726 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines several CodeGen-specific LLVM IR analysis utilities.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Transforms/Utils/GlobalStatus.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Compute the linearized index of a member in a nested aggregate/struct/array
 | |
| /// by recursing and accumulating CurIndex as long as there are indices in the
 | |
| /// index list.
 | |
| unsigned llvm::ComputeLinearIndex(Type *Ty,
 | |
|                                   const unsigned *Indices,
 | |
|                                   const unsigned *IndicesEnd,
 | |
|                                   unsigned CurIndex) {
 | |
|   // Base case: We're done.
 | |
|   if (Indices && Indices == IndicesEnd)
 | |
|     return CurIndex;
 | |
| 
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|         EI != EE; ++EI) {
 | |
|       if (Indices && *Indices == unsigned(EI - EB))
 | |
|         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
 | |
|       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
 | |
|     }
 | |
|     assert(!Indices && "Unexpected out of bound");
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Type *EltTy = ATy->getElementType();
 | |
|     unsigned NumElts = ATy->getNumElements();
 | |
|     // Compute the Linear offset when jumping one element of the array
 | |
|     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
 | |
|     if (Indices) {
 | |
|       assert(*Indices < NumElts && "Unexpected out of bound");
 | |
|       // If the indice is inside the array, compute the index to the requested
 | |
|       // elt and recurse inside the element with the end of the indices list
 | |
|       CurIndex += EltLinearOffset* *Indices;
 | |
|       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
 | |
|     }
 | |
|     CurIndex += EltLinearOffset*NumElts;
 | |
|     return CurIndex;
 | |
|   }
 | |
|   // We haven't found the type we're looking for, so keep searching.
 | |
|   return CurIndex + 1;
 | |
| }
 | |
| 
 | |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | |
| /// EVTs that represent all the individual underlying
 | |
| /// non-aggregate types that comprise it.
 | |
| ///
 | |
| /// If Offsets is non-null, it points to a vector to be filled in
 | |
| /// with the in-memory offsets of each of the individual values.
 | |
| ///
 | |
| void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
 | |
|                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
 | |
|                            SmallVectorImpl<uint64_t> *Offsets,
 | |
|                            uint64_t StartingOffset) {
 | |
|   // Given a struct type, recursively traverse the elements.
 | |
|   if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     const StructLayout *SL = DL.getStructLayout(STy);
 | |
|     for (StructType::element_iterator EB = STy->element_begin(),
 | |
|                                       EI = EB,
 | |
|                                       EE = STy->element_end();
 | |
|          EI != EE; ++EI)
 | |
|       ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
 | |
|                       StartingOffset + SL->getElementOffset(EI - EB));
 | |
|     return;
 | |
|   }
 | |
|   // Given an array type, recursively traverse the elements.
 | |
|   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Type *EltTy = ATy->getElementType();
 | |
|     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
 | |
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
 | |
|                       StartingOffset + i * EltSize);
 | |
|     return;
 | |
|   }
 | |
|   // Interpret void as zero return values.
 | |
|   if (Ty->isVoidTy())
 | |
|     return;
 | |
|   // Base case: we can get an EVT for this LLVM IR type.
 | |
|   ValueVTs.push_back(TLI.getValueType(DL, Ty));
 | |
|   if (Offsets)
 | |
|     Offsets->push_back(StartingOffset);
 | |
| }
 | |
| 
 | |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | |
| GlobalValue *llvm::ExtractTypeInfo(Value *V) {
 | |
|   V = V->stripPointerCasts();
 | |
|   GlobalValue *GV = dyn_cast<GlobalValue>(V);
 | |
|   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
 | |
| 
 | |
|   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
 | |
|     assert(Var->hasInitializer() &&
 | |
|            "The EH catch-all value must have an initializer");
 | |
|     Value *Init = Var->getInitializer();
 | |
|     GV = dyn_cast<GlobalValue>(Init);
 | |
|     if (!GV) V = cast<ConstantPointerNull>(Init);
 | |
|   }
 | |
| 
 | |
|   assert((GV || isa<ConstantPointerNull>(V)) &&
 | |
|          "TypeInfo must be a global variable or NULL");
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
 | |
| /// processed uses a memory 'm' constraint.
