317 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- tsan_fd.cpp -------------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of ThreadSanitizer (TSan), a race detector.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "tsan_fd.h"
 | |
| #include "tsan_rtl.h"
 | |
| #include <sanitizer_common/sanitizer_atomic.h>
 | |
| 
 | |
| namespace __tsan {
 | |
| 
 | |
| const int kTableSizeL1 = 1024;
 | |
| const int kTableSizeL2 = 1024;
 | |
| const int kTableSize = kTableSizeL1 * kTableSizeL2;
 | |
| 
 | |
| struct FdSync {
 | |
|   atomic_uint64_t rc;
 | |
| };
 | |
| 
 | |
| struct FdDesc {
 | |
|   FdSync *sync;
 | |
|   int creation_tid;
 | |
|   u32 creation_stack;
 | |
| };
 | |
| 
 | |
| struct FdContext {
 | |
|   atomic_uintptr_t tab[kTableSizeL1];
 | |
|   // Addresses used for synchronization.
 | |
|   FdSync globsync;
 | |
|   FdSync filesync;
 | |
|   FdSync socksync;
 | |
|   u64 connectsync;
 | |
| };
 | |
| 
 | |
| static FdContext fdctx;
 | |
| 
 | |
| static bool bogusfd(int fd) {
 | |
|   // Apparently a bogus fd value.
 | |
|   return fd < 0 || fd >= kTableSize;
 | |
| }
 | |
| 
 | |
| static FdSync *allocsync(ThreadState *thr, uptr pc) {
 | |
|   FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
 | |
|       kDefaultAlignment, false);
 | |
|   atomic_store(&s->rc, 1, memory_order_relaxed);
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| static FdSync *ref(FdSync *s) {
 | |
|   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
 | |
|     atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| static void unref(ThreadState *thr, uptr pc, FdSync *s) {
 | |
|   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
 | |
|     if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
 | |
|       CHECK_NE(s, &fdctx.globsync);
 | |
|       CHECK_NE(s, &fdctx.filesync);
 | |
|       CHECK_NE(s, &fdctx.socksync);
 | |
|       user_free(thr, pc, s, false);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
 | |
|   CHECK_GE(fd, 0);
 | |
|   CHECK_LT(fd, kTableSize);
 | |
|   atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
 | |
|   uptr l1 = atomic_load(pl1, memory_order_consume);
 | |
|   if (l1 == 0) {
 | |
|     uptr size = kTableSizeL2 * sizeof(FdDesc);
 | |
|     // We need this to reside in user memory to properly catch races on it.
 | |
|     void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
 | |
|     internal_memset(p, 0, size);
 | |
|     MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
 | |
|     if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
 | |
|       l1 = (uptr)p;
 | |
|     else
 | |
|       user_free(thr, pc, p, false);
 | |
|   }
 | |
|   FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
 | |
|   return &fds[fd % kTableSizeL2];
 | |
| }
 | |
| 
 | |
| // pd must be already ref'ed.
 | |
| static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
 | |
|     bool write = true) {
 | |
|   FdDesc *d = fddesc(thr, pc, fd);
 | |
|   // As a matter of fact, we don't intercept all close calls.
 | |
|   // See e.g. libc __res_iclose().
 | |
|   if (d->sync) {
 | |
|     unref(thr, pc, d->sync);
 | |
|     d->sync = 0;
 | |
|   }
 | |
|   if (flags()->io_sync == 0) {
 | |
|     unref(thr, pc, s);
 | |
|   } else if (flags()->io_sync == 1) {
 | |
|     d->sync = s;
 | |
|   } else if (flags()->io_sync == 2) {
 | |
|     unref(thr, pc, s);
 | |
|     d->sync = &fdctx.globsync;
 | |
|   }
 | |
|   d->creation_tid = thr->tid;
 | |
|   d->creation_stack = CurrentStackId(thr, pc);
 | |
|   if (write) {
 | |
|     // To catch races between fd usage and open.
 | |
|     MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
 | |
|   } else {
 | |
|     // See the dup-related comment in FdClose.
 | |
|     MemoryRead(thr, pc, (uptr)d, kSizeLog8);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FdInit() {
 | |
|   atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
 | |
|   atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
 | |
|   atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
 | |
| }
 | |
| 
 | |
| void FdOnFork(ThreadState *thr, uptr pc) {
 | |
|   // On fork() we need to reset all fd's, because the child is going
 | |
|   // close all them, and that will cause races between previous read/write
 | |
|   // and the close.
