1730 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1730 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SparcRegInfo.cpp - Sparc Target Register Information --------------===//
 | 
						|
//
 | 
						|
// This file contains implementation of Sparc specific helper methods
 | 
						|
// used for register allocation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SparcInternals.h"
 | 
						|
#include "SparcRegClassInfo.h"
 | 
						|
#include "llvm/Target/Sparc.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForMethod.h"
 | 
						|
#include "llvm/CodeGen/PhyRegAlloc.h"
 | 
						|
#include "llvm/CodeGen/InstrSelection.h"
 | 
						|
#include "llvm/CodeGen/InstrSelectionSupport.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrAnnot.h"
 | 
						|
#include "llvm/CodeGen/RegAllocCommon.h"
 | 
						|
#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include <iostream>
 | 
						|
#include <values.h>
 | 
						|
using std::cerr;
 | 
						|
using std::vector;
 | 
						|
 | 
						|
UltraSparcRegInfo::UltraSparcRegInfo(const UltraSparc &tgt)
 | 
						|
  : MachineRegInfo(tgt), UltraSparcInfo(&tgt), NumOfIntArgRegs(6), 
 | 
						|
    NumOfFloatArgRegs(32), InvalidRegNum(1000) {
 | 
						|
   
 | 
						|
  MachineRegClassArr.push_back(new SparcIntRegClass(IntRegClassID));
 | 
						|
  MachineRegClassArr.push_back(new SparcFloatRegClass(FloatRegClassID));
 | 
						|
  MachineRegClassArr.push_back(new SparcIntCCRegClass(IntCCRegClassID));
 | 
						|
  MachineRegClassArr.push_back(new SparcFloatCCRegClass(FloatCCRegClassID));
 | 
						|
  
 | 
						|
  assert(SparcFloatRegOrder::StartOfNonVolatileRegs == 32 && 
 | 
						|
         "32 Float regs are used for float arg passing");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getZeroRegNum - returns the register that contains always zero.
 | 
						|
// this is the unified register number
 | 
						|
//
 | 
						|
int UltraSparcRegInfo::getZeroRegNum() const {
 | 
						|
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
 | 
						|
                                SparcIntRegOrder::g0);
 | 
						|
}
 | 
						|
 | 
						|
// getCallAddressReg - returns the reg used for pushing the address when a
 | 
						|
// method is called. This can be used for other purposes between calls
 | 
						|
//
 | 
						|
unsigned UltraSparcRegInfo::getCallAddressReg() const {
 | 
						|
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
 | 
						|
                                SparcIntRegOrder::o7);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the register containing the return address.
 | 
						|
// It should be made sure that this  register contains the return 
 | 
						|
// value when a return instruction is reached.
 | 
						|
//
 | 
						|
unsigned UltraSparcRegInfo::getReturnAddressReg() const {
 | 
						|
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
 | 
						|
                                SparcIntRegOrder::i7);
 | 
						|
}
 | 
						|
 | 
						|
// given the unified register number, this gives the name
 | 
						|
// for generating assembly code or debugging.
 | 
						|
//
 | 
						|
const std::string UltraSparcRegInfo::getUnifiedRegName(int reg) const {
 | 
						|
  if( reg < 32 ) 
 | 
						|
    return SparcIntRegOrder::getRegName(reg);
 | 
						|
  else if ( reg < (64 + 32) )
 | 
						|
    return SparcFloatRegOrder::getRegName( reg  - 32);                  
 | 
						|
  else if( reg < (64+32+4) )
 | 
						|
    return SparcFloatCCRegOrder::getRegName( reg -32 - 64);
 | 
						|
  else if( reg < (64+32+4+2) )    // two names: %xcc and %ccr
 | 
						|
    return SparcIntCCRegOrder::getRegName( reg -32 - 64 - 4);             
 | 
						|
  else if (reg== InvalidRegNum)       //****** TODO: Remove */
 | 
						|
    return "<*NoReg*>";
 | 
						|
  else 
 | 
						|
    assert(0 && "Invalid register number");
 | 
						|
  return "";
 | 
						|
}
 | 
						|
 | 
						|
// Get unified reg number for frame pointer
 | 
						|
unsigned UltraSparcRegInfo::getFramePointer() const {
 | 
						|
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
 | 
						|
                                SparcIntRegOrder::i6);
 | 
						|
}
 | 
						|
 | 
						|
// Get unified reg number for stack pointer
 | 
						|
unsigned UltraSparcRegInfo::getStackPointer() const {
 | 
						|
  return this->getUnifiedRegNum(UltraSparcRegInfo::IntRegClassID,
 | 
						|
                                SparcIntRegOrder::o6);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Finds whether a call is an indirect call
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
inline bool
 | 
						|
isVarArgsFunction(const Type *funcType) {
 | 
						|
  return cast<FunctionType>(cast<PointerType>(funcType)
 | 
						|
                            ->getElementType())->isVarArg();
 | 
						|
}
 | 
						|
 | 
						|
inline bool
 | 
						|
isVarArgsCall(const MachineInstr *CallMI) {
 | 
						|
  Value* callee = CallMI->getOperand(0).getVRegValue();
 | 
						|
  // const Type* funcType = isa<Function>(callee)? callee->getType()
 | 
						|
  //   : cast<PointerType>(callee->getType())->getElementType();
 | 
						|
  const Type* funcType = callee->getType();
 | 
						|
  return isVarArgsFunction(funcType);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Get the register number for the specified integer arg#,
 | 
						|
// assuming there are argNum total args, intArgNum int args,
 | 
						|
// and fpArgNum FP args preceding (and not including) this one.
 | 
						|
// Use INT regs for FP args if this is a varargs call.
 | 
						|
// 
 | 
						|
// Return value:
 | 
						|
//      InvalidRegNum,  if there is no int register available for the arg. 
 | 
						|
//      regNum,         otherwise (this is NOT the unified reg. num).
 | 
						|
// 
 | 
						|
inline int
 | 
						|
UltraSparcRegInfo::regNumForIntArg(bool inCallee, bool isVarArgsCall,
 | 
						|
                                   unsigned argNo,
 | 
						|
                                   unsigned intArgNo, unsigned fpArgNo,
 | 
						|
                                   unsigned& regClassId) const
 | 
						|
{
 | 
						|
  regClassId = IntRegClassID;
 | 
						|
  if (argNo >= NumOfIntArgRegs)
 | 
						|
    return InvalidRegNum;
 | 
						|
  else
 | 
						|
    return argNo + (inCallee? SparcIntRegOrder::i0 : SparcIntRegOrder::o0);
 | 
						|
}
 | 
						|
 | 
						|
// Get the register number for the specified FP arg#,
 | 
						|
// assuming there are argNum total args, intArgNum int args,
 | 
						|
// and fpArgNum FP args preceding (and not including) this one.
 | 
						|
// Use INT regs for FP args if this is a varargs call.
 | 
						|
// 
 | 
						|
// Return value:
 | 
						|
//      InvalidRegNum,  if there is no int register available for the arg. 
 | 
						|
//      regNum,         otherwise (this is NOT the unified reg. num).
 | 
						|
// 
 | 
						|
inline int
 | 
						|
UltraSparcRegInfo::regNumForFPArg(unsigned regType,
 | 
						|
                                  bool inCallee, bool isVarArgsCall,
 | 
						|
                                  unsigned argNo,
 | 
						|
                                  unsigned intArgNo, unsigned fpArgNo,
 | 
						|
                                  unsigned& regClassId) const
 | 
						|
{
 | 
						|
  if (isVarArgsCall)
 | 
						|
    return regNumForIntArg(inCallee, isVarArgsCall, argNo, intArgNo, fpArgNo,
 | 
						|
                           regClassId);
 | 
						|
  else
 | 
						|
    {
 | 
						|
      regClassId = FloatRegClassID;
 | 
						|
      if (regType == FPSingleRegType)
 | 
						|
        return (argNo*2+1 >= NumOfFloatArgRegs)?
 | 
						|
          InvalidRegNum : SparcFloatRegOrder::f0 + (argNo * 2 + 1);
 | 
						|
      else if (regType == FPDoubleRegType)
 | 
						|
        return (argNo*2 >= NumOfFloatArgRegs)?
 | 
						|
          InvalidRegNum : SparcFloatRegOrder::f0 + (argNo * 2);
 | 
						|
      else
 | 
						|
        assert(0 && "Illegal FP register type");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Finds the return address of a call sparc specific call instruction
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
// The following 4  methods are used to find the RegType (SparcInternals.h)
 | 
						|
// of a LiveRange, a Value, and for a given register unified reg number.
 | 
						|
//
 | 
						|
int UltraSparcRegInfo::getRegType(unsigned regClassID,
 | 
						|
                                  const Type* type) const {
 | 
						|
  switch (regClassID) {
 | 
						|
  case IntRegClassID: return IntRegType; 
 | 
						|
  case FloatRegClassID: {
 | 
						|
    if (type == Type::FloatTy) 
 | 
						|
      return FPSingleRegType;
 | 
						|
    else if (type == Type::DoubleTy)
 | 
						|
      return FPDoubleRegType;
 | 
						|
    assert(0 && "Unknown type in FloatRegClass");
 | 
						|
  }
 | 
						|
  case IntCCRegClassID:   return IntCCRegType; 
 | 
						|
  case FloatCCRegClassID: return FloatCCRegType; 
 | 
						|
  default: assert( 0 && "Unknown reg class ID"); return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
int UltraSparcRegInfo::getRegType(const LiveRange *LR) const {
 | 
						|
  return getRegType(LR->getRegClass()->getID(), LR->getType());
 | 
						|
}
 | 
						|
 | 
						|
int UltraSparcRegInfo::getRegType(const Value *Val) const {
 | 
						|
  return getRegType(getRegClassIDOfValue(Val), Val->getType());
 | 
						|
}
 | 
						|
 | 
						|
int UltraSparcRegInfo::getRegType(int unifiedRegNum) const {
 | 
						|
  if (unifiedRegNum < 32) 
 | 
						|
    return IntRegType;
 | 
						|
  else if (unifiedRegNum < (32 + 32))
 | 
						|
    return FPSingleRegType;
 | 
						|
  else if (unifiedRegNum < (64 + 32))
 | 
						|
    return FPDoubleRegType;
 | 
						|
  else if (unifiedRegNum < (64+32+4))
 | 
						|
    return FloatCCRegType;
 | 
						|
  else if (unifiedRegNum < (64+32+4+2))  
 | 
						|
    return IntCCRegType;             
 | 
						|
  else 
 | 
						|
    assert(0 && "Invalid unified register number in getRegType");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// To find the register class used for a specified Type
 | 
						|
//
 | 
						|
unsigned UltraSparcRegInfo::getRegClassIDOfType(const Type *type,
 | 
						|
                                                bool isCCReg = false) const {
 | 
						|
  Type::PrimitiveID ty = type->getPrimitiveID();
 | 
						|
  unsigned res;
 | 
						|
    
