518 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			518 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- tsan_platform_linux.cpp -------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of ThreadSanitizer (TSan), a race detector.
 | |
| //
 | |
| // Linux- and BSD-specific code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "sanitizer_common/sanitizer_platform.h"
 | |
| #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
 | |
| 
 | |
| #include "sanitizer_common/sanitizer_common.h"
 | |
| #include "sanitizer_common/sanitizer_libc.h"
 | |
| #include "sanitizer_common/sanitizer_linux.h"
 | |
| #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
 | |
| #include "sanitizer_common/sanitizer_platform_limits_posix.h"
 | |
| #include "sanitizer_common/sanitizer_posix.h"
 | |
| #include "sanitizer_common/sanitizer_procmaps.h"
 | |
| #include "sanitizer_common/sanitizer_stackdepot.h"
 | |
| #include "sanitizer_common/sanitizer_stoptheworld.h"
 | |
| #include "tsan_flags.h"
 | |
| #include "tsan_platform.h"
 | |
| #include "tsan_rtl.h"
 | |
| 
 | |
| #include <fcntl.h>
 | |
| #include <pthread.h>
 | |
| #include <signal.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdarg.h>
 | |
| #include <sys/mman.h>
 | |
| #if SANITIZER_LINUX
 | |
| #include <sys/personality.h>
 | |
| #include <setjmp.h>
 | |
| #endif
 | |
| #include <sys/syscall.h>
 | |
| #include <sys/socket.h>
 | |
| #include <sys/time.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/resource.h>
 | |
| #include <sys/stat.h>
 | |
| #include <unistd.h>
 | |
| #include <sched.h>
 | |
| #include <dlfcn.h>
 | |
| #if SANITIZER_LINUX
 | |
| #define __need_res_state
 | |
| #include <resolv.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef sa_handler
 | |
| # undef sa_handler
 | |
| #endif
 | |
| 
 | |
| #ifdef sa_sigaction
 | |
| # undef sa_sigaction
 | |
| #endif
 | |
| 
 | |
| #if SANITIZER_FREEBSD
 | |
| extern "C" void *__libc_stack_end;
 | |
| void *__libc_stack_end = 0;
 | |
| #endif
 | |
| 
 | |
| #if SANITIZER_LINUX && defined(__aarch64__) && !SANITIZER_GO
 | |
| # define INIT_LONGJMP_XOR_KEY 1
 | |
| #else
 | |
| # define INIT_LONGJMP_XOR_KEY 0
 | |
| #endif
 | |
| 
 | |
| #if INIT_LONGJMP_XOR_KEY
 | |
| #include "interception/interception.h"
 | |
| // Must be declared outside of other namespaces.
 | |
| DECLARE_REAL(int, _setjmp, void *env)
 | |
| #endif
 | |
| 
 | |
| namespace __tsan {
 | |
| 
 | |
| #if INIT_LONGJMP_XOR_KEY
 | |
| static void InitializeLongjmpXorKey();
 | |
| static uptr longjmp_xor_key;
 | |
| #endif
 | |
| 
 | |
| #ifdef TSAN_RUNTIME_VMA
 | |
| // Runtime detected VMA size.
