1650 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			1650 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
| //===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
 | |
| //
 | |
| //  This file implements the bison parser for LLVM assembly languages files.
 | |
| //
 | |
| //===------------------------------------------------------------------------=//
 | |
| 
 | |
| %{
 | |
| #include "ParserInternals.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/Argument.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include "Support/DepthFirstIterator.h"
 | |
| #include <list>
 | |
| #include <utility>            // Get definition of pair class
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| using std::list;
 | |
| using std::vector;
 | |
| using std::pair;
 | |
| using std::map;
 | |
| using std::pair;
 | |
| using std::make_pair;
 | |
| using std::cerr;
 | |
| using std::string;
 | |
| 
 | |
| int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
 | |
| int yylex();                       // declaration" of xxx warnings.
 | |
| int yyparse();
 | |
| 
 | |
| static Module *ParserResult;
 | |
| string CurFilename;
 | |
| 
 | |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
 | |
| // relating to upreferences in the input stream.
 | |
| //
 | |
| //#define DEBUG_UPREFS 1
 | |
| #ifdef DEBUG_UPREFS
 | |
| #define UR_OUT(X) cerr << X
 | |
| #else
 | |
| #define UR_OUT(X)
 | |
| #endif
 | |
| 
 | |
| #define YYERROR_VERBOSE 1
 | |
| 
 | |
| // This contains info used when building the body of a function.  It is
 | |
| // destroyed when the function is completed.
 | |
| //
 | |
| typedef vector<Value *> ValueList;           // Numbered defs
 | |
| static void ResolveDefinitions(vector<ValueList> &LateResolvers,
 | |
|                                vector<ValueList> *FutureLateResolvers = 0);
 | |
| 
 | |
| static struct PerModuleInfo {
 | |
|   Module *CurrentModule;
 | |
|   vector<ValueList>    Values;     // Module level numbered definitions
 | |
|   vector<ValueList>    LateResolveValues;
 | |
|   vector<PATypeHolder> Types;
 | |
|   map<ValID, PATypeHolder> LateResolveTypes;
 | |
| 
 | |
|   // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
 | |
|   // references to global values.  Global values may be referenced before they
 | |
|   // are defined, and if so, the temporary object that they represent is held
 | |
|   // here.  This is used for forward references of ConstantPointerRefs.
 | |
|   //
 | |
|   typedef map<pair<const PointerType *, ValID>, GlobalVariable*> GlobalRefsType;
 | |
|   GlobalRefsType GlobalRefs;
 | |
| 
 | |
|   void ModuleDone() {
 | |
|     // If we could not resolve some functions at function compilation time
 | |
|     // (calls to functions before they are defined), resolve them now...  Types
 | |
|     // are resolved when the constant pool has been completely parsed.
 | |
|     //
 | |
|     ResolveDefinitions(LateResolveValues);
 | |
| 
 | |
|     // Check to make sure that all global value forward references have been
 | |
|     // resolved!
 | |
|     //
 | |
|     if (!GlobalRefs.empty()) {
 | |
|       string UndefinedReferences = "Unresolved global references exist:\n";
 | |
|       
 | |
|       for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
 | |
|            I != E; ++I) {
 | |
|         UndefinedReferences += "  " + I->first.first->getDescription() + " " +
 | |
|                                I->first.second.getName() + "\n";
 | |
|       }
 | |
|       ThrowException(UndefinedReferences);
 | |
|     }
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     Types.clear();
 | |
|     CurrentModule = 0;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // DeclareNewGlobalValue - Called every time a new GV has been defined.  This
 | |
|   // is used to remove things from the forward declaration map, resolving them
 | |
|   // to the correct thing as needed.
 | |
|   //
 | |
|   void DeclareNewGlobalValue(GlobalValue *GV, ValID D) {
 | |
|     // Check to see if there is a forward reference to this global variable...
 | |
|     // if there is, eliminate it and patch the reference to use the new def'n.
 | |
|     GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D));
 | |
| 
 | |
|     if (I != GlobalRefs.end()) {
 | |
|       GlobalVariable *OldGV = I->second;   // Get the placeholder...
 | |
|       I->first.second.destroy();  // Free string memory if neccesary
 | |
|       
 | |
|       // Loop over all of the uses of the GlobalValue.  The only thing they are
 | |
|       // allowed to be is ConstantPointerRef's.
 | |
|       assert(OldGV->use_size() == 1 && "Only one reference should exist!");
 | |
|       while (!OldGV->use_empty()) {
 | |
|         User *U = OldGV->use_back();  // Must be a ConstantPointerRef...
 | |
|         ConstantPointerRef *CPR = cast<ConstantPointerRef>(U);
 | |
|         assert(CPR->getValue() == OldGV && "Something isn't happy");
 | |
|         
 | |
|         // Change the const pool reference to point to the real global variable
 | |
|         // now.  This should drop a use from the OldGV.
 | |
|         CPR->mutateReferences(OldGV, GV);
 | |
|       }
 | |
|       
 | |
|       // Remove OldGV from the module...
 | |
|       CurrentModule->getGlobalList().remove(OldGV);
 | |
|       delete OldGV;                        // Delete the old placeholder
 | |
|       
 | |
|       // Remove the map entry for the global now that it has been created...
 | |
|       GlobalRefs.erase(I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| } CurModule;
 | |
| 
 | |
| static struct PerFunctionInfo {
 | |
|   Function *CurrentFunction;     // Pointer to current function being created
 | |
| 
 | |
|   vector<ValueList> Values;      // Keep track of numbered definitions
 | |
|   vector<ValueList> LateResolveValues;
 | |
|   vector<PATypeHolder> Types;
 | |
|   map<ValID, PATypeHolder> LateResolveTypes;
 | |
|   bool isDeclare;                // Is this function a forward declararation?
 | |
| 
 | |
|   inline PerFunctionInfo() {
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|   }
 | |
| 
 | |
|   inline ~PerFunctionInfo() {}
 | |
| 
 | |
|   inline void FunctionStart(Function *M) {
 | |
|     CurrentFunction = M;
 | |
|   }
 | |
| 
 | |
|   void FunctionDone() {
 | |
|     // If we could not resolve some blocks at parsing time (forward branches)
 | |
|     // resolve the branches now...
 | |
|     ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     Types.clear();
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|   }
 | |
| } CurMeth;  // Info for the current function...
 | |
| 
 | |
| static bool inFunctionScope() { return CurMeth.CurrentFunction != 0; }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Code to handle definitions of all the types
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static int InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) {
 | |
|   if (D->hasName()) return -1;           // Is this a numbered definition?
 | |
| 
 | |
|   // Yes, insert the value into the value table...
 | |
|   unsigned type = D->getType()->getUniqueID();
 | |
|   if (ValueTab.size() <= type)
 | |
|     ValueTab.resize(type+1, ValueList());
 | |
|   //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
 | |
|   ValueTab[type].push_back(D);
 | |
|   return ValueTab[type].size()-1;
 | |
| }
 | |
| 
 | |
| // TODO: FIXME when Type are not const
 | |
| static void InsertType(const Type *Ty, vector<PATypeHolder> &Types) {
 | |
|   Types.push_back(Ty);
 | |
| }
 | |
| 
 | |
| static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal: {                 // Is it a numbered definition?
 | |
|     unsigned Num = (unsigned)D.Num;
 | |
| 
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     if (Num < CurModule.Types.size()) 
 | |
|       return CurModule.Types[Num];
 | |
| 
 | |
|     Num -= CurModule.Types.size();
 | |
| 
 | |
|     // Check that the number is within bounds...
 | |
|     if (Num <= CurMeth.Types.size())
 | |
|       return CurMeth.Types[Num];
 | |
|     break;
 | |
|   }
 | |
|   case ValID::NameVal: {                // Is it a named definition?
 | |
|     string Name(D.Name);
 | |
|     SymbolTable *SymTab = 0;
 | |
|     if (inFunctionScope()) SymTab = CurMeth.CurrentFunction->getSymbolTable();
 | |
|     Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0;
 | |
| 
 | |
|     if (N == 0) {
 | |
|       // Symbol table doesn't automatically chain yet... because the function
 | |
|       // hasn't been added to the module...