 | |
| bool
 | |
| llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
 | |
|                                 const TargetLowering &TLI) {
 | |
|   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
 | |
|     InlineAsm::ConstraintInfo &CI = CInfos[i];
 | |
|     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
 | |
|       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
 | |
|       if (CType == TargetLowering::C_Memory)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     // Indirect operand accesses access memory.
 | |
|     if (CI.isIndirect)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getFCmpCondCode - Return the ISD condition code corresponding to
 | |
| /// the given LLVM IR floating-point condition code.  This includes
 | |
| /// consideration of global floating-point math flags.
 | |
| ///
 | |
| ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
 | |
|   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
 | |
|   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
 | |
|   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
 | |
|   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
 | |
|   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
 | |
|   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
 | |
|   case FCmpInst::FCMP_ORD:   return ISD::SETO;
 | |
|   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
 | |
|   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
 | |
|   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
 | |
|   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
 | |
|   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
 | |
|   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
 | |
|   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
 | |
|   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
 | |
|   default: llvm_unreachable("Invalid FCmp predicate opcode!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
 | |
|     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
 | |
|     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
 | |
|     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
 | |
|     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
 | |
|     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
 | |
|     default: return CC;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getICmpCondCode - Return the ISD condition code corresponding to
 | |
| /// the given LLVM IR integer condition code.
 | |
| ///
 | |
| ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
 | |
|   case ICmpInst::ICMP_NE:  return ISD::SETNE;
 | |
|   case ICmpInst::ICMP_SLE: return ISD::SETLE;
 | |
|   case ICmpInst::ICMP_ULE: return ISD::SETULE;
 | |
|   case ICmpInst::ICMP_SGE: return ISD::SETGE;
 | |
|   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
 | |
|   case ICmpInst::ICMP_SLT: return ISD::SETLT;
 | |
|   case ICmpInst::ICMP_ULT: return ISD::SETULT;
 | |
|   case ICmpInst::ICMP_SGT: return ISD::SETGT;
 | |
|   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
 | |
|   default:
 | |
|     llvm_unreachable("Invalid ICmp predicate opcode!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isNoopBitcast(Type *T1, Type *T2,
 | |
|                           const TargetLoweringBase& TLI) {
 | |
|   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
 | |
|          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
 | |
|           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
 | |
| }
 | |
| 
 | |
| /// Look through operations that will be free to find the earliest source of
 | |
| /// this value.
 | |
| ///
 | |
| /// @param ValLoc If V has aggegate type, we will be interested in a particular
 | |
| /// scalar component. This records its address; the reverse of this list gives a
 | |
| /// sequence of indices appropriate for an extractvalue to locate the important
 | |
| /// value. This value is updated during the function and on exit will indicate
 | |
| /// similar information for the Value returned.
 | |
| ///
 | |
| /// @param DataBits If this function looks through truncate instructions, this
 | |
| /// will record the smallest size attained.
 | |
| static const Value *getNoopInput(const Value *V,
 | |
|                                  SmallVectorImpl<unsigned> &ValLoc,
 | |
|                                  unsigned &DataBits,
 | |
|                                  const TargetLoweringBase &TLI,
 | |
|                                  const DataLayout &DL) {
 | |
|   while (true) {
 | |
|     // Try to look through V1; if V1 is not an instruction, it can't be looked
 | |
|     // through.
 | |
|     const Instruction *I = dyn_cast<Instruction>(V);
 | |
|     if (!I || I->getNumOperands() == 0) return V;
 | |
|     const Value *NoopInput = nullptr;
 | |
| 
 | |
|     Value *Op = I->getOperand(0);
 | |
|     if (isa<BitCastInst>(I)) {
 | |
|       // Look through truly no-op bitcasts.
