwind") {
 | 
						|
      UnwindClobberLoc = Literal->getBeginLoc();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Using unwind clobber and asm-goto together is not supported right now.
 | 
						|
  if (UnwindClobberLoc && NumLabels > 0) {
 | 
						|
    targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
 | 
						|
    return new (Context)
 | 
						|
        GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
 | 
						|
                   Names, Constraints, Exprs.data(), AsmString, NumClobbers,
 | 
						|
                   Clobbers, NumLabels, RParenLoc);
 | 
						|
  }
 | 
						|
 | 
						|
  GCCAsmStmt *NS =
 | 
						|
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
 | 
						|
                             NumInputs, Names, Constraints, Exprs.data(),
 | 
						|
                             AsmString, NumClobbers, Clobbers, NumLabels,
 | 
						|
                             RParenLoc);
 | 
						|
  // Validate the asm string, ensuring it makes sense given the operands we
 | 
						|
  // have.
 | 
						|
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
 | 
						|
  unsigned DiagOffs;
 | 
						|
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
 | 
						|
    targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
 | 
						|
        << AsmString->getSourceRange();
 | 
						|
    return NS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Validate constraints and modifiers.
 | 
						|
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
 | 
						|
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
 | 
						|
    if (!Piece.isOperand()) continue;
 | 
						|
 | 
						|
    // Look for the correct constraint index.
 | 
						|
    unsigned ConstraintIdx = Piece.getOperandNo();
 | 
						|
    unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
 | 
						|
    // Labels are the last in the Exprs list.
 | 
						|
    if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
 | 
						|
      continue;
 | 
						|
    // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
 | 
						|
    // modifier '+'.
 | 
						|
    if (ConstraintIdx >= NumOperands) {
 | 
						|
      unsigned I = 0, E = NS->getNumOutputs();
 | 
						|
 | 
						|
      for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
 | 
						|
        if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
 | 
						|
          ConstraintIdx = I;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      assert(I != E && "Invalid operand number should have been caught in "
 | 
						|
                       " AnalyzeAsmString");
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have the right indexes go ahead and check.
 | 
						|
    StringLiteral *Literal = Constraints[ConstraintIdx];
 | 
						|
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
 | 
						|
    if (Ty->isDependentType() || Ty->isIncompleteType())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Size = Context.getTypeSize(Ty);
 | 
						|
    std::string SuggestedModifier;
 | 
						|
    if (!Context.getTargetInfo().validateConstraintModifier(
 | 
						|
            Literal->getString(), Piece.getModifier(), Size,
 | 
						|
            SuggestedModifier)) {
 | 
						|
      targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
 | 
						|
                 diag::warn_asm_mismatched_size_modifier);
 | 
						|
 | 
						|
      if (!SuggestedModifier.empty()) {
 | 
						|
        auto B = targetDiag(Piece.getRange().getBegin(),
 | 
						|
                            diag::note_asm_missing_constraint_modifier)
 | 
						|
                 << SuggestedModifier;
 | 
						|
        SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
 | 
						|
        B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Validate tied input operands for type mismatches.
 | 
						|
  unsigned NumAlternatives = ~0U;
 | 
						|
  for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
 | 
						|
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
 | 
						|
    StringRef ConstraintStr = Info.getConstraintStr();
 | 
						|
    unsigned AltCount = ConstraintStr.count(',') + 1;
 | 
						|
    if (NumAlternatives == ~0U) {
 | 
						|
      NumAlternatives = AltCount;
 | 
						|
    } else if (NumAlternatives != AltCount) {
 | 
						|
      targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
 | 
						|
                 diag::err_asm_unexpected_constraint_alternatives)
 | 
						|
          << NumAlternatives << AltCount;
 | 
						|
      return NS;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
 | 
						|
                                              ~0U);
 | 
						|
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
 | 
						|
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
 | 
						|
    StringRef ConstraintStr = Info.getConstraintStr();
 | 
						|
    unsigned AltCount = ConstraintStr.count(',') + 1;
 | 
						|
    if (NumAlternatives == ~0U) {
 | 
						|
      NumAlternatives = AltCount;
 | 
						|
    } else if (NumAlternatives != AltCount) {
 | 
						|
      targetDiag(NS->getInputExpr(i)->getBeginLoc(),
 | 
						|
                 diag::err_asm_unexpected_constraint_alternatives)
 | 
						|
          << NumAlternatives << AltCount;
 | 
						|
      return NS;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a tied constraint, verify that the output and input have
 | 
						|
    // either exactly the same type, or that they are int/ptr operands with the
 | 
						|
    // same size (int/long, int*/long, are ok etc).