 | |
|       //
 | |
|       SymTab = CurModule.CurrentModule->getSymbolTable();
 | |
|       if (SymTab)
 | |
|         N = SymTab->lookup(Type::TypeTy, Name);
 | |
|       if (N == 0) break;
 | |
|     }
 | |
| 
 | |
|     D.destroy();  // Free old strdup'd memory...
 | |
|     return cast<const Type>(N);
 | |
|   }
 | |
|   default:
 | |
|     ThrowException("Internal parser error: Invalid symbol type reference!");
 | |
|   }
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
 | |
| 
 | |
|   map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? 
 | |
|     CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
 | |
|   
 | |
|   map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
 | |
|   if (I != LateResolver.end()) {
 | |
|     return I->second;
 | |
|   }
 | |
| 
 | |
|   Type *Typ = OpaqueType::get();
 | |
|   LateResolver.insert(make_pair(D, Typ));
 | |
|   return Typ;
 | |
| }
 | |
| 
 | |
| static Value *lookupInSymbolTable(const Type *Ty, const string &Name) {
 | |
|   SymbolTable *SymTab = 
 | |
|     inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTable() :
 | |
|                         CurModule.CurrentModule->getSymbolTable();
 | |
|   return SymTab ? SymTab->lookup(Ty, Name) : 0;
 | |
| }
 | |
| 
 | |
| // getValNonImprovising - Look up the value specified by the provided type and
 | |
| // the provided ValID.  If the value exists and has already been defined, return
 | |
| // it.  Otherwise return null.
 | |
| //
 | |
| static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
 | |
|   if (isa<FunctionType>(Ty))
 | |
|     ThrowException("Functions are not values and "
 | |
|                    "must be referenced as pointers");
 | |
| 
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal: {                 // Is it a numbered definition?
 | |
|     unsigned type = Ty->getUniqueID();
 | |
|     unsigned Num = (unsigned)D.Num;
 | |
| 
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     if (type < CurModule.Values.size()) {
 | |
|       if (Num < CurModule.Values[type].size()) 
 | |
|         return CurModule.Values[type][Num];
 | |
| 
 | |
|       Num -= CurModule.Values[type].size();
 | |
|     }
 | |
| 
 | |
|     // Make sure that our type is within bounds
 | |
|     if (CurMeth.Values.size() <= type) return 0;
 | |
| 
 | |
|     // Check that the number is within bounds...
 | |
|     if (CurMeth.Values[type].size() <= Num) return 0;
 | |
|   
 | |
|     return CurMeth.Values[type][Num];
 | |
|   }
 | |
| 
 | |
|   case ValID::NameVal: {                // Is it a named definition?
 | |
|     Value *N = lookupInSymbolTable(Ty, string(D.Name));
 | |
|     if (N == 0) return 0;
 | |
| 
 | |
|     D.destroy();  // Free old strdup'd memory...
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that "Ty" is an integral type, and that our 
 | |
|   // value will fit into the specified type...
 | |
|   case ValID::ConstSIntVal:    // Is it a constant pool reference??
 | |
|     if (Ty == Type::BoolTy) {  // Special handling for boolean data
 | |
|       return ConstantBool::get(D.ConstPool64 != 0);
 | |
|     } else {
 | |
|       if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
 | |
| 	ThrowException("Signed integral constant '" +
 | |
| 		       itostr(D.ConstPool64) + "' is invalid for type '" + 
 | |
| 		       Ty->getDescription() + "'!");
 | |
|       return ConstantSInt::get(Ty, D.ConstPool64);
 | |
|     }
 | |
| 
 | |
|   case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
 | |
|     if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
 | |
|       if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
 | |
| 	ThrowException("Integral constant '" + utostr(D.UConstPool64) +
 | |
|                        "' is invalid or out of range!");
 | |
|       } else {     // This is really a signed reference.  Transmogrify.
 | |
| 	return ConstantSInt::get(Ty, D.ConstPool64);
 | |
|       }
 | |
|     } else {
 | |
|       return ConstantUInt::get(Ty, D.UConstPool64);
 | |
|     }
 | |
| 
 | |
|   case ValID::ConstFPVal:        // Is it a floating point const pool reference?
 | |
|     if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
 | |
|       ThrowException("FP constant invalid for type!!");
 | |
|     return ConstantFP::get(Ty, D.ConstPoolFP);
 | |
|     
 | |
|   case ValID::ConstNullVal:      // Is it a null value?
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       ThrowException("Cannot create a a non pointer null!");
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
|     
 | |
|   default:
 | |
|     assert(0 && "Unhandled case!");
 | |
|     return 0;
 | |
|   }   // End of switch
 | |
| 
 | |
|   assert(0 && "Unhandled case!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| // getVal - This function is identical to getValNonImprovising, except that if a
 | |
| // value is not already defined, it "improvises" by creating a placeholder var
 | |
| // that looks and acts just like the requested variable.  When the value is
 | |
| // defined later, all uses of the placeholder variable are replaced with the
 | |
| // real thing.
 | |
| //
 | |
| static Value *getVal(const Type *Ty, const ValID &D) {
 | |
|   assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");
 | |
| 
 | |
|   // See if the value has already been defined...
 | |
|   Value *V = getValNonImprovising(Ty, D);
 | |
|   if (V) return V;
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   Value *d = 0;
 | |
|   switch (Ty->getPrimitiveID()) {
 | |
|   case Type::LabelTyID:  d = new   BBPlaceHolder(Ty, D); break;
 | |
|   default:               d = new ValuePlaceHolder(Ty, D); break;
 | |
|   }
 | |
| 
 | |
|   assert(d != 0 && "How did we not make something?");
 | |
|   if (inFunctionScope())
 | |
|     InsertValue(d, CurMeth.LateResolveValues);
 | |
|   else 
 | |
|     InsertValue(d, CurModule.LateResolveValues);
 | |
|   return d;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //              Code to handle forward references in instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This code handles the late binding needed with statements that reference
 | |
| // values not defined yet... for example, a forward branch, or the PHI node for
 | |
| // a loop body.
 | |
| //
 | |
| // This keeps a table (CurMeth.LateResolveValues) of all such forward references
 | |
| // and back patchs after we are done.
 | |
| //
 | |
| 
 | |
| // ResolveDefinitions - If we could not resolve some defs at parsing 
 | |
| // time (forward branches, phi functions for loops, etc...) resolve the 
 | |
| // defs now...
 | |
| //
 | |
| static void ResolveDefinitions(vector<ValueList> &LateResolvers,
 | |
|                                vector<ValueList> *FutureLateResolvers = 0) {
 | |
|   // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
 | |
|   for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
 | |
|     while (!LateResolvers[ty].empty()) {
 | |
|       Value *V = LateResolvers[ty].back();
 | |
|       assert(!isa<Type>(V) && "Types should be in LateResolveTypes!");
 | |
| 
 | |
|       LateResolvers[ty].pop_back();
 | |
|       ValID &DID = getValIDFromPlaceHolder(V);
 | |
| 
 | |
|       Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID);
 | |
|       if (TheRealValue) {
 | |
|         V->replaceAllUsesWith(TheRealValue);
 | |
|         delete V;
 | |
|       } else if (FutureLateResolvers) {
 | |
|         // Functions have their unresolved items forwarded to the module late
 | |
|         // resolver table
 | |
|         InsertValue(V, *FutureLateResolvers);
 | |
|       } else {
 | |
| 	if (DID.Type == ValID::NameVal)
 | |
| 	  ThrowException("Reference to an invalid definition: '" +DID.getName()+
 | |
| 			 "' of type '" + V->getType()->getDescription() + "'",
 | |
| 			 getLineNumFromPlaceHolder(V));
 | |
| 	else
 | |
| 	  ThrowException("Reference to an invalid definition: #" +
 | |
| 			 itostr(DID.Num) + " of type '" + 
 | |
| 			 V->getType()->getDescription() + "'",
 | |
| 			 getLineNumFromPlaceHolder(V));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LateResolvers.clear();
 | |
| }
 | |
| 
 | |
| // ResolveTypeTo - A brand new type was just declared.  This means that (if
 | |
| // name is not null) things referencing Name can be resolved.  Otherwise, things
 | |
| // refering to the number can be resolved.  Do this now.