 | |
| uptr vmaSize;
 | |
| #endif
 | |
| 
 | |
| enum {
 | |
|   MemTotal  = 0,
 | |
|   MemShadow = 1,
 | |
|   MemMeta   = 2,
 | |
|   MemFile   = 3,
 | |
|   MemMmap   = 4,
 | |
|   MemTrace  = 5,
 | |
|   MemHeap   = 6,
 | |
|   MemOther  = 7,
 | |
|   MemCount  = 8,
 | |
| };
 | |
| 
 | |
| void FillProfileCallback(uptr p, uptr rss, bool file,
 | |
|                          uptr *mem, uptr stats_size) {
 | |
|   mem[MemTotal] += rss;
 | |
|   if (p >= ShadowBeg() && p < ShadowEnd())
 | |
|     mem[MemShadow] += rss;
 | |
|   else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
 | |
|     mem[MemMeta] += rss;
 | |
| #if !SANITIZER_GO
 | |
|   else if (p >= HeapMemBeg() && p < HeapMemEnd())
 | |
|     mem[MemHeap] += rss;
 | |
|   else if (p >= LoAppMemBeg() && p < LoAppMemEnd())
 | |
|     mem[file ? MemFile : MemMmap] += rss;
 | |
|   else if (p >= HiAppMemBeg() && p < HiAppMemEnd())
 | |
|     mem[file ? MemFile : MemMmap] += rss;
 | |
| #else
 | |
|   else if (p >= AppMemBeg() && p < AppMemEnd())
 | |
|     mem[file ? MemFile : MemMmap] += rss;
 | |
| #endif
 | |
|   else if (p >= TraceMemBeg() && p < TraceMemEnd())
 | |
|     mem[MemTrace] += rss;
 | |
|   else
 | |
|     mem[MemOther] += rss;
 | |
| }
 | |
| 
 | |
| void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
 | |
|   uptr mem[MemCount];
 | |
|   internal_memset(mem, 0, sizeof(mem[0]) * MemCount);
 | |
|   __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
 | |
|   StackDepotStats *stacks = StackDepotGetStats();
 | |
|   internal_snprintf(buf, buf_size,
 | |
|       "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
 | |
|       " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n",
 | |
|       mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
 | |
|       mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
 | |
|       mem[MemHeap] >> 20, mem[MemOther] >> 20,
 | |
|       stacks->allocated >> 20, stacks->n_uniq_ids,
 | |
|       nlive, nthread);
 | |
| }
 | |
| 
 | |
| #if SANITIZER_LINUX
 | |
| void FlushShadowMemoryCallback(
 | |
|     const SuspendedThreadsList &suspended_threads_list,
 | |
|     void *argument) {
 | |
|   ReleaseMemoryPagesToOS(ShadowBeg(), ShadowEnd());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void FlushShadowMemory() {
 | |
| #if SANITIZER_LINUX
 | |
|   StopTheWorld(FlushShadowMemoryCallback, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| // Mark shadow for .rodata sections with the special kShadowRodata marker.
 | |
| // Accesses to .rodata can't race, so this saves time, memory and trace space.
 | |
| static void MapRodata() {
 | |
|   // First create temp file.
 | |
|   const char *tmpdir = GetEnv("TMPDIR");
 | |
|   if (tmpdir == 0)
 | |
|     tmpdir = GetEnv("TEST_TMPDIR");
 | |
| #ifdef P_tmpdir
 | |
|   if (tmpdir == 0)
 | |
|     tmpdir = P_tmpdir;
 | |
| #endif
 | |
|   if (tmpdir == 0)
 | |
|     return;
 | |
|   char name[256];
 | |
|   internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
 | |
|                     tmpdir, (int)internal_getpid());
 | |
|   uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
 | |
|   if (internal_iserror(openrv))
 | |
|     return;
 | |
|   internal_unlink(name);  // Unlink it now, so that we can reuse the buffer.
 | |
|   fd_t fd = openrv;
 | |
|   // Fill the file with kShadowRodata.
 | |
|   const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
 | |
|   InternalMmapVector<u64> marker(kMarkerSize);
 | |
|   // volatile to prevent insertion of memset
 | |
|   for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
 | |
|     *p = kShadowRodata;
 | |
|   internal_write(fd, marker.data(), marker.size() * sizeof(u64));
 | |
|   // Map the file into memory.
 | |
|   uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
 | |
|                             MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
 | |
|   if (internal_iserror(page)) {
 | |
|     internal_close(fd);
 | |
|     return;
 | |
|   }
 | |
|   // Map the file into shadow of .rodata sections.
 | |
|   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
 | |
|   // Reusing the buffer 'name'.