 | 
						|
    if (!Info.hasTiedOperand()) continue;
 | 
						|
 | 
						|
    unsigned TiedTo = Info.getTiedOperand();
 | 
						|
    unsigned InputOpNo = i+NumOutputs;
 | 
						|
    Expr *OutputExpr = Exprs[TiedTo];
 | 
						|
    Expr *InputExpr = Exprs[InputOpNo];
 | 
						|
 | 
						|
    // Make sure no more than one input constraint matches each output.
 | 
						|
    assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
 | 
						|
    if (InputMatchedToOutput[TiedTo] != ~0U) {
 | 
						|
      targetDiag(NS->getInputExpr(i)->getBeginLoc(),
 | 
						|
                 diag::err_asm_input_duplicate_match)
 | 
						|
          << TiedTo;
 | 
						|
      targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
 | 
						|
                 diag::note_asm_input_duplicate_first)
 | 
						|
          << TiedTo;
 | 
						|
      return NS;
 | 
						|
    }
 | 
						|
    InputMatchedToOutput[TiedTo] = i;
 | 
						|
 | 
						|
    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    QualType InTy = InputExpr->getType();
 | 
						|
    QualType OutTy = OutputExpr->getType();
 | 
						|
    if (Context.hasSameType(InTy, OutTy))
 | 
						|
      continue;  // All types can be tied to themselves.
 | 
						|
 | 
						|
    // Decide if the input and output are in the same domain (integer/ptr or
 | 
						|
    // floating point.
 | 
						|
    enum AsmDomain {
 | 
						|
      AD_Int, AD_FP, AD_Other
 | 
						|
    } InputDomain, OutputDomain;
 | 
						|
 | 
						|
    if (InTy->isIntegerType() || InTy->isPointerType())
 | 
						|
      InputDomain = AD_Int;
 | 
						|
    else if (InTy->isRealFloatingType())
 | 
						|
      InputDomain = AD_FP;
 | 
						|
    else
 | 
						|
      InputDomain = AD_Other;
 | 
						|
 | 
						|
    if (OutTy->isIntegerType() || OutTy->isPointerType())
 | 
						|
      OutputDomain = AD_Int;
 | 
						|
    else if (OutTy->isRealFloatingType())
 | 
						|
      OutputDomain = AD_FP;
 | 
						|
    else
 | 
						|
      OutputDomain = AD_Other;
 | 
						|
 | 
						|
    // They are ok if they are the same size and in the same domain.  This
 | 
						|
    // allows tying things like:
 | 
						|
    //   void* to int*
 | 
						|
    //   void* to int            if they are the same size.
 | 
						|
    //   double to long double   if they are the same size.
 | 
						|
    //
 | 
						|
    uint64_t OutSize = Context.getTypeSize(OutTy);
 | 
						|
    uint64_t InSize = Context.getTypeSize(InTy);
 | 
						|
    if (OutSize == InSize && InputDomain == OutputDomain &&
 | 
						|
        InputDomain != AD_Other)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the smaller input/output operand is not mentioned in the asm string,
 | 
						|
    // then we can promote the smaller one to a larger input and the asm string
 | 
						|
    // won't notice.
 | 
						|
    bool SmallerValueMentioned = false;
 | 
						|
 | 
						|
    // If this is a reference to the input and if the input was the smaller
 | 
						|
    // one, then we have to reject this asm.
 | 
						|
    if (isOperandMentioned(InputOpNo, Pieces)) {
 | 
						|
      // This is a use in the asm string of the smaller operand.  Since we
 | 
						|
      // codegen this by promoting to a wider value, the asm will get printed
 | 
						|
      // "wrong".
 | 
						|
      SmallerValueMentioned |= InSize < OutSize;
 | 
						|
    }
 | 
						|
    if (isOperandMentioned(TiedTo, Pieces)) {
 | 
						|
      // If this is a reference to the output, and if the output is the larger
 | 
						|
      // value, then it's ok because we'll promote the input to the larger type.
 | 
						|
      SmallerValueMentioned |= OutSize < InSize;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the smaller value wasn't mentioned in the asm string, and if the
 | 
						|
    // output was a register, just extend the shorter one to the size of the
 | 
						|
    // larger one.