 | |
| //
 | |
| static void ResolveTypeTo(char *Name, const Type *ToTy) {
 | |
|   vector<PATypeHolder> &Types = inFunctionScope() ? 
 | |
|      CurMeth.Types : CurModule.Types;
 | |
| 
 | |
|    ValID D;
 | |
|    if (Name) D = ValID::create(Name);
 | |
|    else      D = ValID::create((int)Types.size());
 | |
| 
 | |
|    map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? 
 | |
|      CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
 | |
|   
 | |
|    map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
 | |
|    if (I != LateResolver.end()) {
 | |
|      ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
 | |
|      LateResolver.erase(I);
 | |
|    }
 | |
| }
 | |
| 
 | |
| // ResolveTypes - At this point, all types should be resolved.  Any that aren't
 | |
| // are errors.
 | |
| //
 | |
| static void ResolveTypes(map<ValID, PATypeHolder> &LateResolveTypes) {
 | |
|   if (!LateResolveTypes.empty()) {
 | |
|     const ValID &DID = LateResolveTypes.begin()->first;
 | |
| 
 | |
|     if (DID.Type == ValID::NameVal)
 | |
|       ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
 | |
|     else
 | |
|       ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // setValueName - Set the specified value to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is freed by this function.
 | |
| //
 | |
| // This function returns true if the value has already been defined, but is
 | |
| // allowed to be redefined in the specified context.  If the name is a new name
 | |
| // for the typeplane, false is returned.
 | |
| //
 | |
| static bool setValueName(Value *V, char *NameStr) {
 | |
|   if (NameStr == 0) return false;
 | |
|   
 | |
|   string Name(NameStr);           // Copy string
 | |
|   free(NameStr);                  // Free old string
 | |
| 
 | |
|   if (V->getType() == Type::VoidTy) 
 | |
|     ThrowException("Can't assign name '" + Name + 
 | |
| 		   "' to a null valued instruction!");
 | |
| 
 | |
|   SymbolTable *ST = inFunctionScope() ? 
 | |
|     CurMeth.CurrentFunction->getSymbolTableSure() : 
 | |
|     CurModule.CurrentModule->getSymbolTableSure();
 | |
| 
 | |
|   Value *Existing = ST->lookup(V->getType(), Name);
 | |
|   if (Existing) {    // Inserting a name that is already defined???
 | |
|     // There is only one case where this is allowed: when we are refining an
 | |
|     // opaque type.  In this case, Existing will be an opaque type.
 | |
|     if (const Type *Ty = dyn_cast<const Type>(Existing)) {
 | |
|       if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) {
 | |
| 	// We ARE replacing an opaque type!
 | |
| 	((OpaqueType*)OpTy)->refineAbstractTypeTo(cast<Type>(V));
 | |
| 	return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we are a simple redefinition of a value, check to see if it
 | |
|     // is defined the same as the old one...
 | |
|     if (const Type *Ty = dyn_cast<const Type>(Existing)) {
 | |
|       if (Ty == cast<const Type>(V)) return true;  // Yes, it's equal.
 | |
|       // cerr << "Type: " << Ty->getDescription() << " != "
 | |
|       //      << cast<const Type>(V)->getDescription() << "!\n";
 | |
|     } else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) {
 | |
|       // We are allowed to redefine a global variable in two circumstances:
 | |
|       // 1. If at least one of the globals is uninitialized or 
 | |
|       // 2. If both initializers have the same value.
 | |
|       //
 | |
|       // This can only be done if the const'ness of the vars is the same.
 | |
|       //
 | |
|       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | |
|         if (EGV->isConstant() == GV->isConstant() &&
 | |
|             (!EGV->hasInitializer() || !GV->hasInitializer() ||
 | |
|              EGV->getInitializer() == GV->getInitializer())) {
 | |
| 
 | |
|           // Make sure the existing global version gets the initializer!
 | |
|           if (GV->hasInitializer() && !EGV->hasInitializer())
 | |
|             EGV->setInitializer(GV->getInitializer());
 | |
|           
 | |
| 	  delete GV;     // Destroy the duplicate!
 | |
|           return true;   // They are equivalent!
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     ThrowException("Redefinition of value named '" + Name + "' in the '" +
 | |
| 		   V->getType()->getDescription() + "' type plane!");
 | |
|   }
 | |
| 
 | |
|   V->setName(Name, ST);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code for handling upreferences in type names...
 | |
| //
 | |
| 
 | |
| // TypeContains - Returns true if Ty contains E in it.
 | |
| //
 | |
| static bool TypeContains(const Type *Ty, const Type *E) {
 | |
|   return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
 | |
| }
 | |
| 
 | |
| 
 | |
| static vector<pair<unsigned, OpaqueType *> > UpRefs;
 | |
| 
 | |
| static PATypeHolder HandleUpRefs(const Type *ty) {
 | |
|   PATypeHolder Ty(ty);
 | |
|   UR_OUT("Type '" << ty->getDescription() << 
 | |
|          "' newly formed.  Resolving upreferences.\n" <<
 | |
|          UpRefs.size() << " upreferences active!\n");
 | |
|   for (unsigned i = 0; i < UpRefs.size(); ) {
 | |
|     UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 
 | |
| 	   << UpRefs[i].second->getDescription() << ") = " 
 | |
| 	   << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl);
 | |
|     if (TypeContains(Ty, UpRefs[i].second)) {
 | |
|       unsigned Level = --UpRefs[i].first;   // Decrement level of upreference
 | |
|       UR_OUT("  Uplevel Ref Level = " << Level << endl);
 | |
|       if (Level == 0) {                     // Upreference should be resolved! 
 | |
| 	UR_OUT("  * Resolving upreference for "
 | |
|                << UpRefs[i].second->getDescription() << endl;
 | |
| 	       string OldName = UpRefs[i].second->getDescription());
 | |
| 	UpRefs[i].second->refineAbstractTypeTo(Ty);
 | |
| 	UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
 | |
| 	UR_OUT("  * Type '" << OldName << "' refined upreference to: "
 | |
| 	       << (const void*)Ty << ", " << Ty->getDescription() << endl);
 | |
| 	continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ++i;                                  // Otherwise, no resolve, move on...
 | |
|   }
 | |
|   // FIXME: TODO: this should return the updated type
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            RunVMAsmParser - Define an interface to this parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| Module *RunVMAsmParser(const string &Filename, FILE *F) {
 | |
|   llvmAsmin = F;
 | |
|   CurFilename = Filename;
 | |
|   llvmAsmlineno = 1;      // Reset the current line number...
 | |
| 
 | |
|   CurModule.CurrentModule = new Module();  // Allocate a new module to read
 | |
|   yyparse();       // Parse the file.
 | |
|   Module *Result = ParserResult;
 | |
|   llvmAsmin = stdin;    // F is about to go away, don't use it anymore...
 | |
|   ParserResult = 0;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| %}
 | |
| 
 | |
| %union {
 | |
|   Module                           *ModuleVal;
 | |
|   Function                         *FunctionVal;
 | |
|   std::pair<Argument*, char*>      *ArgVal;
 | |
|   BasicBlock                       *BasicBlockVal;
 | |
|   TerminatorInst                   *TermInstVal;
 | |
|   Instruction                      *InstVal;
 | |
|   Constant                         *ConstVal;
 | |
| 
 | |
|   const Type                       *PrimType;
 | |
|   PATypeHolder                     *TypeVal;
 | |
|   Value                            *ValueVal;
 | |
| 
 | |
|   std::list<std::pair<Argument*,char*> > *ArgList;
 | |
|   std::vector<Value*>              *ValueList;
 | |
|   std::list<PATypeHolder>          *TypeList;
 | |
|   std::list<std::pair<Value*,
 | |
|                       BasicBlock*> > *PHIList; // Represent the RHS of PHI node
 | |
|   std::vector<std::pair<Constant*, BasicBlock*> > *JumpTable;
 | |
|   std::vector<Constant*>           *ConstVector;
 | |
| 
 | |
|   int64_t                           SInt64Val;
 | |
|   uint64_t                          UInt64Val;
 | |
|   int                               SIntVal;
 | |
|   unsigned                          UIntVal;
 | |
|   double                            FPVal;
 | |
|   bool                              BoolVal;
 | |
| 
 | |
|   char                             *StrVal;   // This memory is strdup'd!
