2050 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2050 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ComprehensiveBufferize.cpp - Single pass bufferization -------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Perform inplace bufferization within function boundaries.
 | 
						|
// This is a specialized pass that supports inplace analysis for a fixed subset
 | 
						|
// of ops that have well-defined inplace semantics.
 | 
						|
// This pass caters to high-performance codegen where buffer reuse is deemed
 | 
						|
// critical: the pass should fail if the bufferized form of the function needs
 | 
						|
// to return any buffer.
 | 
						|
// Generic control-flow and branching are unsupported.
 | 
						|
// Composability with extensible set of ops is not a first-class concern.
 | 
						|
//
 | 
						|
// Bufferization occurs by:
 | 
						|
//  a. performing an inPlace analysis `inPlaceAnalysisFuncOpBody`
 | 
						|
//     which marks each operation within the function with the
 | 
						|
//     `kInPlaceResultsAttrName` attribute.
 | 
						|
//  b. traversing each operation in the function and rewriting it in
 | 
						|
//     buffer form and keeping a BlockAndValueMapping mapping of the
 | 
						|
//     rewrites. New allocations are introduced during this step.
 | 
						|
//     TODO: Allocation + depending op hoisting to outermost enclosing
 | 
						|
//     sequential scope.
 | 
						|
//  c. at the end of this bufferization, 3 cases may occur:
 | 
						|
//     i. inplaceable function arguments may be reused in place after the
 | 
						|
//        function itself has been bufferized. This is encoded by IR resembling:
 | 
						|
//
 | 
						|
//        ```
 | 
						|
//          #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
 | 
						|
//           func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
 | 
						|
//              -> tensor<?xf32> {
 | 
						|
//            %0 = memref.buffer_cast %A : memref<?xf32, #map>
 | 
						|
//            // ... uses of %0
 | 
						|
//            %res = memref.tensor_load %0 : memref<?xf32, #map>
 | 
						|
//            return %res : tensor<?xf32>
 | 
						|
//          }
 | 
						|
//        ```
 | 
						|
//
 | 
						|
//        this is the cue for the bufferization of the function foo (and calls
 | 
						|
//        to it) may bufferize to `func @foo(%A: memref<?xf32, some_layout>)`.
 | 
						|
//        To fully achieve bufferization, an additional analysis is needed to
 | 
						|
//        determine whether function argument/operand pairs bufferize to a
 | 
						|
//        single inplace buffer argument (i.e. functions may return tensors in
 | 
						|
//        arbitrary order that may not match argument numbers).
 | 
						|
//
 | 
						|
//    ii. results that don't map to an inplaceable function argument are
 | 
						|
//        generally allocated. Since memref semantics wrt ownership of the
 | 
						|
//        underlying memory region are not well-defined, comprehensive
 | 
						|
//        bufferization chooses to perform allocations in a scoped fashion:
 | 
						|
//        returning memrefs is always considered illegal.
 | 
						|
//        Such scenarios are encoded by IR resembling:
 | 
						|
//
 | 
						|
//        ```
 | 
						|
//          #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
 | 
						|
//          func @foo(%A: tensor<?xf32> {linalg.inplaceable = true})
 | 
						|
//              -> tensor<?xf32> {
 | 
						|
//            %0 = memref.buffer_cast %A : memref<?xf32, #map>
 | 
						|
//            %1 = memref.dim %0, %c0 : memref<?xf32, #map>
 | 
						|
//            %2 = memref.alloc(%1) : memref<?xf32>
 | 
						|
//            %3 = memref.cast %2 : memref<?xf32> to memref<?xf32, #map>
 | 
						|
//            // ... uses of %3
 | 
						|
//            memref.dealloc %2 : memref<?xf32, #map>
 | 
						|
//            %res = memref.tensor_load %3 : memref<?xf32, #map>
 | 
						|
//            return %res : tensor<?xf32>
 | 
						|
//          }
 | 
						|
//       ```
 | 
						|
//
 | 
						|
//        this is the cue for the bufferization of the function foo (and calls
 | 
						|
//        to it) that it must bufferize to `func @foo(%A: memref<?xf32,
 | 
						|
//        some_layout>,
 | 
						|
//                   %B: memref<?xf32, some_layout>)` (i.e. make a cloned
 | 
						|
//        allocation of the result tensor)
 | 
						|
//        To fully achieve bufferization, the alloc/dealloc pair must be lifted
 | 
						|
//        out of the function at each call site.
 | 
						|
//
 | 
						|
//   iii. as an optimization over ii., it may be possible to reuse an argument
 | 
						|
//        and only want to return a slice.
 | 
						|
//        This may forego allocation by letting *all* callers decide whether to
 | 
						|
//        pass a new *aliasing* memref function argument (i.e. a subview).
 | 
						|
//        Without loss of generality, callers may agree to allocate a new buffer
 | 
						|
//        to avoid this aliasing. Such scenarios are encoded by IR resembling:
 | 
						|
//
 | 
						|
//        ```
 | 
						|
//          #map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)>
 | 
						|
//          func @foo(%arg0: tensor<?xf32> {linalg.inplaceable = true})
 | 
						|
//              -> tensor<4xf32> {
 | 
						|
//            %0 = memref.buffer_cast %arg0 : memref<?xf32, #map>
 | 
						|
//            %1 = memref.subview %0[0] [4] [1] : memref<?xf32, #map> to
 | 
						|
//                                                memref<4xf32, #map>
 | 
						|
//            // ... inplace computes into %1
 | 
						|
//            %3 = memref.tensor_load %1 : memref<4xf32, #map>
 | 
						|
//            return %3 : tensor<4xf32>
 | 
						|
//          }
 | 
						|
//        ```
 | 
						|
//
 | 
						|
//  Note: In the future, it may be worthwhile to design special bufferization
 | 
						|
//  ops to encode the desired semantics at function boundaries for i., ii. and
 | 
						|
//  iii.
 | 
						|
//
 | 
						|
//  Lastly, note that layout map chosen to bufferize is the most dynamic
 | 
						|
//  canonical strided layout of the proper rank. This ensures compatibility with
 | 
						|
//  expected layouts after transformations. Combinations of memref.cast +
 | 
						|
//  canonicalization are responsible for clean ups.
 | 
						|
 | 
						|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/ComprehensiveBufferize.h"
 | 
						|
 | 
						|
#include <random>
 | 
						|
 | 
						|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
 | 
						|
#include "mlir/Dialect/Linalg/ComprehensiveBufferize/BufferizableOpInterface.h"
 | 
						|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
 | 
						|
#include "mlir/Dialect/SCF/SCF.h"
 | 
						|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
 | 
						|
#include "mlir/Dialect/Vector/VectorOps.h"
 | 
						|
#include "mlir/IR/AsmState.h"
 | 
						|
#include "mlir/IR/BlockAndValueMapping.h"
 | 
						|
#include "mlir/IR/Operation.h"
 | 
						|
#include "mlir/IR/TypeUtilities.h"
 | 
						|
#include "mlir/Interfaces/InferTypeOpInterface.h"
 | 
						|
#include "mlir/Pass/Pass.h"
 | 
						|
#include "mlir/Pass/PassManager.h"
 | 
						|
#include "mlir/Transforms/BufferUtils.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/ScopeExit.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/TypeSwitch.h"
 | 
						|
#include "llvm/Support/FormatVariadic.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "comprehensive-module-bufferize"
 | 
						|
 | 
						|
using namespace mlir;
 | 
						|
using namespace linalg;
 | 
						|
using namespace tensor;
 | 
						|
using namespace comprehensive_bufferize;
 | 
						|
 | 
						|
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
 | 
						|
#define LDBG(X) LLVM_DEBUG(DBGS() << X)
 | 
						|
 | 
						|
// Forward declarations.
 | 
						|
#ifndef NDEBUG
 | 
						|
static std::string printOperationInfo(Operation *, bool prefix = true);
 | 
						|
static std::string printValueInfo(Value, bool prefix = true);
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Generic helpers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
 | 
						|
 | 
						|
/// Return the FuncOp called by `callOp`.
 | 
						|
static FuncOp getCalledFunction(CallOpInterface callOp) {
 | 
						|
  SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
 | 
						|
  if (!sym)
 | 
						|
    return nullptr;
 | 
						|
  return dyn_cast_or_null<FuncOp>(
 | 
						|
      SymbolTable::lookupNearestSymbolFrom(callOp, sym));
 | 
						|
}
 | 
						|
 | 
						|
/// Return the unique ReturnOp that terminates `funcOp`.
 | 
						|
/// Return nullptr if there is no such unique ReturnOp.
 | 
						|
static ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
 | 
						|
  ReturnOp returnOp;
 | 
						|
  for (Block &b : funcOp.body()) {
 | 
						|
    if (auto candidateOp = dyn_cast<ReturnOp>(b.getTerminator())) {
 | 
						|
      if (returnOp)
 | 
						|
        return nullptr;
 | 
						|
      returnOp = candidateOp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return returnOp;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization-specific attribute manipulation.
 | 
						|
// These are for testing and debugging only. Bufferization information is
 | 
						|
// stored in BufferizationAliasInfo. When run with `testAnalysisOnly`, the IR
 | 
						|
// is annotated with the results of the analysis (copied from
 | 
						|
// BufferizationAliasInfo), so that they can be checked in tests.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Attribute marker to specify op results that can be bufferized inPlace.
 | 
						|
constexpr StringLiteral kInPlaceResultsAttrName = "__inplace_results_attr__";
 | 
						|
 | 
						|
/// Mark whether OpResult can actually be bufferized inplace.
 | 
						|
/// If `inPlace` is `true`, the use-def chain analysis has guaranteed that no
 | 
						|
/// subsequent write would occur to the bufferized tensor value (i.e. the result
 | 
						|
/// can be bufferized inplace).
 | 
						|
static void setInPlaceOpResult(OpResult opResult, bool inPlace) {
 | 
						|
  if (!opResult)
 | 
						|
    return;
 | 
						|
 | 
						|
  Operation *op = opResult.getOwner();
 | 
						|
  auto attr =
 | 
						|
      op->getAttr(kInPlaceResultsAttrName).dyn_cast_or_null<ArrayAttr>();
 | 
						|
  SmallVector<StringRef> inPlaceVector =
 | 
						|
      attr ? SmallVector<StringRef>(
 | 
						|
                 llvm::to_vector<4>(attr.getAsValueRange<StringAttr>()))
 | 
						|
           : SmallVector<StringRef>(op->getNumResults(), "false");
 | 
						|
  LDBG("->set inPlace=" << inPlace << " <- #" << opResult.getResultNumber()
 | 
						|
                        << ": " << printOperationInfo(op) << "\n");
 | 
						|
  inPlaceVector[opResult.getResultNumber()] = inPlace ? "true" : "false";
 | 
						|
  op->setAttr(kInPlaceResultsAttrName,
 | 
						|
              OpBuilder(op).getStrArrayAttr(inPlaceVector));
 | 
						|
}
 | 
						|
 | 
						|
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
 | 
						|
/// `bbArg`.
 | 
						|
static void setInPlaceFuncArgument(BlockArgument bbArg, bool inPlace) {
 | 
						|
  auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
 | 
						|
  funcOp.setArgAttr(bbArg.getArgNumber(),
 | 
						|
                    BufferizableOpInterface::kInplaceableAttrName,
 | 
						|
                    BoolAttr::get(bbArg.getContext(), inPlace));
 | 
						|
}
 | 
						|
 | 
						|
/// Remove the attribute that triggers inplace bufferization on a FuncOp
 | 
						|
/// argument `bbArg`.
 | 
						|
static void removeBufferizationFuncArguments(BlockArgument bbArg) {
 | 
						|
  auto funcOp = cast<FuncOp>(bbArg.getOwner()->getParentOp());
 | 
						|
  funcOp.removeArgAttr(bbArg.getArgNumber(),
 | 
						|
                       BufferizableOpInterface::kBufferLayoutAttrName);
 | 
						|
  funcOp.removeArgAttr(bbArg.getArgNumber(),
 | 
						|
                       BufferizableOpInterface::kInplaceableAttrName);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Printing helpers.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Helper method printing the bufferization information of a buffer / tensor.
 | 
						|
static void printTensorOrBufferInfo(std::string prefix, Value value,
 | 
						|
                                    AsmState &state, llvm::raw_ostream &os) {
 | 
						|
  if (!value.getType().isa<ShapedType>())
 | 
						|
    return;
 | 
						|
  os << prefix;
 | 
						|
  value.printAsOperand(os, state);
 | 
						|
  os << " : " << value.getType();
 | 
						|
}
 | 
						|
 | 
						|
/// Print the operation name and bufferization information.