 | |
|   MemoryMappedSegment segment(name, ARRAY_SIZE(name));
 | |
|   while (proc_maps.Next(&segment)) {
 | |
|     if (segment.filename[0] != 0 && segment.filename[0] != '[' &&
 | |
|         segment.IsReadable() && segment.IsExecutable() &&
 | |
|         !segment.IsWritable() && IsAppMem(segment.start)) {
 | |
|       // Assume it's .rodata
 | |
|       char *shadow_start = (char *)MemToShadow(segment.start);
 | |
|       char *shadow_end = (char *)MemToShadow(segment.end);
 | |
|       for (char *p = shadow_start; p < shadow_end;
 | |
|            p += marker.size() * sizeof(u64)) {
 | |
|         internal_mmap(p, Min<uptr>(marker.size() * sizeof(u64), shadow_end - p),
 | |
|                       PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   internal_close(fd);
 | |
| }
 | |
| 
 | |
| void InitializeShadowMemoryPlatform() {
 | |
|   MapRodata();
 | |
| }
 | |
| 
 | |
| #endif  // #if !SANITIZER_GO
 | |
| 
 | |
| void InitializePlatformEarly() {
 | |
| #ifdef TSAN_RUNTIME_VMA
 | |
|   vmaSize =
 | |
|     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
 | |
| #if defined(__aarch64__)
 | |
| # if !SANITIZER_GO
 | |
|   if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) {
 | |
|     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
 | |
|     Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize);
 | |
|     Die();
 | |
|   }
 | |
| #else
 | |
|   if (vmaSize != 48) {
 | |
|     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
 | |
|     Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
 | |
|     Die();
 | |
|   }
 | |
| #endif
 | |
| #elif defined(__powerpc64__)
 | |
| # if !SANITIZER_GO
 | |
|   if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) {
 | |
|     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
 | |
|     Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize);
 | |
|     Die();
 | |
|   }
 | |
| # else
 | |
|   if (vmaSize != 46 && vmaSize != 47) {
 | |
|     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
 | |
|     Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize);
 | |
|     Die();
 | |
|   }
 | |
| # endif
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void InitializePlatform() {
 | |
|   DisableCoreDumperIfNecessary();
 | |
| 
 | |
|   // Go maps shadow memory lazily and works fine with limited address space.
 | |
|   // Unlimited stack is not a problem as well, because the executable
 | |
|   // is not compiled with -pie.
 | |
| #if !SANITIZER_GO
 | |
|   {
 | |
|     bool reexec = false;
 | |
|     // TSan doesn't play well with unlimited stack size (as stack
 | |
|     // overlaps with shadow memory). If we detect unlimited stack size,
 | |
|     // we re-exec the program with limited stack size as a best effort.
 | |
|     if (StackSizeIsUnlimited()) {
 | |
|       const uptr kMaxStackSize = 32 * 1024 * 1024;
 | |
|       VReport(1, "Program is run with unlimited stack size, which wouldn't "
 | |
|                  "work with ThreadSanitizer.\n"
 | |
|                  "Re-execing with stack size limited to %zd bytes.\n",
 | |
|               kMaxStackSize);
 | |
|       SetStackSizeLimitInBytes(kMaxStackSize);
 | |
|       reexec = true;
 | |
|     }
 | |
| 
 | |
|     if (!AddressSpaceIsUnlimited()) {
 | |
|       Report("WARNING: Program is run with limited virtual address space,"
 | |
|              " which wouldn't work with ThreadSanitizer.\n");
 | |
|       Report("Re-execing with unlimited virtual address space.\n");
 | |
|       SetAddressSpaceUnlimited();
 | |
|       reexec = true;
 | |
|     }
 | |
| #if SANITIZER_LINUX && defined(__aarch64__)
 | |
|     // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
 | |
|     // linux kernel, the random gap between stack and mapped area is increased
 | |
|     // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
 | |
|     // this big range, we should disable randomized virtual space on aarch64.
 | |
|     int old_personality = personality(0xffffffff);
 | |
|     if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
 | |
|       VReport(1, "WARNING: Program is run with randomized virtual address "
 | |
|               "space, which wouldn't work with ThreadSanitizer.\n"
 | |
|               "Re-execing with fixed virtual address space.\n");
 | |
|       CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
 | |
|       reexec = true;
 | |
|     }
 | |
|     // Initialize the xor key used in {sig}{set,long}jump.
 | |
|     InitializeLongjmpXorKey();
 | |
| #endif
 | |
|     if (reexec)
 | |
|       ReExec();
 | |
|   }
 | |
| 
 | |
|   CheckAndProtect();
 | |
|   InitTlsSize();
 | |
| #endif  // !SANITIZER_GO
 | |
| }
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| // Extract file descriptors passed to glibc internal __res_iclose function.
 | |
| // This is required to properly "close" the fds, because we do not see internal
 | |
| // closes within glibc. The code is a pure hack.