 | 
						|
  // FIXME: Comparing types like this isn't very safe...
 | 
						|
  if ((ty && ty <= Type::LongTyID) || (ty == Type::LabelTyID) ||
 | 
						|
      (ty == Type::FunctionTyID) ||  (ty == Type::PointerTyID) )
 | 
						|
    res = IntRegClassID;             // sparc int reg (ty=0: void)
 | 
						|
  else if (ty <= Type::DoubleTyID)
 | 
						|
    res = FloatRegClassID;           // sparc float reg class
 | 
						|
  else { 
 | 
						|
    //std::cerr << "TypeID: " << ty << "\n";
 | 
						|
    assert(0 && "Cannot resolve register class for type");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if(isCCReg)
 | 
						|
    return res + 2;      // corresponidng condition code regiser 
 | 
						|
  else 
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
// To find the register class to which a specified register belongs
 | 
						|
//
 | 
						|
unsigned UltraSparcRegInfo::getRegClassIDOfReg(int unifiedRegNum) const {
 | 
						|
  unsigned classId = 0;
 | 
						|
  (void) getClassRegNum(unifiedRegNum, classId);
 | 
						|
  return classId;
 | 
						|
}
 | 
						|
 | 
						|
unsigned UltraSparcRegInfo::getRegClassIDOfRegType(int regType) const {
 | 
						|
  switch(regType) {
 | 
						|
  case IntRegType:      return IntRegClassID;
 | 
						|
  case FPSingleRegType:
 | 
						|
  case FPDoubleRegType: return FloatRegClassID;
 | 
						|
  case IntCCRegType:    return IntCCRegClassID;
 | 
						|
  case FloatCCRegType:  return FloatCCRegClassID;
 | 
						|
  default:
 | 
						|
    assert(0 && "Invalid register type in getRegClassIDOfRegType");
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Suggests a register for the ret address in the RET machine instruction.
 | 
						|
// We always suggest %i7 by convention.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::suggestReg4RetAddr(MachineInstr *RetMI, 
 | 
						|
					   LiveRangeInfo& LRI) const {
 | 
						|
 | 
						|
  assert(target.getInstrInfo().isReturn(RetMI->getOpCode()));
 | 
						|
  
 | 
						|
  // return address is always mapped to i7 so set it immediately
 | 
						|
  RetMI->SetRegForOperand(0, getUnifiedRegNum(IntRegClassID,
 | 
						|
                                              SparcIntRegOrder::i7));
 | 
						|
  
 | 
						|
  // Possible Optimization: 
 | 
						|
  // Instead of setting the color, we can suggest one. In that case,
 | 
						|
  // we have to test later whether it received the suggested color.
 | 
						|
  // In that case, a LR has to be created at the start of method.
 | 
						|
  // It has to be done as follows (remove the setRegVal above):
 | 
						|
 | 
						|
  // MachineOperand & MO  = RetMI->getOperand(0);
 | 
						|
  // const Value *RetAddrVal = MO.getVRegValue();
 | 
						|
  // assert( RetAddrVal && "LR for ret address must be created at start");
 | 
						|
  // LiveRange * RetAddrLR = LRI.getLiveRangeForValue( RetAddrVal);  
 | 
						|
  // RetAddrLR->setSuggestedColor(getUnifiedRegNum( IntRegClassID, 
 | 
						|
  //                              SparcIntRegOrdr::i7) );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Suggests a register for the ret address in the JMPL/CALL machine instr.
 | 
						|
// Sparc ABI dictates that %o7 be used for this purpose.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::suggestReg4CallAddr(MachineInstr * CallMI,
 | 
						|
					    LiveRangeInfo& LRI,
 | 
						|
					 std::vector<RegClass *> RCList) const {
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
 | 
						|
  const Value *RetAddrVal = argDesc->getReturnAddrReg();
 | 
						|
  assert(RetAddrVal && "Return address value is required");
 | 
						|
  
 | 
						|
  // create a new LR for the return address and color it
 | 
						|
  LiveRange * RetAddrLR = new LiveRange();  
 | 
						|
  RetAddrLR->insert( RetAddrVal );
 | 
						|
  unsigned RegClassID = getRegClassIDOfValue( RetAddrVal );
 | 
						|
  RetAddrLR->setRegClass( RCList[RegClassID] );
 | 
						|
  RetAddrLR->setColor(getUnifiedRegNum(IntRegClassID,SparcIntRegOrder::o7));
 | 
						|
  LRI.addLRToMap( RetAddrVal, RetAddrLR);
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
//  This method will suggest colors to incoming args to a method. 
 | 
						|
//  According to the Sparc ABI, the first 6 incoming args are in 
 | 
						|
//  %i0 - %i5 (if they are integer) OR in %f0 - %f31 (if they are float).
 | 
						|
//  If the arg is passed on stack due to the lack of regs, NOTHING will be
 | 
						|
//  done - it will be colored (or spilled) as a normal live range.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::suggestRegs4MethodArgs(const Function *Meth, 
 | 
						|
					       LiveRangeInfo& LRI) const 
 | 
						|
{
 | 
						|
  // check if this is a varArgs function. needed for choosing regs.
 | 
						|
  bool isVarArgs = isVarArgsFunction(Meth->getType());
 | 
						|
  
 | 
						|
  // for each argument.  count INT and FP arguments separately.
 | 
						|
  unsigned argNo=0, intArgNo=0, fpArgNo=0;
 | 
						|
  for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
 | 
						|
      I != E; ++I, ++argNo) {
 | 
						|
    // get the LR of arg
 | 
						|
    LiveRange *LR = LRI.getLiveRangeForValue(I);
 | 
						|
    assert(LR && "No live range found for method arg");
 | 
						|
    
 | 
						|
    unsigned regType = getRegType(LR);
 | 
						|
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
 | 
						|
    
 | 
						|
    int regNum = (regType == IntRegType)
 | 
						|
      ? regNumForIntArg(/*inCallee*/ true, isVarArgs,
 | 
						|
                        argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
 | 
						|
      : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
 | 
						|
                       argNo, intArgNo, fpArgNo++, regClassIDOfArgReg); 
 | 
						|
    
 | 
						|
    if(regNum != InvalidRegNum)
 | 
						|
      LR->setSuggestedColor(regNum);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// This method is called after graph coloring to move incoming args to
 | 
						|
// the correct hardware registers if they did not receive the correct
 | 
						|
// (suggested) color through graph coloring.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::colorMethodArgs(const Function *Meth, 
 | 
						|
					LiveRangeInfo &LRI,
 | 
						|
					AddedInstrns *FirstAI) const {
 | 
						|
 | 
						|
  // check if this is a varArgs function. needed for choosing regs.
 | 
						|
  bool isVarArgs = isVarArgsFunction(Meth->getType());
 | 
						|
  MachineInstr *AdMI;
 | 
						|
 | 
						|
  // for each argument
 | 
						|
  // for each argument.  count INT and FP arguments separately.
 | 
						|
  unsigned argNo=0, intArgNo=0, fpArgNo=0;
 | 
						|
  for(Function::const_aiterator I = Meth->abegin(), E = Meth->aend();
 | 
						|
      I != E; ++I, ++argNo) {
 | 
						|
    // get the LR of arg
 | 
						|
    LiveRange *LR = LRI.getLiveRangeForValue(I);
 | 
						|
    assert( LR && "No live range found for method arg");
 | 
						|
 | 
						|
    unsigned regType = getRegType( LR );
 | 
						|
    unsigned RegClassID = (LR->getRegClass())->getID();
 | 
						|
    
 | 
						|
    // Find whether this argument is coming in a register (if not, on stack)
 | 
						|
    // Also find the correct register the argument must use (UniArgReg)
 | 
						|
    //
 | 
						|
    bool isArgInReg = false;
 | 
						|
    unsigned UniArgReg = InvalidRegNum;	// reg that LR MUST be colored with
 | 
						|
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg
 | 
						|
    
 | 
						|
    int regNum = (regType == IntRegType)
 | 
						|
      ? regNumForIntArg(/*inCallee*/ true, isVarArgs,
 | 
						|
                        argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
 | 
						|
      : regNumForFPArg(regType, /*inCallee*/ true, isVarArgs,
 | 
						|
                       argNo, intArgNo, fpArgNo++, regClassIDOfArgReg);
 | 
						|
    
 | 
						|
    if(regNum != InvalidRegNum) {
 | 
						|
      isArgInReg = true;
 | 
						|
      UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if( LR->hasColor() ) {              // if this arg received a register
 | 
						|
 | 
						|
      unsigned UniLRReg = getUnifiedRegNum(  RegClassID, LR->getColor() );
 | 
						|
 | 
						|
      // if LR received the correct color, nothing to do
 | 
						|
      //
 | 
						|
      if( UniLRReg == UniArgReg )
 | 
						|
	continue;
 | 
						|
 | 
						|
      // We are here because the LR did not receive the suggested 
 | 
						|
      // but LR received another register.
 | 
						|
      // Now we have to copy the %i reg (or stack pos of arg) 
 | 
						|
      // to the register the LR was colored with.
 | 
						|
      
 | 
						|
      // if the arg is coming in UniArgReg register, it MUST go into
 | 
						|
      // the UniLRReg register
 | 
						|
      //
 | 
						|
      if( isArgInReg ) {
 | 
						|
	if( regClassIDOfArgReg != RegClassID ) {
 | 
						|
          assert(0 && "This could should work but it is not tested yet");
 | 
						|
          
