1735 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1735 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
 | ||
| //
 | ||
| //                     The LLVM Compiler Infrastructure
 | ||
| //
 | ||
| // This file is distributed under the University of Illinois Open Source
 | ||
| // License. See LICENSE.TXT for details.
 | ||
| //
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| /// \file
 | ||
| /// This file implements the IRTranslator class.
 | ||
| //===----------------------------------------------------------------------===//
 | ||
| 
 | ||
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
 | ||
| #include "llvm/ADT/PostOrderIterator.h"
 | ||
| #include "llvm/ADT/STLExtras.h"
 | ||
| #include "llvm/ADT/ScopeExit.h"
 | ||
| #include "llvm/ADT/SmallSet.h"
 | ||
| #include "llvm/ADT/SmallVector.h"
 | ||
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | ||
| #include "llvm/CodeGen/Analysis.h"
 | ||
| #include "llvm/CodeGen/GlobalISel/CallLowering.h"
 | ||
| #include "llvm/CodeGen/LowLevelType.h"
 | ||
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | ||
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | ||
| #include "llvm/CodeGen/MachineFunction.h"
 | ||
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | ||
| #include "llvm/CodeGen/MachineMemOperand.h"
 | ||
| #include "llvm/CodeGen/MachineOperand.h"
 | ||
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | ||
| #include "llvm/CodeGen/StackProtector.h"
 | ||
| #include "llvm/CodeGen/TargetFrameLowering.h"
 | ||
| #include "llvm/CodeGen/TargetLowering.h"
 | ||
| #include "llvm/CodeGen/TargetPassConfig.h"
 | ||
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | ||
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | ||
| #include "llvm/IR/BasicBlock.h"
 | ||
| #include "llvm/IR/CFG.h"
 | ||
| #include "llvm/IR/Constant.h"
 | ||
| #include "llvm/IR/Constants.h"
 | ||
| #include "llvm/IR/DataLayout.h"
 | ||
| #include "llvm/IR/DebugInfo.h"
 | ||
| #include "llvm/IR/DerivedTypes.h"
 | ||
| #include "llvm/IR/Function.h"
 | ||
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | ||
| #include "llvm/IR/InlineAsm.h"
 | ||
| #include "llvm/IR/InstrTypes.h"
 | ||
| #include "llvm/IR/Instructions.h"
 | ||
| #include "llvm/IR/IntrinsicInst.h"
 | ||
| #include "llvm/IR/Intrinsics.h"
 | ||
| #include "llvm/IR/LLVMContext.h"
 | ||
| #include "llvm/IR/Metadata.h"
 | ||
| #include "llvm/IR/Type.h"
 | ||
| #include "llvm/IR/User.h"
 | ||
| #include "llvm/IR/Value.h"
 | ||
| #include "llvm/MC/MCContext.h"
 | ||
| #include "llvm/Pass.h"
 | ||
| #include "llvm/Support/Casting.h"
 | ||
| #include "llvm/Support/CodeGen.h"
 | ||
| #include "llvm/Support/Debug.h"
 | ||
| #include "llvm/Support/ErrorHandling.h"
 | ||
| #include "llvm/Support/LowLevelTypeImpl.h"
 | ||
| #include "llvm/Support/MathExtras.h"
 | ||
| #include "llvm/Support/raw_ostream.h"
 | ||
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | ||
| #include "llvm/Target/TargetMachine.h"
 | ||
| #include <algorithm>
 | ||
| #include <cassert>
 | ||
| #include <cstdint>
 | ||
| #include <iterator>
 | ||
| #include <string>
 | ||
| #include <utility>
 | ||
| #include <vector>
 | ||
| 
 | ||
| #define DEBUG_TYPE "irtranslator"
 | ||
| 
 | ||
| using namespace llvm;
 | ||
| 
 | ||
| char IRTranslator::ID = 0;
 | ||
| 
 | ||
| INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
 | ||
|                 false, false)
 | ||
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
 | ||
| INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
 | ||
|                 false, false)
 | ||
| 
 | ||
| static void reportTranslationError(MachineFunction &MF,
 | ||
|                                    const TargetPassConfig &TPC,
 | ||
|                                    OptimizationRemarkEmitter &ORE,
 | ||
|                                    OptimizationRemarkMissed &R) {
 | ||
|   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
 | ||
| 
 | ||
|   // Print the function name explicitly if we don't have a debug location (which
 | ||
|   // makes the diagnostic less useful) or if we're going to emit a raw error.
 | ||
|   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
 | ||
|     R << (" (in function: " + MF.getName() + ")").str();
 | ||
| 
 | ||
|   if (TPC.isGlobalISelAbortEnabled())
 | ||
|     report_fatal_error(R.getMsg());
 | ||
|   else
 | ||
|     ORE.emit(R);
 | ||
| }
 | ||
| 
 | ||
| IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
 | ||
|   initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
 | ||
|   AU.addRequired<StackProtector>();
 | ||
|   AU.addRequired<TargetPassConfig>();
 | ||
|   getSelectionDAGFallbackAnalysisUsage(AU);
 | ||
|   MachineFunctionPass::getAnalysisUsage(AU);
 | ||
| }
 | ||
| 
 | ||
| static void computeValueLLTs(const DataLayout &DL, Type &Ty,
 | ||
|                              SmallVectorImpl<LLT> &ValueTys,
 | ||
|                              SmallVectorImpl<uint64_t> *Offsets = nullptr,
 | ||
|                              uint64_t StartingOffset = 0) {
 | ||
|   // Given a struct type, recursively traverse the elements.
 | ||
|   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
 | ||
|     const StructLayout *SL = DL.getStructLayout(STy);
 | ||
|     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
 | ||
|       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
 | ||
|                        StartingOffset + SL->getElementOffset(I));
 | ||
|     return;
 | ||
|   }
 | ||
|   // Given an array type, recursively traverse the elements.
 | ||
|   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
 | ||
|     Type *EltTy = ATy->getElementType();
 | ||
|     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
 | ||
|     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | ||
|       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
 | ||
|                        StartingOffset + i * EltSize);
 | ||
|     return;
 | ||
|   }
 | ||
|   // Interpret void as zero return values.
 | ||
|   if (Ty.isVoidTy())
 | ||
|     return;
 | ||
|   // Base case: we can get an LLT for this LLVM IR type.
 | ||
|   ValueTys.push_back(getLLTForType(Ty, DL));
 | ||
|   if (Offsets != nullptr)
 | ||
|     Offsets->push_back(StartingOffset * 8);
 | ||
| }
 | ||
| 
 | ||
| IRTranslator::ValueToVRegInfo::VRegListT &
 | ||
| IRTranslator::allocateVRegs(const Value &Val) {
 | ||
|   assert(!VMap.contains(Val) && "Value already allocated in VMap");
 | ||
|   auto *Regs = VMap.getVRegs(Val);
 | ||
|   auto *Offsets = VMap.getOffsets(Val);
 | ||
|   SmallVector<LLT, 4> SplitTys;
 | ||
|   computeValueLLTs(*DL, *Val.getType(), SplitTys,
 | ||
|                    Offsets->empty() ? Offsets : nullptr);
 | ||
|   for (unsigned i = 0; i < SplitTys.size(); ++i)
 | ||
|     Regs->push_back(0);
 | ||
|   return *Regs;
 | ||
| }
 | ||
| 
 | ||
| ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
 | ||
|   auto VRegsIt = VMap.findVRegs(Val);
 | ||
|   if (VRegsIt != VMap.vregs_end())
 | ||
|     return *VRegsIt->second;
 | ||
| 
 | ||
|   if (Val.getType()->isVoidTy())
 | ||
|     return *VMap.getVRegs(Val);
 | ||
| 
 | ||
|   // Create entry for this type.