 | |
| int ExtractResolvFDs(void *state, int *fds, int nfd) {
 | |
| #if SANITIZER_LINUX && !SANITIZER_ANDROID
 | |
|   int cnt = 0;
 | |
|   struct __res_state *statp = (struct __res_state*)state;
 | |
|   for (int i = 0; i < MAXNS && cnt < nfd; i++) {
 | |
|     if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
 | |
|       fds[cnt++] = statp->_u._ext.nssocks[i];
 | |
|   }
 | |
|   return cnt;
 | |
| #else
 | |
|   return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Extract file descriptors passed via UNIX domain sockets.
 | |
| // This is requried to properly handle "open" of these fds.
 | |
| // see 'man recvmsg' and 'man 3 cmsg'.
 | |
| int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
 | |
|   int res = 0;
 | |
|   msghdr *msg = (msghdr*)msgp;
 | |
|   struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
 | |
|   for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
 | |
|     if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
 | |
|       continue;
 | |
|     int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
 | |
|     for (int i = 0; i < n; i++) {
 | |
|       fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
 | |
|       if (res == nfd)
 | |
|         return res;
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| // Reverse operation of libc stack pointer mangling
 | |
| static uptr UnmangleLongJmpSp(uptr mangled_sp) {
 | |
| #if defined(__x86_64__)
 | |
| # if SANITIZER_LINUX
 | |
|   // Reverse of:
 | |
|   //   xor  %fs:0x30, %rsi
 | |
|   //   rol  $0x11, %rsi
 | |
|   uptr sp;
 | |
|   asm("ror  $0x11,     %0 \n"
 | |
|       "xor  %%fs:0x30, %0 \n"
 | |
|       : "=r" (sp)
 | |
|       : "0" (mangled_sp));
 | |
|   return sp;
 | |
| # else
 | |
|   return mangled_sp;
 | |
| # endif
 | |
| #elif defined(__aarch64__)
 | |
| # if SANITIZER_LINUX
 | |
|   return mangled_sp ^ longjmp_xor_key;
 | |
| # else
 | |
|   return mangled_sp;
 | |
| # endif
 | |
| #elif defined(__powerpc64__)
 | |
|   // Reverse of:
 | |
|   //   ld   r4, -28696(r13)
 | |
|   //   xor  r4, r3, r4
 | |
|   uptr xor_key;
 | |
|   asm("ld  %0, -28696(%%r13)" : "=r" (xor_key));
 | |
|   return mangled_sp ^ xor_key;
 | |
| #elif defined(__mips__)
 | |
|   return mangled_sp;
 | |
| #else
 | |
|   #error "Unknown platform"
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if SANITIZER_NETBSD
 | |
| # ifdef __x86_64__
 | |
| #  define LONG_JMP_SP_ENV_SLOT 6
 | |
| # else
 | |
| #  error unsupported
 | |
| # endif
 | |
| #elif defined(__powerpc__)
 | |
| # define LONG_JMP_SP_ENV_SLOT 0
 | |
| #elif SANITIZER_FREEBSD
 | |
| # define LONG_JMP_SP_ENV_SLOT 2
 | |
| #elif SANITIZER_LINUX
 | |
| # ifdef __aarch64__
 | |
| #  define LONG_JMP_SP_ENV_SLOT 13
 | |
| # elif defined(__mips64)
 | |
| #  define LONG_JMP_SP_ENV_SLOT 1
 | |
| # else
 | |
| #  define LONG_JMP_SP_ENV_SLOT 6
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| uptr ExtractLongJmpSp(uptr *env) {
 | |
|   uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
 | |
|   return UnmangleLongJmpSp(mangled_sp);
 | |
| }
 | |
| 
 | |
| #if INIT_LONGJMP_XOR_KEY
 | |
| // GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp
 | |
| // functions) by XORing them with a random key.  For AArch64 it is a global
 | |
| // variable rather than a TCB one (as for x86_64/powerpc).  We obtain the key by
 | |
| // issuing a setjmp and XORing the SP pointer values to derive the key.
 | |
| static void InitializeLongjmpXorKey() {
 | |
|   // 1. Call REAL(setjmp), which stores the mangled SP in env.
 | |
|   jmp_buf env;
 | |
|   REAL(_setjmp)(env);
 | |
| 
 | |
|   // 2. Retrieve vanilla/mangled SP.