 | 
						|
static std::string printOperationInfo(Operation *op, bool prefix) {
 | 
						|
  std::string result;
 | 
						|
  llvm::raw_string_ostream os(result);
 | 
						|
  AsmState state(op->getParentOfType<mlir::FuncOp>());
 | 
						|
  StringRef tab = prefix ? "\n[" DEBUG_TYPE "]\t" : "";
 | 
						|
  os << tab << op->getName();
 | 
						|
  SmallVector<Value> shapedOperands;
 | 
						|
  for (OpOperand &opOperand : op->getOpOperands()) {
 | 
						|
    std::string prefix =
 | 
						|
        llvm::formatv("{0}  -> #{1} ", tab, opOperand.getOperandNumber());
 | 
						|
    printTensorOrBufferInfo(prefix, opOperand.get(), state, os);
 | 
						|
  }
 | 
						|
  for (OpResult opResult : op->getOpResults()) {
 | 
						|
    std::string prefix =
 | 
						|
        llvm::formatv("{0}  <- #{1} ", tab, opResult.getResultNumber());
 | 
						|
    printTensorOrBufferInfo(prefix, opResult, state, os);
 | 
						|
  }
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
/// Print the bufferization information for the defining op or block argument.
 | 
						|
static std::string printValueInfo(Value value, bool prefix) {
 | 
						|
  auto *op = value.getDefiningOp();
 | 
						|
  if (op)
 | 
						|
    return printOperationInfo(op, prefix);
 | 
						|
  // Print the block argument bufferization information.
 | 
						|
  std::string result;
 | 
						|
  llvm::raw_string_ostream os(result);
 | 
						|
  AsmState state(value.getParentRegion()->getParentOfType<mlir::FuncOp>());
 | 
						|
  os << value;
 | 
						|
  printTensorOrBufferInfo("\n\t - ", value, state, os);
 | 
						|
  return result;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization-specific alias analysis.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return true if opOperand has been decided to bufferize in-place.
 | 
						|
static bool isInplaceMemoryWrite(OpOperand &opOperand,
 | 
						|
                                 const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  // Ops that do not bufferize to a memory write, cannot be write in-place.
 | 
						|
  if (!bufferizesToMemoryWrite(opOperand))
 | 
						|
    return false;
 | 
						|
  OpResult opResult = getAliasingOpResult(opOperand);
 | 
						|
  return opResult && aliasInfo.isInPlace(opResult);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if, under current bufferization decisions, the buffer of `value`
 | 
						|
/// is not writable.
 | 
						|
static bool aliasesNonWritableBuffer(Value value,
 | 
						|
                                     const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  LDBG("WRITABILITY ANALYSIS FOR " << printValueInfo(value) << "\n");
 | 
						|
  bool foundNonWritableBuffer = false;
 | 
						|
  aliasInfo.applyOnAliases(value, [&](Value v) {
 | 
						|
    // Some values are known to be writable.
 | 
						|
    if (aliasInfo.bufferizesToWritableMemory(v))
 | 
						|
      return;
 | 
						|
 | 
						|
    // Query BufferizableOpInterface to see if the OpResult is writable.
 | 
						|
    // TODO: Out-of-place bufferized OpResult could be considered writable.
 | 
						|
    if (auto bufferizableOp = v.getDefiningOp<BufferizableOpInterface>())
 | 
						|
      if (bufferizableOp && bufferizableOp.isWritable(v))
 | 
						|
        return;
 | 
						|
 | 
						|
    // Query BufferizableOpInterface to see if the BlockArgument is writable.
 | 
						|
    if (auto bbArg = v.dyn_cast<BlockArgument>())
 | 
						|
      if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(
 | 
						|
              bbArg.getOwner()->getParentOp()))
 | 
						|
        if (bufferizableOp.isWritable(bbArg))
 | 
						|
          return;
 | 
						|
 | 
						|
    foundNonWritableBuffer = true;
 | 
						|
  });
 | 
						|
 | 
						|
  if (foundNonWritableBuffer)
 | 
						|
    LDBG("--> NON WRITABLE\n");
 | 
						|
  else
 | 
						|
    LDBG("--> WRITABLE\n");
 | 
						|
 | 
						|
  return foundNonWritableBuffer;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the buffer to which `operand` would bufferize is equivalent
 | 
						|
/// to some buffer write.
 | 
						|
static bool aliasesInPlaceWrite(Value value,
 | 
						|
                                const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  LDBG("----Start aliasesInPlaceWrite\n");
 | 
						|
  LDBG("-------for : " << printValueInfo(value) << '\n');
 | 
						|
  bool foundInplaceWrite = false;
 | 
						|
  aliasInfo.applyOnAliases(value, [&](Value v) {
 | 
						|
    for (auto &use : v.getUses()) {
 | 
						|
      if (isInplaceMemoryWrite(use, aliasInfo)) {
 | 
						|
        LDBG("-----------wants to bufferize to inPlace write: "
 | 
						|
             << printOperationInfo(use.getOwner()) << '\n');
 | 
						|
        foundInplaceWrite = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  if (!foundInplaceWrite)
 | 
						|
    LDBG("----------->does not alias an inplace write\n");
 | 
						|
 | 
						|
  return foundInplaceWrite;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if `a` happens before `b`, i.e., `a` or one of its ancestors
 | 
						|
/// properly dominates `b` and `b` is not inside `a`.
 | 
						|
static bool happensBefore(Operation *a, Operation *b,
 | 
						|
                          const DominanceInfo &domInfo) {
 | 
						|
  do {
 | 
						|
    // TODO: Instead of isProperAncestor + properlyDominates, we should use
 | 
						|
    // properlyDominatesImpl(a, b, /*enclosingOpOk=*/false)
 | 
						|
    if (a->isProperAncestor(b))
 | 
						|
      return false;
 | 
						|
    if (domInfo.properlyDominates(a, b))
 | 
						|
      return true;
 | 
						|
  } while ((a = a->getParentOp()));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Given sets of uses and writes, return true if there is a RaW conflict under
 | 
						|
/// the assumption that all given reads/writes alias the same buffer and that
 | 
						|
/// all given writes bufferize inplace.
 | 
						|
///
 | 
						|
/// A conflict is: According to SSA use-def chains, a read R is supposed to read
 | 
						|
/// the result of a write W1. But because of bufferization decisions, R actually
 | 
						|
/// reads another write W2.
 | 
						|
static bool
 | 
						|
hasReadAfterWriteInterference(const DenseSet<OpOperand *> &usesRead,
 | 
						|
                              const DenseSet<OpOperand *> &usesWrite,
 | 
						|
                              const DominanceInfo &domInfo,
 | 
						|
                              const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  for (OpOperand *uRead : usesRead) {
 | 
						|
    Operation *readingOp = uRead->getOwner();
 | 
						|
 | 
						|
    // Find most recent write of uRead by following the SSA use-def chain. E.g.:
 | 
						|
    //
 | 
						|
    // %0 = "writing_op"(%t) : tensor<?x32> -> tensor<?xf32>
 | 
						|
    // %1 = "aliasing_op"(%0) : tensor<?x32> -> tensor<?xf32>
 | 
						|
    // %2 = "reading_op"(%1) : : tensor<?x32> -> not_a_tensor_type
 | 
						|
    //
 | 
						|
    // In the above example, if uRead is the OpOperand of reading_op, lastWrite
 | 
						|
    // is %0. Note that operations that create an alias but do not write (such
 | 
						|
    // as ExtractSliceOp) are skipped.
 | 
						|
    Value lastWrite = findLastPrecedingWrite(uRead->get());
 | 
						|
 | 
						|
    // Look for conflicting memory writes. Potential conflicts are writes to an
 | 
						|
    // alias that have been decided to bufferize inplace.
 | 
						|
    for (OpOperand *uConflictingWrite : usesWrite) {
 | 
						|
      // Throughout this loop, check for multiple requirements that have to be
 | 
						|
      // met for uConflictingWrite to be an actual conflict.
 | 
						|
      Operation *conflictingWritingOp = uConflictingWrite->getOwner();
 | 
						|
 | 
						|
      // Print some debug info.
 | 
						|
      LDBG("Found potential conflict:\n");
 | 
						|
      LDBG("READ = #" << uRead->getOperandNumber() << " of "
 | 
						|
                      << printOperationInfo(readingOp) << "\n");
 | 
						|
      LDBG("CONFLICTING WRITE = #"
 | 
						|
           << uConflictingWrite->getOperandNumber() << " of "
 | 
						|
           << printOperationInfo(conflictingWritingOp) << "\n");
 | 
						|
 | 
						|
      // No conflict if the readingOp dominates conflictingWritingOp, i.e., the
 | 
						|
      // write is not visible when reading.
 | 
						|
      if (happensBefore(readingOp, conflictingWritingOp, domInfo))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // No conflict if the reading use equals the use of the conflicting write.
 | 
						|
      // A use cannot conflict with itself. Note: Just being the same op is not
 | 
						|
      // enough. It has to be the same use.
 | 
						|
      if (uConflictingWrite == uRead)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // No conflict if the op interface says so.
 | 
						|
      if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(readingOp))
 | 
						|
        if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite,
 | 
						|
                                            aliasInfo))
 | 
						|
          continue;
 | 
						|
 | 
						|
      if (conflictingWritingOp != readingOp)
 | 
						|
        if (auto bufferizableOp =
 | 
						|
                dyn_cast<BufferizableOpInterface>(conflictingWritingOp))
 | 
						|
          if (bufferizableOp.isNotConflicting(uRead, uConflictingWrite,
 | 
						|
                                              aliasInfo))
 | 
						|
            continue;
 | 
						|
 | 
						|
      // Special rules for branches.
 | 
						|
      // TODO: Use an interface.
 | 
						|
      if (scf::insideMutuallyExclusiveBranches(readingOp, conflictingWritingOp))
 | 
						|
        continue;
 | 
						|
 | 
						|
      LDBG("WRITE = #" << printValueInfo(lastWrite) << "\n");
 | 
						|
 | 
						|
      // No conflict if the conflicting write happens before the last
 | 
						|
      // write.
 | 
						|
      if (Operation *writingOp = lastWrite.getDefiningOp()) {
 | 
						|
        if (happensBefore(conflictingWritingOp, writingOp, domInfo))
 | 
						|
          // conflictingWritingOp happens before writingOp. No conflict.
 | 
						|
          continue;
 | 
						|
        // No conflict if conflictingWritingOp is contained in writingOp.
 | 
						|
        if (writingOp->isProperAncestor(conflictingWritingOp))
 | 
						|
          continue;
 | 
						|
      } else {
 | 
						|
        auto bbArg = lastWrite.cast<BlockArgument>();
 | 
						|
        Block *block = bbArg.getOwner();
 | 
						|
        if (!block->findAncestorOpInBlock(*conflictingWritingOp))
 | 
						|
          // conflictingWritingOp happens outside of the block. No
 | 
						|
          // conflict.
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // No conflict if the conflicting write and the last write are the same
 | 
						|
      // use.
 | 
						|
      if (getAliasingOpResult(*uConflictingWrite) == lastWrite)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // All requirements are met. Conflict found!
 | 
						|
      LDBG("CONFLICT CONFIRMED!\n\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LDBG("NOT A CONFLICT!\n\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if bufferizing result inplace would create a conflict. A read R
 | 
						|
/// and a write W of the same alias set is a conflict if inplace bufferization
 | 
						|
/// of W changes the value read by R to a value different from the one that
 | 
						|
/// would be expected by tracing back R's origin through SSA use-def chains.
 | 
						|
/// A conflict can only be introduced by a new alias and/or an inplace
 | 
						|
/// bufferization decision.
 | 
						|
///
 | 
						|
/// Example:
 | 
						|
/// %0 = tensor.extract_slice %t[...][...][1, 1] {inplace?}
 | 
						|
/// %1 = vector.transfer_write %v1, %t {inplace} : vector<5xf32>, tensor<?xf32>
 | 
						|
/// %e = tensor.extract_slice %1
 | 
						|
/// %2 = vector.transfer_write %v2, %0 {inplace} : vector<6xf32>, tensor<?xf32>
 | 
						|
/// %3 = vector.transfer_read %e, %cst : tensor<?xf32>, vector<7xf32>
 | 
						|
///
 | 
						|
/// In the above example, the two TransferWriteOps have already been decided to
 | 
						|
/// bufferize inplace. Bufferizing the ExtractSliceOp inplace would create a
 | 
						|
/// conflict because:
 | 
						|
/// * According to SSA use-def chains, we expect to read the result of %1.
 | 
						|
/// * However, adding an alias {%0, %t} would mean that the second
 | 
						|
///   TransferWriteOp overwrites the first one. Therefore, the TransferReadOp
 | 
						|
///   would no longer be reading the result of %1.
 | 
						|
///
 | 
						|
/// If `checkConsistencyOnly` is true, this function checks if there is a
 | 
						|
/// read-after-write conflict without bufferizing `operand` inplace. This would
 | 
						|
/// indicate a problem with the current inplace bufferization decisions.
 | 
						|
bool wouldCreateReadAfterWriteInterference(
 | 
						|
    OpOperand &operand, OpResult result, const DominanceInfo &domInfo,
 | 
						|
    const BufferizationAliasInfo &aliasInfo,
 | 
						|
    bool checkConsistencyOnly = false) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<OpOperand *> opOperands = getAliasingOpOperand(result);
 | 
						|
  assert(llvm::find(opOperands, &operand) != opOperands.end() &&
 | 
						|
         "operand and result do not match");
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  // Helper function to iterate on aliases of `root` and capture the reads.