 | 
						|
	  // It is a variable argument call: the float reg must go in a %o reg.
 | 
						|
	  // We have to move an int reg to a float reg via memory.
 | 
						|
          // 
 | 
						|
          assert(isVarArgs &&
 | 
						|
                 RegClassID == FloatRegClassID && 
 | 
						|
                 regClassIDOfArgReg == IntRegClassID &&
 | 
						|
                 "This should only be an Int register for an FP argument");
 | 
						|
          
 | 
						|
 	  int TmpOff = MachineCodeForMethod::get(Meth).pushTempValue(target,  
 | 
						|
                                                getSpilledRegSize(regType));
 | 
						|
	  cpReg2MemMI(FirstAI->InstrnsBefore,
 | 
						|
                      UniArgReg, getFramePointer(), TmpOff, IntRegType);
 | 
						|
          
 | 
						|
	  cpMem2RegMI(FirstAI->InstrnsBefore,
 | 
						|
                      getFramePointer(), TmpOff, UniLRReg, regType);
 | 
						|
	}
 | 
						|
	else {	
 | 
						|
	  cpReg2RegMI(FirstAI->InstrnsBefore, UniArgReg, UniLRReg, regType);
 | 
						|
	}
 | 
						|
      }
 | 
						|
      else {
 | 
						|
 | 
						|
	// Now the arg is coming on stack. Since the LR recieved a register,
 | 
						|
	// we just have to load the arg on stack into that register
 | 
						|
	//
 | 
						|
        const MachineFrameInfo& frameInfo = target.getFrameInfo();
 | 
						|
	int offsetFromFP =
 | 
						|
          frameInfo.getIncomingArgOffset(MachineCodeForMethod::get(Meth),
 | 
						|
                                         argNo);
 | 
						|
        
 | 
						|
	cpMem2RegMI(FirstAI->InstrnsBefore,
 | 
						|
                    getFramePointer(), offsetFromFP, UniLRReg, regType);
 | 
						|
      }
 | 
						|
      
 | 
						|
    } // if LR received a color
 | 
						|
 | 
						|
    else {                             
 | 
						|
 | 
						|
      // Now, the LR did not receive a color. But it has a stack offset for
 | 
						|
      // spilling.
 | 
						|
      // So, if the arg is coming in UniArgReg register,  we can just move
 | 
						|
      // that on to the stack pos of LR
 | 
						|
 | 
						|
      if( isArgInReg ) {
 | 
						|
        
 | 
						|
	if( regClassIDOfArgReg != RegClassID ) {
 | 
						|
          assert(0 &&
 | 
						|
                 "FP arguments to a varargs function should be explicitly "
 | 
						|
                 "copied to/from int registers by instruction selection!");
 | 
						|
          
 | 
						|
	  // It must be a float arg for a variable argument call, which
 | 
						|
          // must come in a %o reg.  Move the int reg to the stack.
 | 
						|
          // 
 | 
						|
          assert(isVarArgs && regClassIDOfArgReg == IntRegClassID &&
 | 
						|
                 "This should only be an Int register for an FP argument");
 | 
						|
          
 | 
						|
          cpReg2MemMI(FirstAI->InstrnsBefore, UniArgReg,
 | 
						|
                      getFramePointer(), LR->getSpillOffFromFP(), IntRegType);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
           cpReg2MemMI(FirstAI->InstrnsBefore, UniArgReg,
 | 
						|
                       getFramePointer(), LR->getSpillOffFromFP(), regType);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      else {
 | 
						|
 | 
						|
	// Now the arg is coming on stack. Since the LR did NOT 
 | 
						|
	// recieved a register as well, it is allocated a stack position. We
 | 
						|
	// can simply change the stack position of the LR. We can do this,
 | 
						|
	// since this method is called before any other method that makes
 | 
						|
	// uses of the stack pos of the LR (e.g., updateMachineInstr)
 | 
						|
 | 
						|
        const MachineFrameInfo& frameInfo = target.getFrameInfo();
 | 
						|
	int offsetFromFP =
 | 
						|
          frameInfo.getIncomingArgOffset(MachineCodeForMethod::get(Meth),
 | 
						|
                                         argNo);
 | 
						|
        
 | 
						|
	LR->modifySpillOffFromFP( offsetFromFP );
 | 
						|
      }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
  }  // for each incoming argument
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// This method is called before graph coloring to suggest colors to the
 | 
						|
// outgoing call args and the return value of the call.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::suggestRegs4CallArgs(MachineInstr *CallMI, 
 | 
						|
					     LiveRangeInfo& LRI,
 | 
						|
					 std::vector<RegClass *> RCList) const {
 | 
						|
  assert ( (UltraSparcInfo->getInstrInfo()).isCall(CallMI->getOpCode()) );
 | 
						|
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
 | 
						|
  
 | 
						|
  suggestReg4CallAddr(CallMI, LRI, RCList);
 | 
						|
 | 
						|
  // First color the return value of the call instruction. The return value
 | 
						|
  // will be in %o0 if the value is an integer type, or in %f0 if the 
 | 
						|
  // value is a float type.
 | 
						|
 | 
						|
  // the return value cannot have a LR in machine instruction since it is
 | 
						|
  // only defined by the call instruction
 | 
						|
 | 
						|
  // if type is not void,  create a new live range and set its 
 | 
						|
  // register class and add to LRI
 | 
						|
 | 
						|
  const Value *RetVal = argDesc->getReturnValue();
 | 
						|
 | 
						|
  if (RetVal) {
 | 
						|
    assert ((!LRI.getLiveRangeForValue(RetVal)) && 
 | 
						|
	    "LR for ret Value of call already definded!");
 | 
						|
 | 
						|
    // create a new LR for the return value
 | 
						|
    LiveRange *RetValLR = new LiveRange();  
 | 
						|
    RetValLR->insert(RetVal);
 | 
						|
    unsigned RegClassID = getRegClassIDOfValue(RetVal);
 | 
						|
    RetValLR->setRegClass(RCList[RegClassID]);
 | 
						|
    LRI.addLRToMap(RetVal, RetValLR);
 | 
						|
    
 | 
						|
    // now suggest a register depending on the register class of ret arg
 | 
						|
 | 
						|
    if( RegClassID == IntRegClassID ) 
 | 
						|
      RetValLR->setSuggestedColor(SparcIntRegOrder::o0);
 | 
						|
    else if (RegClassID == FloatRegClassID ) 
 | 
						|
      RetValLR->setSuggestedColor(SparcFloatRegOrder::f0 );
 | 
						|
    else assert( 0 && "Unknown reg class for return value of call\n");
 | 
						|
  }
 | 
						|
 | 
						|
  
 | 
						|
  // Now suggest colors for arguments (operands) of the call instruction.
 | 
						|
  // Colors are suggested only if the arg number is smaller than the
 | 
						|
  // the number of registers allocated for argument passing.
 | 
						|
  // Now, go thru call args - implicit operands of the call MI
 | 
						|
 | 
						|
  unsigned NumOfCallArgs = argDesc->getNumArgs();
 | 
						|
  
 | 
						|
  for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
 | 
						|
       i < NumOfCallArgs; ++i, ++argNo) {    
 | 
						|
 | 
						|
    const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
 | 
						|
    
 | 
						|
    // get the LR of call operand (parameter)
 | 
						|
    LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); 
 | 
						|
    
 | 
						|
    // not possible to have a null LR since all args (even consts)  
 | 
						|
    // must be defined before
 | 
						|
    if (!LR) {          
 | 
						|
      cerr << " ERROR: In call instr, no LR for arg: " << RAV(CallArg) << "\n";
 | 
						|
      assert(0 && "NO LR for call arg");  
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned regType = getRegType( LR );
 | 
						|
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg (unused)
 | 
						|
    
 | 
						|
    // Choose a register for this arg depending on whether it is
 | 
						|
    // an INT or FP value.  Here we ignore whether or not it is a
 | 
						|
    // varargs calls, because FP arguments will be explicitly copied
 | 
						|
    // to an integer Value and handled under (argCopy != NULL) below.
 | 
						|
    int regNum = (regType == IntRegType)
 | 
						|
      ? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
 | 
						|
                        argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
 | 
						|
      : regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
 | 
						|
                       argNo, intArgNo, fpArgNo++, regClassIDOfArgReg); 
 | 
						|
    
 | 
						|
    // If a register could be allocated, use it.
 | 
						|
    // If not, do NOTHING as this will be colored as a normal value.
 | 
						|
    if(regNum != InvalidRegNum)
 | 
						|
      LR->setSuggestedColor(regNum);
 | 
						|
    
 | 
						|
    // Repeat for the second copy of the argument, which would be
 | 
						|
    // an FP argument being passed to a function with no prototype
 | 
						|
    const Value *argCopy = argDesc->getArgInfo(i).getArgCopy();
 | 
						|
    if (argCopy != NULL)
 | 
						|
      {
 | 
						|
        assert(regType != IntRegType && argCopy->getType()->isIntegral()
 | 
						|
               && "Must be passing copy of FP argument in int register");
 | 
						|
        int copyRegNum = regNumForIntArg(/*inCallee*/false, /*isVarArgs*/false,
 | 
						|
                                         argNo, intArgNo, fpArgNo-1,
 | 
						|
                                         regClassIDOfArgReg);
 | 
						|
        assert(copyRegNum != InvalidRegNum); 
 | 
						|
        LiveRange *const copyLR = LRI.getLiveRangeForValue(argCopy); 
 | 
						|
        copyLR->setSuggestedColor(copyRegNum);
 | 
						|
      }
 | 
						|
    
 | 
						|
  } // for all call arguments
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Helper method for UltraSparcRegInfo::colorCallArgs().
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
    
 | 
						|
void
 | 
						|
UltraSparcRegInfo::InitializeOutgoingArg(MachineInstr* CallMI,
 | 
						|
                             AddedInstrns *CallAI,
 | 
						|
                             PhyRegAlloc &PRA, LiveRange* LR,
 | 
						|
                             unsigned regType, unsigned RegClassID,
 | 
						|
                             int UniArgRegOrNone, unsigned int argNo,
 | 
						|
                             std::vector<MachineInstr *>& AddedInstrnsBefore)
 | 
						|
  const
 | 
						|
{
 | 
						|
  MachineInstr *AdMI;
 | 
						|
  bool isArgInReg = false;
 | 
						|
  unsigned UniArgReg = MAXINT;          // unused unless initialized below
 | 
						|
  if (UniArgRegOrNone != InvalidRegNum)
 | 
						|
    {
 | 
						|
      isArgInReg = true;
 | 
						|
      UniArgReg = (unsigned) UniArgRegOrNone;
 | 
						|
      CallMI->getRegsUsed().insert(UniArgReg); // mark the reg as used
 | 
						|
    }
 | 
						|
  
