1002 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1002 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements the RegBankSelect class.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
 | |
| #include "llvm/CodeGen/GlobalISel/Utils.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BlockFrequency.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <limits>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| #define DEBUG_TYPE "regbankselect"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
 | |
|     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
 | |
|     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
 | |
|                           "Run the Fast mode (default mapping)"),
 | |
|                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
 | |
|                           "Use the Greedy mode (best local mapping)")));
 | |
| 
 | |
| char RegBankSelect::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
 | |
|                       "Assign register bank of generic virtual registers",
 | |
|                       false, false);
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
 | |
| INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
 | |
|                     "Assign register bank of generic virtual registers", false,
 | |
|                     false)
 | |
| 
 | |
| RegBankSelect::RegBankSelect(Mode RunningMode)
 | |
|     : MachineFunctionPass(ID), OptMode(RunningMode) {
 | |
|   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
 | |
|   if (RegBankSelectMode.getNumOccurrences() != 0) {
 | |
|     OptMode = RegBankSelectMode;
 | |
|     if (RegBankSelectMode != RunningMode)
 | |
|       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegBankSelect::init(MachineFunction &MF) {
 | |
|   RBI = MF.getSubtarget().getRegBankInfo();
 | |
|   assert(RBI && "Cannot work without RegisterBankInfo");
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   TPC = &getAnalysis<TargetPassConfig>();
 | |
|   if (OptMode != Mode::Fast) {
 | |
|     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
 | |
|     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
 | |
|   } else {
 | |
|     MBFI = nullptr;
 | |
|     MBPI = nullptr;
 | |
|   }
 | |
|   MIRBuilder.setMF(MF);
 | |
|   MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
 | |
| }
 | |
| 
 | |
| void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   if (OptMode != Mode::Fast) {
 | |
|     // We could preserve the information from these two analysis but
 | |
|     // the APIs do not allow to do so yet.
 | |
|     AU.addRequired<MachineBlockFrequencyInfo>();
 | |
|     AU.addRequired<MachineBranchProbabilityInfo>();
 | |
|   }
 | |
|   AU.addRequired<TargetPassConfig>();
 | |
|   getSelectionDAGFallbackAnalysisUsage(AU);
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::assignmentMatch(
 | |
|     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
 | |
|     bool &OnlyAssign) const {
 | |
|   // By default we assume we will have to repair something.
 | |
|   OnlyAssign = false;
 | |
|   // Each part of a break down needs to end up in a different register.
 | |
|   // In other word, Reg assignement does not match.
 | |
|   if (ValMapping.NumBreakDowns > 1)
 | |
|     return false;
 | |
| 
 | |
|   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
 | |
|   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
 | |
|   // Reg is free of assignment, a simple assignment will make the
 | |
|   // register bank to match.
 | |
|   OnlyAssign = CurRegBank == nullptr;
 | |
|   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
 | |
|              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
 | |
|              dbgs() << " against ";
 | |
|              assert(DesiredRegBrank && "The mapping must be valid");
 | |
|              dbgs() << *DesiredRegBrank << '\n';);
 | |
|   return CurRegBank == DesiredRegBrank;
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::repairReg(
 | |
|     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
 | |
|     RegBankSelect::RepairingPlacement &RepairPt,
 | |
|     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
 | |
|   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
 | |
|     return false;
 | |
|   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
 | |
|   // An empty range of new register means no repairing.
 | |
|   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
 | |
| 
 | |
|   // Assume we are repairing a use and thus, the original reg will be
 | |
|   // the source of the repairing.
 | |
|   unsigned Src = MO.getReg();
 | |
|   unsigned Dst = *NewVRegs.begin();
 | |
| 
 | |
|   // If we repair a definition, swap the source and destination for
 | |
|   // the repairing.
 | |
|   if (MO.isDef())
 | |
|     std::swap(Src, Dst);
 | |
| 
 | |
|   assert((RepairPt.getNumInsertPoints() == 1 ||
 | |
|           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
 | |
|          "We are about to create several defs for Dst");
 | |
| 
 | |
|   // Build the instruction used to repair, then clone it at the right
 | |
|   // places. Avoiding buildCopy bypasses the check that Src and Dst have the
 | |
|   // same types because the type is a placeholder when this function is called.