 | |
|   ValID                             ValIDVal; // strdup'd memory maybe!
 | |
| 
 | |
|   Instruction::UnaryOps             UnaryOpVal;
 | |
|   Instruction::BinaryOps            BinaryOpVal;
 | |
|   Instruction::TermOps              TermOpVal;
 | |
|   Instruction::MemoryOps            MemOpVal;
 | |
|   Instruction::OtherOps             OtherOpVal;
 | |
| }
 | |
| 
 | |
| %type <ModuleVal>     Module FunctionList
 | |
| %type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
 | |
| %type <BasicBlockVal> BasicBlock InstructionList
 | |
| %type <TermInstVal>   BBTerminatorInst
 | |
| %type <InstVal>       Inst InstVal MemoryInst
 | |
| %type <ConstVal>      ConstVal ConstExpr
 | |
| %type <ConstVector>   ConstVector
 | |
| %type <ArgList>       ArgList ArgListH
 | |
| %type <ArgVal>        ArgVal
 | |
| %type <PHIList>       PHIList
 | |
| %type <ValueList>     ValueRefList ValueRefListE  // For call param lists
 | |
| %type <ValueList>     IndexList                   // For GEP derived indices
 | |
| %type <TypeList>      TypeListI ArgTypeListI
 | |
| %type <JumpTable>     JumpTable
 | |
| %type <BoolVal>       GlobalType OptInternal      // GLOBAL or CONSTANT? Intern?
 | |
| 
 | |
| // ValueRef - Unresolved reference to a definition or BB
 | |
| %type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
 | |
| %type <ValueVal>      ResolvedVal            // <type> <valref> pair
 | |
| // Tokens and types for handling constant integer values
 | |
| //
 | |
| // ESINT64VAL - A negative number within long long range
 | |
| %token <SInt64Val> ESINT64VAL
 | |
| 
 | |
| // EUINT64VAL - A positive number within uns. long long range
 | |
| %token <UInt64Val> EUINT64VAL
 | |
| %type  <SInt64Val> EINT64VAL
 | |
| 
 | |
| %token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
 | |
| %token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
 | |
| %type   <SIntVal>   INTVAL
 | |
| %token  <FPVal>     FPVAL     // Float or Double constant
 | |
| 
 | |
| // Built in types...
 | |
| %type  <TypeVal> Types TypesV UpRTypes UpRTypesV
 | |
| %type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
 | |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
 | |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL
 | |
| 
 | |
| %token <StrVal>     VAR_ID LABELSTR STRINGCONSTANT
 | |
| %type  <StrVal>  OptVAR_ID OptAssign FuncName
 | |
| 
 | |
| 
 | |
| %token IMPLEMENTATION TRUE FALSE BEGINTOK ENDTOK DECLARE GLOBAL CONSTANT UNINIT
 | |
| %token TO EXCEPT DOTDOTDOT STRING NULL_TOK CONST INTERNAL OPAQUE
 | |
| 
 | |
| // Basic Block Terminating Operators 
 | |
| %token <TermOpVal> RET BR SWITCH
 | |
| 
 | |
| // Unary Operators 
 | |
| %type  <UnaryOpVal> UnaryOps  // all the unary operators
 | |
| %token <UnaryOpVal> NOT
 | |
| 
 | |
| // Binary Operators 
 | |
| %type  <BinaryOpVal> BinaryOps  // all the binary operators
 | |
| %token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
 | |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators
 | |
| 
 | |
| // Memory Instructions
 | |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
 | |
| 
 | |
| // Other Operators
 | |
| %type  <OtherOpVal> ShiftOps
 | |
| %token <OtherOpVal> PHI CALL INVOKE CAST SHL SHR
 | |
| 
 | |
| %start Module
 | |
| %%
 | |
| 
 | |
| // Handle constant integer size restriction and conversion...
 | |
| //
 | |
| 
 | |
| INTVAL : SINTVAL;
 | |
| INTVAL : UINTVAL {
 | |
|   if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
 | |
|     ThrowException("Value too large for type!");
 | |
|   $$ = (int32_t)$1;
 | |
| };
 | |
| 
 | |
| 
 | |
| EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems...
 | |
| EINT64VAL : EUINT64VAL {
 | |
|   if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
 | |
|     ThrowException("Value too large for type!");
 | |
|   $$ = (int64_t)$1;
 | |
| };
 | |
| 
 | |
| // Operations that are notably excluded from this list include: 
 | |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially.
 | |
| //
 | |
| UnaryOps  : NOT;
 | |
| BinaryOps : ADD | SUB | MUL | DIV | REM | AND | OR | XOR;
 | |
| BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
 | |
| ShiftOps  : SHL | SHR;
 | |
| 
 | |
| // These are some types that allow classification if we only want a particular 
 | |
| // thing... for example, only a signed, unsigned, or integral type.
 | |
| SIntType :  LONG |  INT |  SHORT | SBYTE;
 | |
| UIntType : ULONG | UINT | USHORT | UBYTE;
 | |
| IntType  : SIntType | UIntType;
 | |
| FPType   : FLOAT | DOUBLE;
 | |
| 
 | |
| // OptAssign - Value producing statements have an optional assignment component
 | |
| OptAssign : VAR_ID '=' {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /*empty*/ { 
 | |
|     $$ = 0; 
 | |
|   };
 | |
| 
 | |
| OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Types includes all predefined types... except void, because it can only be
 | |
| // used in specific contexts (function returning void for example).  To have
 | |
| // access to it, a user must explicitly use TypesV.
 | |
| //
 | |
| 
 | |
| // TypesV includes all of 'Types', but it also includes the void type.
 | |
| TypesV    : Types    | VOID { $$ = new PATypeHolder($1); };
 | |
| UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
 | |
| 
 | |
| Types     : UpRTypes {
 | |
|     if (UpRefs.size())
 | |
|       ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Derived types are added later...
 | |
| //
 | |
| PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ;
 | |
| PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL;
 | |
| UpRTypes : OPAQUE {
 | |
|     $$ = new PATypeHolder(OpaqueType::get());
 | |
|   }
 | |
|   | PrimType {
 | |
|     $$ = new PATypeHolder($1);
 | |
|   };
 | |
| UpRTypes : ValueRef {                    // Named types are also simple types...
 | |
|   $$ = new PATypeHolder(getTypeVal($1));
 | |
| };
 | |
| 
 | |
| // Include derived types in the Types production.
 | |
| //
 | |
| UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
 | |
|     if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
 | |
|     OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
 | |
|     UpRefs.push_back(make_pair((unsigned)$2, OT));  // Add to vector...
 | |
|     $$ = new PATypeHolder(OT);
 | |
|     UR_OUT("New Upreference!\n");
 | |
|   }
 | |
|   | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
 | |
|     vector<const Type*> Params;
 | |
|     mapto($3->begin(), $3->end(), std::back_inserter(Params), 
 | |
| 	  std::mem_fun_ref(&PATypeHandle<Type>::get));
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
 | |
|     delete $3;      // Delete the argument list
 | |
|     delete $1;      // Delete the old type handle
 | |
|   }
 | |
|   | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
 | |
|     $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
 | |
|     delete $4;
 | |
|   }
 | |
|   | '{' TypeListI '}' {                        // Structure type?
 | |
|     vector<const Type*> Elements;
 | |
|     mapto($2->begin(), $2->end(), std::back_inserter(Elements), 
 | |
| 	std::mem_fun_ref(&PATypeHandle<Type>::get));
 | |
| 
 | |
|     $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
 | |
|     delete $2;
 | |
|   }
 | |
|   | '{' '}' {                                  // Empty structure type?
 | |
|     $$ = new PATypeHolder(StructType::get(vector<const Type*>()));
 | |
|   }
 | |
|   | UpRTypes '*' {                             // Pointer type?