 | |
|       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
 | |
|         NoopInput = Op;
 | |
|     } else if (isa<GetElementPtrInst>(I)) {
 | |
|       // Look through getelementptr
 | |
|       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
 | |
|         NoopInput = Op;
 | |
|     } else if (isa<IntToPtrInst>(I)) {
 | |
|       // Look through inttoptr.
 | |
|       // Make sure this isn't a truncating or extending cast.  We could
 | |
|       // support this eventually, but don't bother for now.
 | |
|       if (!isa<VectorType>(I->getType()) &&
 | |
|           DL.getPointerSizeInBits() ==
 | |
|               cast<IntegerType>(Op->getType())->getBitWidth())
 | |
|         NoopInput = Op;
 | |
|     } else if (isa<PtrToIntInst>(I)) {
 | |
|       // Look through ptrtoint.
 | |
|       // Make sure this isn't a truncating or extending cast.  We could
 | |
|       // support this eventually, but don't bother for now.
 | |
|       if (!isa<VectorType>(I->getType()) &&
 | |
|           DL.getPointerSizeInBits() ==
 | |
|               cast<IntegerType>(I->getType())->getBitWidth())
 | |
|         NoopInput = Op;
 | |
|     } else if (isa<TruncInst>(I) &&
 | |
|                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
 | |
|       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
 | |
|       NoopInput = Op;
 | |
|     } else if (auto CS = ImmutableCallSite(I)) {
 | |
|       const Value *ReturnedOp = CS.getReturnedArgOperand();
 | |
|       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
 | |
|         NoopInput = ReturnedOp;
 | |
|     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
 | |
|       // Value may come from either the aggregate or the scalar
 | |
|       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
 | |
|       if (ValLoc.size() >= InsertLoc.size() &&
 | |
|           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
 | |
|         // The type being inserted is a nested sub-type of the aggregate; we
 | |
|         // have to remove those initial indices to get the location we're
 | |
|         // interested in for the operand.
 | |
|         ValLoc.resize(ValLoc.size() - InsertLoc.size());
 | |
|         NoopInput = IVI->getInsertedValueOperand();
 | |
|       } else {
 | |
|         // The struct we're inserting into has the value we're interested in, no
 | |
|         // change of address.
 | |
|         NoopInput = Op;
 | |
|       }
 | |
|     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
 | |
|       // The part we're interested in will inevitably be some sub-section of the
 | |
|       // previous aggregate. Combine the two paths to obtain the true address of
 | |
|       // our element.
 | |
|       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
 | |
|       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
 | |
|       NoopInput = Op;
 | |
|     }
 | |
|     // Terminate if we couldn't find anything to look through.
 | |
|     if (!NoopInput)
 | |
|       return V;
 | |
| 
 | |
|     V = NoopInput;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if this scalar return value only has bits discarded on its path
 | |
| /// from the "tail call" to the "ret". This includes the obvious noop
 | |
| /// instructions handled by getNoopInput above as well as free truncations (or
 | |
| /// extensions prior to the call).
 | |
| static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
 | |
|                                  SmallVectorImpl<unsigned> &RetIndices,
 | |
|                                  SmallVectorImpl<unsigned> &CallIndices,
 | |
|                                  bool AllowDifferingSizes,
 | |
|                                  const TargetLoweringBase &TLI,
 | |
|                                  const DataLayout &DL) {
 | |
| 
 | |
|   // Trace the sub-value needed by the return value as far back up the graph as
 | |
|   // possible, in the hope that it will intersect with the value produced by the
 | |
|   // call. In the simple case with no "returned" attribute, the hope is actually
 | |
|   // that we end up back at the tail call instruction itself.
 | |
|   unsigned BitsRequired = UINT_MAX;
 | |
|   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
 | |
| 
 | |
|   // If this slot in the value returned is undef, it doesn't matter what the
 | |
|   // call puts there, it'll be fine.
 | |
|   if (isa<UndefValue>(RetVal))
 | |
|     return true;
 | |
| 
 | |
|   // Now do a similar search up through the graph to find where the value
 | |
|   // actually returned by the "tail call" comes from. In the simple case without
 | |
|   // a "returned" attribute, the search will be blocked immediately and the loop
 | |
|   // a Noop.