 | 
						|
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
 | 
						|
        OutputConstraintInfos[TiedTo].allowsRegister())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Either both of the operands were mentioned or the smaller one was
 | 
						|
    // mentioned.  One more special case that we'll allow: if the tied input is
 | 
						|
    // integer, unmentioned, and is a constant, then we'll allow truncating it
 | 
						|
    // down to the size of the destination.
 | 
						|
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
 | 
						|
        !isOperandMentioned(InputOpNo, Pieces) &&
 | 
						|
        InputExpr->isEvaluatable(Context)) {
 | 
						|
      CastKind castKind =
 | 
						|
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
 | 
						|
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
 | 
						|
      Exprs[InputOpNo] = InputExpr;
 | 
						|
      NS->setInputExpr(i, InputExpr);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
 | 
						|
        << InTy << OutTy << OutputExpr->getSourceRange()
 | 
						|
        << InputExpr->getSourceRange();
 | 
						|
    return NS;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for conflicts between clobber list and input or output lists
 | 
						|
  SourceLocation ConstraintLoc =
 | 
						|
      getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
 | 
						|
                                 NumLabels,
 | 
						|
                                 Context.getTargetInfo(), Context);
 | 
						|
  if (ConstraintLoc.isValid())
 | 
						|
    targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
 | 
						|
 | 
						|
  // Check for duplicate asm operand name between input, output and label lists.
 | 
						|
  typedef std::pair<StringRef , Expr *> NamedOperand;
 | 
						|
  SmallVector<NamedOperand, 4> NamedOperandList;
 | 
						|
  for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
 | 
						|
    if (Names[i])
 | 
						|
      NamedOperandList.emplace_back(
 | 
						|
          std::make_pair(Names[i]->getName(), Exprs[i]));
 | 
						|
  // Sort NamedOperandList.
 | 
						|
  std::stable_sort(NamedOperandList.begin(), NamedOperandList.end(),
 | 
						|
              [](const NamedOperand &LHS, const NamedOperand &RHS) {
 | 
						|
                return LHS.first < RHS.first;
 | 
						|
              });
 | 
						|
  // Find adjacent duplicate operand.
 | 
						|
  SmallVector<NamedOperand, 4>::iterator Found =
 | 
						|
      std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
 | 
						|
                         [](const NamedOperand &LHS, const NamedOperand &RHS) {
 | 
						|
                           return LHS.first == RHS.first;
 | 
						|
                         });
 | 
						|
  if (Found != NamedOperandList.end()) {
 | 
						|
    Diag((Found + 1)->second->getBeginLoc(),
 | 
						|
         diag::error_duplicate_asm_operand_name)
 | 
						|
        << (Found + 1)->first;
 | 
						|
    Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
 | 
						|
        << Found->first;
 | 
						|
    return StmtError();
 | 
						|
  }
 | 
						|
  if (NS->isAsmGoto())
 | 
						|
    setFunctionHasBranchIntoScope();
 | 
						|
  return NS;
 | 
						|
}
 | 
						|
 | 
						|
void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
 | 
						|
                                       llvm::InlineAsmIdentifierInfo &Info) {
 | 
						|
  QualType T = Res->getType();
 | 
						|
  Expr::EvalResult Eval;
 | 
						|
  if (T->isFunctionType() || T->isDependentType())
 | 
						|
    return Info.setLabel(Res);
 | 
						|
  if (Res->isPRValue()) {
 | 
						|
    bool IsEnum = isa<clang::EnumType>(T);
 | 
						|
    if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
 | 
						|
      if (DRE->getDecl()->getKind() == Decl::EnumConstant)
 | 
						|
        IsEnum = true;
 | 
						|
    if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
 | 
						|
      return Info.setEnum(Eval.Val.getInt().getSExtValue());
 | 
						|
 | 
						|
    return Info.setLabel(Res);
 | 
						|
  }
 | 
						|
  unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
 | 
						|
  unsigned Type = Size;
 | 
						|
  if (const auto *ATy = Context.getAsArrayType(T))
 | 
						|
    Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
 | 
						|
  bool IsGlobalLV = false;
 | 
						|
  if (Res->EvaluateAsLValue(Eval, Context))
 | 
						|
    IsGlobalLV = Eval.isGlobalLValue();
 | 
						|
  Info.setVar(Res, IsGlobalLV, Size, Type);
 | 
						|
}
 | 
						|
 | 
						|
ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
 | 
						|
                                           SourceLocation TemplateKWLoc,
 | 
						|
                                           UnqualifiedId &Id,
 | 
						|
                                           bool IsUnevaluatedContext) {
 | 
						|
 | 
						|
  if (IsUnevaluatedContext)
 | 
						|
    PushExpressionEvaluationContext(
 | 
						|
        ExpressionEvaluationContext::UnevaluatedAbstract,
 | 
						|
        ReuseLambdaContextDecl);
 | 
						|
 | 
						|
  ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
 | 
						|
                                        /*trailing lparen*/ false,
 | 
						|
                                        /*is & operand*/ false,
 | 
						|
                                        /*CorrectionCandidateCallback=*/nullptr,
 | 
						|
                                        /*IsInlineAsmIdentifier=*/ true);
 | 
						|
 | 
						|
  if (IsUnevaluatedContext)
 | 
						|
    PopExpressionEvaluationContext();
 | 
						|
 | 
						|
  if (!Result.isUsable()) return Result;
 | 
						|
 | 
						|
  Result = CheckPlaceholderExpr(Result.get());
 | 
						|
  if (!Result.isUsable()) return Result;
 | 
						|
 | 
						|
  // Referring to parameters is not allowed in naked functions.