 | ||
|   auto *VRegs = VMap.getVRegs(Val);
 | ||
|   auto *Offsets = VMap.getOffsets(Val);
 | ||
| 
 | ||
|   assert(Val.getType()->isSized() &&
 | ||
|          "Don't know how to create an empty vreg");
 | ||
| 
 | ||
|   SmallVector<LLT, 4> SplitTys;
 | ||
|   computeValueLLTs(*DL, *Val.getType(), SplitTys,
 | ||
|                    Offsets->empty() ? Offsets : nullptr);
 | ||
| 
 | ||
|   if (!isa<Constant>(Val)) {
 | ||
|     for (auto Ty : SplitTys)
 | ||
|       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
 | ||
|     return *VRegs;
 | ||
|   }
 | ||
| 
 | ||
|   if (Val.getType()->isAggregateType()) {
 | ||
|     // UndefValue, ConstantAggregateZero
 | ||
|     auto &C = cast<Constant>(Val);
 | ||
|     unsigned Idx = 0;
 | ||
|     while (auto Elt = C.getAggregateElement(Idx++)) {
 | ||
|       auto EltRegs = getOrCreateVRegs(*Elt);
 | ||
|       std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs));
 | ||
|     }
 | ||
|   } else {
 | ||
|     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
 | ||
|     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
 | ||
|     bool Success = translate(cast<Constant>(Val), VRegs->front());
 | ||
|     if (!Success) {
 | ||
|       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                  MF->getFunction().getSubprogram(),
 | ||
|                                  &MF->getFunction().getEntryBlock());
 | ||
|       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
 | ||
|       reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|       return *VRegs;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   return *VRegs;
 | ||
| }
 | ||
| 
 | ||
| int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
 | ||
|   if (FrameIndices.find(&AI) != FrameIndices.end())
 | ||
|     return FrameIndices[&AI];
 | ||
| 
 | ||
|   unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
 | ||
|   unsigned Size =
 | ||
|       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
 | ||
| 
 | ||
|   // Always allocate at least one byte.
 | ||
|   Size = std::max(Size, 1u);
 | ||
| 
 | ||
|   unsigned Alignment = AI.getAlignment();
 | ||
|   if (!Alignment)
 | ||
|     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
 | ||
| 
 | ||
|   int &FI = FrameIndices[&AI];
 | ||
|   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
 | ||
|   return FI;
 | ||
| }
 | ||
| 
 | ||
| unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
 | ||
|   unsigned Alignment = 0;
 | ||
|   Type *ValTy = nullptr;
 | ||
|   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
 | ||
|     Alignment = SI->getAlignment();
 | ||
|     ValTy = SI->getValueOperand()->getType();
 | ||
|   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | ||
|     Alignment = LI->getAlignment();
 | ||
|     ValTy = LI->getType();
 | ||
|   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
 | ||
|     // TODO(PR27168): This instruction has no alignment attribute, but unlike
 | ||
|     // the default alignment for load/store, the default here is to assume
 | ||
|     // it has NATURAL alignment, not DataLayout-specified alignment.
 | ||
|     const DataLayout &DL = AI->getModule()->getDataLayout();
 | ||
|     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
 | ||
|     ValTy = AI->getCompareOperand()->getType();
 | ||
|   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
 | ||
|     // TODO(PR27168): This instruction has no alignment attribute, but unlike
 | ||
|     // the default alignment for load/store, the default here is to assume
 | ||
|     // it has NATURAL alignment, not DataLayout-specified alignment.
 | ||
|     const DataLayout &DL = AI->getModule()->getDataLayout();
 | ||
|     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
 | ||
|     ValTy = AI->getType();
 | ||
|   } else {
 | ||
|     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
 | ||
|     R << "unable to translate memop: " << ore::NV("Opcode", &I);
 | ||
|     reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|     return 1;
 | ||
|   }
 | ||
| 
 | ||
|   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
 | ||
| }
 | ||
| 
 | ||
| MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
 | ||
|   MachineBasicBlock *&MBB = BBToMBB[&BB];
 | ||
|   assert(MBB && "BasicBlock was not encountered before");
 | ||
|   return *MBB;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
 | ||
|   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
 | ||
|   MachinePreds[Edge].push_back(NewPred);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
 | ||
|                                      MachineIRBuilder &MIRBuilder) {
 | ||
|   // FIXME: handle signed/unsigned wrapping flags.
 | ||
| 
 | ||
|   // Get or create a virtual register for each value.
 | ||
|   // Unless the value is a Constant => loadimm cst?
 | ||
|   // or inline constant each time?
 | ||
|   // Creation of a virtual register needs to have a size.
 | ||
|   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
 | ||
|   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
 | ||
|   unsigned Res = getOrCreateVReg(U);
 | ||
|   auto FBinOp = MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
 | ||
|   if (isa<Instruction>(U)) {
 | ||
|     MachineInstr *FBinOpMI = FBinOp.getInstr();
 | ||
|     const Instruction &I = cast<Instruction>(U);
 | ||
|     FBinOpMI->copyIRFlags(I);
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   // -0.0 - X --> G_FNEG
 | ||
|   if (isa<Constant>(U.getOperand(0)) &&
 | ||
|       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
 | ||
|         .addDef(getOrCreateVReg(U))
 | ||
|         .addUse(getOrCreateVReg(*U.getOperand(1)));
 | ||
|     return true;
 | ||
|   }
 | ||
|   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCompare(const User &U,
 | ||
|                                     MachineIRBuilder &MIRBuilder) {
 | ||
|   const CmpInst *CI = dyn_cast<CmpInst>(&U);
 | ||
|   unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
 | ||
|   unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
 | ||
|   unsigned Res = getOrCreateVReg(U);
 | ||
|   CmpInst::Predicate Pred =
 | ||
|       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
 | ||
|                                     cast<ConstantExpr>(U).getPredicate());
 | ||
|   if (CmpInst::isIntPredicate(Pred))
 | ||
|     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
 | ||
|   else if (Pred == CmpInst::FCMP_FALSE)
 | ||
|     MIRBuilder.buildCopy(
 | ||
|         Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
 | ||
|   else if (Pred == CmpInst::FCMP_TRUE)
 | ||
|     MIRBuilder.buildCopy(
 | ||
|         Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
 | ||
|   else
 | ||
|     MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const ReturnInst &RI = cast<ReturnInst>(U);
 | ||
|   const Value *Ret = RI.getReturnValue();
 | ||
|   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
 | ||
|     Ret = nullptr;
 | ||
| 
 | ||
|   ArrayRef<unsigned> VRegs;
 | ||
|   if (Ret)
 | ||
|     VRegs = getOrCreateVRegs(*Ret);
 | ||
| 
 | ||
|   // The target may mess up with the insertion point, but
 | ||
|   // this is not important as a return is the last instruction
 | ||
|   // of the block anyway.
 | ||
| 
 | ||
|   return CLI->lowerReturn(MIRBuilder, Ret, VRegs);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const BranchInst &BrInst = cast<BranchInst>(U);
 | ||
|   unsigned Succ = 0;
 | ||
|   if (!BrInst.isUnconditional()) {
 | ||
|     // We want a G_BRCOND to the true BB followed by an unconditional branch.
 | ||
|     unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
 | ||
|     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
 | ||
|     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
 | ||
|     MIRBuilder.buildBrCond(Tst, TrueBB);
 | ||
|   }
 | ||
| 
 | ||
|   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
 | ||
|   MachineBasicBlock &TgtBB = getMBB(BrTgt);
 | ||
|   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
 | ||
| 
 | ||
|   // If the unconditional target is the layout successor, fallthrough.
 | ||
|   if (!CurBB.isLayoutSuccessor(&TgtBB))
 | ||
|     MIRBuilder.buildBr(TgtBB);
 | ||
| 
 | ||
|   // Link successors.
 | ||
|   for (const BasicBlock *Succ : successors(&BrInst))
 | ||
|     CurBB.addSuccessor(&getMBB(*Succ));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateSwitch(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   // For now, just translate as a chain of conditional branches.
 | ||
|   // FIXME: could we share most of the logic/code in
 | ||
|   // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
 | ||
|   // At first sight, it seems most of the logic in there is independent of
 | ||
|   // SelectionDAG-specifics and a lot of work went in to optimize switch
 | ||
|   // lowering in there.