 | |
|   unsigned BitsProvided = UINT_MAX;
 | |
|   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
 | |
| 
 | |
|   // There's no hope if we can't actually trace them to (the same part of!) the
 | |
|   // same value.
 | |
|   if (CallVal != RetVal || CallIndices != RetIndices)
 | |
|     return false;
 | |
| 
 | |
|   // However, intervening truncates may have made the call non-tail. Make sure
 | |
|   // all the bits that are needed by the "ret" have been provided by the "tail
 | |
|   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
 | |
|   // extensions too.
 | |
|   if (BitsProvided < BitsRequired ||
 | |
|       (!AllowDifferingSizes && BitsProvided != BitsRequired))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// For an aggregate type, determine whether a given index is within bounds or
 | |
| /// not.
 | |
| static bool indexReallyValid(CompositeType *T, unsigned Idx) {
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(T))
 | |
|     return Idx < AT->getNumElements();
 | |
| 
 | |
|   return Idx < cast<StructType>(T)->getNumElements();
 | |
| }
 | |
| 
 | |
| /// Move the given iterators to the next leaf type in depth first traversal.
 | |
| ///
 | |
| /// Performs a depth-first traversal of the type as specified by its arguments,
 | |
| /// stopping at the next leaf node (which may be a legitimate scalar type or an
 | |
| /// empty struct or array).
 | |
| ///
 | |
| /// @param SubTypes List of the partial components making up the type from
 | |
| /// outermost to innermost non-empty aggregate. The element currently
 | |
| /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
 | |
| ///
 | |
| /// @param Path Set of extractvalue indices leading from the outermost type
 | |
| /// (SubTypes[0]) to the leaf node currently represented.
 | |
| ///
 | |
| /// @returns true if a new type was found, false otherwise. Calling this
 | |
| /// function again on a finished iterator will repeatedly return
 | |
| /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
 | |
| /// aggregate or a non-aggregate
 | |
| static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
 | |
|                                   SmallVectorImpl<unsigned> &Path) {
 | |
|   // First march back up the tree until we can successfully increment one of the
 | |
|   // coordinates in Path.
 | |
|   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
 | |
|     Path.pop_back();
 | |
|     SubTypes.pop_back();
 | |
|   }
 | |
| 
 | |
|   // If we reached the top, then the iterator is done.
 | |
|   if (Path.empty())
 | |
|     return false;
 | |
| 
 | |
|   // We know there's *some* valid leaf now, so march back down the tree picking
 | |
|   // out the left-most element at each node.
 | |
|   ++Path.back();
 | |
|   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
 | |
|   while (DeeperType->isAggregateType()) {
 | |
|     CompositeType *CT = cast<CompositeType>(DeeperType);
 | |
|     if (!indexReallyValid(CT, 0))
 | |
|       return true;
 | |
| 
 | |
|     SubTypes.push_back(CT);
 | |
|     Path.push_back(0);
 | |
| 
 | |
|     DeeperType = CT->getTypeAtIndex(0U);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Find the first non-empty, scalar-like type in Next and setup the iterator
 | |
| /// components.
 | |
| ///
 | |
| /// Assuming Next is an aggregate of some kind, this function will traverse the
 | |
| /// tree from left to right (i.e. depth-first) looking for the first
 | |
| /// non-aggregate type which will play a role in function return.
 | |
| ///
 | |
| /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
 | |
| /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
 | |
| /// i32 in that type.
 | |
| static bool firstRealType(Type *Next,
 | |
|                           SmallVectorImpl<CompositeType *> &SubTypes,
 | |
|                           SmallVectorImpl<unsigned> &Path) {
 | |
|   // First initialise the iterator components to the first "leaf" node
 | |
|   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
 | |
|   // despite nominally being an aggregate).