 | 
						|
  if (LR->hasColor()) {
 | 
						|
    unsigned UniLRReg = getUnifiedRegNum(RegClassID, LR->getColor());
 | 
						|
    
 | 
						|
    // if LR received the correct color, nothing to do
 | 
						|
    if( isArgInReg && UniArgReg == UniLRReg )
 | 
						|
      return;
 | 
						|
    
 | 
						|
    // The LR is allocated to a register UniLRReg and must be copied
 | 
						|
    // to UniArgReg or to the stack slot.
 | 
						|
    // 
 | 
						|
    if( isArgInReg ) {
 | 
						|
      // Copy UniLRReg to UniArgReg
 | 
						|
      cpReg2RegMI(AddedInstrnsBefore, UniLRReg, UniArgReg, regType);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      // Copy UniLRReg to the stack to pass the arg on stack.
 | 
						|
      const MachineFrameInfo& frameInfo = target.getFrameInfo();
 | 
						|
      int argOffset = frameInfo.getOutgoingArgOffset(PRA.mcInfo, argNo);
 | 
						|
      cpReg2MemMI(CallAI->InstrnsBefore,
 | 
						|
                  UniLRReg, getStackPointer(), argOffset, regType);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {                          // LR is not colored (i.e., spilled)      
 | 
						|
    
 | 
						|
    if( isArgInReg ) {
 | 
						|
      // Insert a load instruction to load the LR to UniArgReg
 | 
						|
      cpMem2RegMI(AddedInstrnsBefore, getFramePointer(),
 | 
						|
                  LR->getSpillOffFromFP(), UniArgReg, regType);
 | 
						|
                                        // Now add the instruction
 | 
						|
    }
 | 
						|
      
 | 
						|
    else {
 | 
						|
      // Now, we have to pass the arg on stack. Since LR  also did NOT
 | 
						|
      // receive a register we have to move an argument in memory to 
 | 
						|
      // outgoing parameter on stack.
 | 
						|
      // Use TReg to load and store the value.
 | 
						|
      // Use TmpOff to save TReg, since that may have a live value.
 | 
						|
      // 
 | 
						|
      int TReg = PRA.getUniRegNotUsedByThisInst( LR->getRegClass(), CallMI );
 | 
						|
      int TmpOff = PRA.mcInfo.pushTempValue(target,  
 | 
						|
                                            getSpilledRegSize(getRegType(LR)));
 | 
						|
      const MachineFrameInfo& frameInfo = target.getFrameInfo();
 | 
						|
      int argOffset = frameInfo.getOutgoingArgOffset(PRA.mcInfo, argNo);
 | 
						|
      
 | 
						|
      MachineInstr *Ad1, *Ad2, *Ad3, *Ad4;
 | 
						|
        
 | 
						|
      // Sequence:
 | 
						|
      // (1) Save TReg on stack    
 | 
						|
      // (2) Load LR value into TReg from stack pos of LR
 | 
						|
      // (3) Store Treg on outgoing Arg pos on stack
 | 
						|
      // (4) Load the old value of TReg from stack to TReg (restore it)
 | 
						|
      // 
 | 
						|
      // OPTIMIZE THIS:
 | 
						|
      // When reverse pointers in MahineInstr are introduced: 
 | 
						|
      // Call PRA.getUnusedRegAtMI(....) to get an unused reg. Step 1 is
 | 
						|
      // needed only if this fails. Currently, we cannot call the
 | 
						|
      // above method since we cannot find LVSetBefore without the BB 
 | 
						|
      // 
 | 
						|
      // NOTE: We directly add to CallAI->InstrnsBefore instead of adding to
 | 
						|
      // AddedInstrnsBefore since these instructions must not be reordered.
 | 
						|
      cpReg2MemMI(CallAI->InstrnsBefore,
 | 
						|
                  TReg, getFramePointer(), TmpOff, regType);
 | 
						|
      cpMem2RegMI(CallAI->InstrnsBefore,
 | 
						|
                  getFramePointer(), LR->getSpillOffFromFP(), TReg, regType); 
 | 
						|
      cpReg2MemMI(CallAI->InstrnsBefore,
 | 
						|
                  TReg, getStackPointer(), argOffset, regType);
 | 
						|
      cpMem2RegMI(CallAI->InstrnsBefore,
 | 
						|
                  getFramePointer(), TmpOff, TReg, regType); 
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// After graph coloring, we have call this method to see whehter the return
 | 
						|
// value and the call args received the correct colors. If not, we have
 | 
						|
// to instert copy instructions.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
void UltraSparcRegInfo::colorCallArgs(MachineInstr *CallMI,
 | 
						|
				      LiveRangeInfo &LRI,
 | 
						|
				      AddedInstrns *CallAI,
 | 
						|
				      PhyRegAlloc &PRA,
 | 
						|
				      const BasicBlock *BB) const {
 | 
						|
 | 
						|
  assert ( (UltraSparcInfo->getInstrInfo()).isCall(CallMI->getOpCode()) );
 | 
						|
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); 
 | 
						|
  
 | 
						|
  // First color the return value of the call.
 | 
						|
  // If there is a LR for the return value, it means this
 | 
						|
  // method returns a value
 | 
						|
  
 | 
						|
  MachineInstr *AdMI;
 | 
						|
 | 
						|
  const Value *RetVal = argDesc->getReturnValue();
 | 
						|
 | 
						|
  if (RetVal) {
 | 
						|
    LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal );
 | 
						|
 | 
						|
    if (!RetValLR) {
 | 
						|
      cerr << "\nNo LR for:" << RAV(RetVal) << "\n";
 | 
						|
      assert(RetValLR && "ERR:No LR for non-void return value");
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned RegClassID = (RetValLR->getRegClass())->getID();    
 | 
						|
    bool recvCorrectColor;
 | 
						|
    unsigned CorrectCol;                // correct color for ret value
 | 
						|
    unsigned UniRetReg;                 // unified number for CorrectCol
 | 
						|
    
 | 
						|
    if(RegClassID == IntRegClassID)
 | 
						|
      CorrectCol = SparcIntRegOrder::o0;
 | 
						|
    else if(RegClassID == FloatRegClassID)
 | 
						|
      CorrectCol = SparcFloatRegOrder::f0;
 | 
						|
    else {
 | 
						|
      assert( 0 && "Unknown RegClass");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // convert to unified number
 | 
						|
    UniRetReg = this->getUnifiedRegNum( RegClassID, CorrectCol);	
 | 
						|
 | 
						|
    // Mark the register as used by this instruction
 | 
						|
    CallMI->getRegsUsed().insert(UniRetReg);
 | 
						|
    
 | 
						|
    // if the LR received the correct color, NOTHING to do
 | 
						|
    recvCorrectColor = RetValLR->hasColor()? RetValLR->getColor() == CorrectCol
 | 
						|
      : false;
 | 
						|
    
 | 
						|
    // if we didn't receive the correct color for some reason, 
 | 
						|
    // put copy instruction
 | 
						|
    if( !recvCorrectColor ) {
 | 
						|
      
 | 
						|
      unsigned regType = getRegType( RetValLR );
 | 
						|
 | 
						|
      if( RetValLR->hasColor() ) {
 | 
						|
	
 | 
						|
	unsigned UniRetLRReg=getUnifiedRegNum(RegClassID,RetValLR->getColor());
 | 
						|
	
 | 
						|
	// the return value is coming in UniRetReg but has to go into
 | 
						|
	// the UniRetLRReg
 | 
						|
 | 
						|
	cpReg2RegMI(CallAI->InstrnsAfter, UniRetReg, UniRetLRReg, regType);
 | 
						|
 | 
						|
      } // if LR has color
 | 
						|
      else {
 | 
						|
 | 
						|
	// if the LR did NOT receive a color, we have to move the return
 | 
						|
	// value coming in UniRetReg to the stack pos of spilled LR
 | 
						|
	
 | 
						|
        cpReg2MemMI(CallAI->InstrnsAfter, UniRetReg,
 | 
						|
                    getFramePointer(),RetValLR->getSpillOffFromFP(), regType);
 | 
						|
      }
 | 
						|
 | 
						|
    } // the LR didn't receive the suggested color  
 | 
						|
    
 | 
						|
  } // if there a return value
 | 
						|
  
 | 
						|
 | 
						|
  //-------------------------------------------
 | 
						|
  // Now color all args of the call instruction
 | 
						|
  //-------------------------------------------
 | 
						|
 | 
						|
  std::vector<MachineInstr *> AddedInstrnsBefore;
 | 
						|
  
 | 
						|
  unsigned NumOfCallArgs = argDesc->getNumArgs();
 | 
						|
  
 | 
						|
  for(unsigned argNo=0, i=0, intArgNo=0, fpArgNo=0;
 | 
						|
      i < NumOfCallArgs; ++i, ++argNo) {    
 | 
						|
 | 
						|
    const Value *CallArg = argDesc->getArgInfo(i).getArgVal();
 | 
						|
    
 | 
						|
    // get the LR of call operand (parameter)
 | 
						|
    LiveRange *const LR = LRI.getLiveRangeForValue(CallArg); 
 | 
						|
 | 
						|
    unsigned RegClassID = getRegClassIDOfValue( CallArg);
 | 
						|
    unsigned regType = getRegType( RegClassID, CallArg->getType() );
 | 
						|
    
 | 
						|
    // Find whether this argument is coming in a register (if not, on stack)
 | 
						|
    // Also find the correct register the argument must use (UniArgReg)
 | 
						|
    //
 | 
						|
    bool isArgInReg = false;
 | 
						|
    unsigned UniArgReg = InvalidRegNum;	  // reg that LR MUST be colored with
 | 
						|
    unsigned regClassIDOfArgReg = MAXINT; // reg class of chosen reg
 | 
						|
    