 | |
|     $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
 | |
|     delete $1;
 | |
|   };
 | |
| 
 | |
| // TypeList - Used for struct declarations and as a basis for function type 
 | |
| // declaration type lists
 | |
| //
 | |
| TypeListI : UpRTypes {
 | |
|     $$ = new list<PATypeHolder>();
 | |
|     $$->push_back(*$1); delete $1;
 | |
|   }
 | |
|   | TypeListI ',' UpRTypes {
 | |
|     ($$=$1)->push_back(*$3); delete $3;
 | |
|   };
 | |
| 
 | |
| // ArgTypeList - List of types for a function type declaration...
 | |
| ArgTypeListI : TypeListI
 | |
|   | TypeListI ',' DOTDOTDOT {
 | |
|     ($$=$1)->push_back(Type::VoidTy);
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     ($$ = new list<PATypeHolder>())->push_back(Type::VoidTy);
 | |
|   }
 | |
|   | /*empty*/ {
 | |
|     $$ = new list<PATypeHolder>();
 | |
|   };
 | |
| 
 | |
| // ConstVal - The various declarations that go into the constant pool.  This
 | |
| // includes all forward declarations of types, constants, and functions.
 | |
| //
 | |
| ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
 | |
|     const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       ThrowException("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     int NumElements = ATy->getNumElements();
 | |
| 
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       ThrowException("Type mismatch: constant sized array initialized with " +
 | |
| 		     utostr($3->size()) +  " arguments, but has size of " + 
 | |
| 		     itostr(NumElements) + "!");
 | |
| 
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       if (ETy != (*$3)[i]->getType())
 | |
| 	ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | |
| 		       ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
| 		       (*$3)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ConstantArray::get(ATy, *$3);
 | |
|     delete $1; delete $3;
 | |
|   }
 | |
|   | Types '[' ']' {
 | |
|     const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       ThrowException("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     if (NumElements != -1 && NumElements != 0) 
 | |
|       ThrowException("Type mismatch: constant sized array initialized with 0"
 | |
| 		     " arguments, but has size of " + itostr(NumElements) +"!");
 | |
|     $$ = ConstantArray::get(ATy, vector<Constant*>());
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types 'c' STRINGCONSTANT {
 | |
|     const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       ThrowException("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     char *EndStr = UnEscapeLexed($3, true);
 | |
|     if (NumElements != -1 && NumElements != (EndStr-$3))
 | |
|       ThrowException("Can't build string constant of size " + 
 | |
| 		     itostr((int)(EndStr-$3)) +
 | |
| 		     " when array has size " + itostr(NumElements) + "!");
 | |
|     vector<Constant*> Vals;
 | |
|     if (ETy == Type::SByteTy) {
 | |
|       for (char *C = $3; C != EndStr; ++C)
 | |
| 	Vals.push_back(ConstantSInt::get(ETy, *C));
 | |
|     } else if (ETy == Type::UByteTy) {
 | |
|       for (char *C = $3; C != EndStr; ++C)
 | |
| 	Vals.push_back(ConstantUInt::get(ETy, *C));
 | |
|     } else {
 | |
|       free($3);
 | |
|       ThrowException("Cannot build string arrays of non byte sized elements!");
 | |
|     }
 | |
|     free($3);
 | |
|     $$ = ConstantArray::get(ATy, Vals);
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types '{' ConstVector '}' {
 | |
|     const StructType *STy = dyn_cast<const StructType>($1->get());
 | |
|     if (STy == 0)
 | |
|       ThrowException("Cannot make struct constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
|     // FIXME: TODO: Check to see that the constants are compatible with the type
 | |
|     // initializer!
 | |
|     $$ = ConstantStruct::get(STy, *$3);
 | |
|     delete $1; delete $3;
 | |
|   }
 | |
|   | Types NULL_TOK {
 | |
|     const PointerType *PTy = dyn_cast<const PointerType>($1->get());
 | |
|     if (PTy == 0)
 | |
|       ThrowException("Cannot make null pointer constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     $$ = ConstantPointerNull::get(PTy);
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types SymbolicValueRef {
 | |
|     const PointerType *Ty = dyn_cast<const PointerType>($1->get());
 | |
|     if (Ty == 0)
 | |
|       ThrowException("Global const reference must be a pointer type!");
 | |
| 
 | |
|     Value *V = getValNonImprovising(Ty, $2);
 | |
| 
 | |
|     // If this is an initializer for a constant pointer, which is referencing a
 | |
|     // (currently) undefined variable, create a stub now that shall be replaced
 | |
|     // in the future with the right type of variable.
 | |
|     //
 | |
|     if (V == 0) {
 | |
|       assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
 | |
|       const PointerType *PT = cast<PointerType>(Ty);
 | |
| 
 | |
|       // First check to see if the forward references value is already created!
 | |
|       PerModuleInfo::GlobalRefsType::iterator I =
 | |
| 	CurModule.GlobalRefs.find(make_pair(PT, $2));
 | |
|     
 | |
|       if (I != CurModule.GlobalRefs.end()) {
 | |
| 	V = I->second;             // Placeholder already exists, use it...
 | |
|       } else {
 | |
| 	// TODO: Include line number info by creating a subclass of
 | |
| 	// TODO: GlobalVariable here that includes the said information!
 | |
| 	
 | |
| 	// Create a placeholder for the global variable reference...
 | |
| 	GlobalVariable *GV = new GlobalVariable(PT->getElementType(),
 | |
|                                                 false, true);
 | |
| 	// Keep track of the fact that we have a forward ref to recycle it
 | |
| 	CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV));
 | |
| 
 | |
| 	// Must temporarily push this value into the module table...
 | |
| 	CurModule.CurrentModule->getGlobalList().push_back(GV);
 | |
| 	V = GV;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     GlobalValue *GV = cast<GlobalValue>(V);
 | |
|     $$ = ConstantPointerRef::get(GV);
 | |
|     delete $1;            // Free the type handle
 | |
|   }
 | |
|   | ConstExpr {
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // FIXME: ConstExpr::get never return null!  Do checking here in the parser.
 | |
| ConstExpr: Types CAST ConstVal {
 | |
|     $$ = ConstantExpr::get($2, $3, $1->get());
 | |
|     if ($$ == 0) ThrowException("constant expression builder returned null!");
 | |
|   }
 | |
|   | Types GETELEMENTPTR '(' ConstVal IndexList ')' {
 | |
|     vector<Constant*> IdxVec;
 | |
|     for (unsigned i = 0, e = $5->size(); i != e; ++i)
 | |
|       if (Constant *C = dyn_cast<Constant>((*$5)[i]))
 | |
|         IdxVec.push_back(C);
 | |
|       else
 | |
|         ThrowException("Arguments to getelementptr must be constants!");
 | |
| 
 | |
|     delete $5;
 | |
| 
 | |
|     $$ = ConstantExpr::get($2, $4, IdxVec, $1->get());
 | |
|     if ($$ == 0) ThrowException("constant expression builder returned null!");
 | |
|   }
 | |
|   | Types UnaryOps ConstVal {
 | |
|     $$ = ConstantExpr::get($2, $3, $1->get());
 | |
|     if ($$ == 0) ThrowException("constant expression builder returned null!");
 | |
|   }
 | |
|   | Types BinaryOps ConstVal ',' ConstVal {
 | |
|     $$ = ConstantExpr::get($2, $3, $5, $1->get());
 | |
|     if ($$ == 0) ThrowException("constant expression builder returned null!");
 | |
|   }
 | |
|   | Types ShiftOps ConstVal ',' ConstVal {
 | |
|     $$ = ConstantExpr::get($2, $3, $5, $1->get());
 | |
|     if ($$ == 0) ThrowException("constant expression builder returned null!");
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| 
 | |
| ConstVal : SIntType EINT64VAL {     // integral constants
 | |
|     if (!ConstantSInt::isValueValidForType($1, $2))
 | |
|       ThrowException("Constant value doesn't fit in type!");
 | |
|     $$ = ConstantSInt::get($1, $2);
 | |
|   } 
 | |
|   | UIntType EUINT64VAL {           // integral constants
 | |
|     if (!ConstantUInt::isValueValidForType($1, $2))
 | |
|       ThrowException("Constant value doesn't fit in type!");
 | |
|     $$ = ConstantUInt::get($1, $2);
 | |
|   } 
 | |
|   | BOOL TRUE {                     // Boolean constants
 | |
|     $$ = ConstantBool::True;
 | |
|   }
 | |
|   | BOOL FALSE {                    // Boolean constants
 | |
|     $$ = ConstantBool::False;
 | |
|   }
 | |
|   | FPType FPVAL {                   // Float & Double constants
 | |
|     $$ = ConstantFP::get($1, $2);
 | |
|   };
 | |
| 
 | |
| // ConstVector - A list of comma seperated constants.