 | ||
| 
 | ||
|   const SwitchInst &SwInst = cast<SwitchInst>(U);
 | ||
|   const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
 | ||
|   const BasicBlock *OrigBB = SwInst.getParent();
 | ||
| 
 | ||
|   LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
 | ||
|   for (auto &CaseIt : SwInst.cases()) {
 | ||
|     const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
 | ||
|     const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
 | ||
|     MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
 | ||
|     MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
 | ||
|     const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
 | ||
|     MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
 | ||
| 
 | ||
|     MIRBuilder.buildBrCond(Tst, TrueMBB);
 | ||
|     CurMBB.addSuccessor(&TrueMBB);
 | ||
|     addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
 | ||
| 
 | ||
|     MachineBasicBlock *FalseMBB =
 | ||
|         MF->CreateMachineBasicBlock(SwInst.getParent());
 | ||
|     // Insert the comparison blocks one after the other.
 | ||
|     MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
 | ||
|     MIRBuilder.buildBr(*FalseMBB);
 | ||
|     CurMBB.addSuccessor(FalseMBB);
 | ||
| 
 | ||
|     MIRBuilder.setMBB(*FalseMBB);
 | ||
|   }
 | ||
|   // handle default case
 | ||
|   const BasicBlock *DefaultBB = SwInst.getDefaultDest();
 | ||
|   MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
 | ||
|   MIRBuilder.buildBr(DefaultMBB);
 | ||
|   MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
 | ||
|   CurMBB.addSuccessor(&DefaultMBB);
 | ||
|   addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateIndirectBr(const User &U,
 | ||
|                                        MachineIRBuilder &MIRBuilder) {
 | ||
|   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
 | ||
| 
 | ||
|   const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
 | ||
|   MIRBuilder.buildBrIndirect(Tgt);
 | ||
| 
 | ||
|   // Link successors.
 | ||
|   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
 | ||
|   for (const BasicBlock *Succ : successors(&BrInst))
 | ||
|     CurBB.addSuccessor(&getMBB(*Succ));
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const LoadInst &LI = cast<LoadInst>(U);
 | ||
| 
 | ||
|   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
 | ||
|                                : MachineMemOperand::MONone;
 | ||
|   Flags |= MachineMemOperand::MOLoad;
 | ||
| 
 | ||
|   if (DL->getTypeStoreSize(LI.getType()) == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
 | ||
|   unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
 | ||
| 
 | ||
|   for (unsigned i = 0; i < Regs.size(); ++i) {
 | ||
|     unsigned Addr = 0;
 | ||
|     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
 | ||
| 
 | ||
|     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
 | ||
|     unsigned BaseAlign = getMemOpAlignment(LI);
 | ||
|     auto MMO = MF->getMachineMemOperand(
 | ||
|         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
 | ||
|         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
 | ||
|         LI.getSyncScopeID(), LI.getOrdering());
 | ||
|     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const StoreInst &SI = cast<StoreInst>(U);
 | ||
|   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
 | ||
|                                : MachineMemOperand::MONone;
 | ||
|   Flags |= MachineMemOperand::MOStore;
 | ||
| 
 | ||
|   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
 | ||
|   unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
 | ||
| 
 | ||
|   for (unsigned i = 0; i < Vals.size(); ++i) {
 | ||
|     unsigned Addr = 0;
 | ||
|     MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
 | ||
| 
 | ||
|     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
 | ||
|     unsigned BaseAlign = getMemOpAlignment(SI);
 | ||
|     auto MMO = MF->getMachineMemOperand(
 | ||
|         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
 | ||
|         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
 | ||
|         SI.getSyncScopeID(), SI.getOrdering());
 | ||
|     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
 | ||
|   }
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
 | ||
|   const Value *Src = U.getOperand(0);
 | ||
|   Type *Int32Ty = Type::getInt32Ty(U.getContext());
 | ||
| 
 | ||
|   // getIndexedOffsetInType is designed for GEPs, so the first index is the
 | ||
|   // usual array element rather than looking into the actual aggregate.
 | ||
|   SmallVector<Value *, 1> Indices;
 | ||
|   Indices.push_back(ConstantInt::get(Int32Ty, 0));
 | ||
| 
 | ||
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
 | ||
|     for (auto Idx : EVI->indices())
 | ||
|       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
 | ||
|   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
 | ||
|     for (auto Idx : IVI->indices())
 | ||
|       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
 | ||
|   } else {
 | ||
|     for (unsigned i = 1; i < U.getNumOperands(); ++i)
 | ||
|       Indices.push_back(U.getOperand(i));
 | ||
|   }
 | ||
| 
 | ||
|   return 8 * static_cast<uint64_t>(
 | ||
|                  DL.getIndexedOffsetInType(Src->getType(), Indices));
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateExtractValue(const User &U,
 | ||
|                                          MachineIRBuilder &MIRBuilder) {
 | ||
|   const Value *Src = U.getOperand(0);
 | ||
|   uint64_t Offset = getOffsetFromIndices(U, *DL);
 | ||
|   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
 | ||
|   unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) -
 | ||
|                  Offsets.begin();
 | ||
|   auto &DstRegs = allocateVRegs(U);
 | ||
| 
 | ||
|   for (unsigned i = 0; i < DstRegs.size(); ++i)
 | ||
|     DstRegs[i] = SrcRegs[Idx++];
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInsertValue(const User &U,
 | ||
|                                         MachineIRBuilder &MIRBuilder) {
 | ||
|   const Value *Src = U.getOperand(0);
 | ||
|   uint64_t Offset = getOffsetFromIndices(U, *DL);
 | ||
|   auto &DstRegs = allocateVRegs(U);
 | ||
|   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
 | ||
|   ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
 | ||
|   ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
 | ||
|   auto InsertedIt = InsertedRegs.begin();
 | ||
| 
 | ||
|   for (unsigned i = 0; i < DstRegs.size(); ++i) {
 | ||
|     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
 | ||
|       DstRegs[i] = *InsertedIt++;
 | ||
|     else
 | ||
|       DstRegs[i] = SrcRegs[i];
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateSelect(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   unsigned Tst = getOrCreateVReg(*U.getOperand(0));
 | ||
|   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
 | ||
|   ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
 | ||
|   ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
 | ||
| 
 | ||
|   for (unsigned i = 0; i < ResRegs.size(); ++i)
 | ||
|     MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateBitCast(const User &U,
 | ||
|                                     MachineIRBuilder &MIRBuilder) {
 | ||
|   // If we're bitcasting to the source type, we can reuse the source vreg.
 | ||
|   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
 | ||
|       getLLTForType(*U.getType(), *DL)) {
 | ||
|     unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
 | ||
|     auto &Regs = *VMap.getVRegs(U);
 | ||
|     // If we already assigned a vreg for this bitcast, we can't change that.
 | ||
|     // Emit a copy to satisfy the users we already emitted.
 | ||
|     if (!Regs.empty())
 | ||
|       MIRBuilder.buildCopy(Regs[0], SrcReg);
 | ||
|     else {
 | ||
|       Regs.push_back(SrcReg);
 | ||
|       VMap.getOffsets(U)->push_back(0);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCast(unsigned Opcode, const User &U,
 | ||
|                                  MachineIRBuilder &MIRBuilder) {
 | ||
|   unsigned Op = getOrCreateVReg(*U.getOperand(0));
 | ||
|   unsigned Res = getOrCreateVReg(U);
 | ||
|   MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateGetElementPtr(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   // FIXME: support vector GEPs.
 | ||
|   if (U.getType()->isVectorTy())
 | ||
|     return false;
 | ||
| 
 | ||
|   Value &Op0 = *U.getOperand(0);
 | ||
|   unsigned BaseReg = getOrCreateVReg(Op0);
 | ||
|   Type *PtrIRTy = Op0.getType();
 | ||
|   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
 | ||
|   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
 | ||
|   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
 | ||
| 
 | ||
|   int64_t Offset = 0;
 | ||
|   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
 | ||
|        GTI != E; ++GTI) {
 | ||
|     const Value *Idx = GTI.getOperand();
 | ||
|     if (StructType *StTy = GTI.getStructTypeOrNull()) {
 | ||
|       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
 | ||
|       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
 | ||
|       continue;
 | ||
|     } else {
 | ||
|       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
 | ||
| 
 | ||
|       // If this is a scalar constant or a splat vector of constants,
 | ||
|       // handle it quickly.