 | 
						|
  if (CheckNakedParmReference(Result.get(), *this))
 | 
						|
    return ExprError();
 | 
						|
 | 
						|
  QualType T = Result.get()->getType();
 | 
						|
 | 
						|
  if (T->isDependentType()) {
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Any sort of function type is fine.
 | 
						|
  if (T->isFunctionType()) {
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, it needs to be a complete type.
 | 
						|
  if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
 | 
						|
    return ExprError();
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
 | 
						|
                                unsigned &Offset, SourceLocation AsmLoc) {
 | 
						|
  Offset = 0;
 | 
						|
  SmallVector<StringRef, 2> Members;
 | 
						|
  Member.split(Members, ".");
 | 
						|
 | 
						|
  NamedDecl *FoundDecl = nullptr;
 | 
						|
 | 
						|
  // MS InlineAsm uses 'this' as a base
 | 
						|
  if (getLangOpts().CPlusPlus && Base.equals("this")) {
 | 
						|
    if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
 | 
						|
      FoundDecl = PT->getPointeeType()->getAsTagDecl();
 | 
						|
  } else {
 | 
						|
    LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
 | 
						|
                            LookupOrdinaryName);
 | 
						|
    if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
 | 
						|
      FoundDecl = BaseResult.getFoundDecl();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!FoundDecl)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (StringRef NextMember : Members) {
 | 
						|
    const RecordType *RT = nullptr;
 | 
						|
    if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
 | 
						|
      RT = VD->getType()->getAs<RecordType>();
 | 
						|
    else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
 | 
						|
      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
 | 
						|
      // MS InlineAsm often uses struct pointer aliases as a base
 | 
						|
      QualType QT = TD->getUnderlyingType();
 | 
						|
      if (const auto *PT = QT->getAs<PointerType>())
 | 
						|
        QT = PT->getPointeeType();
 | 
						|
      RT = QT->getAs<RecordType>();
 | 
						|
    } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
 | 
						|
      RT = TD->getTypeForDecl()->getAs<RecordType>();
 | 
						|
    else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
 | 
						|
      RT = TD->getType()->getAs<RecordType>();
 | 
						|
    if (!RT)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (RequireCompleteType(AsmLoc, QualType(RT, 0),
 | 
						|
                            diag::err_asm_incomplete_type))
 | 
						|
      return true;
 | 
						|
 | 
						|
    LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
 | 
						|
                             SourceLocation(), LookupMemberName);
 | 
						|
 | 
						|
    if (!LookupQualifiedName(FieldResult, RT->getDecl()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!FieldResult.isSingleResult())
 | 
						|
      return true;
 | 
						|
    FoundDecl = FieldResult.getFoundDecl();
 | 
						|
 | 
						|
    // FIXME: Handle IndirectFieldDecl?
 | 
						|
    FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
 | 
						|
    if (!FD)
 | 
						|
      return true;
 | 
						|
 | 
						|
    const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
 | 
						|
    unsigned i = FD->getFieldIndex();
 | 
						|
    CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
 | 
						|
    Offset += (unsigned)Result.getQuantity();
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
ExprResult
 | 
						|
Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
 | 
						|
                                  SourceLocation AsmLoc) {
 | 
						|
 | 
						|
  QualType T = E->getType();
 | 
						|
  if (T->isDependentType()) {
 | 
						|
    DeclarationNameInfo NameInfo;
 | 
						|
    NameInfo.setLoc(AsmLoc);
 | 
						|
    NameInfo.setName(&Context.Idents.get(Member));
 | 
						|
    return CXXDependentScopeMemberExpr::Create(
 | 
						|
        Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
 | 
						|
        SourceLocation(),
 | 
						|
        /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  const RecordType *RT = T->getAs<RecordType>();
 | 
						|
  // FIXME: Diagnose this as field access into a scalar type.