 | |
| ConstVector : ConstVector ',' ConstVal {
 | |
|     ($$ = $1)->push_back($3);
 | |
|   }
 | |
|   | ConstVal {
 | |
|     $$ = new vector<Constant*>();
 | |
|     $$->push_back($1);
 | |
|   };
 | |
| 
 | |
| 
 | |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
 | |
| GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Rules to match Modules
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Module rule: Capture the result of parsing the whole file into a result
 | |
| // variable...
 | |
| //
 | |
| Module : FunctionList {
 | |
|   $$ = ParserResult = $1;
 | |
|   CurModule.ModuleDone();
 | |
| };
 | |
| 
 | |
| // FunctionList - A list of functions, preceeded by a constant pool.
 | |
| //
 | |
| FunctionList : FunctionList Function {
 | |
|     $$ = $1;
 | |
|     assert($2->getParent() == 0 && "Function already in module!");
 | |
|     $1->getFunctionList().push_back($2);
 | |
|     CurMeth.FunctionDone();
 | |
|   } 
 | |
|   | FunctionList FunctionProto {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | FunctionList IMPLEMENTATION {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | ConstPool {
 | |
|     $$ = CurModule.CurrentModule;
 | |
|     // Resolve circular types before we parse the body of the module
 | |
|     ResolveTypes(CurModule.LateResolveTypes);
 | |
|   };
 | |
| 
 | |
| // ConstPool - Constants with optional names assigned to them.
 | |
| ConstPool : ConstPool OptAssign CONST ConstVal { 
 | |
|     if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); }
 | |
|     InsertValue($4);
 | |
|   }
 | |
|   | ConstPool OptAssign TYPE TypesV {  // Types can be defined in the const pool
 | |
|     // Eagerly resolve types.  This is not an optimization, this is a
 | |
|     // requirement that is due to the fact that we could have this:
 | |
|     //
 | |
|     // %list = type { %list * }
 | |
|     // %list = type { %list * }    ; repeated type decl
 | |
|     //
 | |
|     // If types are not resolved eagerly, then the two types will not be
 | |
|     // determined to be the same type!
 | |
|     //
 | |
|     ResolveTypeTo($2, $4->get());
 | |
| 
 | |
|     // TODO: FIXME when Type are not const
 | |
|     if (!setValueName(const_cast<Type*>($4->get()), $2)) {
 | |
|       // If this is not a redefinition of a type...
 | |
|       if (!$2) {
 | |
|         InsertType($4->get(),
 | |
|                    inFunctionScope() ? CurMeth.Types : CurModule.Types);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     delete $4;
 | |
|   }
 | |
|   | ConstPool FunctionProto {       // Function prototypes can be in const pool
 | |
|   }
 | |
|   | ConstPool OptAssign OptInternal GlobalType ConstVal {
 | |
|     const Type *Ty = $5->getType();
 | |
|     // Global declarations appear in Constant Pool
 | |
|     Constant *Initializer = $5;
 | |
|     if (Initializer == 0)
 | |
|       ThrowException("Global value initializer is not a constant!");
 | |
|     
 | |
|     GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer);
 | |
|     if (!setValueName(GV, $2)) {   // If not redefining...
 | |
|       CurModule.CurrentModule->getGlobalList().push_back(GV);
 | |
|       int Slot = InsertValue(GV, CurModule.Values);
 | |
| 
 | |
|       if (Slot != -1) {
 | |
| 	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
 | |
|       } else {
 | |
| 	CurModule.DeclareNewGlobalValue(GV, ValID::create(
 | |
| 				                (char*)GV->getName().c_str()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   | ConstPool OptAssign OptInternal UNINIT GlobalType Types {
 | |
|     const Type *Ty = *$6;
 | |
|     // Global declarations appear in Constant Pool
 | |
|     GlobalVariable *GV = new GlobalVariable(Ty, $5, $3);
 | |
|     if (!setValueName(GV, $2)) {   // If not redefining...
 | |
|       CurModule.CurrentModule->getGlobalList().push_back(GV);
 | |
|       int Slot = InsertValue(GV, CurModule.Values);
 | |
| 
 | |
|       if (Slot != -1) {
 | |
| 	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
 | |
|       } else {
 | |
| 	assert(GV->hasName() && "Not named and not numbered!?");
 | |
| 	CurModule.DeclareNewGlobalValue(GV, ValID::create(
 | |
| 				                (char*)GV->getName().c_str()));
 | |
|       }
 | |
|     }
 | |
|     delete $6;
 | |
|   }
 | |
|   | /* empty: end of list */ { 
 | |
|   };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       Rules to match Function Headers
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; };
 | |
| 
 | |
| ArgVal : Types OptVAR_ID {
 | |
|   $$ = new pair<Argument*, char*>(new Argument(*$1), $2);
 | |
|   delete $1;  // Delete the type handle..
 | |
| };
 | |
| 
 | |
| ArgListH : ArgVal ',' ArgListH {
 | |
|     $$ = $3;
 | |
|     $3->push_front(*$1);
 | |
|     delete $1;
 | |
|   }
 | |
|   | ArgVal {
 | |
|     $$ = new list<pair<Argument*,char*> >();
 | |
|     $$->push_front(*$1);
 | |
|     delete $1;
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     $$ = new list<pair<Argument*, char*> >();
 | |
|     $$->push_front(pair<Argument*,char*>(new Argument(Type::VoidTy), 0));
 | |
|   };
 | |
| 
 | |
| ArgList : ArgListH {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = 0;
 | |
|   };
 | |
| 
 | |
| FuncName : VAR_ID | STRINGCONSTANT;
 | |
| 
 | |
| FunctionHeaderH : OptInternal TypesV FuncName '(' ArgList ')' {
 | |
|   UnEscapeLexed($3);
 | |
|   string FunctionName($3);
 | |
|   
 | |
|   vector<const Type*> ParamTypeList;
 | |
|   if ($5)
 | |
|     for (list<pair<Argument*,char*> >::iterator I = $5->begin();
 | |
|          I != $5->end(); ++I)
 | |
|       ParamTypeList.push_back(I->first->getType());
 | |
| 
 | |
|   bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
 | |
|   if (isVarArg) ParamTypeList.pop_back();
 | |
| 
 | |
|   const FunctionType *MT = FunctionType::get(*$2, ParamTypeList, isVarArg);
 | |
|   const PointerType *PMT = PointerType::get(MT);
 | |
|   delete $2;
 | |
| 
 | |
|   Function *M = 0;
 | |
|   if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) {
 | |
|     // Is the function already in symtab?
 | |
|     if (Value *V = ST->lookup(PMT, FunctionName)) {
 | |
|       M = cast<Function>(V);
 | |
| 
 | |
|       // Yes it is.  If this is the case, either we need to be a forward decl,
 | |
|       // or it needs to be.
 | |
|       if (!CurMeth.isDeclare && !M->isExternal())
 | |
| 	ThrowException("Redefinition of function '" + FunctionName + "'!");
 | |
| 
 | |
|       // Make sure that we keep track of the internal marker, even if there was
 | |
|       // a previous "declare".
 | |
|       if ($1)
 | |
|         M->setInternalLinkage(true);
 | |
| 
 | |
|       // If we found a preexisting function prototype, remove it from the
 | |
|       // module, so that we don't get spurious conflicts with global & local
 | |
|       // variables.