 | 
						|
  auto getAliasingReads = [&](DenseSet<OpOperand *> &res, Value root) {
 | 
						|
    aliasInfo.applyOnAliases(root, [&](Value alias) {
 | 
						|
      for (auto &use : alias.getUses())
 | 
						|
        // Read to a value that aliases root.
 | 
						|
        if (bufferizesToMemoryRead(use))
 | 
						|
          res.insert(&use);
 | 
						|
    });
 | 
						|
  };
 | 
						|
 | 
						|
  // Helper function to iterate on aliases of `root` and capture the writes.
 | 
						|
  auto getAliasingInplaceWrites = [&](DenseSet<OpOperand *> &res, Value root) {
 | 
						|
    aliasInfo.applyOnAliases(root, [&](Value alias) {
 | 
						|
      for (auto &use : alias.getUses())
 | 
						|
        // Inplace write to a value that aliases root.
 | 
						|
        if (isInplaceMemoryWrite(use, aliasInfo))
 | 
						|
          res.insert(&use);
 | 
						|
    });
 | 
						|
  };
 | 
						|
 | 
						|
  // Collect reads and writes of all aliases of OpOperand and OpResult.
 | 
						|
  DenseSet<OpOperand *> usesRead, usesWrite;
 | 
						|
  getAliasingReads(usesRead, operand.get());
 | 
						|
  getAliasingReads(usesRead, result);
 | 
						|
  getAliasingInplaceWrites(usesWrite, operand.get());
 | 
						|
  getAliasingInplaceWrites(usesWrite, result);
 | 
						|
  if (!checkConsistencyOnly && bufferizesToMemoryWrite(operand))
 | 
						|
    usesWrite.insert(&operand);
 | 
						|
 | 
						|
  return hasReadAfterWriteInterference(usesRead, usesWrite, domInfo, aliasInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if bufferizing `opOperand` inplace with `opResult` would create
 | 
						|
/// a write to a non-writable buffer.
 | 
						|
static bool
 | 
						|
wouldCreateWriteToNonWritableBuffer(OpOperand &opOperand, OpResult opResult,
 | 
						|
                                    const BufferizationAliasInfo &aliasInfo) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<OpOperand *> opOperands = getAliasingOpOperand(opResult);
 | 
						|
  assert(llvm::find(opOperands, &opOperand) != opOperands.end() &&
 | 
						|
         "operand and result do not match");
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  // Certain buffers are not writeable:
 | 
						|
  //   1. A function bbArg that is not inplaceable or
 | 
						|
  //   2. A constant op.
 | 
						|
  assert(!aliasesNonWritableBuffer(opResult, aliasInfo) &&
 | 
						|
         "expected that opResult does not alias non-writable buffer");
 | 
						|
  bool nonWritable = aliasesNonWritableBuffer(opOperand.get(), aliasInfo);
 | 
						|
  if (!nonWritable)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This is a problem only if the buffer is written to via some alias.
 | 
						|
  bool hasWrite = aliasesInPlaceWrite(opResult, aliasInfo) ||
 | 
						|
                  aliasesInPlaceWrite(opOperand.get(), aliasInfo) ||
 | 
						|
                  bufferizesToMemoryWrite(opOperand);
 | 
						|
  if (!hasWrite)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LDBG("->the corresponding buffer is not writeable\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Forward declarations.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return the op with Allocate MemoryEffect if `v` is equivalent to an such
 | 
						|
/// an op. Return null otherwise.
 | 
						|
static Operation *getEquivalentAlloc(Value value,
 | 
						|
                                     const BufferizationAliasInfo &aliasInfo);
 | 
						|
 | 
						|
/// Return the first argument of the enclosing FuncOp that is equivalent to `v`.
 | 
						|
/// Return null if no such bbArg can be found.
 | 
						|
static BlockArgument
 | 
						|
getEquivalentEnclosingFuncBBArg(Value v,
 | 
						|
                                const BufferizationAliasInfo &aliasInfo);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization-specific MemRefType support.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return the FunctionType with `argumentTypes` and `resultTypes` where each
 | 
						|
/// tensor is replaced by the corresponding buffer type.
 | 
						|
/// In order for all the callers to agree, this *must* bufferize to the most
 | 
						|
/// dynamic buffer type supported.
 | 
						|
/// A later pass across all CallOps in the module can decide whether to simplify
 | 
						|
/// the types of to version according to some cost model.
 | 
						|
static FunctionType getBufferizedFunctionType(MLIRContext *ctx,
 | 
						|
                                              TypeRange argumentTypes,
 | 
						|
                                              TypeRange resultTypes) {
 | 
						|
  auto rewrite = [](Type t) -> Type {
 | 
						|
    // TODO: non-zero address space.
 | 
						|
    // TODO: layout information if relevant.
 | 
						|
    if (auto rankedTensorType = t.dyn_cast<RankedTensorType>())
 | 
						|
      return getDynamicMemRefType(rankedTensorType);
 | 
						|
    if (auto tensorType = t.dyn_cast<TensorType>())
 | 
						|
      return getContiguousOrUnrankedMemRefType(tensorType);
 | 
						|
    return t;
 | 
						|
  };
 | 
						|
  auto argTypes = llvm::to_vector<4>(llvm::map_range(argumentTypes, rewrite));
 | 
						|
  auto retTypes = llvm::to_vector<4>(llvm::map_range(resultTypes, rewrite));
 | 
						|
  return FunctionType::get(ctx, argTypes, retTypes);
 | 
						|
}
 | 
						|
 | 
						|
/// If an entry for `funcOp` is available in `bufferizedFunctionTypes`, return
 | 
						|
/// it. Otherwise, construct a new entry based on `argumentTypes` and
 | 
						|
/// `resultTypes`.
 | 
						|
// TODO: improve the layering.
 | 
						|
static FunctionType getOrCreateBufferizedFunctionType(
 | 
						|
    FuncOp funcOp, TypeRange argumentTypes, TypeRange resultTypes,
 | 
						|
    DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
 | 
						|
  auto it = bufferizedFunctionTypes.find(funcOp);
 | 
						|
  if (it != bufferizedFunctionTypes.end())
 | 
						|
    return it->second;
 | 
						|
 | 
						|
  auto it2 = bufferizedFunctionTypes.try_emplace(
 | 
						|
      funcOp, getBufferizedFunctionType(funcOp.getContext(), argumentTypes,
 | 
						|
                                        resultTypes));
 | 
						|
  LDBG("FT: " << funcOp.getType() << " -> " << it2.first->second << "\n");
 | 
						|
  return it2.first->second;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization-specific scoped alloc/dealloc insertion support.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Move the insertion point of the given builder to the beginning of a
 | 
						|
/// surrounding block as much as possible, while not crossing any allocation
 | 
						|
/// hoisting barriers.
 | 
						|
static void moveInsertionPointToAllocationHoistingBarrier(OpBuilder &b) {
 | 
						|
  Operation *op = b.getInsertionBlock()->getParentOp();
 | 
						|
  while (op) {
 | 
						|
    if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op))
 | 
						|
      if (bufferizableOp.isAllocationHoistingBarrier())
 | 
						|
        break;
 | 
						|
    op = op->getParentOp();
 | 
						|
  }
 | 
						|
 | 
						|
  // FuncOp is an allocation hoisting barrier, so the above loop should never
 | 
						|
  // run out of parents.
 | 
						|
  assert(
 | 
						|
      (op && cast<BufferizableOpInterface>(op).isAllocationHoistingBarrier()) &&
 | 
						|
      "expected traversal to end at allocation hoisting barrier");
 | 
						|
 | 
						|
  // TODO: Handle cases where allocation hoisting barrier has more than one
 | 
						|
  // region or block.
 | 
						|
  assert(op->getNumRegions() == 1 &&
 | 
						|
         "allocation hoisting barriers with >1 regions not supported");
 | 
						|
  assert(op->getRegion(0).getBlocks().size() == 1 &&
 | 
						|
         "allocation hoisting barriers with >1 blocks not supported");
 | 
						|
  b.setInsertionPointToStart(&(op->getRegion(0).front()));
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the type of the `memref` to use for allocating the buffer for
 | 
						|
/// `shapedValue`. Also returns (by reference in `dynShape`), the value for the
 | 
						|
/// dynamic dimensions in the returned `memref` type. The function may also set
 | 
						|
/// the insertion point to an earlier location, where the allocation should
 | 
						|
/// happen ("allocation hoisting").
 | 
						|
static MemRefType getAllocationTypeAndShape(OpBuilder &b, Location loc,
 | 
						|
                                            Value shapedValue,
 | 
						|
                                            SmallVectorImpl<Value> &dynShape) {
 | 
						|
  MemRefType allocMemRefType =
 | 
						|
      getContiguousMemRefType(shapedValue.getType().cast<ShapedType>());
 | 
						|
 | 
						|
  // Compute the dynamic part of the shape.
 | 
						|
  bool reifiedShapes = false;
 | 
						|
  if (auto rankedOp = dyn_cast_or_null<ReifyRankedShapedTypeOpInterface>(
 | 
						|
          shapedValue.getDefiningOp())) {
 | 
						|
    ReifiedRankedShapedTypeDims resultDims;
 | 
						|
    if (succeeded(rankedOp.reifyResultShapes(b, resultDims))) {
 | 
						|
      reifiedShapes = true;
 | 
						|
      OpResult resultValue = shapedValue.dyn_cast<OpResult>();
 | 
						|
      auto &shape = resultDims[resultValue.getResultNumber()];
 | 
						|
      for (auto dim : enumerate(allocMemRefType.getShape()))
 | 
						|
        if (ShapedType::isDynamic(dim.value()))
 | 
						|
          dynShape.push_back(shape[dim.index()]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!reifiedShapes) {
 | 
						|
    for (auto dim : enumerate(allocMemRefType.getShape()))
 | 
						|
      if (ShapedType::isDynamic(dim.value())) {
 | 
						|
        assert((shapedValue.getType().isa<UnrankedMemRefType>() ||
 | 
						|
                shapedValue.getType().isa<MemRefType>()) &&
 | 
						|
               "expected MemRef type");
 | 
						|
        dynShape.push_back(
 | 
						|
            b.create<memref::DimOp>(loc, shapedValue, dim.index()));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the buffer is statically shaped, try to hoist it to the first enclosing
 | 
						|
  // parallel region.
 | 
						|
  // TODO: also hoist in the dynamic case. For now this relies on subsequent
 | 
						|
  // calls to LICM and buffer hoisting which will most likely not succeed.
 | 
						|
  // TODO: when packing, allocate a static bounding box which will enable more
 | 
						|
  // hoisting.
 | 
						|
  if (dynShape.empty())
 | 
						|
    moveInsertionPointToAllocationHoistingBarrier(b);
 | 
						|
 | 
						|
  return allocMemRefType;
 | 
						|
}
 | 
						|
 | 
						|
/// Create an Allocop/DeAllocOp pair, where the AllocOp is after
 | 
						|
/// `shapedValue.getDefiningOp` (or at the top of the block in case of a
 | 
						|
/// bbArg) and the DeallocOp is at the end of the block.
 | 
						|
static Value createNewAllocDeallocPairForShapedValue(
 | 
						|
    OpBuilder &b, Location loc, Value shapedValue, BufferizationState &state) {
 | 
						|
  // Take a guard before anything else.
 | 
						|
  OpBuilder::InsertionGuard g(b);
 | 
						|
 | 
						|
  // 1. Create memory allocation.
 | 
						|
  assert(shapedValue.getType().isa<ShapedType>());
 | 
						|
  MemRefType memRefType = shapedValue.getType().dyn_cast<MemRefType>();
 | 
						|
  SmallVector<Value> dynShape;
 | 
						|
  // Note: getAllocationTypeAndShape also sets the insertion point.
 | 
						|
  MemRefType allocMemRefType =
 | 
						|
      getAllocationTypeAndShape(b, loc, shapedValue, dynShape);
 | 
						|
  Optional<Value> allocated =
 | 
						|
      state.allocationFns.allocationFn(b, loc, allocMemRefType, dynShape);
 | 
						|
  // TODO: For now just assert the value is returned. Eventually need to
 | 
						|
  // error-propagate.
 | 
						|
  assert(allocated && "allocation failed");
 | 
						|
  Value casted = allocated.getValue();
 | 
						|
  if (memRefType && memRefType != allocMemRefType) {
 | 
						|
    casted = b.create<memref::CastOp>(loc, memRefType, allocated.getValue());
 | 
						|
    state.aliasInfo.insertNewBufferEquivalence(casted, allocated.getValue());
 | 
						|
  }
 | 
						|
 | 
						|
  // 2. Create memory deallocation.
 | 
						|
  b.setInsertionPoint(allocated.getValue().getParentBlock()->getTerminator());
 | 
						|
  state.allocationFns.deallocationFn(b, loc, allocated.getValue());
 | 
						|
  return casted;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization as simple BlockAndValueMapping rewrites.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// FuncOp always creates TensorToMemRef ops.