 | 
						|
  if (!RT)
 | 
						|
    return ExprResult();
 | 
						|
 | 
						|
  LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
 | 
						|
                           LookupMemberName);
 | 
						|
 | 
						|
  if (!LookupQualifiedName(FieldResult, RT->getDecl()))
 | 
						|
    return ExprResult();
 | 
						|
 | 
						|
  // Only normal and indirect field results will work.
 | 
						|
  ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
 | 
						|
  if (!FD)
 | 
						|
    FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
 | 
						|
  if (!FD)
 | 
						|
    return ExprResult();
 | 
						|
 | 
						|
  // Make an Expr to thread through OpDecl.
 | 
						|
  ExprResult Result = BuildMemberReferenceExpr(
 | 
						|
      E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
 | 
						|
      SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
 | 
						|
                                ArrayRef<Token> AsmToks,
 | 
						|
                                StringRef AsmString,
 | 
						|
                                unsigned NumOutputs, unsigned NumInputs,
 | 
						|
                                ArrayRef<StringRef> Constraints,
 | 
						|
                                ArrayRef<StringRef> Clobbers,
 | 
						|
                                ArrayRef<Expr*> Exprs,
 | 
						|
                                SourceLocation EndLoc) {
 | 
						|
  bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
 | 
						|
  setFunctionHasBranchProtectedScope();
 | 
						|
 | 
						|
  for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
 | 
						|
    if (Exprs[I]->getType()->isExtIntType())
 | 
						|
      return StmtError(
 | 
						|
          Diag(Exprs[I]->getBeginLoc(), diag::err_asm_invalid_type)
 | 
						|
          << Exprs[I]->getType() << (I < NumOutputs)
 | 
						|
          << Exprs[I]->getSourceRange());
 | 
						|
  }
 | 
						|
 | 
						|
  MSAsmStmt *NS =
 | 
						|
    new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
 | 
						|
                            /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
 | 
						|
                            Constraints, Exprs, AsmString,
 | 
						|
                            Clobbers, EndLoc);
 | 
						|
  return NS;
 | 
						|
}
 | 
						|
 | 
						|
LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
 | 
						|
                                       SourceLocation Location,
 | 
						|
                                       bool AlwaysCreate) {
 | 
						|
  LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
 | 
						|
                                         Location);
 | 
						|
 | 
						|
  if (Label->isMSAsmLabel()) {
 | 
						|
    // If we have previously created this label implicitly, mark it as used.
 | 
						|
    Label->markUsed(Context);
 | 
						|
  } else {
 | 
						|
    // Otherwise, insert it, but only resolve it if we have seen the label itself.
 | 
						|
    std::string InternalName;
 | 
						|
    llvm::raw_string_ostream OS(InternalName);
 | 
						|
    // Create an internal name for the label.  The name should not be a valid
 | 
						|
    // mangled name, and should be unique.  We use a dot to make the name an
 | 
						|
    // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
 | 
						|
    // unique label is generated each time this blob is emitted, even after
 | 
						|
    // inlining or LTO.
 | 
						|
    OS << "__MSASMLABEL_.${:uid}__";
 | 
						|
    for (char C : ExternalLabelName) {
 | 
						|
      OS << C;
 | 
						|
      // We escape '$' in asm strings by replacing it with "$$"
 | 
						|
      if (C == '$')
 | 
						|
        OS << '$';
 | 
						|
    }
 | 
						|
    Label->setMSAsmLabel(OS.str());
 | 
						|
  }
 | 
						|
  if (AlwaysCreate) {
 | 
						|
    // The label might have been created implicitly from a previously encountered
 | 
						|
    // goto statement.  So, for both newly created and looked up labels, we mark
 | 
						|
    // them as resolved.
 | 
						|
    Label->setMSAsmLabelResolved();
 | 
						|
  }
 | 
						|
  // Adjust their location for being able to generate accurate diagnostics.
 | 
						|
  Label->setLocation(Location);
 | 
						|
 | 
						|
  return Label;
 | 
						|
}
 |