 | 
						|
    // Find the register that must be used for this arg, depending on
 | 
						|
    // whether it is an INT or FP value.  Here we ignore whether or not it
 | 
						|
    // is a varargs calls, because FP arguments will be explicitly copied
 | 
						|
    // to an integer Value and handled under (argCopy != NULL) below.
 | 
						|
    int regNum = (regType == IntRegType)
 | 
						|
      ? regNumForIntArg(/*inCallee*/ false, /*isVarArgs*/ false,
 | 
						|
                        argNo, intArgNo++, fpArgNo, regClassIDOfArgReg)
 | 
						|
      : regNumForFPArg(regType, /*inCallee*/ false, /*isVarArgs*/ false,
 | 
						|
                       argNo, intArgNo, fpArgNo++, regClassIDOfArgReg); 
 | 
						|
    
 | 
						|
    if(regNum != InvalidRegNum) {
 | 
						|
      isArgInReg = true;
 | 
						|
      UniArgReg = getUnifiedRegNum( regClassIDOfArgReg, regNum);
 | 
						|
      assert(regClassIDOfArgReg == RegClassID &&
 | 
						|
             "Moving values between reg classes must happen during selection");
 | 
						|
    }
 | 
						|
    
 | 
						|
    // not possible to have a null LR since all args (even consts)  
 | 
						|
    // must be defined before
 | 
						|
    if (!LR) {          
 | 
						|
      cerr << " ERROR: In call instr, no LR for arg:  " << RAV(CallArg) <<"\n";
 | 
						|
      assert(LR && "NO LR for call arg");  
 | 
						|
    }
 | 
						|
    
 | 
						|
    InitializeOutgoingArg(CallMI, CallAI, PRA, LR, regType, RegClassID,
 | 
						|
                          UniArgReg, argNo, AddedInstrnsBefore);
 | 
						|
    
 | 
						|
    // Repeat for the second copy of the argument, which would be
 | 
						|
    // an FP argument being passed to a function with no prototype.
 | 
						|
    // It may either be passed as a copy in an integer register
 | 
						|
    // (in argCopy), or on the stack (useStackSlot).
 | 
						|
    const Value *argCopy = argDesc->getArgInfo(i).getArgCopy();
 | 
						|
    if (argCopy != NULL)
 | 
						|
      {
 | 
						|
        assert(regType != IntRegType && argCopy->getType()->isIntegral()
 | 
						|
               && "Must be passing copy of FP argument in int register");
 | 
						|
        
 | 
						|
        unsigned copyRegClassID = getRegClassIDOfValue(argCopy);
 | 
						|
        unsigned copyRegType = getRegType(copyRegClassID, argCopy->getType());
 | 
						|
        
 | 
						|
        int copyRegNum = regNumForIntArg(/*inCallee*/false, /*isVarArgs*/false,
 | 
						|
                                         argNo, intArgNo, fpArgNo-1,
 | 
						|
                                         regClassIDOfArgReg);
 | 
						|
        assert(copyRegNum != InvalidRegNum); 
 | 
						|
        assert(regClassIDOfArgReg == copyRegClassID &&
 | 
						|
           "Moving values between reg classes must happen during selection");
 | 
						|
        
 | 
						|
        InitializeOutgoingArg(CallMI, CallAI, PRA,
 | 
						|
                              LRI.getLiveRangeForValue(argCopy), copyRegType,
 | 
						|
                              copyRegClassID, copyRegNum, argNo,
 | 
						|
                              AddedInstrnsBefore);
 | 
						|
      }
 | 
						|
    
 | 
						|
    if (regNum != InvalidRegNum &&
 | 
						|
        argDesc->getArgInfo(i).usesStackSlot())
 | 
						|
      {
 | 
						|
        // Pass the argument via the stack in addition to regNum
 | 
						|
        assert(regType != IntRegType && "Passing an integer arg. twice?");
 | 
						|
        assert(!argCopy && "Passing FP arg in FP reg, INT reg, and stack?");
 | 
						|
        InitializeOutgoingArg(CallMI, CallAI, PRA, LR, regType, RegClassID,
 | 
						|
                              InvalidRegNum, argNo, AddedInstrnsBefore);
 | 
						|
      }
 | 
						|
  }  // for each parameter in call instruction
 | 
						|
 | 
						|
  // If we added any instruction before the call instruction, verify
 | 
						|
  // that they are in the proper order and if not, reorder them
 | 
						|
  // 
 | 
						|
  std::vector<MachineInstr *> ReorderedVec;
 | 
						|
  if (!AddedInstrnsBefore.empty()) {
 | 
						|
 | 
						|
    if (DEBUG_RA) {
 | 
						|
      cerr << "\nCalling reorder with instrns: \n";
 | 
						|
      for(unsigned i=0; i < AddedInstrnsBefore.size(); i++)
 | 
						|
	cerr  << *(AddedInstrnsBefore[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    OrderAddedInstrns(AddedInstrnsBefore, ReorderedVec, PRA);
 | 
						|
    assert(ReorderedVec.size() >= AddedInstrnsBefore.size()
 | 
						|
           && "Dropped some instructions when reordering!");
 | 
						|
    
 | 
						|
    if (DEBUG_RA) {
 | 
						|
      cerr << "\nAfter reordering instrns: \n";
 | 
						|
      for(unsigned i = 0; i < ReorderedVec.size(); i++)
 | 
						|
	cerr << *ReorderedVec[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now insert caller saving code for this call instruction
 | 
						|
  //
 | 
						|
  insertCallerSavingCode(CallAI->InstrnsBefore, CallAI->InstrnsAfter,
 | 
						|
                         CallMI, BB, PRA);
 | 
						|
  
 | 
						|
  // Then insert the final reordered code for the call arguments.
 | 
						|
  // 
 | 
						|
  for(unsigned i=0; i < ReorderedVec.size(); i++)
 | 
						|
    CallAI->InstrnsBefore.push_back( ReorderedVec[i] );
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// This method is called for an LLVM return instruction to identify which
 | 
						|
// values will be returned from this method and to suggest colors.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::suggestReg4RetValue(MachineInstr *RetMI, 
 | 
						|
                                            LiveRangeInfo &LRI) const {
 | 
						|
 | 
						|
  assert( (UltraSparcInfo->getInstrInfo()).isReturn( RetMI->getOpCode() ) );
 | 
						|
 | 
						|
  suggestReg4RetAddr(RetMI, LRI);
 | 
						|
 | 
						|
  // if there is an implicit ref, that has to be the ret value
 | 
						|
  if(  RetMI->getNumImplicitRefs() > 0 ) {
 | 
						|
 | 
						|
    // The first implicit operand is the return value of a return instr
 | 
						|
    const Value *RetVal =  RetMI->getImplicitRef(0);
 | 
						|
 | 
						|
    LiveRange *const LR = LRI.getLiveRangeForValue( RetVal ); 
 | 
						|
 | 
						|
    if (!LR) {
 | 
						|
      cerr << "\nNo LR for:" << RAV(RetVal) << "\n";
 | 
						|
      assert(0 && "No LR for return value of non-void method");
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned RegClassID = (LR->getRegClass())->getID();
 | 
						|
      
 | 
						|
    if (RegClassID == IntRegClassID) 
 | 
						|
      LR->setSuggestedColor(SparcIntRegOrder::i0);
 | 
						|
    else if (RegClassID == FloatRegClassID) 
 | 
						|
      LR->setSuggestedColor(SparcFloatRegOrder::f0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Colors the return value of a method to %i0 or %f0, if possible. If it is
 | 
						|
// not possilbe to directly color the LR, insert a copy instruction to move
 | 
						|
// the LR to %i0 or %f0. When the LR is spilled, instead of the copy, we 
 | 
						|
// have to put a load instruction.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
void UltraSparcRegInfo::colorRetValue(MachineInstr *RetMI, 
 | 
						|
				      LiveRangeInfo &LRI,
 | 
						|
				      AddedInstrns *RetAI) const {
 | 
						|
 | 
						|
  assert((UltraSparcInfo->getInstrInfo()).isReturn( RetMI->getOpCode()));
 | 
						|
 | 
						|
  // if there is an implicit ref, that has to be the ret value
 | 
						|
  if(RetMI->getNumImplicitRefs() > 0) {
 | 
						|
 | 
						|
    // The first implicit operand is the return value of a return instr
 | 
						|
    const Value *RetVal =  RetMI->getImplicitRef(0);
 | 
						|
 | 
						|
    LiveRange *LR = LRI.getLiveRangeForValue(RetVal); 
 | 
						|
 | 
						|
    if (!LR) {
 | 
						|
      cerr << "\nNo LR for:" << RAV(RetVal) << "\n";
 | 
						|
      // assert( LR && "No LR for return value of non-void method");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned RegClassID =  getRegClassIDOfValue(RetVal);
 | 
						|
    unsigned regType = getRegType( RetVal );
 | 
						|
 | 
						|
    unsigned CorrectCol;
 | 
						|
    if(RegClassID == IntRegClassID)
 | 
						|
      CorrectCol = SparcIntRegOrder::i0;
 | 
						|
    else if(RegClassID == FloatRegClassID)
 | 
						|
      CorrectCol = SparcFloatRegOrder::f0;
 | 
						|
    else {
 | 
						|
      assert (0 && "Unknown RegClass");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // convert to unified number
 | 
						|
    unsigned UniRetReg = this->getUnifiedRegNum(RegClassID, CorrectCol);
 | 
						|
 | 
						|
    // Mark the register as used by this instruction
 | 
						|
    RetMI->getRegsUsed().insert(UniRetReg);
 | 
						|
    
 | 
						|
    // if the LR received the correct color, NOTHING to do
 | 
						|
    
 | 
						|
    if (LR->hasColor() && LR->getColor() == CorrectCol)
 | 
						|
      return;
 | 
						|
    
 | 
						|
    if (LR->hasColor()) {
 | 
						|
 | 
						|
      // We are here because the LR was allocted a regiter
 | 
						|
      // It may be the suggested register or not
 | 
						|
 | 
						|
      // copy the LR of retun value to i0 or f0
 | 
						|
 | 
						|
      unsigned UniLRReg =getUnifiedRegNum( RegClassID, LR->getColor());
 | 
						|
 | 
						|
      // the LR received  UniLRReg but must be colored with UniRetReg
 | 
						|
      // to pass as the return value
 | 
						|
      cpReg2RegMI(RetAI->InstrnsBefore, UniLRReg, UniRetReg, regType);
 | 
						|
    }
 | 
						|
    else {                              // if the LR is spilled
 | 
						|
      cpMem2RegMI(RetAI->InstrnsBefore, getFramePointer(),
 | 
						|
                  LR->getSpillOffFromFP(), UniRetReg, regType);
 | 
						|
      cerr << "\nCopied the return value from stack\n";
 | 
						|
    }
 | 
						|
  