 | |
|   while (Next->isAggregateType() &&
 | |
|          indexReallyValid(cast<CompositeType>(Next), 0)) {
 | |
|     SubTypes.push_back(cast<CompositeType>(Next));
 | |
|     Path.push_back(0);
 | |
|     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
 | |
|   }
 | |
| 
 | |
|   // If there's no Path now, Next was originally scalar already (or empty
 | |
|   // leaf). We're done.
 | |
|   if (Path.empty())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, use normal iteration to keep looking through the tree until we
 | |
|   // find a non-aggregate type.
 | |
|   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
 | |
|     if (!advanceToNextLeafType(SubTypes, Path))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Set the iterator data-structures to the next non-empty, non-aggregate
 | |
| /// subtype.
 | |
| static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
 | |
|                          SmallVectorImpl<unsigned> &Path) {
 | |
|   do {
 | |
|     if (!advanceToNextLeafType(SubTypes, Path))
 | |
|       return false;
 | |
| 
 | |
|     assert(!Path.empty() && "found a leaf but didn't set the path?");
 | |
|   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Test if the given instruction is in a position to be optimized
 | |
| /// with a tail-call. This roughly means that it's in a block with
 | |
| /// a return and there's nothing that needs to be scheduled
 | |
| /// between it and the return.
 | |
| ///
 | |
| /// This function only tests target-independent requirements.
 | |
| bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
 | |
|   const Instruction *I = CS.getInstruction();
 | |
|   const BasicBlock *ExitBB = I->getParent();
 | |
|   const TerminatorInst *Term = ExitBB->getTerminator();
 | |
|   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
 | |
| 
 | |
|   // The block must end in a return statement or unreachable.
 | |
|   //
 | |
|   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
 | |
|   // an unreachable, for now. The way tailcall optimization is currently
 | |
|   // implemented means it will add an epilogue followed by a jump. That is
 | |
|   // not profitable. Also, if the callee is a special function (e.g.
 | |
|   // longjmp on x86), it can end up causing miscompilation that has not
 | |
|   // been fully understood.
 | |
|   if (!Ret &&
 | |
|       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
 | |
|     return false;
 | |
| 
 | |
|   // If I will have a chain, make sure no other instruction that will have a
 | |
|   // chain interposes between I and the return.
 | |
|   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
 | |
|       !isSafeToSpeculativelyExecute(I))
 | |
|     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
 | |
|       if (&*BBI == I)
 | |
|         break;
 | |
|       // Debug info intrinsics do not get in the way of tail call optimization.
 | |
|       if (isa<DbgInfoIntrinsic>(BBI))
 | |
|         continue;
 | |
|       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
 | |
|           !isSafeToSpeculativelyExecute(&*BBI))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   const Function *F = ExitBB->getParent();
 | |
|   return returnTypeIsEligibleForTailCall(
 | |
|       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
 | |
| }
 | |
| 
 | |
| bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
 | |
|                                     const ReturnInst *Ret,
 | |
|                                     const TargetLoweringBase &TLI,
 | |
|                                     bool *AllowDifferingSizes) {
 | |
|   // ADS may be null, so don't write to it directly.
 | |
|   bool DummyADS;
 | |
|   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
 | |
|   ADS = true;
 | |
| 
 | |
|   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
 | |
|   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
 | |
|                           AttributeList::ReturnIndex);
 | |
| 
 | |
|   // NoAlias and NonNull are completely benign as far as calling convention
 | |
|   // goes, they shouldn't affect whether the call is a tail call.