 | ||
|       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
 | ||
|         Offset += ElementSize * CI->getSExtValue();
 | ||
|         continue;
 | ||
|       }
 | ||
| 
 | ||
|       if (Offset != 0) {
 | ||
|         unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|         unsigned OffsetReg =
 | ||
|             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
 | ||
|         MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
 | ||
| 
 | ||
|         BaseReg = NewBaseReg;
 | ||
|         Offset = 0;
 | ||
|       }
 | ||
| 
 | ||
|       unsigned IdxReg = getOrCreateVReg(*Idx);
 | ||
|       if (MRI->getType(IdxReg) != OffsetTy) {
 | ||
|         unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
 | ||
|         MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
 | ||
|         IdxReg = NewIdxReg;
 | ||
|       }
 | ||
| 
 | ||
|       // N = N + Idx * ElementSize;
 | ||
|       // Avoid doing it for ElementSize of 1.
 | ||
|       unsigned GepOffsetReg;
 | ||
|       if (ElementSize != 1) {
 | ||
|         unsigned ElementSizeReg =
 | ||
|             getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
 | ||
| 
 | ||
|         GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
 | ||
|         MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
 | ||
|       } else
 | ||
|         GepOffsetReg = IdxReg;
 | ||
| 
 | ||
|       unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|       MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
 | ||
|       BaseReg = NewBaseReg;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (Offset != 0) {
 | ||
|     unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
 | ||
|     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateMemfunc(const CallInst &CI,
 | ||
|                                     MachineIRBuilder &MIRBuilder,
 | ||
|                                     unsigned ID) {
 | ||
|   LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
 | ||
|   Type *DstTy = CI.getArgOperand(0)->getType();
 | ||
|   if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
 | ||
|       SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
 | ||
|     return false;
 | ||
| 
 | ||
|   SmallVector<CallLowering::ArgInfo, 8> Args;
 | ||
|   for (int i = 0; i < 3; ++i) {
 | ||
|     const auto &Arg = CI.getArgOperand(i);
 | ||
|     Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
 | ||
|   }
 | ||
| 
 | ||
|   const char *Callee;
 | ||
|   switch (ID) {
 | ||
|   case Intrinsic::memmove:
 | ||
|   case Intrinsic::memcpy: {
 | ||
|     Type *SrcTy = CI.getArgOperand(1)->getType();
 | ||
|     if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
 | ||
|       return false;
 | ||
|     Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
 | ||
|     break;
 | ||
|   }
 | ||
|   case Intrinsic::memset:
 | ||
|     Callee = "memset";
 | ||
|     break;
 | ||
|   default:
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
 | ||
|                         MachineOperand::CreateES(Callee),
 | ||
|                         CallLowering::ArgInfo(0, CI.getType()), Args);
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::getStackGuard(unsigned DstReg,
 | ||
|                                  MachineIRBuilder &MIRBuilder) {
 | ||
|   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | ||
|   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
 | ||
|   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
 | ||
|   MIB.addDef(DstReg);
 | ||
| 
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
 | ||
|   if (!Global)
 | ||
|     return;
 | ||
| 
 | ||
|   MachinePointerInfo MPInfo(Global);
 | ||
|   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
 | ||
|                MachineMemOperand::MODereferenceable;
 | ||
|   MachineMemOperand *MemRef =
 | ||
|       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
 | ||
|                                DL->getPointerABIAlignment(0));
 | ||
|   MIB.setMemRefs({MemRef});
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
 | ||
|                                               MachineIRBuilder &MIRBuilder) {
 | ||
|   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
 | ||
|   MIRBuilder.buildInstr(Op)
 | ||
|       .addDef(ResRegs[0])
 | ||
|       .addDef(ResRegs[1])
 | ||
|       .addUse(getOrCreateVReg(*CI.getOperand(0)))
 | ||
|       .addUse(getOrCreateVReg(*CI.getOperand(1)));
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
 | ||
|                                            MachineIRBuilder &MIRBuilder) {
 | ||
|   switch (ID) {
 | ||
|   default:
 | ||
|     break;
 | ||
|   case Intrinsic::lifetime_start:
 | ||
|   case Intrinsic::lifetime_end:
 | ||
|     // Stack coloring is not enabled in O0 (which we care about now) so we can
 | ||
|     // drop these. Make sure someone notices when we start compiling at higher
 | ||
|     // opts though.
 | ||
|     if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
 | ||
|       return false;
 | ||
|     return true;
 | ||
|   case Intrinsic::dbg_declare: {
 | ||
|     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
 | ||
|     assert(DI.getVariable() && "Missing variable");
 | ||
| 
 | ||
|     const Value *Address = DI.getAddress();
 | ||
|     if (!Address || isa<UndefValue>(Address)) {
 | ||
|       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
 | ||
|       return true;
 | ||
|     }
 | ||
| 
 | ||
|     assert(DI.getVariable()->isValidLocationForIntrinsic(
 | ||
|                MIRBuilder.getDebugLoc()) &&
 | ||
|            "Expected inlined-at fields to agree");
 | ||
|     auto AI = dyn_cast<AllocaInst>(Address);
 | ||
|     if (AI && AI->isStaticAlloca()) {
 | ||
|       // Static allocas are tracked at the MF level, no need for DBG_VALUE
 | ||
|       // instructions (in fact, they get ignored if they *do* exist).
 | ||
|       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
 | ||
|                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
 | ||
|     } else {
 | ||
|       // A dbg.declare describes the address of a source variable, so lower it
 | ||
|       // into an indirect DBG_VALUE.
 | ||
|       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
 | ||
|                                        DI.getVariable(), DI.getExpression());
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::dbg_label: {
 | ||
|     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
 | ||
|     assert(DI.getLabel() && "Missing label");
 | ||
| 
 | ||
|     assert(DI.getLabel()->isValidLocationForIntrinsic(
 | ||
|                MIRBuilder.getDebugLoc()) &&
 | ||
|            "Expected inlined-at fields to agree");
 | ||
| 
 | ||
|     MIRBuilder.buildDbgLabel(DI.getLabel());
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::vaend:
 | ||
|     // No target I know of cares about va_end. Certainly no in-tree target
 | ||
|     // does. Simplest intrinsic ever!
 | ||
|     return true;
 | ||
|   case Intrinsic::vastart: {
 | ||
|     auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|     Value *Ptr = CI.getArgOperand(0);
 | ||
|     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
 | ||
| 
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
 | ||
|         .addUse(getOrCreateVReg(*Ptr))
 | ||
|         .addMemOperand(MF->getMachineMemOperand(
 | ||
|             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::dbg_value: {
 | ||
|     // This form of DBG_VALUE is target-independent.
 | ||
|     const DbgValueInst &DI = cast<DbgValueInst>(CI);
 | ||
|     const Value *V = DI.getValue();
 | ||
|     assert(DI.getVariable()->isValidLocationForIntrinsic(
 | ||
|                MIRBuilder.getDebugLoc()) &&
 | ||
|            "Expected inlined-at fields to agree");
 | ||
|     if (!V) {
 | ||
|       // Currently the optimizer can produce this; insert an undef to
 | ||
|       // help debugging.  Probably the optimizer should not do this.
 | ||
|       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
 | ||
|     } else if (const auto *CI = dyn_cast<Constant>(V)) {
 | ||
|       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
 | ||
|     } else {
 | ||
|       unsigned Reg = getOrCreateVReg(*V);
 | ||
|       // FIXME: This does not handle register-indirect values at offset 0. The
 | ||
|       // direct/indirect thing shouldn't really be handled by something as
 | ||
|       // implicit as reg+noreg vs reg+imm in the first palce, but it seems
 | ||
|       // pretty baked in right now.
 | ||
|       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::uadd_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
 | ||
|   case Intrinsic::sadd_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
 | ||
|   case Intrinsic::usub_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
 | ||
|   case Intrinsic::ssub_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
 | ||
|   case Intrinsic::umul_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
 | ||
|   case Intrinsic::smul_with_overflow:
 | ||
|     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
 | ||
|   case Intrinsic::pow:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
 | ||
|     return true;
 | ||
|   case Intrinsic::exp:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::exp2:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::log:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::log2:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::fabs:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FABS)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::trunc:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::round:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   case Intrinsic::fma:
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_FMA)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
 | ||
|     return true;
 | ||
|   case Intrinsic::fmuladd: {
 | ||
|     const TargetMachine &TM = MF->getTarget();
 | ||
|     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|     unsigned Dst = getOrCreateVReg(CI);
 | ||
|     unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
 | ||
|     unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
 | ||
|     unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
 | ||
|     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
 | ||
|         TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
 | ||
|       // TODO: Revisit this to see if we should move this part of the
 | ||
|       // lowering to the combiner.