 | 
						|
static LogicalResult bufferizeFuncOp(FuncOp funcOp, BufferizationState &state) {
 | 
						|
  // Take a guard before anything else.
 | 
						|
  OpBuilder b(funcOp->getContext());
 | 
						|
  b.setInsertionPointToStart(&funcOp.body().front());
 | 
						|
 | 
						|
  // Create BufferCastOps for function args.
 | 
						|
  for (auto bbArg : funcOp.getArguments()) {
 | 
						|
    auto tensorType = bbArg.getType().dyn_cast<TensorType>();
 | 
						|
    if (!tensorType)
 | 
						|
      continue;
 | 
						|
    auto rankedTensorType = tensorType.dyn_cast<RankedTensorType>();
 | 
						|
    // Cast the tensor to the most dynamic buffer possible. Further
 | 
						|
    // canonicalizations will clean up.
 | 
						|
    Type memRefType = rankedTensorType
 | 
						|
                          ? getDynamicMemRefType(rankedTensorType)
 | 
						|
                          : getContiguousOrUnrankedMemRefType(tensorType);
 | 
						|
    Value bufferCast =
 | 
						|
        b.create<memref::BufferCastOp>(funcOp.getLoc(), memRefType, bbArg);
 | 
						|
    state.aliasInfo.insertNewBufferEquivalence(bufferCast, bbArg);
 | 
						|
    state.mapBuffer(bbArg, bufferCast);
 | 
						|
  }
 | 
						|
 | 
						|
  // Bufferize function body.
 | 
						|
  return bufferize(&funcOp.body(), state);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization analyses.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Determine if `operand` can be bufferized in-place with `result`.
 | 
						|
static LogicalResult
 | 
						|
bufferizableInPlaceAnalysisImpl(OpOperand &operand, OpResult result,
 | 
						|
                                BufferizationAliasInfo &aliasInfo,
 | 
						|
                                const DominanceInfo &domInfo) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<OpOperand *> opOperands = getAliasingOpOperand(result);
 | 
						|
  assert(llvm::find(opOperands, &operand) != opOperands.end() &&
 | 
						|
         "operand and result do not match");
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
  int64_t resultNumber = result.getResultNumber();
 | 
						|
  (void)resultNumber;
 | 
						|
  LDBG('\n');
 | 
						|
  LDBG("Inplace analysis for <- #" << resultNumber << " -> #"
 | 
						|
                                   << operand.getOperandNumber() << " in "
 | 
						|
                                   << printValueInfo(result) << '\n');
 | 
						|
 | 
						|
  bool foundInterference =
 | 
						|
      wouldCreateWriteToNonWritableBuffer(operand, result, aliasInfo) ||
 | 
						|
      wouldCreateReadAfterWriteInterference(operand, result, domInfo,
 | 
						|
                                            aliasInfo);
 | 
						|
 | 
						|
  if (foundInterference)
 | 
						|
    aliasInfo.bufferizeOutOfPlace(result);
 | 
						|
  else
 | 
						|
    aliasInfo.bufferizeInPlace(result, operand);
 | 
						|
 | 
						|
  LDBG("Done inplace analysis for result #" << resultNumber << '\n');
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the `ops` to determine which OpResults are inplaceable. Walk ops in
 | 
						|
/// reverse and bufferize ops greedily. This is a good starter heuristic.
 | 
						|
///
 | 
						|
/// Even if an op does not read or write, it may still create an alias when
 | 
						|
/// bufferized in-place. An example of such ops is tensor.extract_slice.
 | 
						|
///
 | 
						|
/// Rationale for bufferizing `%1 = tensor.extract_slice %0[...]` inplace:
 | 
						|
///
 | 
						|
/// When bufferized out of place, an ExtractSliceOp lowers to alloc + copy. This
 | 
						|
/// cannot change the flow of information for either the source or the
 | 
						|
/// result buffers.
 | 
						|
///
 | 
						|
/// When bufferized inplace, an ExtractSliceOp does not by itself create any
 | 
						|
/// read or write from memory. Instead, it has the effect of merging the alias
 | 
						|
/// sets of the source and the result buffers.
 | 
						|
///
 | 
						|
/// An analysis is required to ensure inplace bufferization would not result in
 | 
						|
/// RaW dependence violations.
 | 
						|
static LogicalResult inPlaceAnalysis(SmallVector<Operation *> &ops,
 | 
						|
                                     BufferizationAliasInfo &aliasInfo,
 | 
						|
                                     const DominanceInfo &domInfo,
 | 
						|
                                     unsigned analysisFuzzerSeed = 0) {
 | 
						|
  if (analysisFuzzerSeed) {
 | 
						|
    // This is a fuzzer. For testing purposes only. Randomize the order in which
 | 
						|
    // operations are analyzed. The bufferization quality is likely worse, but
 | 
						|
    // we want to make sure that no assertions are triggered anywhere.
 | 
						|
    std::mt19937 g(analysisFuzzerSeed);
 | 
						|
    llvm::shuffle(ops.begin(), ops.end(), g);
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk ops in reverse for better interference analysis.
 | 
						|
  for (Operation *op : reverse(ops))
 | 
						|
    for (OpOperand &opOperand : op->getOpOperands())
 | 
						|
      if (opOperand.get().getType().isa<TensorType>())
 | 
						|
        if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op))
 | 
						|
          if (OpResult opResult = bufferizableOp.getAliasingOpResult(opOperand))
 | 
						|
            if (failed(bufferizableInPlaceAnalysisImpl(opOperand, opResult,
 | 
						|
                                                       aliasInfo, domInfo)))
 | 
						|
              return failure();
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the `funcOp` body to determine which OpResults are inplaceable.
 | 
						|
static LogicalResult
 | 
						|
inPlaceAnalysisFuncOpBody(FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
 | 
						|
                          const DominanceInfo &domInfo,
 | 
						|
                          unsigned analysisFuzzerSeed = 0) {
 | 
						|
  LLVM_DEBUG(llvm::dbgs() << "\n\n");
 | 
						|
  LDBG("Begin InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
 | 
						|
  assert(funcOp && funcOp->getNumRegions() > 0 && !funcOp.body().empty() &&
 | 
						|
         "expected a funcOp definition with a body");
 | 
						|
 | 
						|
  // Collect ops so we can build our own reverse traversal.
 | 
						|
  SmallVector<Operation *> ops;
 | 
						|
  funcOp.walk([&](Operation *op) {
 | 
						|
    // No tensors => no buffers.
 | 
						|
    if (none_of(op->getOperandTypes(), isaTensor) &&
 | 
						|
        none_of(op->getResultTypes(), isaTensor))
 | 
						|
      return;
 | 
						|
    ops.push_back(op);
 | 
						|
  });
 | 
						|
 | 
						|
  // Set the function arguments marked with inplaceable to be known as
 | 
						|
  // bufferizing to a writeable memory.
 | 
						|
  for (BlockArgument bbArg : funcOp.getArguments()) {
 | 
						|
    BoolAttr inplaceAttr = funcOp.getArgAttrOfType<BoolAttr>(
 | 
						|
        bbArg.getArgNumber(), BufferizableOpInterface::kInplaceableAttrName);
 | 
						|
    if (inplaceAttr && inplaceAttr.getValue())
 | 
						|
      aliasInfo.setBufferizesToWritableMemory(bbArg);
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult res =
 | 
						|
      inPlaceAnalysis(ops, aliasInfo, domInfo, analysisFuzzerSeed);
 | 
						|
  LDBG("End InPlaceAnalysisFuncOpInternals:\n" << funcOp << '\n');
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Bufferization entry-point for modules.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Return the op with Allocate MemoryEffect if `v` is equivalent to such an
 | 
						|
/// an op. Return null otherwise.
 | 
						|
static Operation *getEquivalentAlloc(Value value,
 | 
						|
                                     const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  Operation *res = nullptr;
 | 
						|
  aliasInfo.applyOnEquivalenceClass(value, [&](Value v) {
 | 
						|
    if (!res)
 | 
						|
      if (auto interface =
 | 
						|
              dyn_cast_or_null<MemoryEffectOpInterface>(v.getDefiningOp()))
 | 
						|
        if (auto effect =
 | 
						|
                interface.getEffectOnValue<MemoryEffects::Allocate>(v))
 | 
						|
          res = v.getDefiningOp();
 | 
						|
  });
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/// Return the first argument of the enclosing FuncOp that is equivalent to `v`.
 | 
						|
/// Return null if no such bbArg can be found.
 | 
						|
static BlockArgument
 | 
						|
getEquivalentEnclosingFuncBBArg(Value v,
 | 
						|
                                const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  if (!v.getType().isa<RankedTensorType>())
 | 
						|
    return nullptr;
 | 
						|
  Operation *op = v.getParentBlock()->getParentOp();
 | 
						|
  FuncOp funcOp = dyn_cast<FuncOp>(op);
 | 
						|
  if (!funcOp)
 | 
						|
    funcOp = op->getParentOfType<FuncOp>();
 | 
						|
  assert(funcOp && "expected non-null FuncOp");
 | 
						|
  for (BlockArgument bbArg : funcOp.getArguments()) {
 | 
						|
    if (!bbArg.getType().isa<RankedTensorType>())
 | 
						|
      continue;
 | 
						|
    if (aliasInfo.areEquivalentBufferizedValues(v, bbArg))
 | 
						|
      return bbArg;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Rewrite the `funcOp` arguments analysis return values and terminator into
 | 
						|
/// buffer form (using the canonical memref layout for now), according to the
 | 
						|
/// inPlace-bufferizable information of the function arguments.
 | 
						|
/// This relies on a buffer equivalence analysis of each return operand. When a
 | 
						|
/// result buffer is equivalent to:
 | 
						|
///   1. a BlockArgument of `funcOp`, it can be dropped from the return values
 | 
						|
///      and becomes inplaceable at all callers. This assumes all CallOp perform
 | 
						|
///      the necessary work to clone operands so as to make them inplaceable.
 | 
						|
//       Reliance on this logic will need to be relaxed in thefuture.
 | 
						|
///   2. an op with an Alloc effect, this currently fails bufferization but is a
 | 
						|
///      candidate for hoisting and creating a new inplace operand at all caller
 | 
						|
///      sites.
 | 
						|
///   3. if such a hoisting for 2. is not possible (e.g. data-dependent that
 | 
						|
///      prevents hoisting), this is currently unsupported and will require a
 | 
						|
///      refcounted buffer type.
 | 
						|
static LogicalResult bufferizeFuncOpBoundary(
 | 
						|
    FuncOp funcOp, BufferizationAliasInfo &aliasInfo,
 | 
						|
    DenseMap<FuncOp, FunctionType> &bufferizedFunctionTypes) {
 | 
						|
  LLVM_DEBUG(DBGS() << "Begin bufferizeFuncOpBoundary:\n" << funcOp << "\n");
 | 
						|
 | 
						|
  // If nothing to do then we are done.
 | 
						|
  if (!llvm::any_of(funcOp.getType().getInputs(), isaTensor) &&
 | 
						|
      !llvm::any_of(funcOp.getType().getResults(), isaTensor))
 | 
						|
    return success();
 | 
						|
 | 
						|
  // Get the bufferized FunctionType for funcOp or construct it if not yet
 | 
						|
  // available.
 | 
						|
  // TODO: Atm we have 3 cases:
 | 
						|
  // 1. if a function is called from within the Module, it must have bufferized
 | 
						|
  //    to inplaceable tensor results.
 | 
						|
  // 2. if it is bodiless, it must have bufferized and is not allowed to have
 | 
						|
  //    result tensors.
 | 
						|
  // 3. if it is not called internally, it still must bufferize to inplaceable
 | 
						|
  //    tensor results and we construct it now (e.g. top-level function called
 | 
						|
  //    externally).
 | 
						|
  // -> Figure out a better layering.
 | 
						|
  TypeRange resultTypes;
 | 
						|
 | 
						|
  // Corner case: Bodiless FuncOp
 | 
						|
  // ============================
 | 
						|
  // The body of such functions is assumed opaque and we can't know the
 | 
						|
  // bufferization contract they want to enforce atm.
 | 
						|
  // As a consequence, only support functions that don't return any tensor atm.
 | 
						|
  if (funcOp.getBody().empty()) {
 | 
						|
    if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
 | 
						|
      return funcOp->emitError() << "cannot bufferize bodiless function that "
 | 
						|
                                 << "returns a tensor";
 | 
						|
    FunctionType bufferizedFuncType =
 | 
						|
        getOrCreateBufferizedFunctionType(funcOp, funcOp.getType().getInputs(),
 | 
						|
                                          TypeRange{}, bufferizedFunctionTypes);
 | 
						|
    funcOp.setType(bufferizedFuncType);
 | 
						|
    LLVM_DEBUG(DBGS() << "End bufferizeFuncOpBoundary no fun body: " << funcOp);
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
 | 
						|
  // Support only single return-terminated block in the function.