 | |
|   CallerAttrs.removeAttribute(Attribute::NoAlias);
 | |
|   CalleeAttrs.removeAttribute(Attribute::NoAlias);
 | |
|   CallerAttrs.removeAttribute(Attribute::NonNull);
 | |
|   CalleeAttrs.removeAttribute(Attribute::NonNull);
 | |
| 
 | |
|   if (CallerAttrs.contains(Attribute::ZExt)) {
 | |
|     if (!CalleeAttrs.contains(Attribute::ZExt))
 | |
|       return false;
 | |
| 
 | |
|     ADS = false;
 | |
|     CallerAttrs.removeAttribute(Attribute::ZExt);
 | |
|     CalleeAttrs.removeAttribute(Attribute::ZExt);
 | |
|   } else if (CallerAttrs.contains(Attribute::SExt)) {
 | |
|     if (!CalleeAttrs.contains(Attribute::SExt))
 | |
|       return false;
 | |
| 
 | |
|     ADS = false;
 | |
|     CallerAttrs.removeAttribute(Attribute::SExt);
 | |
|     CalleeAttrs.removeAttribute(Attribute::SExt);
 | |
|   }
 | |
| 
 | |
|   // If they're still different, there's some facet we don't understand
 | |
|   // (currently only "inreg", but in future who knows). It may be OK but the
 | |
|   // only safe option is to reject the tail call.
 | |
|   return CallerAttrs == CalleeAttrs;
 | |
| }
 | |
| 
 | |
| bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
 | |
|                                            const Instruction *I,
 | |
|                                            const ReturnInst *Ret,
 | |
|                                            const TargetLoweringBase &TLI) {
 | |
|   // If the block ends with a void return or unreachable, it doesn't matter
 | |
|   // what the call's return type is.
 | |
|   if (!Ret || Ret->getNumOperands() == 0) return true;
 | |
| 
 | |
|   // If the return value is undef, it doesn't matter what the call's
 | |
|   // return type is.
 | |
|   if (isa<UndefValue>(Ret->getOperand(0))) return true;
 | |
| 
 | |
|   // Make sure the attributes attached to each return are compatible.
 | |
|   bool AllowDifferingSizes;
 | |
|   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
 | |
|     return false;
 | |
| 
 | |
|   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
 | |
|   // Intrinsic like llvm.memcpy has no return value, but the expanded
 | |
|   // libcall may or may not have return value. On most platforms, it
 | |
|   // will be expanded as memcpy in libc, which returns the first
 | |
|   // argument. On other platforms like arm-none-eabi, memcpy may be
 | |
|   // expanded as library call without return value, like __aeabi_memcpy.
 | |
|   const CallInst *Call = cast<CallInst>(I);
 | |
|   if (Function *F = Call->getCalledFunction()) {
 | |
|     Intrinsic::ID IID = F->getIntrinsicID();
 | |
|     if (((IID == Intrinsic::memcpy &&
 | |
|           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
 | |
|          (IID == Intrinsic::memmove &&
 | |
|           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
 | |
|          (IID == Intrinsic::memset &&
 | |
|           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
 | |
|         RetVal == Call->getArgOperand(0))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   SmallVector<unsigned, 4> RetPath, CallPath;
 | |
|   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
 | |
| 
 | |
|   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
 | |
|   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
 | |
| 
 | |
|   // Nothing's actually returned, it doesn't matter what the callee put there
 | |
|   // it's a valid tail call.
 | |
|   if (RetEmpty)
 | |
|     return true;
 | |
| 
 | |
|   // Iterate pairwise through each of the value types making up the tail call
 | |
|   // and the corresponding return. For each one we want to know whether it's
 | |
|   // essentially going directly from the tail call to the ret, via operations
 | |
|   // that end up not generating any code.
 | |
|   //
 | |
|   // We allow a certain amount of covariance here. For example it's permitted
 | |
|   // for the tail call to define more bits than the ret actually cares about
 | |
|   // (e.g. via a truncate).
 | |
|   do {
 | |
|     if (CallEmpty) {
 | |
|       // We've exhausted the values produced by the tail call instruction, the
 | |
|       // rest are essentially undef. The type doesn't really matter, but we need
 | |
|       // *something*.
 | |
|       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
 | |
|       CallVal = UndefValue::get(SlotType);
 | |
|     }
 | |
| 
 | |
|     // The manipulations performed when we're looking through an insertvalue or
 | |
|     // an extractvalue would happen at the front of the RetPath list, so since
 | |
|     // we have to copy it anyway it's more efficient to create a reversed copy.