 | ||
|       MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2);
 | ||
|     } else {
 | ||
|       LLT Ty = getLLTForType(*CI.getType(), *DL);
 | ||
|       auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1);
 | ||
|       MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::memcpy:
 | ||
|   case Intrinsic::memmove:
 | ||
|   case Intrinsic::memset:
 | ||
|     return translateMemfunc(CI, MIRBuilder, ID);
 | ||
|   case Intrinsic::eh_typeid_for: {
 | ||
|     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
 | ||
|     unsigned Reg = getOrCreateVReg(CI);
 | ||
|     unsigned TypeID = MF->getTypeIDFor(GV);
 | ||
|     MIRBuilder.buildConstant(Reg, TypeID);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::objectsize: {
 | ||
|     // If we don't know by now, we're never going to know.
 | ||
|     const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
 | ||
| 
 | ||
|     MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::stackguard:
 | ||
|     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
 | ||
|     return true;
 | ||
|   case Intrinsic::stackprotector: {
 | ||
|     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
 | ||
|     unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|     getStackGuard(GuardVal, MIRBuilder);
 | ||
| 
 | ||
|     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
 | ||
|     MIRBuilder.buildStore(
 | ||
|         GuardVal, getOrCreateVReg(*Slot),
 | ||
|         *MF->getMachineMemOperand(
 | ||
|             MachinePointerInfo::getFixedStack(*MF,
 | ||
|                                               getOrCreateFrameIndex(*Slot)),
 | ||
|             MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
 | ||
|             PtrTy.getSizeInBits() / 8, 8));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::cttz:
 | ||
|   case Intrinsic::ctlz: {
 | ||
|     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
 | ||
|     bool isTrailing = ID == Intrinsic::cttz;
 | ||
|     unsigned Opcode = isTrailing
 | ||
|                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
 | ||
|                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
 | ||
|                           : Cst->isZero() ? TargetOpcode::G_CTLZ
 | ||
|                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
 | ||
|     MIRBuilder.buildInstr(Opcode)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::ctpop: {
 | ||
|     MIRBuilder.buildInstr(TargetOpcode::G_CTPOP)
 | ||
|         .addDef(getOrCreateVReg(CI))
 | ||
|         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::invariant_start: {
 | ||
|     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
 | ||
|     unsigned Undef = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|     MIRBuilder.buildUndef(Undef);
 | ||
|     return true;
 | ||
|   }
 | ||
|   case Intrinsic::invariant_end:
 | ||
|     return true;
 | ||
|   }
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInlineAsm(const CallInst &CI,
 | ||
|                                       MachineIRBuilder &MIRBuilder) {
 | ||
|   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
 | ||
|   if (!IA.getConstraintString().empty())
 | ||
|     return false;
 | ||
| 
 | ||
|   unsigned ExtraInfo = 0;
 | ||
|   if (IA.hasSideEffects())
 | ||
|     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
 | ||
|   if (IA.getDialect() == InlineAsm::AD_Intel)
 | ||
|     ExtraInfo |= InlineAsm::Extra_AsmDialect;
 | ||
| 
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
 | ||
|     .addExternalSymbol(IA.getAsmString().c_str())
 | ||
|     .addImm(ExtraInfo);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| unsigned IRTranslator::packRegs(const Value &V,
 | ||
|                                   MachineIRBuilder &MIRBuilder) {
 | ||
|   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
 | ||
|   LLT BigTy = getLLTForType(*V.getType(), *DL);
 | ||
| 
 | ||
|   if (Regs.size() == 1)
 | ||
|     return Regs[0];
 | ||
| 
 | ||
|   unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
 | ||
|   MIRBuilder.buildUndef(Dst);
 | ||
|   for (unsigned i = 0; i < Regs.size(); ++i) {
 | ||
|     unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
 | ||
|     MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
 | ||
|     Dst = NewDst;
 | ||
|   }
 | ||
|   return Dst;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::unpackRegs(const Value &V, unsigned Src,
 | ||
|                                 MachineIRBuilder &MIRBuilder) {
 | ||
|   ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
 | ||
|   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
 | ||
| 
 | ||
|   for (unsigned i = 0; i < Regs.size(); ++i)
 | ||
|     MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const CallInst &CI = cast<CallInst>(U);
 | ||
|   auto TII = MF->getTarget().getIntrinsicInfo();
 | ||
|   const Function *F = CI.getCalledFunction();
 | ||
| 
 | ||
|   // FIXME: support Windows dllimport function calls.
 | ||
|   if (F && F->hasDLLImportStorageClass())
 | ||
|     return false;
 | ||
| 
 | ||
|   if (CI.isInlineAsm())
 | ||
|     return translateInlineAsm(CI, MIRBuilder);
 | ||
| 
 | ||
|   Intrinsic::ID ID = Intrinsic::not_intrinsic;
 | ||
|   if (F && F->isIntrinsic()) {
 | ||
|     ID = F->getIntrinsicID();
 | ||
|     if (TII && ID == Intrinsic::not_intrinsic)
 | ||
|       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
 | ||
|   }
 | ||
| 
 | ||
|   bool IsSplitType = valueIsSplit(CI);
 | ||
|   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
 | ||
|     unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
 | ||
|                                      getLLTForType(*CI.getType(), *DL))
 | ||
|                                : getOrCreateVReg(CI);
 | ||
| 
 | ||
|     SmallVector<unsigned, 8> Args;
 | ||
|     for (auto &Arg: CI.arg_operands())
 | ||
|       Args.push_back(packRegs(*Arg, MIRBuilder));
 | ||
| 
 | ||
|     MF->getFrameInfo().setHasCalls(true);
 | ||
|     bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
 | ||
|       return getOrCreateVReg(*CI.getCalledValue());
 | ||
|     });
 | ||
| 
 | ||
|     if (IsSplitType)
 | ||
|       unpackRegs(CI, Res, MIRBuilder);
 | ||
|     return Success;
 | ||
|   }
 | ||
| 
 | ||
|   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
 | ||
| 
 | ||
|   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
 | ||
|     return true;
 | ||
| 
 | ||
|   unsigned Res = 0;
 | ||
|   if (!CI.getType()->isVoidTy()) {
 | ||
|     if (IsSplitType)
 | ||
|       Res =
 | ||
|           MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL));
 | ||
|     else
 | ||
|       Res = getOrCreateVReg(CI);
 | ||
|   }
 | ||
|   MachineInstrBuilder MIB =
 | ||
|       MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
 | ||
| 
 | ||
|   for (auto &Arg : CI.arg_operands()) {
 | ||
|     // Some intrinsics take metadata parameters. Reject them.
 | ||
|     if (isa<MetadataAsValue>(Arg))
 | ||
|       return false;
 | ||
|     MIB.addUse(packRegs(*Arg, MIRBuilder));
 | ||
|   }
 | ||
| 
 | ||
|   if (IsSplitType)
 | ||
|     unpackRegs(CI, Res, MIRBuilder);
 | ||
| 
 | ||
|   // Add a MachineMemOperand if it is a target mem intrinsic.
 | ||
|   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   TargetLowering::IntrinsicInfo Info;
 | ||
|   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
 | ||
|   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
 | ||
|     uint64_t Size = Info.memVT.getStoreSize();
 | ||
|     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
 | ||
|                                                Info.flags, Size, Info.align));
 | ||
|   }
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInvoke(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   const InvokeInst &I = cast<InvokeInst>(U);
 | ||
|   MCContext &Context = MF->getContext();
 | ||
| 
 | ||
|   const BasicBlock *ReturnBB = I.getSuccessor(0);
 | ||
|   const BasicBlock *EHPadBB = I.getSuccessor(1);
 | ||
| 
 | ||
|   const Value *Callee = I.getCalledValue();
 | ||
|   const Function *Fn = dyn_cast<Function>(Callee);
 | ||
|   if (isa<InlineAsm>(Callee))
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support invoking patchpoint and statepoint intrinsics.