 | 
						|
  ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
 | 
						|
  assert(returnOp && "expected func with single return op");
 | 
						|
 | 
						|
  // 1. For each FuncOp result, keep track of which inplace argument it reuses.
 | 
						|
  SmallVector<Value> returnValues;
 | 
						|
  for (OpOperand &returnOperand : returnOp->getOpOperands()) {
 | 
						|
    // If not a renturn tensor type just forward it.
 | 
						|
    if (!returnOperand.get().getType().isa<RankedTensorType>()) {
 | 
						|
      returnValues.push_back(returnOperand.get());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If return operand is equivalent to some bbArg, no need to return it.
 | 
						|
    Value returnVal = returnOperand.get();
 | 
						|
    if (getEquivalentEnclosingFuncBBArg(returnVal, aliasInfo))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // TODO: Need to hoist above function boundary.
 | 
						|
    if (Operation *allocOp = getEquivalentAlloc(returnVal, aliasInfo)) {
 | 
						|
      returnValues.push_back(allocOp->getResult(0));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases legitimately need to return a tensor, this is currently not
 | 
						|
    // supported. For instance, if hoisting across function boundary has
 | 
						|
    // failed, it may be due to e.g. data-dependent sizes. In such a case, we
 | 
						|
    // would need a better type than memref.
 | 
						|
    int64_t returnIdx = returnOperand.getOperandNumber();
 | 
						|
    return returnOp->emitError()
 | 
						|
           << "buffer result #" << returnIdx << " not produced by an alloc\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // 2. Rewrite the terminator without the inPlace bufferizable values.
 | 
						|
  ValueRange retValues{returnValues};
 | 
						|
  FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
 | 
						|
      funcOp, funcOp.getType().getInputs(), retValues.getTypes(),
 | 
						|
      bufferizedFunctionTypes);
 | 
						|
  OpBuilder b(returnOp);
 | 
						|
  b.create<ReturnOp>(returnOp.getLoc(), returnValues);
 | 
						|
  returnOp->erase();
 | 
						|
 | 
						|
  // 3. Rewrite the bbArgs.
 | 
						|
  // Iterate on the original `numArgs` and replace them in order.
 | 
						|
  // This guarantees the argument order still matches after the rewrite.
 | 
						|
  Block &frontBlock = funcOp.body().front();
 | 
						|
  unsigned numArgs = frontBlock.getNumArguments();
 | 
						|
  for (unsigned idx = 0; idx < numArgs; ++idx) {
 | 
						|
    auto bbArg = frontBlock.getArgument(0);
 | 
						|
    auto tensorType = bbArg.getType().dyn_cast<TensorType>();
 | 
						|
    // Non-tensor types are just forwarded.
 | 
						|
    if (!tensorType) {
 | 
						|
      frontBlock.addArgument(bbArg.getType());
 | 
						|
      bbArg.replaceAllUsesWith(frontBlock.getArguments().back());
 | 
						|
      frontBlock.eraseArgument(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the buffer type from the bufferized function type.
 | 
						|
    Type memrefType = bufferizedFuncType.getInput(idx);
 | 
						|
    Value memref = frontBlock.addArgument(memrefType);
 | 
						|
    OpBuilder b(funcOp->getContext());
 | 
						|
    b.setInsertionPointToStart(&frontBlock);
 | 
						|
    // Replace all uses of bbArg through a BufferCastOp by a memref::CastOp.
 | 
						|
    for (auto &use : llvm::make_early_inc_range(bbArg.getUses())) {
 | 
						|
      if (auto bufferCastOp = dyn_cast<memref::BufferCastOp>(use.getOwner())) {
 | 
						|
        auto castOp = b.create<memref::CastOp>(
 | 
						|
            funcOp.getLoc(), bufferCastOp.memref().getType(), memref);
 | 
						|
        bufferCastOp.memref().replaceAllUsesWith(castOp);
 | 
						|
        aliasInfo.insertNewBufferEquivalence(castOp.dest(),
 | 
						|
                                             bufferCastOp.memref());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Replace all remaining uses by a tensor_load.
 | 
						|
    if (!bbArg.use_empty()) {
 | 
						|
      auto tensorLoadOp =
 | 
						|
          b.create<memref::TensorLoadOp>(funcOp.getLoc(), memref);
 | 
						|
      aliasInfo.insertNewBufferEquivalence(tensorLoadOp, bbArg);
 | 
						|
      bbArg.replaceAllUsesWith(tensorLoadOp);
 | 
						|
    }
 | 
						|
    frontBlock.eraseArgument(0);
 | 
						|
    // TODO: add support to erase aliasInfo entries if deemed necessary.
 | 
						|
  }
 | 
						|
 | 
						|
  // 4. Rewrite the FuncOp type to buffer form.
 | 
						|
  funcOp.setType(bufferizedFuncType);
 | 
						|
 | 
						|
  LLVM_DEBUG(DBGS() << "End bufferizeFuncOpBoundary:\n" << funcOp);
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
 | 
						|
/// callee-caller order (i.e. callees without callers first).
 | 
						|
/// Store the map of FuncOp to all its callers in `callerMap`.
 | 
						|
/// Return `failure()` if a cycle of calls is detected or if we are unable to
 | 
						|
/// retrieve the called FuncOp from any CallOpInterface.
 | 
						|
static LogicalResult
 | 
						|
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
 | 
						|
                         SmallVectorImpl<FuncOp> &orderedFuncOps,
 | 
						|
                         DenseMap<FuncOp, DenseSet<Operation *>> &callerMap) {
 | 
						|
  // For each FuncOp, the set of functions called by it (i.e. the union of
 | 
						|
  // symbols of all nested CallOpInterfaceOp).
 | 
						|
  DenseMap<FuncOp, DenseSet<FuncOp>> calledBy;
 | 
						|
  // For each FuncOp, the number of CallOpInterface it contains.
 | 
						|
  DenseMap<FuncOp, unsigned> numberCallOpsContainedInFuncOp;
 | 
						|
  WalkResult res = moduleOp.walk([&](FuncOp funcOp) -> WalkResult {
 | 
						|
    if (!funcOp.body().empty()) {
 | 
						|
      ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
 | 
						|
      if (!returnOp)
 | 
						|
        return funcOp->emitError()
 | 
						|
               << "cannot bufferize a FuncOp with tensors and "
 | 
						|
                  "without a unique ReturnOp";
 | 
						|
    }
 | 
						|
 | 
						|
    numberCallOpsContainedInFuncOp[funcOp] = 0;
 | 
						|
    return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
 | 
						|
      // Only support CallOp for now.
 | 
						|
      if (!isa<CallOp>(callOp.getOperation()))
 | 
						|
        return callOp->emitError() << "expected a CallOp";
 | 
						|
      FuncOp calledFunction = getCalledFunction(callOp);
 | 
						|
      assert(calledFunction && "could not retrieved called FuncOp");
 | 
						|
      auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
 | 
						|
      it.first->getSecond().insert(callOp);
 | 
						|
      if (calledBy[calledFunction].count(funcOp) == 0) {
 | 
						|
        calledBy[calledFunction].insert(funcOp);
 | 
						|
        numberCallOpsContainedInFuncOp[funcOp]++;
 | 
						|
      }
 | 
						|
      return WalkResult::advance();
 | 
						|
    });
 | 
						|
  });
 | 
						|
  if (res.wasInterrupted())
 | 
						|
    return failure();
 | 
						|
  // Iteratively remove function operation that do not call any of the
 | 
						|
  // functions remaining in the callCounter map and add them to the worklist.
 | 
						|
  while (!numberCallOpsContainedInFuncOp.empty()) {
 | 
						|
    auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
 | 
						|
                            [](auto entry) { return entry.getSecond() == 0; });
 | 
						|
    if (it == numberCallOpsContainedInFuncOp.end())
 | 
						|
      return moduleOp.emitOpError(
 | 
						|
          "expected callgraph to be free of circular dependencies.");
 | 
						|
    orderedFuncOps.push_back(it->getFirst());
 | 
						|
    for (auto callee : calledBy[it->getFirst()])
 | 
						|
      numberCallOpsContainedInFuncOp[callee]--;
 | 
						|
    numberCallOpsContainedInFuncOp.erase(it);
 | 
						|
  }
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
foreachCaller(const DenseMap<FuncOp, DenseSet<Operation *>> &callerMap,
 | 
						|
              FuncOp callee, llvm::function_ref<void(Operation *)> doit) {
 | 
						|
  auto itCallers = callerMap.find(callee);
 | 
						|
  if (itCallers == callerMap.end())
 | 
						|
    return;
 | 
						|
  for (Operation *caller : itCallers->second)
 | 
						|
    doit(caller);
 | 
						|
}
 | 
						|
 | 
						|
/// Postprocess the linalg.buffer_layout annotation across function boundaries.
 | 
						|
/// This is a purely mechanical process that may later become part of a
 | 
						|
/// separate pass with its own layout assignment heuristic.
 | 
						|
static void layoutPostProcessing(ModuleOp moduleOp) {
 | 
						|
  SmallVector<FuncOp> orderedFuncOps;
 | 
						|
  DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
 | 
						|
  auto res = getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap);
 | 
						|
  (void)res;
 | 
						|
  assert(succeeded(res) && "unexpected getFuncOpsOrderedByCalls failure");
 | 
						|
 | 
						|
  for (FuncOp funcOp : orderedFuncOps) {
 | 
						|
    DenseMap<Operation *, SmallVector<Value>> operandsPerCaller;
 | 
						|
    foreachCaller(callerMap, funcOp, [&](Operation *caller) {
 | 
						|
      operandsPerCaller.try_emplace(caller, SmallVector<Value>());
 | 
						|
    });
 | 
						|
 | 
						|
    SmallVector<Type> argumentTypes;
 | 
						|
    // Iterate on each function argument and check it it was marked with a
 | 
						|
    // desired layout.
 | 
						|
    for (auto it : llvm::enumerate(funcOp.getType().getInputs())) {
 | 
						|
      int argNumber = it.index();
 | 
						|
      Type inputType = it.value();
 | 
						|
      auto memrefType = inputType.dyn_cast<MemRefType>();
 | 
						|
      auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
 | 
						|
          argNumber, BufferizableOpInterface::kBufferLayoutAttrName);
 | 
						|
      AffineMap desiredLayoutMap =
 | 
						|
          layoutAttr ? layoutAttr.getValue() : AffineMap();
 | 
						|
      AffineMap currentLayoutMap =
 | 
						|
          memrefType ? getStridedLinearLayoutMap(memrefType) : AffineMap();
 | 
						|
      if (!memrefType || !layoutAttr || desiredLayoutMap == currentLayoutMap) {
 | 
						|
        argumentTypes.push_back(inputType);
 | 
						|
        foreachCaller(callerMap, funcOp, [&](Operation *caller) {
 | 
						|
          operandsPerCaller.find(caller)->getSecond().push_back(
 | 
						|
              caller->getOperand(argNumber));
 | 
						|
        });
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Compute the buffer type with desired layout and add to input argument
 | 
						|
      // types.
 | 
						|
      MemRefType desiredMemrefType = MemRefType::get(
 | 
						|
          memrefType.getShape(), memrefType.getElementType(), desiredLayoutMap);
 | 
						|
      argumentTypes.push_back(desiredMemrefType);
 | 
						|
 | 
						|
      // If funcOp's body is not empty, change the bbArg type and propagate.
 | 
						|
      if (!funcOp.body().empty()) {
 | 
						|
        BlockArgument bbArg = funcOp.getArgument(argNumber);
 | 
						|
        bbArg.setType(desiredMemrefType);
 | 
						|
        OpBuilder b(bbArg.getContext());
 | 
						|
        b.setInsertionPointToStart(bbArg.getOwner());
 | 
						|
        // Cast back to the original memrefType and let it canonicalize.
 | 
						|
        Value cast =
 | 
						|
            b.create<memref::CastOp>(funcOp.getLoc(), memrefType, bbArg);
 | 
						|
        bbArg.replaceAllUsesExcept(cast, cast.getDefiningOp());
 | 
						|
      }
 | 
						|
 | 
						|
      // Cast to desired buffer type on all callers to `funcOp`.
 | 
						|
      // TODO: on the callee side, this may even have to trigger a copy to
 | 
						|
      // change the layout. For now let the memref::CastOp fail to verify in
 | 
						|
      // such cases.
 | 
						|
      auto castArg = [&](Operation *caller) {
 | 
						|
        OpBuilder b(caller);
 | 
						|
        Value newOperand = b.create<memref::CastOp>(
 | 
						|
            funcOp.getLoc(), desiredMemrefType, caller->getOperand(argNumber));
 | 
						|
        operandsPerCaller.find(caller)->getSecond().push_back(newOperand);
 | 
						|
      };
 | 
						|
      foreachCaller(callerMap, funcOp, castArg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set operands with cast buffer on all callers to `funcOp`.
 | 
						|
    foreachCaller(callerMap, funcOp, [&](Operation *caller) {
 | 
						|
      caller->setOperands(operandsPerCaller.lookup(caller));
 | 
						|
    });
 | 
						|
 | 
						|
    // Finally set the funcOp type to update the arguments.