 | 
						|
  } // if there is a return value
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Check if a specified register type needs a scratch register to be
 | 
						|
// copied to/from memory.  If it does, the reg. type that must be used
 | 
						|
// for scratch registers is returned in scratchRegType.
 | 
						|
//
 | 
						|
// Only the int CC register needs such a scratch register.
 | 
						|
// The FP CC registers can (and must) be copied directly to/from memory.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
bool
 | 
						|
UltraSparcRegInfo::regTypeNeedsScratchReg(int RegType,
 | 
						|
                                          int& scratchRegType) const
 | 
						|
{
 | 
						|
  if (RegType == IntCCRegType)
 | 
						|
    {
 | 
						|
      scratchRegType = IntRegType;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Copy from a register to register. Register number must be the unified
 | 
						|
// register number.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
void
 | 
						|
UltraSparcRegInfo::cpReg2RegMI(vector<MachineInstr*>& mvec,
 | 
						|
                               unsigned SrcReg,
 | 
						|
                               unsigned DestReg,
 | 
						|
                               int RegType) const {
 | 
						|
  assert( ((int)SrcReg != InvalidRegNum) && ((int)DestReg != InvalidRegNum) &&
 | 
						|
	  "Invalid Register");
 | 
						|
  
 | 
						|
  MachineInstr * MI = NULL;
 | 
						|
  
 | 
						|
  switch( RegType ) {
 | 
						|
    
 | 
						|
  case IntCCRegType:
 | 
						|
    if (this->getRegType(DestReg) == IntRegType)
 | 
						|
      { // copy intCC reg to int reg
 | 
						|
        // Use SrcReg+1 to get the name "%ccr" instead of "%xcc" for RDCCR
 | 
						|
        MI = Create2OperandInstr_Reg(RDCCR, SrcReg+1, DestReg);
 | 
						|
      }
 | 
						|
    else 
 | 
						|
      { // copy int reg to intCC reg
 | 
						|
        // Use DestReg+1 to get the name "%ccr" instead of "%xcc" for WRCCR
 | 
						|
        assert(this->getRegType(SrcReg) == IntRegType
 | 
						|
               && "Can only copy CC reg to/from integer reg");
 | 
						|
        MI = Create2OperandInstr_Reg(WRCCR, SrcReg, DestReg+1);
 | 
						|
      }
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case FloatCCRegType: 
 | 
						|
    assert(0 && "Cannot copy FPCC register to any other register");
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case IntRegType:
 | 
						|
    MI = Create3OperandInstr_Reg(ADD, SrcReg, this->getZeroRegNum(), DestReg);
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case FPSingleRegType:
 | 
						|
    MI = Create2OperandInstr_Reg(FMOVS, SrcReg, DestReg);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FPDoubleRegType:
 | 
						|
    MI = Create2OperandInstr_Reg(FMOVD, SrcReg, DestReg);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(0 && "Unknown RegType");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (MI)
 | 
						|
    mvec.push_back(MI);
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Copy from a register to memory (i.e., Store). Register number must 
 | 
						|
// be the unified register number
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
UltraSparcRegInfo::cpReg2MemMI(vector<MachineInstr*>& mvec,
 | 
						|
                               unsigned SrcReg, 
 | 
						|
                               unsigned DestPtrReg,
 | 
						|
                               int Offset, int RegType,
 | 
						|
                               int scratchReg = -1) const {
 | 
						|
  MachineInstr * MI = NULL;
 | 
						|
  switch( RegType ) {
 | 
						|
  case IntRegType:
 | 
						|
    MI = new MachineInstr(STX, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcReg, false);
 | 
						|
    MI->SetMachineOperandReg(1, DestPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FPSingleRegType:
 | 
						|
    MI = new MachineInstr(ST, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcReg, false);
 | 
						|
    MI->SetMachineOperandReg(1, DestPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FPDoubleRegType:
 | 
						|
    MI = new MachineInstr(STD, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcReg, false);
 | 
						|
    MI->SetMachineOperandReg(1, DestPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case IntCCRegType:
 | 
						|
    assert(scratchReg >= 0 && "Need scratch reg to store %ccr to memory");
 | 
						|
    assert(this->getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
 | 
						|
    
 | 
						|
    // Use SrcReg+1 to get the name "%ccr" instead of "%xcc" for RDCCR
 | 
						|
    MI = Create2OperandInstr_Reg(RDCCR, SrcReg+1, scratchReg);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    
 | 
						|
    this->cpReg2MemMI(mvec, scratchReg, DestPtrReg, Offset, IntRegType);
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case FloatCCRegType: 
 | 
						|
    assert(0 && "Tell Vikram if this assertion fails: we may have to mask out the other bits here");
 | 
						|
    MI = new MachineInstr(STXFSR, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcReg, false);
 | 
						|
    MI->SetMachineOperandReg(1, DestPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(2, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
    
 | 
						|
  default:
 | 
						|
    assert(0 && "Unknown RegType in cpReg2MemMI");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Copy from memory to a reg (i.e., Load) Register number must be the unified
 | 
						|
// register number
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
UltraSparcRegInfo::cpMem2RegMI(vector<MachineInstr*>& mvec,
 | 
						|
                               unsigned SrcPtrReg,	
 | 
						|
                               int Offset,
 | 
						|
                               unsigned DestReg,
 | 
						|
                               int RegType,
 | 
						|
                               int scratchReg = -1) const {
 | 
						|
  MachineInstr * MI = NULL;
 | 
						|
  switch (RegType) {
 | 
						|
  case IntRegType:
 | 
						|
    MI = new MachineInstr(LDX, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    MI->SetMachineOperandReg(2, DestReg, true);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FPSingleRegType:
 | 
						|
    MI = new MachineInstr(LD, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    MI->SetMachineOperandReg(2, DestReg, true);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FPDoubleRegType:
 | 
						|
    MI = new MachineInstr(LDD, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    MI->SetMachineOperandReg(2, DestReg, true);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  case IntCCRegType:
 | 
						|
    assert(scratchReg >= 0 && "Need scratch reg to load %ccr from memory");
 | 
						|
    assert(this->getRegType(scratchReg) ==IntRegType && "Invalid scratch reg");
 | 
						|
    this->cpMem2RegMI(mvec, SrcPtrReg, Offset, scratchReg, IntRegType);
 | 
						|
    
 | 
						|
    // Use DestReg+1 to get the name "%ccr" instead of "%xcc" for WRCCR
 | 
						|
    MI = Create2OperandInstr_Reg(WRCCR, scratchReg, DestReg+1);
 | 
						|
    mvec.push_back(MI);
 | 
						|
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case FloatCCRegType: 
 | 
						|
    assert(0 && "Tell Vikram if this assertion fails: we may have to mask out the other bits here");
 | 
						|
    MI = new MachineInstr(LDXFSR, 3);
 | 
						|
    MI->SetMachineOperandReg(0, SrcPtrReg, false);
 | 
						|
    MI->SetMachineOperandConst(1, MachineOperand:: MO_SignExtendedImmed, 
 | 
						|
                               (int64_t) Offset);
 | 
						|
    MI->SetMachineOperandReg(2, DestReg, true);
 | 
						|
    mvec.push_back(MI);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(0 && "Unknown RegType in cpMem2RegMI");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Generate a copy instruction to copy a value to another. Temporarily
 | 
						|
// used by PhiElimination code.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
UltraSparcRegInfo::cpValue2Value(Value *Src,
 | 
						|
                                 Value *Dest,
 | 
						|
                                 vector<MachineInstr*>& mvec) const {
 | 
						|
  int RegType = getRegType( Src );
 | 
						|
 | 
						|
  assert( (RegType==getRegType(Src))  && "Src & Dest are diff types");
 | 
						|
 | 
						|
  MachineInstr * MI = NULL;
 | 
						|
 | 
						|
  switch( RegType ) {
 | 
						|
  case IntRegType:
 | 
						|
    MI = new MachineInstr(ADD, 3);
 | 
						|
    MI->SetMachineOperandVal(0, MachineOperand:: MO_VirtualRegister, Src, false);
 | 
						|
    MI->SetMachineOperandReg(1, this->getZeroRegNum(), false);
 | 
						|
    MI->SetMachineOperandVal(2, MachineOperand:: MO_VirtualRegister, Dest, true);
 | 
						|
    break;
 | 
						|
 | 
						|
  case FPSingleRegType:
 | 
						|
    MI = new MachineInstr(FMOVS, 2);
 | 
						|
    MI->SetMachineOperandVal(0, MachineOperand:: MO_VirtualRegister, Src, false);
 | 
						|
    MI->SetMachineOperandVal(1, MachineOperand:: MO_VirtualRegister, Dest, true);
 | 
						|
    break;
 | 
						|
 | 
						|
 | 
						|
  case FPDoubleRegType:
 | 
						|
    MI = new MachineInstr(FMOVD, 2);
 | 
						|
    MI->SetMachineOperandVal(0, MachineOperand:: MO_VirtualRegister, Src, false);
 | 
						|
    MI->SetMachineOperandVal(1, MachineOperand:: MO_VirtualRegister, Dest, true);
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(0 && "Unknow RegType in CpValu2Value");
 | 
						|
  }
 | 
						|
 | 
						|
  if (MI)
 | 
						|
    mvec.push_back(MI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
// This method inserts caller saving/restoring instructons before/after
 | 
						|
// a call machine instruction. The caller saving/restoring instructions are
 | 
						|
// inserted like:
 | 
						|
//
 | 
						|
//    ** caller saving instructions
 | 
						|
//    other instructions inserted for the call by ColorCallArg
 | 
						|
//    CALL instruction
 | 
						|
//    other instructions inserted for the call ColorCallArg
 | 
						|
//    ** caller restoring instructions
 | 
						|
//
 | 
						|
//----------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
UltraSparcRegInfo::insertCallerSavingCode(vector<MachineInstr*>& instrnsBefore,
 | 
						|
                                          vector<MachineInstr*>& instrnsAfter,
 | 
						|
                                          MachineInstr *CallMI, 
 | 
						|
                                          const BasicBlock *BB,
 | 
						|
                                          PhyRegAlloc &PRA) const
 | 
						|
{
 | 
						|
  assert ( (UltraSparcInfo->getInstrInfo()).isCall(CallMI->getOpCode()) );
 | 
						|
  