 | ||
|   if (Fn && Fn->isIntrinsic())
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support whatever these are.
 | ||
|   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
 | ||
|     return false;
 | ||
| 
 | ||
|   // FIXME: support Windows exception handling.
 | ||
|   if (!isa<LandingPadInst>(EHPadBB->front()))
 | ||
|     return false;
 | ||
| 
 | ||
|   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
 | ||
|   // the region covered by the try.
 | ||
|   MCSymbol *BeginSymbol = Context.createTempSymbol();
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
 | ||
| 
 | ||
|   unsigned Res =
 | ||
|         MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
 | ||
|   SmallVector<unsigned, 8> Args;
 | ||
|   for (auto &Arg: I.arg_operands())
 | ||
|     Args.push_back(packRegs(*Arg, MIRBuilder));
 | ||
| 
 | ||
|   if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
 | ||
|                       [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
 | ||
|     return false;
 | ||
| 
 | ||
|   unpackRegs(I, Res, MIRBuilder);
 | ||
| 
 | ||
|   MCSymbol *EndSymbol = Context.createTempSymbol();
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
 | ||
| 
 | ||
|   // FIXME: track probabilities.
 | ||
|   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
 | ||
|                     &ReturnMBB = getMBB(*ReturnBB);
 | ||
|   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
 | ||
|   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
 | ||
|   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
 | ||
|   MIRBuilder.buildBr(ReturnMBB);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateLandingPad(const User &U,
 | ||
|                                        MachineIRBuilder &MIRBuilder) {
 | ||
|   const LandingPadInst &LP = cast<LandingPadInst>(U);
 | ||
| 
 | ||
|   MachineBasicBlock &MBB = MIRBuilder.getMBB();
 | ||
| 
 | ||
|   MBB.setIsEHPad();
 | ||
| 
 | ||
|   // If there aren't registers to copy the values into (e.g., during SjLj
 | ||
|   // exceptions), then don't bother.
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
 | ||
|   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
 | ||
|       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
 | ||
|     return true;
 | ||
| 
 | ||
|   // If landingpad's return type is token type, we don't create DAG nodes
 | ||
|   // for its exception pointer and selector value. The extraction of exception
 | ||
|   // pointer or selector value from token type landingpads is not currently
 | ||
|   // supported.
 | ||
|   if (LP.getType()->isTokenTy())
 | ||
|     return true;
 | ||
| 
 | ||
|   // Add a label to mark the beginning of the landing pad.  Deletion of the
 | ||
|   // landing pad can thus be detected via the MachineModuleInfo.
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
 | ||
|     .addSym(MF->addLandingPad(&MBB));
 | ||
| 
 | ||
|   LLT Ty = getLLTForType(*LP.getType(), *DL);
 | ||
|   unsigned Undef = MRI->createGenericVirtualRegister(Ty);
 | ||
|   MIRBuilder.buildUndef(Undef);
 | ||
| 
 | ||
|   SmallVector<LLT, 2> Tys;
 | ||
|   for (Type *Ty : cast<StructType>(LP.getType())->elements())
 | ||
|     Tys.push_back(getLLTForType(*Ty, *DL));
 | ||
|   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
 | ||
| 
 | ||
|   // Mark exception register as live in.
 | ||
|   unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
 | ||
|   if (!ExceptionReg)
 | ||
|     return false;
 | ||
| 
 | ||
|   MBB.addLiveIn(ExceptionReg);
 | ||
|   ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
 | ||
|   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
 | ||
| 
 | ||
|   unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
 | ||
|   if (!SelectorReg)
 | ||
|     return false;
 | ||
| 
 | ||
|   MBB.addLiveIn(SelectorReg);
 | ||
|   unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
 | ||
|   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
 | ||
|   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateAlloca(const User &U,
 | ||
|                                    MachineIRBuilder &MIRBuilder) {
 | ||
|   auto &AI = cast<AllocaInst>(U);
 | ||
| 
 | ||
|   if (AI.isSwiftError())
 | ||
|     return false;
 | ||
| 
 | ||
|   if (AI.isStaticAlloca()) {
 | ||
|     unsigned Res = getOrCreateVReg(AI);
 | ||
|     int FI = getOrCreateFrameIndex(AI);
 | ||
|     MIRBuilder.buildFrameIndex(Res, FI);
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   // FIXME: support stack probing for Windows.
 | ||
|   if (MF->getTarget().getTargetTriple().isOSWindows())
 | ||
|     return false;
 | ||
| 
 | ||
|   // Now we're in the harder dynamic case.
 | ||
|   Type *Ty = AI.getAllocatedType();
 | ||
|   unsigned Align =
 | ||
|       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
 | ||
| 
 | ||
|   unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
 | ||
| 
 | ||
|   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
 | ||
|   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
 | ||
|   if (MRI->getType(NumElts) != IntPtrTy) {
 | ||
|     unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
 | ||
|     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
 | ||
|     NumElts = ExtElts;
 | ||
|   }
 | ||
| 
 | ||
|   unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
 | ||
|   unsigned TySize =
 | ||
|       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
 | ||
|   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
 | ||
| 
 | ||
|   LLT PtrTy = getLLTForType(*AI.getType(), *DL);
 | ||
|   auto &TLI = *MF->getSubtarget().getTargetLowering();
 | ||
|   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
 | ||
| 
 | ||
|   unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|   MIRBuilder.buildCopy(SPTmp, SPReg);
 | ||
| 
 | ||
|   unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|   MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
 | ||
| 
 | ||
|   // Handle alignment. We have to realign if the allocation granule was smaller
 | ||
|   // than stack alignment, or the specific alloca requires more than stack
 | ||
|   // alignment.
 | ||
|   unsigned StackAlign =
 | ||
|       MF->getSubtarget().getFrameLowering()->getStackAlignment();
 | ||
|   Align = std::max(Align, StackAlign);
 | ||
|   if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
 | ||
|     // Round the size of the allocation up to the stack alignment size
 | ||
|     // by add SA-1 to the size. This doesn't overflow because we're computing
 | ||
|     // an address inside an alloca.
 | ||
|     unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
 | ||
|     MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
 | ||
|     AllocTmp = AlignedAlloc;
 | ||
|   }
 | ||
| 
 | ||
|   MIRBuilder.buildCopy(SPReg, AllocTmp);
 | ||
|   MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
 | ||
| 
 | ||
|   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
 | ||
|   assert(MF->getFrameInfo().hasVarSizedObjects());
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   // FIXME: We may need more info about the type. Because of how LLT works,
 | ||
|   // we're completely discarding the i64/double distinction here (amongst
 | ||
|   // others). Fortunately the ABIs I know of where that matters don't use va_arg
 | ||
|   // anyway but that's not guaranteed.
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
 | ||
|     .addDef(getOrCreateVReg(U))
 | ||
|     .addUse(getOrCreateVReg(*U.getOperand(0)))
 | ||
|     .addImm(DL->getABITypeAlignment(U.getType()));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateInsertElement(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   // If it is a <1 x Ty> vector, use the scalar as it is
 | ||
|   // not a legal vector type in LLT.
 | ||
|   if (U.getType()->getVectorNumElements() == 1) {
 | ||
|     unsigned Elt = getOrCreateVReg(*U.getOperand(1));
 | ||
|     auto &Regs = *VMap.getVRegs(U);
 | ||
|     if (Regs.empty()) {
 | ||
|       Regs.push_back(Elt);
 | ||
|       VMap.getOffsets(U)->push_back(0);
 | ||
|     } else {
 | ||
|       MIRBuilder.buildCopy(Regs[0], Elt);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   unsigned Res = getOrCreateVReg(U);
 | ||
|   unsigned Val = getOrCreateVReg(*U.getOperand(0));
 | ||
|   unsigned Elt = getOrCreateVReg(*U.getOperand(1));
 | ||
|   unsigned Idx = getOrCreateVReg(*U.getOperand(2));
 | ||
|   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateExtractElement(const User &U,
 | ||
|                                            MachineIRBuilder &MIRBuilder) {
 | ||
|   // If it is a <1 x Ty> vector, use the scalar as it is
 | ||
|   // not a legal vector type in LLT.