 | 
						|
    auto newFuncType = FunctionType::get(moduleOp.getContext(), argumentTypes,
 | 
						|
                                         funcOp.getType().getResults());
 | 
						|
    funcOp.setType(newFuncType);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Assert that the current bufferization decisions are consistent.
 | 
						|
static void checkAliasInfoConsistency(FuncOp funcOp,
 | 
						|
                                      const DominanceInfo &domInfo,
 | 
						|
                                      const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  funcOp.walk([&](Operation *op) {
 | 
						|
    if (auto bufferizableOp = dyn_cast<BufferizableOpInterface>(op))
 | 
						|
      for (OpOperand &opOperand : op->getOpOperands())
 | 
						|
        if (opOperand.get().getType().isa<TensorType>())
 | 
						|
          if (OpResult opResult = bufferizableOp.getAliasingOpResult(opOperand))
 | 
						|
            // If this assertion fails, there is probably an inconsistent
 | 
						|
            // combination of "mustBufferizeInPlace" decisions.
 | 
						|
            assert(!wouldCreateReadAfterWriteInterference(
 | 
						|
                       opOperand, opResult, domInfo, aliasInfo,
 | 
						|
                       /*checkConsistencyOnly=*/true) &&
 | 
						|
                   "found read after write conflict before running analysis");
 | 
						|
  });
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Annotate the IR with the result of the analysis. For testing/debugging only.
 | 
						|
static void
 | 
						|
annotateOpsWithBufferizationMarkers(Operation *op,
 | 
						|
                                    const BufferizationAliasInfo &aliasInfo) {
 | 
						|
  op->walk([&](Operation *op) {
 | 
						|
    for (OpResult opResult : op->getResults()) {
 | 
						|
      if (opResult.getType().isa<TensorType>())
 | 
						|
        setInPlaceOpResult(opResult, aliasInfo.isInPlace(opResult));
 | 
						|
      if (auto funcOp = dyn_cast<FuncOp>(op))
 | 
						|
        for (BlockArgument bbArg : funcOp.getArguments())
 | 
						|
          if (bbArg.getType().isa<TensorType>())
 | 
						|
            setInPlaceFuncArgument(bbArg,
 | 
						|
                                   aliasInfo.bufferizesToWritableMemory(bbArg));
 | 
						|
    }
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
LogicalResult mlir::linalg::comprehensive_bufferize::runComprehensiveBufferize(
 | 
						|
    ModuleOp moduleOp, const BufferizationOptions &options) {
 | 
						|
  SmallVector<FuncOp> orderedFuncOps;
 | 
						|
  DenseMap<FuncOp, DenseSet<Operation *>> callerMap;
 | 
						|
  if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
 | 
						|
    return failure();
 | 
						|
 | 
						|
  DominanceInfo domInfo(moduleOp);
 | 
						|
  BufferizationState state(moduleOp, *options.allocationFns);
 | 
						|
  BufferizationAliasInfo &aliasInfo = state.aliasInfo;
 | 
						|
 | 
						|
  // Interestingly, all function args that are not visible outside of a module
 | 
						|
  // can be fully bufferized inplace by guaranteeing the CallOp is bufferized
 | 
						|
  // inplace. Therefore, we just bufferize funcOp as if none of its results were
 | 
						|
  // inplaceable, detect which operands are cloned internally and decide what to
 | 
						|
  // do at call sites.
 | 
						|
  for (FuncOp funcOp : orderedFuncOps) {
 | 
						|
    // No body => no analysis.
 | 
						|
    if (funcOp.body().empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // In a first approximation:
 | 
						|
    // =========================
 | 
						|
    // If the function is called, we can allocate on the caller side which lets
 | 
						|
    // us force inplace arguments at function boundaries.
 | 
						|
    // TODO: do not rely on this behavior.
 | 
						|
    if (callerMap.find(funcOp) != callerMap.end())
 | 
						|
      for (BlockArgument bbArg : funcOp.getArguments())
 | 
						|
        if (bbArg.getType().isa<TensorType>())
 | 
						|
          aliasInfo.setBufferizesToWritableMemory(bbArg);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    checkAliasInfoConsistency(funcOp, domInfo, aliasInfo);
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
    // If the analysis fails, just return.
 | 
						|
    if (failed(inPlaceAnalysisFuncOpBody(funcOp, aliasInfo, domInfo,
 | 
						|
                                         options.analysisFuzzerSeed)))
 | 
						|
      return failure();
 | 
						|
 | 
						|
    for (const std::unique_ptr<PostAnalysisStep> &step :
 | 
						|
         options.postAnalysisSteps) {
 | 
						|
      SmallVector<Operation *> newOps;
 | 
						|
      if (failed(step->run(funcOp, aliasInfo, domInfo, newOps)))
 | 
						|
        return failure();
 | 
						|
      // Analyze ops that were created by the PostAnalysisStep.
 | 
						|
      if (failed(inPlaceAnalysis(newOps, aliasInfo, domInfo)))
 | 
						|
        return failure();
 | 
						|
    }
 | 
						|
 | 
						|
    // Bufferization phase.
 | 
						|
    if (!options.testAnalysisOnly) {
 | 
						|
      // Bufferize all ops in funcOp.
 | 
						|
      if (failed(bufferizeFuncOp(funcOp, state)))
 | 
						|
        return failure();
 | 
						|
 | 
						|
      // Erase all obsolete ops.
 | 
						|
      state.eraseObsoleteOps();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Annotate operations if we only want to report the analysis.
 | 
						|
  if (options.testAnalysisOnly) {
 | 
						|
    annotateOpsWithBufferizationMarkers(moduleOp, aliasInfo);
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
 | 
						|
  for (FuncOp funcOp : orderedFuncOps) {
 | 
						|
    // Note: It would be good to apply cleanups here but we cannot as aliasInfo
 | 
						|
    // would be invalidated.
 | 
						|
    if (failed(bufferizeFuncOpBoundary(funcOp, aliasInfo,
 | 
						|
                                       state.bufferizedFunctionTypes)))
 | 
						|
      return failure();
 | 
						|
 | 
						|
    if (!options.allowReturnMemref &&
 | 
						|
        llvm::any_of(funcOp.getType().getResults(), [](Type t) {
 | 
						|
          return t.isa<MemRefType, UnrankedMemRefType>();
 | 
						|
        })) {
 | 
						|
      funcOp->emitError("memref return type is unsupported");
 | 
						|
      return failure();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform a post-processing pass of layout modification at function boundary
 | 
						|
  // according to the kBufferLayoutAttrName.
 | 
						|
  layoutPostProcessing(moduleOp);
 | 
						|
 | 
						|
  // Post-pass cleanup of inplaceable and buffer_layout attributes.
 | 
						|
  moduleOp.walk([&](FuncOp op) {
 | 
						|
    for (BlockArgument bbArg : op.getArguments())
 | 
						|
      removeBufferizationFuncArguments(bbArg);
 | 
						|
  });
 | 
						|
 | 
						|
  return success();
 | 
						|
}
 | 
						|
 | 
						|
/// Default allocation function that is used by the comprehensive bufferization
 | 
						|
/// pass. The default currently creates a ranked memref using `memref.alloc`.
 | 
						|
static Optional<Value> defaultAllocationFn(OpBuilder &b, Location loc,
 | 
						|
                                           MemRefType type,
 | 
						|
                                           const SmallVector<Value> &dynShape) {
 | 
						|
  Value allocated = b.create<memref::AllocOp>(
 | 
						|
      loc, type, dynShape, b.getI64IntegerAttr(kBufferAlignments));
 | 
						|
  return allocated;
 | 
						|
}
 | 
						|
 | 
						|
/// Default deallocation function that is used by the comprehensive
 | 
						|
/// bufferization pass. It expects to recieve back the value called from the
 | 
						|
/// `defaultAllocationFn`.
 | 
						|
static void defaultDeallocationFn(OpBuilder &b, Location loc,
 | 
						|
                                  Value allocatedBuffer) {
 | 
						|
  b.create<memref::DeallocOp>(loc, allocatedBuffer);
 | 
						|
}
 | 
						|
 | 
						|
/// Default memory copy function that is used by the comprehensive bufferization
 | 
						|
/// pass. Creates a `memref.copy` op.
 | 
						|
static void defaultMemCpyFn(OpBuilder &b, Location loc, Value from, Value to) {
 | 
						|
  b.create<memref::CopyOp>(loc, from, to);
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<AllocationCallbacks>
 | 
						|
mlir::linalg::comprehensive_bufferize::defaultAllocationCallbacks() {
 | 
						|
  return std::make_unique<AllocationCallbacks>(
 | 
						|
      defaultAllocationFn, defaultDeallocationFn, defaultMemCpyFn,
 | 
						|
      createNewAllocDeallocPairForShapedValue);
 | 
						|
}
 | 
						|
 | 
						|
// Default constructor for BufferizationOptions that sets all allocation
 | 
						|
// callbacks to their default functions.
 | 
						|
BufferizationOptions::BufferizationOptions()
 | 
						|
    : allocationFns(defaultAllocationCallbacks()) {}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BufferizableOpInterface Implementations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// TODO: Move these to a different file and BUILD target, so that they are
 | 
						|
// decoupled from ComprehensiveBufferize.
 | 
						|
 | 
						|
namespace mlir {
 | 
						|
namespace linalg {
 | 
						|
namespace comprehensive_bufferize {
 | 
						|
namespace arith_ext {
 | 
						|
 | 
						|
struct ConstantOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<ConstantOpInterface,
 | 
						|
                                                    arith::ConstantOp> {
 | 
						|
  SmallVector<OpOperand *> getAliasingOpOperand(Operation *op,
 | 
						|
                                                OpResult opResult) const {
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto constantOp = cast<arith::ConstantOp>(op);
 | 
						|
    if (!isaTensor(constantOp.getResult().getType()))
 | 
						|
      return success();
 | 
						|
    assert(constantOp.getType().dyn_cast<RankedTensorType>() &&
 | 
						|
           "not a constant ranked tensor");
 | 
						|
    auto moduleOp = constantOp->getParentOfType<ModuleOp>();
 | 
						|
    if (!moduleOp) {
 | 
						|
      return constantOp.emitError(
 | 
						|
          "cannot bufferize constants not within builtin.module op");
 | 
						|
    }
 | 
						|
    GlobalCreator globalCreator(moduleOp);
 | 
						|
 | 
						|
    // Take a guard before anything else.
 | 
						|
    OpBuilder::InsertionGuard g(b);
 | 
						|
    b.setInsertionPoint(constantOp);
 | 
						|
 | 
						|
    auto globalMemref = globalCreator.getGlobalFor(constantOp);
 | 
						|
    Value memref = b.create<memref::GetGlobalOp>(
 | 
						|
        constantOp.getLoc(), globalMemref.type(), globalMemref.getName());
 | 
						|
    state.aliasInfo.insertNewBufferEquivalence(memref, constantOp.getResult());
 | 
						|
    state.mapBuffer(constantOp, memref);
 | 
						|
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
 | 
						|
  bool isWritable(Operation *op, Value value) const {
 | 
						|
    // Memory locations returned by memref::GetGlobalOp may not be written to.
 | 
						|
    assert(value.isa<OpResult>());
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace arith_ext
 | 
						|
 | 
						|
namespace scf_ext {
 | 
						|
 | 
						|
struct ExecuteRegionOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<ExecuteRegionOpInterface,
 | 
						|
                                                    scf::ExecuteRegionOp> {
 | 
						|
  SmallVector<OpOperand *> getAliasingOpOperand(Operation *op,
 | 
						|
                                                OpResult opResult) const {
 | 
						|
    // ExecuteRegionOps do not have tensor OpOperands. The yielded value can be
 | 
						|
    // any SSA value that is in scope. To allow for use-def chain traversal
 | 
						|
    // through ExecuteRegionOps in the analysis, the corresponding yield value
 | 
						|
    // is considered to be aliasing with the result.
 | 
						|
    auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
 | 
						|
    size_t resultNum = std::distance(op->getOpResults().begin(),
 | 
						|
                                     llvm::find(op->getOpResults(), opResult));
 | 
						|
    assert(executeRegionOp.region().getBlocks().size() == 1 &&
 | 
						|
           "expected exactly 1 block");
 | 
						|
    auto yieldOp = dyn_cast<scf::YieldOp>(
 | 
						|
        executeRegionOp.region().front().getTerminator());
 | 
						|
    assert(yieldOp && "expected scf.yield terminator in scf.execute_region");
 | 
						|
    return {&yieldOp->getOpOperand(resultNum)};
 | 
						|
  }
 | 
						|
 | 
						|
  bool mustBufferizeInPlace(Operation *op, OpResult opResult) const {
 | 
						|
    // ExecuteRegionOp results always bufferize in-place. Since they have no
 | 
						|
    // OpOperands, they are mostly ignored by the analysis once alias sets are
 | 
						|
    // set up.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    // TODO: Add bufferization support when needed. scf.execute_region should be
 | 
						|
    // bufferized similar to scf.if.