 | |
|   uptr sp;
 | |
|   asm("mov  %0, sp" : "=r" (sp));
 | |
|   uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT];
 | |
| 
 | |
|   // 3. xor SPs to obtain key.
 | |
|   longjmp_xor_key = mangled_sp ^ sp;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
 | |
|   // Check that the thr object is in tls;
 | |
|   const uptr thr_beg = (uptr)thr;
 | |
|   const uptr thr_end = (uptr)thr + sizeof(*thr);
 | |
|   CHECK_GE(thr_beg, tls_addr);
 | |
|   CHECK_LE(thr_beg, tls_addr + tls_size);
 | |
|   CHECK_GE(thr_end, tls_addr);
 | |
|   CHECK_LE(thr_end, tls_addr + tls_size);
 | |
|   // Since the thr object is huge, skip it.
 | |
|   MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, thr_beg - tls_addr);
 | |
|   MemoryRangeImitateWrite(thr, /*pc=*/2, thr_end,
 | |
|                           tls_addr + tls_size - thr_end);
 | |
| }
 | |
| 
 | |
| // Note: this function runs with async signals enabled,
 | |
| // so it must not touch any tsan state.
 | |
| int call_pthread_cancel_with_cleanup(int (*fn)(void *arg),
 | |
|                                      void (*cleanup)(void *arg), void *arg) {
 | |
|   // pthread_cleanup_push/pop are hardcore macros mess.
 | |
|   // We can't intercept nor call them w/o including pthread.h.
 | |
|   int res;
 | |
|   pthread_cleanup_push(cleanup, arg);
 | |
|   res = fn(arg);
 | |
|   pthread_cleanup_pop(0);
 | |
|   return res;
 | |
| }
 | |
| #endif  // !SANITIZER_GO
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| void ReplaceSystemMalloc() { }
 | |
| #endif
 | |
| 
 | |
| #if !SANITIZER_GO
 | |
| #if SANITIZER_ANDROID
 | |
| // On Android, one thread can call intercepted functions after
 | |
| // DestroyThreadState(), so add a fake thread state for "dead" threads.
 | |
| static ThreadState *dead_thread_state = nullptr;
 | |
| 
 | |
| ThreadState *cur_thread() {
 | |
|   ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
 | |
|   if (thr == nullptr) {
 | |
|     __sanitizer_sigset_t emptyset;
 | |
|     internal_sigfillset(&emptyset);
 | |
|     __sanitizer_sigset_t oldset;
 | |
|     CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
 | |
|     thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
 | |
|     if (thr == nullptr) {
 | |
|       thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
 | |
|                                                      "ThreadState"));
 | |
|       *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
 | |
|       if (dead_thread_state == nullptr) {
 | |
|         dead_thread_state = reinterpret_cast<ThreadState*>(
 | |
|             MmapOrDie(sizeof(ThreadState), "ThreadState"));
 | |
|         dead_thread_state->fast_state.SetIgnoreBit();
 | |
|         dead_thread_state->ignore_interceptors = 1;
 | |
|         dead_thread_state->is_dead = true;
 | |
|         *const_cast<int*>(&dead_thread_state->tid) = -1;
 | |
|         CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
 | |
|                                       PROT_READ));
 | |
|       }
 | |
|     }
 | |
|     CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
 | |
|   }
 | |
|   return thr;
 | |
| }
 | |
| 
 | |
| void set_cur_thread(ThreadState *thr) {
 | |
|   *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
 | |
| }
 | |
| 
 | |
| void cur_thread_finalize() {
 | |
|   __sanitizer_sigset_t emptyset;
 | |
|   internal_sigfillset(&emptyset);
 | |
|   __sanitizer_sigset_t oldset;
 | |
|   CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
 | |
|   ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
 | |
|   if (thr != dead_thread_state) {
 | |
|     *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state);
 | |
|     UnmapOrDie(thr, sizeof(ThreadState));
 | |
|   }
 | |
|   CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
 | |
| }
 | |
| #endif  // SANITIZER_ANDROID
 | |
| #endif  // if !SANITIZER_GO
 | |
| 
 | |
| }  // namespace __tsan
 | |
| 
 | |
| #endif  // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
 |