 | ||
|   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
 | ||
|     unsigned Elt = getOrCreateVReg(*U.getOperand(0));
 | ||
|     auto &Regs = *VMap.getVRegs(U);
 | ||
|     if (Regs.empty()) {
 | ||
|       Regs.push_back(Elt);
 | ||
|       VMap.getOffsets(U)->push_back(0);
 | ||
|     } else {
 | ||
|       MIRBuilder.buildCopy(Regs[0], Elt);
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
|   unsigned Res = getOrCreateVReg(U);
 | ||
|   unsigned Val = getOrCreateVReg(*U.getOperand(0));
 | ||
|   unsigned Idx = getOrCreateVReg(*U.getOperand(1));
 | ||
|   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateShuffleVector(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
 | ||
|       .addDef(getOrCreateVReg(U))
 | ||
|       .addUse(getOrCreateVReg(*U.getOperand(0)))
 | ||
|       .addUse(getOrCreateVReg(*U.getOperand(1)))
 | ||
|       .addUse(getOrCreateVReg(*U.getOperand(2)));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
 | ||
|   const PHINode &PI = cast<PHINode>(U);
 | ||
| 
 | ||
|   SmallVector<MachineInstr *, 4> Insts;
 | ||
|   for (auto Reg : getOrCreateVRegs(PI)) {
 | ||
|     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg);
 | ||
|     Insts.push_back(MIB.getInstr());
 | ||
|   }
 | ||
| 
 | ||
|   PendingPHIs.emplace_back(&PI, std::move(Insts));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateAtomicCmpXchg(const User &U,
 | ||
|                                           MachineIRBuilder &MIRBuilder) {
 | ||
|   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
 | ||
| 
 | ||
|   if (I.isWeak())
 | ||
|     return false;
 | ||
| 
 | ||
|   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
 | ||
|                               : MachineMemOperand::MONone;
 | ||
|   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
 | ||
| 
 | ||
|   Type *ResType = I.getType();
 | ||
|   Type *ValType = ResType->Type::getStructElementType(0);
 | ||
| 
 | ||
|   auto Res = getOrCreateVRegs(I);
 | ||
|   unsigned OldValRes = Res[0];
 | ||
|   unsigned SuccessRes = Res[1];
 | ||
|   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
 | ||
|   unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
 | ||
|   unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
 | ||
| 
 | ||
|   MIRBuilder.buildAtomicCmpXchgWithSuccess(
 | ||
|       OldValRes, SuccessRes, Addr, Cmp, NewVal,
 | ||
|       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
 | ||
|                                 Flags, DL->getTypeStoreSize(ValType),
 | ||
|                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
 | ||
|                                 I.getSyncScopeID(), I.getSuccessOrdering(),
 | ||
|                                 I.getFailureOrdering()));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translateAtomicRMW(const User &U,
 | ||
|                                       MachineIRBuilder &MIRBuilder) {
 | ||
|   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
 | ||
| 
 | ||
|   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
 | ||
|                               : MachineMemOperand::MONone;
 | ||
|   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
 | ||
| 
 | ||
|   Type *ResType = I.getType();
 | ||
| 
 | ||
|   unsigned Res = getOrCreateVReg(I);
 | ||
|   unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
 | ||
|   unsigned Val = getOrCreateVReg(*I.getValOperand());
 | ||
| 
 | ||
|   unsigned Opcode = 0;
 | ||
|   switch (I.getOperation()) {
 | ||
|   default:
 | ||
|     llvm_unreachable("Unknown atomicrmw op");
 | ||
|     return false;
 | ||
|   case AtomicRMWInst::Xchg:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Add:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Sub:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::And:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_AND;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Nand:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Or:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_OR;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Xor:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Max:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::Min:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::UMax:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
 | ||
|     break;
 | ||
|   case AtomicRMWInst::UMin:
 | ||
|     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
 | ||
|     break;
 | ||
|   }
 | ||
| 
 | ||
|   MIRBuilder.buildAtomicRMW(
 | ||
|       Opcode, Res, Addr, Val,
 | ||
|       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
 | ||
|                                 Flags, DL->getTypeStoreSize(ResType),
 | ||
|                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
 | ||
|                                 I.getSyncScopeID(), I.getOrdering()));
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::finishPendingPhis() {
 | ||
|   for (auto &Phi : PendingPHIs) {
 | ||
|     const PHINode *PI = Phi.first;
 | ||
|     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
 | ||
| 
 | ||
|     // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
 | ||
|     // won't create extra control flow here, otherwise we need to find the
 | ||
|     // dominating predecessor here (or perhaps force the weirder IRTranslators
 | ||
|     // to provide a simple boundary).
 | ||
|     SmallSet<const BasicBlock *, 4> HandledPreds;
 | ||
| 
 | ||
|     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
 | ||
|       auto IRPred = PI->getIncomingBlock(i);
 | ||
|       if (HandledPreds.count(IRPred))
 | ||
|         continue;
 | ||
| 
 | ||
|       HandledPreds.insert(IRPred);
 | ||
|       ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
 | ||
|       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
 | ||
|         assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
 | ||
|                "incorrect CFG at MachineBasicBlock level");
 | ||
|         for (unsigned j = 0; j < ValRegs.size(); ++j) {
 | ||
|           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
 | ||
|           MIB.addUse(ValRegs[j]);
 | ||
|           MIB.addMBB(Pred);
 | ||
|         }
 | ||
|       }
 | ||
|     }
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::valueIsSplit(const Value &V,
 | ||
|                                 SmallVectorImpl<uint64_t> *Offsets) {
 | ||
|   SmallVector<LLT, 4> SplitTys;
 | ||
|   if (Offsets && !Offsets->empty())
 | ||
|     Offsets->clear();
 | ||
|   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
 | ||
|   return SplitTys.size() > 1;
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translate(const Instruction &Inst) {
 | ||
|   CurBuilder.setDebugLoc(Inst.getDebugLoc());
 | ||
|   switch(Inst.getOpcode()) {
 | ||
| #define HANDLE_INST(NUM, OPCODE, CLASS) \
 | ||
|     case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
 | ||
| #include "llvm/IR/Instruction.def"
 | ||
|   default:
 | ||
|     return false;
 | ||
|   }
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::translate(const Constant &C, unsigned Reg) {
 | ||
|   if (auto CI = dyn_cast<ConstantInt>(&C))
 | ||
|     EntryBuilder.buildConstant(Reg, *CI);
 | ||
|   else if (auto CF = dyn_cast<ConstantFP>(&C))
 | ||
|     EntryBuilder.buildFConstant(Reg, *CF);
 | ||
|   else if (isa<UndefValue>(C))
 | ||
|     EntryBuilder.buildUndef(Reg);
 | ||
|   else if (isa<ConstantPointerNull>(C)) {
 | ||
|     // As we are trying to build a constant val of 0 into a pointer,
 | ||
|     // insert a cast to make them correct with respect to types.
 | ||
|     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
 | ||
|     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
 | ||
|     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
 | ||
|     unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
 | ||
|     EntryBuilder.buildCast(Reg, ZeroReg);
 | ||
|   } else if (auto GV = dyn_cast<GlobalValue>(&C))
 | ||
|     EntryBuilder.buildGlobalValue(Reg, GV);
 | ||
|   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
 | ||
|     if (!CAZ->getType()->isVectorTy())
 | ||
|       return false;
 | ||
|     // Return the scalar if it is a <1 x Ty> vector.
 | ||
|     if (CAZ->getNumElements() == 1)
 | ||
|       return translate(*CAZ->getElementValue(0u), Reg);
 | ||
|     std::vector<unsigned> Ops;
 | ||
|     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
 | ||
|       Constant &Elt = *CAZ->getElementValue(i);
 | ||
|       Ops.push_back(getOrCreateVReg(Elt));
 | ||
|     }
 | ||
|     EntryBuilder.buildMerge(Reg, Ops);
 | ||
|   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
 | ||
|     // Return the scalar if it is a <1 x Ty> vector.