 | |
|     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
 | |
|     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
 | |
| 
 | |
|     // Finally, we can check whether the value produced by the tail call at this
 | |
|     // index is compatible with the value we return.
 | |
|     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
 | |
|                               AllowDifferingSizes, TLI,
 | |
|                               F->getParent()->getDataLayout()))
 | |
|       return false;
 | |
| 
 | |
|     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
 | |
|   } while(nextRealType(RetSubTypes, RetPath));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void collectEHScopeMembers(
 | |
|     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
 | |
|     const MachineBasicBlock *MBB) {
 | |
|   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
 | |
|   while (!Worklist.empty()) {
 | |
|     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
 | |
|     // Don't follow blocks which start new scopes.
 | |
|     if (Visiting->isEHPad() && Visiting != MBB)
 | |
|       continue;
 | |
| 
 | |
|     // Add this MBB to our scope.
 | |
|     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
 | |
| 
 | |
|     // Don't revisit blocks.
 | |
|     if (!P.second) {
 | |
|       assert(P.first->second == EHScope && "MBB is part of two scopes!");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Returns are boundaries where scope transfer can occur, don't follow
 | |
|     // successors.
 | |
|     if (Visiting->isEHScopeReturnBlock())
 | |
|       continue;
 | |
| 
 | |
|     for (const MachineBasicBlock *Succ : Visiting->successors())
 | |
|       Worklist.push_back(Succ);
 | |
|   }
 | |
| }
 | |
| 
 | |
| DenseMap<const MachineBasicBlock *, int>
 | |
| llvm::getEHScopeMembership(const MachineFunction &MF) {
 | |
|   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
 | |
| 
 | |
|   // We don't have anything to do if there aren't any EH pads.
 | |
|   if (!MF.hasEHScopes())
 | |
|     return EHScopeMembership;
 | |
| 
 | |
|   int EntryBBNumber = MF.front().getNumber();
 | |
|   bool IsSEH = isAsynchronousEHPersonality(
 | |
|       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
 | |
| 
 | |
|   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
 | |
|   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
 | |
|   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
 | |
|   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
 | |
|   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
 | |
|   for (const MachineBasicBlock &MBB : MF) {
 | |
|     if (MBB.isEHScopeEntry()) {
 | |
|       EHScopeBlocks.push_back(&MBB);
 | |
|     } else if (IsSEH && MBB.isEHPad()) {
 | |
|       SEHCatchPads.push_back(&MBB);
 | |
|     } else if (MBB.pred_empty()) {
 | |
|       UnreachableBlocks.push_back(&MBB);
 | |
|     }
 | |
| 
 | |
|     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
 | |
| 
 | |
|     // CatchPads are not scopes for SEH so do not consider CatchRet to
 | |
|     // transfer control to another scope.
 | |
|     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: SEH CatchPads are not necessarily in the parent function:
 | |
|     // they could be inside a finally block.
 | |
|     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
 | |
|     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
 | |
|     CatchRetSuccessors.push_back(
 | |
|         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
 | |
|   }
 | |
| 
 | |
|   // We don't have anything to do if there aren't any EH pads.
 | |
|   if (EHScopeBlocks.empty())
 | |
|     return EHScopeMembership;
 | |
| 
 | |
|   // Identify all the basic blocks reachable from the function entry.
 | |
|   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
 | |
|   // All blocks not part of a scope are in the parent function.
 | |
|   for (const MachineBasicBlock *MBB : UnreachableBlocks)
 | |
|     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
 | |
|   // Next, identify all the blocks inside the scopes.
 | |
|   for (const MachineBasicBlock *MBB : EHScopeBlocks)
 | |
|     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
 | |
|   // SEH CatchPads aren't really scopes, handle them separately.
 | |
|   for (const MachineBasicBlock *MBB : SEHCatchPads)
 | |
|     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
 | |
|   // Finally, identify all the targets of a catchret.
 | |
|   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
 | |
|        CatchRetSuccessors)
 | |
|     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
 | |
|                           CatchRetPair.first);
 | |
|   return EHScopeMembership;
 | |
| }
 |