 | 
						|
  // has set to record which registers were saved/restored
 | 
						|
  //
 | 
						|
  hash_set<unsigned> PushedRegSet;
 | 
						|
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
 | 
						|
  
 | 
						|
  // Now find the LR of the return value of the call
 | 
						|
  // The last *implicit operand* is the return value of a call
 | 
						|
  // Insert it to to he PushedRegSet since we must not save that register
 | 
						|
  // and restore it after the call.
 | 
						|
  // We do this because, we look at the LV set *after* the instruction
 | 
						|
  // to determine, which LRs must be saved across calls. The return value
 | 
						|
  // of the call is live in this set - but we must not save/restore it.
 | 
						|
 | 
						|
  const Value *RetVal = argDesc->getReturnValue();
 | 
						|
 | 
						|
  if (RetVal) {
 | 
						|
    LiveRange *RetValLR = PRA.LRI.getLiveRangeForValue( RetVal );
 | 
						|
    assert(RetValLR && "No LR for RetValue of call");
 | 
						|
 | 
						|
    if (RetValLR->hasColor())
 | 
						|
      PushedRegSet.insert(
 | 
						|
	 getUnifiedRegNum((RetValLR->getRegClass())->getID(), 
 | 
						|
				      RetValLR->getColor() ) );
 | 
						|
  }
 | 
						|
 | 
						|
  const ValueSet &LVSetAft =  PRA.LVI->getLiveVarSetAfterMInst(CallMI, BB);
 | 
						|
  ValueSet::const_iterator LIt = LVSetAft.begin();
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for( ; LIt != LVSetAft.end(); ++LIt) {
 | 
						|
 | 
						|
   //  get the live range corresponding to live var
 | 
						|
    LiveRange *const LR = PRA.LRI.getLiveRangeForValue(*LIt );    
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const 
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if( LR )   {  
 | 
						|
      
 | 
						|
      if( LR->hasColor() ) {
 | 
						|
 | 
						|
	unsigned RCID = (LR->getRegClass())->getID();
 | 
						|
	unsigned Color = LR->getColor();
 | 
						|
 | 
						|
	if ( isRegVolatile(RCID, Color) ) {
 | 
						|
 | 
						|
	  // if the value is in both LV sets (i.e., live before and after 
 | 
						|
	  // the call machine instruction)
 | 
						|
          
 | 
						|
	  unsigned Reg = getUnifiedRegNum(RCID, Color);
 | 
						|
	  
 | 
						|
	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
 | 
						|
	    
 | 
						|
	    // if we haven't already pushed that register
 | 
						|
 | 
						|
	    unsigned RegType = getRegType( LR );
 | 
						|
 | 
						|
	    // Now get two instructions - to push on stack and pop from stack
 | 
						|
	    // and add them to InstrnsBefore and InstrnsAfter of the
 | 
						|
	    // call instruction
 | 
						|
            // 
 | 
						|
	    int StackOff =  PRA.mcInfo.pushTempValue(target,  
 | 
						|
					       getSpilledRegSize(RegType));
 | 
						|
            
 | 
						|
	    vector<MachineInstr*> AdIBef, AdIAft;
 | 
						|
            
 | 
						|
	    //---- Insert code for pushing the reg on stack ----------
 | 
						|
            
 | 
						|
            // We may need a scratch register to copy the saved value
 | 
						|
            // to/from memory.  This may itself have to insert code to
 | 
						|
            // free up a scratch register.  Any such code should go before
 | 
						|
            // the save code.
 | 
						|
            int scratchRegType = -1;
 | 
						|
            int scratchReg = -1;
 | 
						|
            if (this->regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
              { // Find a register not live in the LVSet before CallMI
 | 
						|
                const ValueSet &LVSetBef =
 | 
						|
                  PRA.LVI->getLiveVarSetBeforeMInst(CallMI, BB);
 | 
						|
                scratchReg = PRA.getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | 
						|
                                                   CallMI, AdIBef, AdIAft);
 | 
						|
                assert(scratchReg != this->getInvalidRegNum());
 | 
						|
                CallMI->getRegsUsed().insert(scratchReg); 
 | 
						|
              }
 | 
						|
            
 | 
						|
            if (AdIBef.size() > 0)
 | 
						|
              instrnsBefore.insert(instrnsBefore.end(),
 | 
						|
                                   AdIBef.begin(), AdIBef.end());
 | 
						|
            
 | 
						|
            cpReg2MemMI(instrnsBefore, Reg,getFramePointer(),StackOff,RegType,
 | 
						|
                        scratchReg);
 | 
						|
            
 | 
						|
            if (AdIAft.size() > 0)
 | 
						|
              instrnsBefore.insert(instrnsBefore.end(),
 | 
						|
                                   AdIAft.begin(), AdIAft.end());
 | 
						|
            
 | 
						|
	    //---- Insert code for popping the reg from the stack ----------
 | 
						|
 | 
						|
            // We may need a scratch register to copy the saved value
 | 
						|
            // from memory.  This may itself have to insert code to
 | 
						|
            // free up a scratch register.  Any such code should go
 | 
						|
            // after the save code.
 | 
						|
            // 
 | 
						|
            scratchRegType = -1;
 | 
						|
            scratchReg = -1;
 | 
						|
            if (this->regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
              { // Find a register not live in the LVSet after CallMI
 | 
						|
                scratchReg = PRA.getUsableUniRegAtMI(scratchRegType, &LVSetAft,
 | 
						|
                                                 CallMI, AdIBef, AdIAft);
 | 
						|
                assert(scratchReg != this->getInvalidRegNum());
 | 
						|
                CallMI->getRegsUsed().insert(scratchReg); 
 | 
						|
              }
 | 
						|
            
 | 
						|
            if (AdIBef.size() > 0)
 | 
						|
              instrnsAfter.insert(instrnsAfter.end(),
 | 
						|
                                  AdIBef.begin(), AdIBef.end());
 | 
						|
            
 | 
						|
	    cpMem2RegMI(instrnsAfter, getFramePointer(), StackOff,Reg,RegType,
 | 
						|
                        scratchReg);
 | 
						|
            
 | 
						|
            if (AdIAft.size() > 0)
 | 
						|
              instrnsAfter.insert(instrnsAfter.end(),
 | 
						|
                                  AdIAft.begin(), AdIAft.end());
 | 
						|
	    
 | 
						|
	    PushedRegSet.insert(Reg);
 | 
						|
            
 | 
						|
	    if(DEBUG_RA) {
 | 
						|
	      cerr << "\nFor call inst:" << *CallMI;
 | 
						|
	      cerr << " -inserted caller saving instrs: Before:\n\t ";
 | 
						|
              for_each(instrnsBefore.begin(), instrnsBefore.end(),
 | 
						|
                       std::mem_fun(&MachineInstr::dump));
 | 
						|
	      cerr << " -and After:\n\t ";
 | 
						|
              for_each(instrnsAfter.begin(), instrnsAfter.end(),
 | 
						|
                       std::mem_fun(&MachineInstr::dump));
 | 
						|
	    }	    
 | 
						|
	  } // if not already pushed
 | 
						|
 | 
						|
	} // if LR has a volatile color
 | 
						|
	
 | 
						|
      } // if LR has color
 | 
						|
 | 
						|
    } // if there is a LR for Var
 | 
						|
    
 | 
						|
  } // for each value in the LV set after instruction
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Print the register assigned to a LR
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
void UltraSparcRegInfo::printReg(const LiveRange *LR) {
 | 
						|
  unsigned RegClassID = (LR->getRegClass())->getID();
 | 
						|
  cerr << " *Node " << (LR->getUserIGNode())->getIndex();
 | 
						|
 | 
						|
  if (!LR->hasColor()) {
 | 
						|
    cerr << " - could not find a color\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // if a color is found
 | 
						|
 | 
						|
  cerr << " colored with color "<< LR->getColor();
 | 
						|
 | 
						|
  if (RegClassID == IntRegClassID) {
 | 
						|
    cerr<< " [" << SparcIntRegOrder::getRegName(LR->getColor()) << "]\n";
 | 
						|
 | 
						|
  } else if (RegClassID == FloatRegClassID) {
 | 
						|
    cerr << "[" << SparcFloatRegOrder::getRegName(LR->getColor());
 | 
						|
    if( LR->getType() == Type::DoubleTy)
 | 
						|
      cerr << "+" << SparcFloatRegOrder::getRegName(LR->getColor()+1);
 | 
						|
    cerr << "]\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// This method examines instructions inserted by RegAlloc code before a
 | 
						|
// machine instruction to detect invalid orders that destroy values before
 | 
						|
// they are used. If it detects such conditions, it reorders the instructions.
 | 
						|
//
 | 
						|
// The unordered instructions come in the UnordVec. These instructions are
 | 
						|
// instructions inserted by RegAlloc. All such instruction MUST have 
 | 
						|
// their USES BEFORE THE DEFS after reordering.
 | 
						|
// 
 | 
						|
// The UnordVec & OrdVec must be DISTINCT. The OrdVec must be empty when
 | 
						|
// this method is called.
 | 
						|
// 
 | 
						|
// This method uses two vectors for efficiency in accessing
 | 
						|
// 
 | 
						|
// Since instructions are inserted in RegAlloc, this assumes that the 
 | 
						|
// first operand is the source reg and the last operand is the dest reg.
 | 
						|
// It also does not consider operands that are both use and def.
 | 
						|
// 
 | 
						|
// All the uses are before THE def to a register
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
void UltraSparcRegInfo::OrderAddedInstrns(std::vector<MachineInstr*> &UnordVec,
 | 
						|
					  std::vector<MachineInstr*> &OrdVec,
 | 
						|
                                          PhyRegAlloc &PRA) const{
 | 
						|
 | 
						|
  /*
 | 
						|
    Problem: We can have instructions inserted by RegAlloc like
 | 
						|
    1. add %ox %g0 %oy
 | 
						|
    2. add %oy %g0 %oz, where z!=x or z==x
 | 
						|
 | 
						|
    This is wrong since %oy used by 2 is overwritten by 1
 | 
						|
  