 | ||
|     if (CV->getNumElements() == 1)
 | ||
|       return translate(*CV->getElementAsConstant(0), Reg);
 | ||
|     std::vector<unsigned> Ops;
 | ||
|     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
 | ||
|       Constant &Elt = *CV->getElementAsConstant(i);
 | ||
|       Ops.push_back(getOrCreateVReg(Elt));
 | ||
|     }
 | ||
|     EntryBuilder.buildMerge(Reg, Ops);
 | ||
|   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
 | ||
|     switch(CE->getOpcode()) {
 | ||
| #define HANDLE_INST(NUM, OPCODE, CLASS)                         \
 | ||
|       case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
 | ||
| #include "llvm/IR/Instruction.def"
 | ||
|     default:
 | ||
|       return false;
 | ||
|     }
 | ||
|   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
 | ||
|     if (CV->getNumOperands() == 1)
 | ||
|       return translate(*CV->getOperand(0), Reg);
 | ||
|     SmallVector<unsigned, 4> Ops;
 | ||
|     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
 | ||
|       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
 | ||
|     }
 | ||
|     EntryBuilder.buildMerge(Reg, Ops);
 | ||
|   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
 | ||
|     EntryBuilder.buildBlockAddress(Reg, BA);
 | ||
|   } else
 | ||
|     return false;
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| void IRTranslator::finalizeFunction() {
 | ||
|   // Release the memory used by the different maps we
 | ||
|   // needed during the translation.
 | ||
|   PendingPHIs.clear();
 | ||
|   VMap.reset();
 | ||
|   FrameIndices.clear();
 | ||
|   MachinePreds.clear();
 | ||
|   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
 | ||
|   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
 | ||
|   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
 | ||
|   EntryBuilder = MachineIRBuilder();
 | ||
|   CurBuilder = MachineIRBuilder();
 | ||
| }
 | ||
| 
 | ||
| bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
 | ||
|   MF = &CurMF;
 | ||
|   const Function &F = MF->getFunction();
 | ||
|   if (F.empty())
 | ||
|     return false;
 | ||
|   CLI = MF->getSubtarget().getCallLowering();
 | ||
|   CurBuilder.setMF(*MF);
 | ||
|   EntryBuilder.setMF(*MF);
 | ||
|   MRI = &MF->getRegInfo();
 | ||
|   DL = &F.getParent()->getDataLayout();
 | ||
|   TPC = &getAnalysis<TargetPassConfig>();
 | ||
|   ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
 | ||
| 
 | ||
|   assert(PendingPHIs.empty() && "stale PHIs");
 | ||
| 
 | ||
|   if (!DL->isLittleEndian()) {
 | ||
|     // Currently we don't properly handle big endian code.
 | ||
|     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                F.getSubprogram(), &F.getEntryBlock());
 | ||
|     R << "unable to translate in big endian mode";
 | ||
|     reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|   }
 | ||
| 
 | ||
|   // Release the per-function state when we return, whether we succeeded or not.
 | ||
|   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
 | ||
| 
 | ||
|   // Setup a separate basic-block for the arguments and constants
 | ||
|   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
 | ||
|   MF->push_back(EntryBB);
 | ||
|   EntryBuilder.setMBB(*EntryBB);
 | ||
| 
 | ||
|   // Create all blocks, in IR order, to preserve the layout.
 | ||
|   for (const BasicBlock &BB: F) {
 | ||
|     auto *&MBB = BBToMBB[&BB];
 | ||
| 
 | ||
|     MBB = MF->CreateMachineBasicBlock(&BB);
 | ||
|     MF->push_back(MBB);
 | ||
| 
 | ||
|     if (BB.hasAddressTaken())
 | ||
|       MBB->setHasAddressTaken();
 | ||
|   }
 | ||
| 
 | ||
|   // Make our arguments/constants entry block fallthrough to the IR entry block.
 | ||
|   EntryBB->addSuccessor(&getMBB(F.front()));
 | ||
| 
 | ||
|   // Lower the actual args into this basic block.
 | ||
|   SmallVector<unsigned, 8> VRegArgs;
 | ||
|   for (const Argument &Arg: F.args()) {
 | ||
|     if (DL->getTypeStoreSize(Arg.getType()) == 0)
 | ||
|       continue; // Don't handle zero sized types.
 | ||
|     VRegArgs.push_back(
 | ||
|         MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
 | ||
|   }
 | ||
| 
 | ||
|   // We don't currently support translating swifterror or swiftself functions.
 | ||
|   for (auto &Arg : F.args()) {
 | ||
|     if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) {
 | ||
|       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                  F.getSubprogram(), &F.getEntryBlock());
 | ||
|       R << "unable to lower arguments due to swifterror/swiftself: "
 | ||
|         << ore::NV("Prototype", F.getType());
 | ||
|       reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|       return false;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
 | ||
|     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                F.getSubprogram(), &F.getEntryBlock());
 | ||
|     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
 | ||
|     reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|     return false;
 | ||
|   }
 | ||
| 
 | ||
|   auto ArgIt = F.arg_begin();
 | ||
|   for (auto &VArg : VRegArgs) {
 | ||
|     // If the argument is an unsplit scalar then don't use unpackRegs to avoid
 | ||
|     // creating redundant copies.
 | ||
|     if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
 | ||
|       auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
 | ||
|       assert(VRegs.empty() && "VRegs already populated?");
 | ||
|       VRegs.push_back(VArg);
 | ||
|     } else {
 | ||
|       unpackRegs(*ArgIt, VArg, EntryBuilder);
 | ||
|     }
 | ||
|     ArgIt++;
 | ||
|   }
 | ||
| 
 | ||
|   // Need to visit defs before uses when translating instructions.
 | ||
|   ReversePostOrderTraversal<const Function *> RPOT(&F);
 | ||
|   for (const BasicBlock *BB : RPOT) {
 | ||
|     MachineBasicBlock &MBB = getMBB(*BB);
 | ||
|     // Set the insertion point of all the following translations to
 | ||
|     // the end of this basic block.
 | ||
|     CurBuilder.setMBB(MBB);
 | ||
| 
 | ||
|     for (const Instruction &Inst : *BB) {
 | ||
|       if (translate(Inst))
 | ||
|         continue;
 | ||
| 
 | ||
|       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
 | ||
|                                  Inst.getDebugLoc(), BB);
 | ||
|       R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
 | ||
| 
 | ||
|       if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
 | ||
|         std::string InstStrStorage;
 | ||
|         raw_string_ostream InstStr(InstStrStorage);
 | ||
|         InstStr << Inst;
 | ||
| 
 | ||
|         R << ": '" << InstStr.str() << "'";
 | ||
|       }
 | ||
| 
 | ||
|       reportTranslationError(*MF, *TPC, *ORE, R);
 | ||
|       return false;
 | ||
|     }
 | ||
|   }
 | ||
| 
 | ||
|   finishPendingPhis();
 | ||
| 
 | ||
|   // Merge the argument lowering and constants block with its single
 | ||
|   // successor, the LLVM-IR entry block.  We want the basic block to
 | ||
|   // be maximal.
 | ||
|   assert(EntryBB->succ_size() == 1 &&
 | ||
|          "Custom BB used for lowering should have only one successor");
 | ||
|   // Get the successor of the current entry block.
 | ||
|   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
 | ||
|   assert(NewEntryBB.pred_size() == 1 &&
 | ||
|          "LLVM-IR entry block has a predecessor!?");
 | ||
|   // Move all the instruction from the current entry block to the
 | ||
|   // new entry block.
 | ||
|   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
 | ||
|                     EntryBB->end());
 | ||
| 
 | ||
|   // Update the live-in information for the new entry block.
 | ||
|   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
 | ||
|     NewEntryBB.addLiveIn(LiveIn);
 | ||
|   NewEntryBB.sortUniqueLiveIns();
 | ||
| 
 | ||
|   // Get rid of the now empty basic block.
 | ||
|   EntryBB->removeSuccessor(&NewEntryBB);
 | ||
|   MF->remove(EntryBB);
 | ||
|   MF->DeleteMachineBasicBlock(EntryBB);
 | ||
| 
 | ||
|   assert(&MF->front() == &NewEntryBB &&
 | ||
|          "New entry wasn't next in the list of basic block!");
 | ||
| 
 | ||
|   // Initialize stack protector information.
 | ||
|   StackProtector &SP = getAnalysis<StackProtector>();
 | ||
|   SP.copyToMachineFrameInfo(MF->getFrameInfo());
 | ||
| 
 | ||
|   return false;
 | ||
| }
 |