 | |
|   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
 | |
|     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
 | |
|     if (tab == 0)
 | |
|       break;
 | |
|     for (int l2 = 0; l2 < kTableSizeL2; l2++) {
 | |
|       FdDesc *d = &tab[l2];
 | |
|       MemoryResetRange(thr, pc, (uptr)d, 8);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
 | |
|   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
 | |
|     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
 | |
|     if (tab == 0)
 | |
|       break;
 | |
|     if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
 | |
|       int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
 | |
|       FdDesc *d = &tab[l2];
 | |
|       *fd = l1 * kTableSizeL1 + l2;
 | |
|       *tid = d->creation_tid;
 | |
|       *stack = d->creation_stack;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void FdAcquire(ThreadState *thr, uptr pc, int fd) {
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   FdDesc *d = fddesc(thr, pc, fd);
 | |
|   FdSync *s = d->sync;
 | |
|   DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
 | |
|   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
 | |
|   if (s)
 | |
|     Acquire(thr, pc, (uptr)s);
 | |
| }
 | |
| 
 | |
| void FdRelease(ThreadState *thr, uptr pc, int fd) {
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   FdDesc *d = fddesc(thr, pc, fd);
 | |
|   FdSync *s = d->sync;
 | |
|   DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
 | |
|   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
 | |
|   if (s)
 | |
|     Release(thr, pc, (uptr)s);
 | |
| }
 | |
| 
 | |
| void FdAccess(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   FdDesc *d = fddesc(thr, pc, fd);
 | |
|   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
 | |
| }
 | |
| 
 | |
| void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
 | |
|   DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   FdDesc *d = fddesc(thr, pc, fd);
 | |
|   if (write) {
 | |
|     // To catch races between fd usage and close.
 | |
|     MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
 | |
|   } else {
 | |
|     // This path is used only by dup2/dup3 calls.
 | |
|     // We do read instead of write because there is a number of legitimate
 | |
|     // cases where write would lead to false positives:
 | |
|     // 1. Some software dups a closed pipe in place of a socket before closing
 | |
|     //    the socket (to prevent races actually).
 | |
|     // 2. Some daemons dup /dev/null in place of stdin/stdout.
 | |
|     // On the other hand we have not seen cases when write here catches real
 | |
|     // bugs.
 | |
|     MemoryRead(thr, pc, (uptr)d, kSizeLog8);
 | |
|   }
 | |
|   // We need to clear it, because if we do not intercept any call out there
 | |
|   // that creates fd, we will hit false postives.
 | |
|   MemoryResetRange(thr, pc, (uptr)d, 8);
 | |
|   unref(thr, pc, d->sync);
 | |
|   d->sync = 0;
 | |
|   d->creation_tid = 0;
 | |
|   d->creation_stack = 0;
 | |
| }
 | |
| 
 | |
| void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   init(thr, pc, fd, &fdctx.filesync);
 | |
| }
 | |
| 
 | |
| void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
 | |
|   DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
 | |
|   if (bogusfd(oldfd) || bogusfd(newfd))
 | |
|     return;
 | |
|   // Ignore the case when user dups not yet connected socket.
 | |
|   FdDesc *od = fddesc(thr, pc, oldfd);
 | |
|   MemoryRead(thr, pc, (uptr)od, kSizeLog8);
 | |
|   FdClose(thr, pc, newfd, write);
 | |
|   init(thr, pc, newfd, ref(od->sync), write);
 | |
| }
 | |
| 
 | |
| void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
 | |
|   DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
 | |
|   FdSync *s = allocsync(thr, pc);
 | |
|   init(thr, pc, rfd, ref(s));
 | |
|   init(thr, pc, wfd, ref(s));
 | |
|   unref(thr, pc, s);
 | |
| }
 | |
| 
 | |
| void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   init(thr, pc, fd, allocsync(thr, pc));
 | |
| }
 | |
| 
 | |
| void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   init(thr, pc, fd, 0);
 | |
| }
 | |
| 
 | |
| void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   init(thr, pc, fd, 0);
 | |
| }
 | |
| 
 | |
| void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   init(thr, pc, fd, allocsync(thr, pc));
 | |
| }
 | |
| 
 | |
| void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   // It can be a UDP socket.
 | |
|   init(thr, pc, fd, &fdctx.socksync);
 | |
| }
 | |
| 
 | |
| void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
 | |
|   DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   // Synchronize connect->accept.
 | |
|   Acquire(thr, pc, (uptr)&fdctx.connectsync);
 | |
|   init(thr, pc, newfd, &fdctx.socksync);
 | |
| }
 | |
| 
 | |
| void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   // Synchronize connect->accept.
 | |
|   Release(thr, pc, (uptr)&fdctx.connectsync);
 | |
| }
 | |
| 
 | |
| void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
 | |
|   DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
 | |
|   if (bogusfd(fd))
 | |
|     return;
 | |
|   init(thr, pc, fd, &fdctx.socksync);
 | |
| }
 | |
| 
 | |
| uptr File2addr(const char *path) {
 | |
|   (void)path;
 | |
|   static u64 addr;
 | |
|   return (uptr)&addr;
 | |
| }
 | |
| 
 | |
| uptr Dir2addr(const char *path) {
 | |
|   (void)path;
 | |
|   static u64 addr;
 | |
|   return (uptr)&addr;
 | |
| }
 | |
| 
 | |
| }  //  namespace __tsan
 |