 | 
						|
    auto executeRegionOp = cast<scf::ExecuteRegionOp>(op);
 | 
						|
    bool hasTensorReturnType = any_of(
 | 
						|
        op->getResultTypes(), [](Type t) { return t.isa<TensorType>(); });
 | 
						|
    if (hasTensorReturnType)
 | 
						|
      return op->emitError(
 | 
						|
          "scf.execute_region with tensor result not supported");
 | 
						|
    return comprehensive_bufferize::bufferize(&executeRegionOp.region(), state);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct IfOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<IfOpInterface, scf::IfOp> {
 | 
						|
  SmallVector<OpOperand *> getAliasingOpOperand(Operation *op,
 | 
						|
                                                OpResult opResult) const {
 | 
						|
    // IfOps do not have tensor OpOperands. The yielded value can be any SSA
 | 
						|
    // value that is in scope. To allow for use-def chain traversal through
 | 
						|
    // IfOps in the analysis, both corresponding yield values from the then/else
 | 
						|
    // branches are considered to be aliasing with the result.
 | 
						|
    auto ifOp = cast<scf::IfOp>(op);
 | 
						|
    size_t resultNum = std::distance(op->getOpResults().begin(),
 | 
						|
                                     llvm::find(op->getOpResults(), opResult));
 | 
						|
    return {&ifOp.thenYield()->getOpOperand(resultNum),
 | 
						|
            &ifOp.elseYield()->getOpOperand(resultNum)};
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: For better bufferization results, this could return `true` only if
 | 
						|
  // there is a memory write in one (or both) of the branches. Since this is not
 | 
						|
  // allowed at the moment, we should never encounter scf.ifs that yield
 | 
						|
  // unmodified tensors. Such scf.yield ops could just fold away.
 | 
						|
  bool isMemoryWrite(Operation *op, OpResult opResult) const {
 | 
						|
    // IfOp results are always considered memory writes in the analysis. This
 | 
						|
    // design decision simplifies the analysis considerably. E.g., consider the
 | 
						|
    // following test case:
 | 
						|
    //
 | 
						|
    // %0 = "some_writing_op" : tensor<?xf32>
 | 
						|
    // %r = scf.if %c -> (tensor<?xf32>) {
 | 
						|
    //   scf.yield %0
 | 
						|
    // } else {
 | 
						|
    //   %1 = "another_writing_op"(%0) : tensor<?xf32>
 | 
						|
    // }
 | 
						|
    // "some_reading_op"(%r)
 | 
						|
    //
 | 
						|
    // "another_writing_op" in the above example should be able to bufferize
 | 
						|
    // inplace in the absence of another read of %0. However, if the scf.if op
 | 
						|
    // would not be considered a "write", the analysis would detect the
 | 
						|
    // following conflict:
 | 
						|
    //
 | 
						|
    // * read = some_reading_op
 | 
						|
    // * lastWrite = %0  (Note: The last write of %r would be a set: {%0, %1}.)
 | 
						|
    // * conflictingWrite = %1
 | 
						|
    //
 | 
						|
    // For more details, check the "scf.IfOp" section of the design document.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool mustBufferizeInPlace(Operation *op, OpResult opResult) const {
 | 
						|
    // IfOp results always bufferize in-place. Since they have no OpOperands,
 | 
						|
    // they are mostly ignored by the analysis once alias sets are set up.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto ifOp = cast<scf::IfOp>(op);
 | 
						|
 | 
						|
    // Bufferize then/else blocks.
 | 
						|
    if (failed(comprehensive_bufferize::bufferize(ifOp.thenBlock(), state)))
 | 
						|
      return failure();
 | 
						|
    if (failed(comprehensive_bufferize::bufferize(ifOp.elseBlock(), state)))
 | 
						|
      return failure();
 | 
						|
 | 
						|
    for (OpResult opResult : ifOp->getResults()) {
 | 
						|
      if (!opResult.getType().isa<TensorType>())
 | 
						|
        continue;
 | 
						|
      // TODO: Atm we bail on unranked TensorType because we don't know how to
 | 
						|
      // alloc an UnrankedMemRefType + its underlying ranked MemRefType.
 | 
						|
      assert(opResult.getType().isa<RankedTensorType>() &&
 | 
						|
             "unsupported unranked tensor");
 | 
						|
 | 
						|
      Value resultBuffer = getResultBuffer(b, opResult, state);
 | 
						|
      if (!resultBuffer)
 | 
						|
        return failure();
 | 
						|
 | 
						|
      state.aliasInfo.createAliasInfoEntry(resultBuffer);
 | 
						|
      state.mapBuffer(opResult, resultBuffer);
 | 
						|
    }
 | 
						|
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct ForOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<ForOpInterface,
 | 
						|
                                                    scf::ForOp> {
 | 
						|
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
 | 
						|
    // scf::ForOp alone doesn't bufferize to a memory read, one of the uses of
 | 
						|
    // its matching bbArg may.
 | 
						|
    auto forOp = cast<scf::ForOp>(op);
 | 
						|
    return isValueRead(forOp.getRegionIterArgForOpOperand(opOperand));
 | 
						|
  }
 | 
						|
 | 
						|
  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
 | 
						|
    // Tensor iter_args of scf::ForOps are always considered as a write. This is
 | 
						|
    // to simplify the analysis.
 | 
						|
    // TODO: Consider doing sth. like isValueWritten.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<OpOperand *> getAliasingOpOperand(Operation *op,
 | 
						|
                                                OpResult opResult) const {
 | 
						|
    auto forOp = cast<scf::ForOp>(op);
 | 
						|
    return {&forOp.getIterOpOperands()[opResult.getResultNumber()]};
 | 
						|
  }
 | 
						|
 | 
						|
  OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
 | 
						|
    auto forOp = cast<scf::ForOp>(op);
 | 
						|
    if (!opOperand.get().getType().isa<RankedTensorType>())
 | 
						|
      return OpResult();
 | 
						|
    return forOp.getResultForOpOperand(opOperand);
 | 
						|
  }
 | 
						|
 | 
						|
  BufferRelation bufferRelation(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return BufferRelation::Equivalent;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isWritable(Operation *op, Value value) const {
 | 
						|
    // Interestingly, scf::ForOp's bbArg can **always** be viewed
 | 
						|
    // inplace from the perspective of ops nested under:
 | 
						|
    //   1. Either the matching iter operand is not bufferized inplace and an
 | 
						|
    //      alloc + optional copy makes the bbArg itself inplaceable.
 | 
						|
    //   2. Or the matching iter operand is bufferized inplace and bbArg just
 | 
						|
    //      bufferizes to that too.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto forOp = cast<scf::ForOp>(op);
 | 
						|
 | 
						|
    // Take a guard before anything else.
 | 
						|
    OpBuilder::InsertionGuard g(b);
 | 
						|
 | 
						|
    for (OpResult opResult : forOp->getResults()) {
 | 
						|
      if (!opResult.getType().isa<TensorType>())
 | 
						|
        continue;
 | 
						|
      // TODO: Atm we bail on unranked TensorType because we don't know how to
 | 
						|
      // alloc an UnrankedMemRefType + its underlying ranked MemRefType.
 | 
						|
      assert(opResult.getType().isa<RankedTensorType>() &&
 | 
						|
             "unsupported unranked tensor");
 | 
						|
 | 
						|
      // TODO: More general: Matching bbArg does not bufferize to a read.
 | 
						|
      Value resultBuffer = getResultBuffer(b, opResult, state);
 | 
						|
      if (!resultBuffer)
 | 
						|
        return failure();
 | 
						|
 | 
						|
      OpOperand &opOperand = forOp.getOpOperandForResult(opResult);
 | 
						|
      BlockArgument bbArg = forOp.getRegionIterArgForOpOperand(opOperand);
 | 
						|
      state.aliasInfo.createAliasInfoEntry(resultBuffer);
 | 
						|
      state.aliasInfo.insertNewBufferEquivalence(bbArg, resultBuffer);
 | 
						|
      state.mapBuffer(bbArg, resultBuffer);
 | 
						|
      state.mapBuffer(opResult, resultBuffer);
 | 
						|
    }
 | 
						|
 | 
						|
    // Bufferize loop body.
 | 
						|
    if (failed(comprehensive_bufferize::bufferize(&forOp.region(), state)))
 | 
						|
      return failure();
 | 
						|
 | 
						|
    // Finish bufferizing scf::ForOp.
 | 
						|
    auto yieldOp = cast<scf::YieldOp>(&forOp.region().front().back());
 | 
						|
    for (OpOperand &operand : yieldOp->getOpOperands()) {
 | 
						|
      auto tensorType = operand.get().getType().dyn_cast<TensorType>();
 | 
						|
      if (!tensorType)
 | 
						|
        continue;
 | 
						|
 | 
						|
      OpOperand &forOperand = forOp.getOpOperandForResult(
 | 
						|
          forOp->getResult(operand.getOperandNumber()));
 | 
						|
      auto bbArg = forOp.getRegionIterArgForOpOperand(forOperand);
 | 
						|
      Value yieldedBuffer = state.lookupBuffer(operand.get());
 | 
						|
      Value bbArgBuffer = state.lookupBuffer(bbArg);
 | 
						|
      if (!state.aliasInfo.areEquivalentBufferizedValues(yieldedBuffer,
 | 
						|
                                                         bbArgBuffer)) {
 | 
						|
        // TODO: this could get resolved with copies but it can also turn into
 | 
						|
        // swaps so we need to be careful about order of copies.
 | 
						|
        return yieldOp->emitError()
 | 
						|
               << "Yield operand #" << operand.getOperandNumber()
 | 
						|
               << " does not bufferize to an equivalent buffer to the matching"
 | 
						|
               << " enclosing scf::for operand";
 | 
						|
      }
 | 
						|
 | 
						|
      // Buffers are equivalent so the work is already done and we just yield
 | 
						|
      // the bbArg so that it later canonicalizes away.
 | 
						|
      operand.set(bbArg);
 | 
						|
    }
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct YieldOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<YieldOpInterface,
 | 
						|
                                                    scf::YieldOp> {
 | 
						|
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return OpResult();
 | 
						|
  }
 | 
						|
 | 
						|
  BufferRelation bufferRelation(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return BufferRelation::Equivalent;
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto yieldOp = cast<scf::YieldOp>(op);
 | 
						|
    if (!isa<scf::ExecuteRegionOp, scf::IfOp, scf::ForOp>(
 | 
						|
            yieldOp->getParentOp()))
 | 
						|
      return yieldOp->emitError("unsupported scf::YieldOp parent");
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace scf_ext
 | 
						|
 | 
						|
namespace std_ext {
 | 
						|
 | 
						|
struct CallOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<CallOpInterface, CallOp> {
 | 
						|
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
 | 
						|
    // CallOpInterface alone doesn't bufferize to a memory read, one of the uses
 | 
						|
    // of the matching bbArg may. It is the responsibility of the caller to
 | 
						|
    // inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
 | 
						|
    // conservative.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
 | 
						|
    // CallOpInterface alone doesn't bufferize to a memory write, one of the
 | 
						|
    // uses of the matching bbArg may. It is the responsibility of the caller to
 | 
						|
    // inspect bbArgs. In the absence of a BufferizationAliasInfo, we need to be
 | 
						|
    // conservative.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<OpOperand *> getAliasingOpOperand(Operation *op,
 | 
						|
                                                OpResult opResult) const {
 | 
						|
    // TODO: Can we do better?
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
 | 
						|
  OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
 | 
						|
    // CallOpInterface is special, it needs to wait for the callee to be
 | 
						|
    // bufferized and needs to inspect the BufferAliasInfo object. It can't
 | 
						|
    // make a proper determination by itself and needs to be conservative.
 | 
						|
    return OpResult();
 | 
						|
  }
 | 
						|
 | 
						|
  BufferRelation bufferRelation(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return BufferRelation::Equivalent;
 | 
						|
  }
 | 
						|
 | 
						|
  /// In a first approximation, all the function arguments of a FuncOp are
 | 
						|
  /// marked inplaceable. For now, it is the responsibility of the `callOp`
 | 
						|
  /// bufferization to allow FuncOp that are inplaceable to write inPlace.