 | |
|       //
 | |
|       CurModule.CurrentModule->getFunctionList().remove(M);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (M == 0) {  // Not already defined?
 | |
|     M = new Function(MT, $1, FunctionName);
 | |
|     InsertValue(M, CurModule.Values);
 | |
|     CurModule.DeclareNewGlobalValue(M, ValID::create($3));
 | |
|   }
 | |
|   free($3);  // Free strdup'd memory!
 | |
| 
 | |
|   CurMeth.FunctionStart(M);
 | |
| 
 | |
|   // Add all of the arguments we parsed to the function...
 | |
|   if ($5 && !CurMeth.isDeclare) {        // Is null if empty...
 | |
|     for (list<pair<Argument*, char*> >::iterator I = $5->begin();
 | |
|          I != $5->end(); ++I) {
 | |
|       if (setValueName(I->first, I->second)) {  // Insert into symtab...
 | |
|         assert(0 && "No arg redef allowed!");
 | |
|       }
 | |
|       
 | |
|       InsertValue(I->first);
 | |
|       M->getArgumentList().push_back(I->first);
 | |
|     }
 | |
|     delete $5;                     // We're now done with the argument list
 | |
|   } else if ($5) {
 | |
|     // If we are a declaration, we should free the memory for the argument list!
 | |
|     for (list<pair<Argument*, char*> >::iterator I = $5->begin(), E = $5->end();
 | |
|          I != E; ++I) {
 | |
|       if (I->second) free(I->second);   // Free the memory for the name...
 | |
|       delete I->first;                  // Free the unused function argument
 | |
|     }
 | |
|     delete $5;                          // Free the memory for the list itself
 | |
|   }
 | |
| };
 | |
| 
 | |
| BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function
 | |
| 
 | |
| FunctionHeader : FunctionHeaderH BEGIN {
 | |
|   $$ = CurMeth.CurrentFunction;
 | |
| 
 | |
|   // Resolve circular types before we parse the body of the function.
 | |
|   ResolveTypes(CurMeth.LateResolveTypes);
 | |
| };
 | |
| 
 | |
| END : ENDTOK | '}';                    // Allow end of '}' to end a function
 | |
| 
 | |
| Function : BasicBlockList END {
 | |
|   $$ = $1;
 | |
| };
 | |
| 
 | |
| FunctionProto : DECLARE { CurMeth.isDeclare = true; } FunctionHeaderH {
 | |
|   $$ = CurMeth.CurrentFunction;
 | |
|   assert($$->getParent() == 0 && "Function already in module!");
 | |
|   CurModule.CurrentModule->getFunctionList().push_back($$);
 | |
|   CurMeth.FunctionDone();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Rules to match Basic Blocks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ConstValueRef : ESINT64VAL {    // A reference to a direct constant
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | EUINT64VAL {
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | FPVAL {                     // Perhaps it's an FP constant?
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | TRUE {
 | |
|     $$ = ValID::create((int64_t)1);
 | |
|   } 
 | |
|   | FALSE {
 | |
|     $$ = ValID::create((int64_t)0);
 | |
|   }
 | |
|   | NULL_TOK {
 | |
|     $$ = ValID::createNull();
 | |
|   }
 | |
|   ;
 | |
| 
 | |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to
 | |
| // another value.
 | |
| //
 | |
| SymbolicValueRef : INTVAL {  // Is it an integer reference...?
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | VAR_ID {                 // Is it a named reference...?
 | |
|     $$ = ValID::create($1);
 | |
|   };
 | |
| 
 | |
| // ValueRef - A reference to a definition... either constant or symbolic
 | |
| ValueRef : SymbolicValueRef | ConstValueRef;
 | |
| 
 | |
| 
 | |
| // ResolvedVal - a <type> <value> pair.  This is used only in cases where the
 | |
| // type immediately preceeds the value reference, and allows complex constant
 | |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
 | |
| ResolvedVal : Types ValueRef {
 | |
|     $$ = getVal(*$1, $2); delete $1;
 | |
|   }
 | |
|   | ConstExpr {
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| BasicBlockList : BasicBlockList BasicBlock {
 | |
|     ($$ = $1)->getBasicBlockList().push_back($2);
 | |
|   }
 | |
|   | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
 | |
|     ($$ = $1)->getBasicBlockList().push_back($2);
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Basic blocks are terminated by branching instructions: 
 | |
| // br, br/cc, switch, ret
 | |
| //
 | |
| BasicBlock : InstructionList OptAssign BBTerminatorInst  {
 | |
|     if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); }
 | |
|     InsertValue($3);
 | |
| 
 | |
|     $1->getInstList().push_back($3);
 | |
|     InsertValue($1);
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | LABELSTR InstructionList OptAssign BBTerminatorInst  {
 | |
|     if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); }
 | |
|     InsertValue($4);
 | |
| 
 | |
|     $2->getInstList().push_back($4);
 | |
|     if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); }
 | |
| 
 | |
|     InsertValue($2);
 | |
|     $$ = $2;
 | |
|   };
 | |
| 
 | |
| InstructionList : InstructionList Inst {
 | |
|     $1->getInstList().push_back($2);
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = new BasicBlock();
 | |
|   };
 | |
| 
 | |
| BBTerminatorInst : RET ResolvedVal {              // Return with a result...
 | |
|     $$ = new ReturnInst($2);
 | |
|   }
 | |
|   | RET VOID {                                       // Return with no result...
 | |
|     $$ = new ReturnInst();
 | |
|   }
 | |
|   | BR LABEL ValueRef {                         // Unconditional Branch...
 | |
|     $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3)));
 | |
|   }                                                  // Conditional Branch...
 | |
|   | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
 | |
|     $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)), 
 | |
| 			cast<BasicBlock>(getVal(Type::LabelTy, $9)),
 | |
| 			getVal(Type::BoolTy, $3));
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
 | |
|     SwitchInst *S = new SwitchInst(getVal($2, $3), 
 | |
|                                    cast<BasicBlock>(getVal(Type::LabelTy, $6)));
 | |
|     $$ = S;
 | |
| 
 | |
|     vector<pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
 | |
|       E = $8->end();
 | |
|     for (; I != E; ++I)
 | |
|       S->dest_push_back(I->first, I->second);
 | |
|   }
 | |
|   | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal 
 | |
|     EXCEPT ResolvedVal {
 | |
|     const PointerType *PMTy;
 | |
|     const FunctionType *Ty;
 | |
| 
 | |
|     if (!(PMTy = dyn_cast<PointerType>($2->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PMTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       vector<const Type*> ParamTypes;
 | |
|       if ($5) {
 | |
|         for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
 | |
|           ParamTypes.push_back((*I)->getType());
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
 | |
|       PMTy = PointerType::get(Ty);
 | |
|     }
 | |
|     delete $2;
 | |
| 
 | |
|     Value *V = getVal(PMTy, $3);   // Get the function we're calling...
 | |
| 
 | |
|     BasicBlock *Normal = dyn_cast<BasicBlock>($8);
 | |
|     BasicBlock *Except = dyn_cast<BasicBlock>($10);
 | |
| 
 | |
|     if (Normal == 0 || Except == 0)
 | |
|       ThrowException("Invoke instruction without label destinations!");
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$5) {                                   // Has no arguments?
 | |
|       $$ = new InvokeInst(V, Normal, Except, vector<Value*>());
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
 | |
|       FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
 | |
|       vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
 | |
| 
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
| 	if ((*ArgI)->getType() != *I)
 | |
| 	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | |
| 			 (*I)->getDescription() + "'!");
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
| 	ThrowException("Invalid number of parameters detected!");
 | |
| 
 | |
|       $$ = new InvokeInst(V, Normal, Except, *$5);
 | |
|     }
 | |
|     delete $5;
 | |
|   };
 | |
| 
 | |
| 
 | |
| 
 | |
| JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = $1;
 | |
|     Constant *V = cast<Constant>(getValNonImprovising($2, $3));
 | |
|     if (V == 0)
 | |
|       ThrowException("May only switch on a constant pool value!");
 | |
| 
 | |
|     $$->push_back(make_pair(V, cast<BasicBlock>(getVal($5, $6))));
 | |
|   }
 | |
|   | IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = new vector<pair<Constant*, BasicBlock*> >();
 | |
|     Constant *V = cast<Constant>(getValNonImprovising($1, $2));
 | |
| 
 | |
|     if (V == 0)
 | |
|       ThrowException("May only switch on a constant pool value!");
 | |
| 
 | |
|     $$->push_back(make_pair(V, cast<BasicBlock>(getVal($4, $5))));
 | |
|   };
 | |
| 
 | |
| Inst : OptAssign InstVal {
 | |
|   // Is this definition named?? if so, assign the name...