 | 
						|
    Solution:
 | 
						|
    We re-order the instructions so that the uses are before the defs
 | 
						|
 | 
						|
    Algorithm:
 | 
						|
    
 | 
						|
    do
 | 
						|
      for each instruction 'DefInst' in the UnOrdVec
 | 
						|
         for each instruction 'UseInst' that follows the DefInst
 | 
						|
           if the reg defined by DefInst is used by UseInst
 | 
						|
	     mark DefInst as not movable in this iteration
 | 
						|
	 If DefInst is not marked as not-movable, move DefInst to OrdVec
 | 
						|
    while all instructions in DefInst are moved to OrdVec
 | 
						|
    
 | 
						|
    For moving, we call the move2OrdVec(). It checks whether there is a def
 | 
						|
    in it for the uses in the instruction to be added to OrdVec. If there
 | 
						|
    are no preceding defs, it just appends the instruction. If there is a
 | 
						|
    preceding def, it puts two instructions to save the reg on stack before
 | 
						|
    the load and puts a restore at use.
 | 
						|
 | 
						|
  */
 | 
						|
 | 
						|
  bool CouldMoveAll;
 | 
						|
  bool DebugPrint = false;
 | 
						|
 | 
						|
  do {
 | 
						|
    CouldMoveAll = true;
 | 
						|
    std::vector<MachineInstr *>::iterator DefIt = UnordVec.begin();
 | 
						|
 | 
						|
    for( ; DefIt !=  UnordVec.end(); ++DefIt ) {
 | 
						|
 | 
						|
      // for each instruction in the UnordVec do ...
 | 
						|
 | 
						|
      MachineInstr *DefInst = *DefIt;
 | 
						|
 | 
						|
      if( DefInst == NULL) continue;
 | 
						|
 | 
						|
      //cerr << "\nInst in UnordVec = " <<  *DefInst;
 | 
						|
      
 | 
						|
      // last operand is the def (unless for a store which has no def reg)
 | 
						|
      MachineOperand& DefOp = DefInst->getOperand(DefInst->getNumOperands()-1);
 | 
						|
      
 | 
						|
      if( DefOp.opIsDef() &&  
 | 
						|
	  DefOp.getOperandType() ==  MachineOperand::MO_MachineRegister) {
 | 
						|
	
 | 
						|
	// If the operand in DefInst is a def ...
 | 
						|
	
 | 
						|
	bool DefEqUse = false;
 | 
						|
	
 | 
						|
	std::vector<MachineInstr *>::iterator UseIt = DefIt;
 | 
						|
	UseIt++;
 | 
						|
	
 | 
						|
	for( ; UseIt !=  UnordVec.end(); ++UseIt ) {
 | 
						|
 | 
						|
	  MachineInstr *UseInst = *UseIt;
 | 
						|
	  if( UseInst == NULL) continue;
 | 
						|
	  
 | 
						|
	  // for each inst (UseInst) that is below the DefInst do ...
 | 
						|
	  MachineOperand& UseOp = UseInst->getOperand(0);
 | 
						|
	  
 | 
						|
	  if( ! UseOp.opIsDef() &&  
 | 
						|
	      UseOp.getOperandType() == MachineOperand::MO_MachineRegister) {
 | 
						|
	    
 | 
						|
	    // if use is a register ...
 | 
						|
	    
 | 
						|
	    if( DefOp.getMachineRegNum() == UseOp.getMachineRegNum() ) {
 | 
						|
	      
 | 
						|
	      // if Def and this use are the same, it means that this use
 | 
						|
	      // is destroyed by a def before it is used
 | 
						|
	      
 | 
						|
	      // cerr << "\nCouldn't move " << *DefInst;
 | 
						|
 | 
						|
	      DefEqUse = true;
 | 
						|
	      CouldMoveAll = false;	
 | 
						|
	      DebugPrint = true;
 | 
						|
	      break;
 | 
						|
	    } // if two registers are equal
 | 
						|
	    
 | 
						|
	  } // if use is a register
 | 
						|
	  
 | 
						|
	}// for all use instructions
 | 
						|
	
 | 
						|
	if( ! DefEqUse ) {
 | 
						|
	  
 | 
						|
	  // after examining all the instructions that follow the DefInst
 | 
						|
	  // if there are no dependencies, we can move it to the OrdVec
 | 
						|
 | 
						|
	  // cerr << "Moved to Ord: " << *DefInst;
 | 
						|
 | 
						|
	  moveInst2OrdVec(OrdVec, DefInst, PRA);
 | 
						|
 | 
						|
	  //OrdVec.push_back(DefInst);
 | 
						|
 | 
						|
	  // mark the pos of DefInst with NULL to indicate that it is
 | 
						|
	  // empty
 | 
						|
	  *DefIt = NULL;
 | 
						|
	}
 | 
						|
    
 | 
						|
      } // if Def is a machine register
 | 
						|
      
 | 
						|
    } // for all instructions in the UnordVec
 | 
						|
    
 | 
						|
 | 
						|
  } while(!CouldMoveAll);
 | 
						|
 | 
						|
  if (DebugPrint && DEBUG_RA) {
 | 
						|
    cerr << "\nAdded instructions were reordered to:\n";
 | 
						|
    for(unsigned int i=0; i < OrdVec.size(); i++)
 | 
						|
      cerr << *(OrdVec[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void UltraSparcRegInfo::moveInst2OrdVec(std::vector<MachineInstr *> &OrdVec,
 | 
						|
					MachineInstr *UnordInst,
 | 
						|
					PhyRegAlloc &PRA) const {
 | 
						|
  MachineOperand& UseOp = UnordInst->getOperand(0);
 | 
						|
 | 
						|
  if( ! UseOp.opIsDef() &&  
 | 
						|
      UseOp.getOperandType() ==  MachineOperand::MO_MachineRegister) {
 | 
						|
 | 
						|
    // for the use of UnordInst, see whether there is a defining instr
 | 
						|
    // before in the OrdVec
 | 
						|
    bool DefEqUse = false;
 | 
						|
 | 
						|
    std::vector<MachineInstr *>::iterator OrdIt = OrdVec.begin();
 | 
						|
  
 | 
						|
    for( ; OrdIt !=  OrdVec.end(); ++OrdIt ) {
 | 
						|
 | 
						|
      MachineInstr *OrdInst = *OrdIt ;
 | 
						|
 | 
						|
      MachineOperand& DefOp = 
 | 
						|
	OrdInst->getOperand(OrdInst->getNumOperands()-1);
 | 
						|
 | 
						|
      if( DefOp.opIsDef() &&  
 | 
						|
	  DefOp.getOperandType() == MachineOperand::MO_MachineRegister) {
 | 
						|
 | 
						|
	//cerr << "\nDefining Ord Inst: " <<  *OrdInst;
 | 
						|
	  
 | 
						|
	if( DefOp.getMachineRegNum() == UseOp.getMachineRegNum() ) {
 | 
						|
 | 
						|
	  // we are here because there is a preceding def in the OrdVec 
 | 
						|
	  // for the use in this intr we are going to insert. This
 | 
						|
	  // happened because the original code was like:
 | 
						|
	  // 1. add %ox %g0 %oy
 | 
						|
	  // 2. add %oy %g0 %ox
 | 
						|
	  // In Round1, we added 2 to OrdVec but 1 remained in UnordVec
 | 
						|
	  // Now we are processing %ox of 1.
 | 
						|
	  // We have to 
 | 
						|
	      
 | 
						|
	  const int UReg = DefOp.getMachineRegNum();
 | 
						|
	  const int RegType = getRegType(UReg);
 | 
						|
	  MachineInstr *AdIBef, *AdIAft;
 | 
						|
	      
 | 
						|
	  const int StackOff =  PRA.mcInfo.pushTempValue(target,
 | 
						|
					 getSpilledRegSize(RegType));
 | 
						|
	  
 | 
						|
	  // Save the UReg (%ox) on stack before it's destroyed
 | 
						|
          vector<MachineInstr*> mvec;
 | 
						|
	  cpReg2MemMI(mvec, UReg, getFramePointer(), StackOff, RegType);
 | 
						|
          for (vector<MachineInstr*>::iterator MI=mvec.begin(); MI != mvec.end(); ++MI) {
 | 
						|
            OrdIt = OrdVec.insert(OrdIt, *MI);
 | 
						|
            ++OrdIt; // OrdIt must still point to current instr we processed
 | 
						|
          }
 | 
						|
	  
 | 
						|
	  // Load directly into DReg (%oy)
 | 
						|
	  MachineOperand&  DOp=
 | 
						|
	    (UnordInst->getOperand(UnordInst->getNumOperands()-1));
 | 
						|
	  assert(DOp.opIsDef() && "Last operand is not the def");
 | 
						|
	  const int DReg = DOp.getMachineRegNum();
 | 
						|
	  
 | 
						|
	  cpMem2RegMI(OrdVec, getFramePointer(), StackOff, DReg, RegType);
 | 
						|
	    
 | 
						|
	  cerr << "\nFixed CIRCULAR references by reordering";
 | 
						|
 | 
						|
	  if( DEBUG_RA ) {
 | 
						|
	    cerr << "\nBefore CIRCULAR Reordering:\n";
 | 
						|
	    cerr << *UnordInst;
 | 
						|
	    cerr << *OrdInst;
 | 
						|
	  
 | 
						|
	    cerr << "\nAfter CIRCULAR Reordering - All Inst so far:\n";
 | 
						|
	    for(unsigned i=0; i < OrdVec.size(); i++)
 | 
						|
	      cerr << *(OrdVec[i]);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  // Do not copy the UseInst to OrdVec
 | 
						|
	  DefEqUse = true;
 | 
						|
	  break;  
 | 
						|
	  
 | 
						|
	}// if two registers are equal
 | 
						|
 | 
						|
      } // if Def is a register
 | 
						|
 | 
						|
    } // for each instr in OrdVec
 | 
						|
 | 
						|
    if(!DefEqUse) {  
 | 
						|
 | 
						|
      // We didn't find a def in the OrdVec, so just append this inst
 | 
						|
      OrdVec.push_back( UnordInst );  
 | 
						|
      //cerr << "Reordered Inst (Moved Dn): " <<  *UnordInst;
 | 
						|
    }
 | 
						|
    
 | 
						|
  }// if the operand in UnordInst is a use
 | 
						|
}
 |