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    CallOp callOp = cast<CallOp>(op);
 | 
						|
    FuncOp funcOp = getCalledFunction(callOp);
 | 
						|
    assert(isa<CallOp>(callOp.getOperation()) && funcOp &&
 | 
						|
           "expected Callop to a FuncOp");
 | 
						|
 | 
						|
    // Take a guard before anything else.
 | 
						|
    OpBuilder::InsertionGuard g(b);
 | 
						|
    b.setInsertionPoint(callOp);
 | 
						|
 | 
						|
    // 1. Filter return types:
 | 
						|
    //    - if the callee is bodiless / external, we cannot inspect it and we
 | 
						|
    //      cannot assume anything. We can just assert that it does not return a
 | 
						|
    //      tensor as this would have to bufferize to "return a memref", whose
 | 
						|
    //      semantics is ill-defined.
 | 
						|
    //    - if the callee has a body, we perform inter-procedural equivalence
 | 
						|
    //      analysis. When successful, a result folds onto an operand. When
 | 
						|
    //      unsuccessful, additional work is needed to either:
 | 
						|
    //        * hoist a result into an inplaceable operand or
 | 
						|
    //        * devise a better representation to truly return a buffer.
 | 
						|
    SmallVector<Type> resultTypes;
 | 
						|
    SmallVector<Value> hoistedArguments;
 | 
						|
    if (funcOp.body().empty()) {
 | 
						|
      if (llvm::any_of(funcOp.getType().getResults(), isaTensor))
 | 
						|
        return callOp->emitError()
 | 
						|
               << "cannot bufferize bodiless function that returns a tensor";
 | 
						|
    } else {
 | 
						|
      ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
 | 
						|
      assert(returnOp && "expected func with single return op");
 | 
						|
 | 
						|
      // For each FuncOp result, keep track of which inplace argument it reuses.
 | 
						|
      for (OpOperand &returnOperand : returnOp->getOpOperands()) {
 | 
						|
        Type returnType = returnOperand.get().getType();
 | 
						|
        if (!isaTensor(returnType)) {
 | 
						|
          resultTypes.push_back(returnType);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If return operand is equivalent to some bbArg, no need to return it.
 | 
						|
        Value returnVal = returnOperand.get();
 | 
						|
        if (BlockArgument bbArg =
 | 
						|
                getEquivalentEnclosingFuncBBArg(returnVal, state.aliasInfo)) {
 | 
						|
          Value oldRes = callOp->getResult(returnOperand.getOperandNumber());
 | 
						|
          int64_t idx = bbArg.getArgNumber();
 | 
						|
          Value buffer = state.lookupBuffer(callOp->getOperand(idx));
 | 
						|
          // Add CallOp operand/result equivalence: this is interprocedural
 | 
						|
          // info.
 | 
						|
          state.aliasInfo.insertNewBufferEquivalence(oldRes, buffer);
 | 
						|
          state.mapBuffer(oldRes, buffer);
 | 
						|
          // Add a TensorLoadOp to kill all uses of the CallOp return.
 | 
						|
          // Replace all uses of the CallOp results so we can erase the CallOp.
 | 
						|
          // This TensorLoadOp must fold/DCE away or bufferization should be
 | 
						|
          // considered failed.
 | 
						|
          Value tensorLoad =
 | 
						|
              b.create<memref::TensorLoadOp>(callOp.getLoc(), buffer);
 | 
						|
          oldRes.replaceAllUsesWith(tensorLoad);
 | 
						|
          // Add new op equivalence info.
 | 
						|
          state.aliasInfo.insertNewBufferEquivalence(tensorLoad, buffer);
 | 
						|
          state.mapBuffer(tensorLoad, buffer);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: Need to hoist above function boundary.
 | 
						|
        if (Operation *allocOp =
 | 
						|
                getEquivalentAlloc(returnVal, state.aliasInfo)) {
 | 
						|
          hoistedArguments.push_back(allocOp->getResult(0));
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Other cases legitimately need to return a tensor, this is currently
 | 
						|
        // not supported. For instance, if hoisting across function boundary has
 | 
						|
        // failed, it may be due to e.g. data-dependent sizes. In such a case,
 | 
						|
        // we would we need a better type than memref.
 | 
						|
        resultTypes.push_back(returnType);
 | 
						|
 | 
						|
        int64_t returnIdx = returnOperand.getOperandNumber();
 | 
						|
        return returnOp->emitError() << "buffer result #" << returnIdx
 | 
						|
                                     << " not produced by an alloc\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // 2. Compute bufferized FunctionType.
 | 
						|
    SmallVector<Type> argumentTypes{callOp->getOperandTypes()};
 | 
						|
    ValueRange hoistedArgs{hoistedArguments};
 | 
						|
    llvm::append_range(argumentTypes, hoistedArgs.getTypes());
 | 
						|
    // Get the bufferized FunctionType for funcOp or construct it if not yet
 | 
						|
    // available.
 | 
						|
    FunctionType bufferizedFuncType = getOrCreateBufferizedFunctionType(
 | 
						|
        funcOp, argumentTypes, resultTypes, state.bufferizedFunctionTypes);
 | 
						|
 | 
						|
    // 3. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
 | 
						|
    SmallVector<Value> newOperands;
 | 
						|
    newOperands.reserve(callOp->getNumOperands());
 | 
						|
    for (OpOperand &opOperand : callOp->getOpOperands()) {
 | 
						|
      Value tensorOperand = opOperand.get();
 | 
						|
      // Non-tensor operands are just copied.
 | 
						|
      if (!tensorOperand.getType().isa<TensorType>()) {
 | 
						|
        newOperands.push_back(tensorOperand);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Tensor operands are guaranteed to have been buferized.
 | 
						|
      int64_t idx = opOperand.getOperandNumber();
 | 
						|
      Value buffer = state.lookupBuffer(tensorOperand);
 | 
						|
 | 
						|
      // Caller / callee type mistmatch is handled with a CastOp.
 | 
						|
      auto memRefType = bufferizedFuncType.getInput(idx);
 | 
						|
      // Since we don't yet have a clear layout story, buffer_cast may
 | 
						|
      // conservatively turn tensors into more dynamic memref than necessary.
 | 
						|
      // If the memref type of the callee fails, introduce an extra memref.cast
 | 
						|
      // that will either canonicalize away or fail compilation until we can do
 | 
						|
      // something better.
 | 
						|
      if (buffer.getType() != memRefType) {
 | 
						|
        Value castBuffer =
 | 
						|
            b.create<memref::CastOp>(callOp.getLoc(), memRefType, buffer);
 | 
						|
        // Add new op equivalence info.
 | 
						|
        state.aliasInfo.insertNewBufferEquivalence(castBuffer, buffer);
 | 
						|
        state.mapBuffer(tensorOperand, castBuffer);
 | 
						|
        buffer = castBuffer;
 | 
						|
      }
 | 
						|
      newOperands.push_back(buffer);
 | 
						|
    }
 | 
						|
 | 
						|
    // 4. Create the new CallOp.
 | 
						|
    Operation *newCallOp = b.create<CallOp>(callOp.getLoc(), funcOp.sym_name(),
 | 
						|
                                            resultTypes, newOperands);
 | 
						|
    newCallOp->setAttrs(callOp->getAttrs());
 | 
						|
 | 
						|
    // 5. Delete the op at the end of bufferization.
 | 
						|
    state.markOpObsolete(callOp);
 | 
						|
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct ReturnOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
 | 
						|
                                                    ReturnOp> {
 | 
						|
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return OpResult();
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto returnOp = cast<ReturnOp>(op);
 | 
						|
 | 
						|
    // Take a guard before anything else.
 | 
						|
    OpBuilder::InsertionGuard g(b);
 | 
						|
    // Cannot insert after returnOp.
 | 
						|
    b.setInsertionPoint(returnOp);
 | 
						|
 | 
						|
    assert(isa<FuncOp>(returnOp->getParentOp()) &&
 | 
						|
           "only support FuncOp parent for ReturnOp");
 | 
						|
    for (OpOperand &operand : returnOp->getOpOperands()) {
 | 
						|
      auto tensorType = operand.get().getType().dyn_cast<TensorType>();
 | 
						|
      if (!tensorType)
 | 
						|
        continue;
 | 
						|
      Value v = state.lookupBuffer(operand.get());
 | 
						|
      Value returnTensor = b.create<memref::TensorLoadOp>(returnOp.getLoc(), v);
 | 
						|
      operand.set(returnTensor);
 | 
						|
      state.aliasInfo.insertNewBufferEquivalence(returnTensor, v);
 | 
						|
      state.mapBuffer(returnTensor, v);
 | 
						|
    }
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace std_ext
 | 
						|
 | 
						|
namespace vector_ext {
 | 
						|
 | 
						|
struct TransferReadOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<TransferReadOpInterface,
 | 
						|
                                                    vector::TransferReadOp> {
 | 
						|
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
 | 
						|
    assert(opOperand.get().getType().isa<RankedTensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
 | 
						|
    assert(opOperand.get().getType().isa<RankedTensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return OpResult();
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto transferReadOp = cast<vector::TransferReadOp>(op);
 | 
						|
 | 
						|
    // Take a guard before anything else.
 | 
						|
    OpBuilder::InsertionGuard g(b);
 | 
						|
    b.setInsertionPoint(op);
 | 
						|
 | 
						|
    // TransferReadOp always reads from the bufferized op.source().
 | 
						|
    assert(transferReadOp.getShapedType().isa<TensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    Value v = state.lookupBuffer(transferReadOp.source());
 | 
						|
    transferReadOp.sourceMutable().assign(v);
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct TransferWriteOpInterface
 | 
						|
    : public BufferizableOpInterface::ExternalModel<TransferWriteOpInterface,
 | 
						|
                                                    vector::TransferWriteOp> {
 | 
						|
  bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand) const {
 | 
						|
    assert(opOperand.get().getType().isa<TensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand) const {
 | 
						|
    assert(opOperand.get().getType().isa<TensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<OpOperand *> getAliasingOpOperand(Operation *op,
 | 
						|
                                                OpResult opResult) const {
 | 
						|
    return {&op->getOpOperand(1)};
 | 
						|
  }
 | 
						|
 | 
						|
  OpResult getAliasingOpResult(Operation *op, OpOperand &opOperand) const {
 | 
						|
    assert(opOperand.get().getType().isa<TensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    return op->getOpResult(0);
 | 
						|
  }
 | 
						|
 | 
						|
  BufferRelation bufferRelation(Operation *op, OpOperand &opOperand) const {
 | 
						|
    return BufferRelation::Equivalent;
 | 
						|
  }
 | 
						|
 | 
						|
  LogicalResult bufferize(Operation *op, OpBuilder &b,
 | 
						|
                          BufferizationState &state) const {
 | 
						|
    auto writeOp = cast<vector::TransferWriteOp>(op);
 | 
						|
 | 
						|
    // Take a guard before anything else.
 | 
						|
    OpBuilder::InsertionGuard g(b);
 | 
						|
    b.setInsertionPoint(op);
 | 
						|
 | 
						|
    // Create a new transfer_write on buffer that doesn't have a return value.
 | 
						|
    // Leave the previous transfer_write to dead code as it still has uses at
 | 
						|
    // this point.
 | 
						|
    assert(writeOp.getShapedType().isa<TensorType>() &&
 | 
						|
           "only tensor types expected");
 | 
						|
    Value resultBuffer = getResultBuffer(b, op->getResult(0), state);
 | 
						|
    if (!resultBuffer)
 | 
						|
      return failure();
 | 
						|
    b.create<vector::TransferWriteOp>(
 | 
						|
        writeOp.getLoc(), writeOp.vector(), resultBuffer, writeOp.indices(),
 | 
						|
        writeOp.permutation_map(),
 | 
						|
        writeOp.in_bounds() ? *writeOp.in_bounds() : ArrayAttr());
 | 
						|
    state.mapBuffer(op->getResult(0), resultBuffer);
 | 
						|
 | 
						|
    return success();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace vector_ext
 | 
						|
 | 
						|
void registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) {
 | 
						|
  registry.addOpInterface<arith::ConstantOp, arith_ext::ConstantOpInterface>();
 | 
						|
  registry.addOpInterface<scf::ExecuteRegionOp,
 | 
						|
                          scf_ext::ExecuteRegionOpInterface>();
 | 
						|
  registry.addOpInterface<scf::ForOp, scf_ext::ForOpInterface>();
 | 
						|
  registry.addOpInterface<scf::IfOp, scf_ext::IfOpInterface>();
 | 
						|
  registry.addOpInterface<scf::YieldOp, scf_ext::YieldOpInterface>();
 | 
						|
  registry.addOpInterface<CallOp, std_ext::CallOpInterface>();
 | 
						|
  registry.addOpInterface<ReturnOp, std_ext::ReturnOpInterface>();
 | 
						|
  registry.addOpInterface<vector::TransferReadOp,
 | 
						|
                          vector_ext::TransferReadOpInterface>();
 | 
						|
  registry.addOpInterface<vector::TransferWriteOp,
 | 
						|
                          vector_ext::TransferWriteOpInterface>();
 | 
						|
 | 
						|
  // Ops that are not bufferizable but are allocation hoisting barriers.
 | 
						|
  registry.addOpInterface<FuncOp, AllocationHoistingBarrierOnly<FuncOp>>();
 | 
						|
  registry.addOpInterface<scf::ParallelOp,
 | 
						|
                          AllocationHoistingBarrierOnly<scf::ParallelOp>>();
 | 
						|
  registry.addOpInterface<AffineParallelOp,
 | 
						|
                          AllocationHoistingBarrierOnly<AffineParallelOp>>();
 | 
						|
}
 | 
						|
 | 
						|
} // namespace comprehensive_bufferize
 | 
						|
} // namespace linalg
 | 
						|
} // namespace mlir
 |