 | |
|   if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); }
 | |
|   InsertValue($2);
 | |
|   $$ = $2;
 | |
| };
 | |
| 
 | |
| PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
 | |
|     $$ = new list<pair<Value*, BasicBlock*> >();
 | |
|     $$->push_back(make_pair(getVal(*$1, $3), 
 | |
|                             cast<BasicBlock>(getVal(Type::LabelTy, $5))));
 | |
|     delete $1;
 | |
|   }
 | |
|   | PHIList ',' '[' ValueRef ',' ValueRef ']' {
 | |
|     $$ = $1;
 | |
|     $1->push_back(make_pair(getVal($1->front().first->getType(), $4),
 | |
|                             cast<BasicBlock>(getVal(Type::LabelTy, $6))));
 | |
|   };
 | |
| 
 | |
| 
 | |
| ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
 | |
|     $$ = new vector<Value*>();
 | |
|     $$->push_back($1);
 | |
|   }
 | |
|   | ValueRefList ',' ResolvedVal {
 | |
|     $$ = $1;
 | |
|     $1->push_back($3);
 | |
|   };
 | |
| 
 | |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty!
 | |
| ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
 | |
| 
 | |
| InstVal : BinaryOps Types ValueRef ',' ValueRef {
 | |
|     $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | |
|     if ($$ == 0)
 | |
|       ThrowException("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | UnaryOps ResolvedVal {
 | |
|     $$ = UnaryOperator::create($1, $2);
 | |
|     if ($$ == 0)
 | |
|       ThrowException("unary operator returned null!");
 | |
|   }
 | |
|   | ShiftOps ResolvedVal ',' ResolvedVal {
 | |
|     if ($4->getType() != Type::UByteTy)
 | |
|       ThrowException("Shift amount must be ubyte!");
 | |
|     $$ = new ShiftInst($1, $2, $4);
 | |
|   }
 | |
|   | CAST ResolvedVal TO Types {
 | |
|     $$ = new CastInst($2, *$4);
 | |
|     delete $4;
 | |
|   }
 | |
|   | PHI PHIList {
 | |
|     const Type *Ty = $2->front().first->getType();
 | |
|     $$ = new PHINode(Ty);
 | |
|     while ($2->begin() != $2->end()) {
 | |
|       if ($2->front().first->getType() != Ty) 
 | |
| 	ThrowException("All elements of a PHI node must be of the same type!");
 | |
|       cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
 | |
|       $2->pop_front();
 | |
|     }
 | |
|     delete $2;  // Free the list...
 | |
|   } 
 | |
|   | CALL TypesV ValueRef '(' ValueRefListE ')' {
 | |
|     const PointerType *PMTy;
 | |
|     const FunctionType *Ty;
 | |
| 
 | |
|     if (!(PMTy = dyn_cast<PointerType>($2->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PMTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       vector<const Type*> ParamTypes;
 | |
|       if ($5) {
 | |
|         for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
 | |
|           ParamTypes.push_back((*I)->getType());
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
 | |
|       PMTy = PointerType::get(Ty);
 | |
|     }
 | |
|     delete $2;
 | |
| 
 | |
|     Value *V = getVal(PMTy, $3);   // Get the function we're calling...
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$5) {                                   // Has no arguments?
 | |
|       $$ = new CallInst(V, vector<Value*>());
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
 | |
|       FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
 | |
|       vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
 | |
| 
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
| 	if ((*ArgI)->getType() != *I)
 | |
| 	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | |
| 			 (*I)->getDescription() + "'!");
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
| 	ThrowException("Invalid number of parameters detected!");
 | |
| 
 | |
|       $$ = new CallInst(V, *$5);
 | |
|     }
 | |
|     delete $5;
 | |
|   }
 | |
|   | MemoryInst {
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // IndexList - List of indices for GEP based instructions...
 | |
| IndexList : ',' ValueRefList { 
 | |
|   $$ = $2; 
 | |
| } | /* empty */ { 
 | |
|   $$ = new vector<Value*>(); 
 | |
| };
 | |
| 
 | |
| MemoryInst : MALLOC Types {
 | |
|     $$ = new MallocInst(PointerType::get(*$2));
 | |
|     delete $2;
 | |
|   }
 | |
|   | MALLOC Types ',' UINT ValueRef {
 | |
|     const Type *Ty = PointerType::get(*$2);
 | |
|     $$ = new MallocInst(Ty, getVal($4, $5));
 | |
|     delete $2;
 | |
|   }
 | |
|   | ALLOCA Types {
 | |
|     $$ = new AllocaInst(PointerType::get(*$2));
 | |
|     delete $2;
 | |
|   }
 | |
|   | ALLOCA Types ',' UINT ValueRef {
 | |
|     const Type *Ty = PointerType::get(*$2);
 | |
|     Value *ArrSize = getVal($4, $5);
 | |
|     $$ = new AllocaInst(Ty, ArrSize);
 | |
|     delete $2;
 | |
|   }
 | |
|   | FREE ResolvedVal {
 | |
|     if (!isa<PointerType>($2->getType()))
 | |
|       ThrowException("Trying to free nonpointer type " + 
 | |
|                      $2->getType()->getDescription() + "!");
 | |
|     $$ = new FreeInst($2);
 | |
|   }
 | |
| 
 | |
|   | LOAD Types ValueRef IndexList {
 | |
|     if (!isa<PointerType>($2->get()))
 | |
|       ThrowException("Can't load from nonpointer type: " +
 | |
| 		     (*$2)->getDescription());
 | |
|     if (LoadInst::getIndexedType(*$2, *$4) == 0)
 | |
|       ThrowException("Invalid indices for load instruction!");
 | |
| 
 | |
|     $$ = new LoadInst(getVal(*$2, $3), *$4);
 | |
|     delete $4;   // Free the vector...
 | |
|     delete $2;
 | |
|   }
 | |
|   | STORE ResolvedVal ',' Types ValueRef IndexList {
 | |
|     if (!isa<PointerType>($4->get()))
 | |
|       ThrowException("Can't store to a nonpointer type: " +
 | |
|                      (*$4)->getDescription());
 | |
|     const Type *ElTy = StoreInst::getIndexedType(*$4, *$6);
 | |
|     if (ElTy == 0)
 | |
|       ThrowException("Can't store into that field list!");
 | |
|     if (ElTy != $2->getType())
 | |
|       ThrowException("Can't store '" + $2->getType()->getDescription() +
 | |
|                      "' into space of type '" + ElTy->getDescription() + "'!");
 | |
|     $$ = new StoreInst($2, getVal(*$4, $5), *$6);
 | |
|     delete $4; delete $6;
 | |
|   }
 | |
|   | GETELEMENTPTR Types ValueRef IndexList {
 | |
|     if (!isa<PointerType>($2->get()))
 | |
|       ThrowException("getelementptr insn requires pointer operand!");
 | |
|     if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
 | |
|       ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!");
 | |
|     $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
 | |
|     delete $2; delete $4;
 | |
|   };
 | |
| 
 | |
| %%
 | |
| int yyerror(const char *ErrorMsg) {
 | |
|   string where  = string((CurFilename == "-")? string("<stdin>") : CurFilename)
 | |
|                   + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
 | |
|   string errMsg = string(ErrorMsg) + string("\n") + where + " while reading ";
 | |
|   if (yychar == YYEMPTY)
 | |
|     errMsg += "end-of-file.";
 | |
|   else
 | |
|     errMsg += "token: '" + string(llvmAsmtext, llvmAsmleng) + "'";
 | |
|   ThrowException(errMsg);
 | |
|   return 0;
 | |
| }
 |