 | |
|   MachineInstr *MI =
 | |
|       MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
 | |
|   LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
 | |
|                     << '\n');
 | |
|   // TODO:
 | |
|   // Check if MI is legal. if not, we need to legalize all the
 | |
|   // instructions we are going to insert.
 | |
|   std::unique_ptr<MachineInstr *[]> NewInstrs(
 | |
|       new MachineInstr *[RepairPt.getNumInsertPoints()]);
 | |
|   bool IsFirst = true;
 | |
|   unsigned Idx = 0;
 | |
|   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
 | |
|     MachineInstr *CurMI;
 | |
|     if (IsFirst)
 | |
|       CurMI = MI;
 | |
|     else
 | |
|       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
 | |
|     InsertPt->insert(*CurMI);
 | |
|     NewInstrs[Idx++] = CurMI;
 | |
|     IsFirst = false;
 | |
|   }
 | |
|   // TODO:
 | |
|   // Legalize NewInstrs if need be.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| uint64_t RegBankSelect::getRepairCost(
 | |
|     const MachineOperand &MO,
 | |
|     const RegisterBankInfo::ValueMapping &ValMapping) const {
 | |
|   assert(MO.isReg() && "We should only repair register operand");
 | |
|   assert(ValMapping.NumBreakDowns && "Nothing to map??");
 | |
| 
 | |
|   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
 | |
|   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
 | |
|   // If MO does not have a register bank, we should have just been
 | |
|   // able to set one unless we have to break the value down.
 | |
|   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
 | |
|   // Def: Val <- NewDefs
 | |
|   //     Same number of values: copy
 | |
|   //     Different number: Val = build_sequence Defs1, Defs2, ...
 | |
|   // Use: NewSources <- Val.
 | |
|   //     Same number of values: copy.
 | |
|   //     Different number: Src1, Src2, ... =
 | |
|   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
 | |
|   // We should remember that this value is available somewhere else to
 | |
|   // coalesce the value.
 | |
| 
 | |
|   if (IsSameNumOfValues) {
 | |
|     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
 | |
|     // If we repair a definition, swap the source and destination for
 | |
|     // the repairing.
 | |
|     if (MO.isDef())
 | |
|       std::swap(CurRegBank, DesiredRegBrank);
 | |
|     // TODO: It may be possible to actually avoid the copy.
 | |
|     // If we repair something where the source is defined by a copy
 | |
|     // and the source of that copy is on the right bank, we can reuse
 | |
|     // it for free.
 | |
|     // E.g.,
 | |
|     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
 | |
|     // = op RegToRepair<BankA>
 | |
|     // We can simply propagate AlternativeSrc instead of copying RegToRepair
 | |
|     // into a new virtual register.
 | |
|     // We would also need to propagate this information in the
 | |
|     // repairing placement.
 | |
|     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
 | |
|                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
 | |
|     // TODO: use a dedicated constant for ImpossibleCost.
 | |
|     if (Cost != std::numeric_limits<unsigned>::max())
 | |
|       return Cost;
 | |
|     // Return the legalization cost of that repairing.
 | |
|   }
 | |
|   return std::numeric_limits<unsigned>::max();
 | |
| }
 | |
| 
 | |
| const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
 | |
|     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
 | |
|     SmallVectorImpl<RepairingPlacement> &RepairPts) {
 | |
|   assert(!PossibleMappings.empty() &&
 | |
|          "Do not know how to map this instruction");
 | |
| 
 | |
|   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
 | |
|   MappingCost Cost = MappingCost::ImpossibleCost();
 | |
|   SmallVector<RepairingPlacement, 4> LocalRepairPts;
 | |
|   for (const RegisterBankInfo::InstructionMapping *CurMapping :
 | |
|        PossibleMappings) {
 | |
|     MappingCost CurCost =
 | |
|         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
 | |
|     if (CurCost < Cost) {
 | |
|       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
 | |
|       Cost = CurCost;
 | |
|       BestMapping = CurMapping;
 | |
|       RepairPts.clear();
 | |
|       for (RepairingPlacement &RepairPt : LocalRepairPts)
 | |
|         RepairPts.emplace_back(std::move(RepairPt));
 | |
|     }
 | |
|   }
 | |
|   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
 | |
|     // If none of the mapping worked that means they are all impossible.
 | |
|     // Thus, pick the first one and set an impossible repairing point.
 | |
|     // It will trigger the failed isel mode.
 | |
|     BestMapping = *PossibleMappings.begin();
 | |
|     RepairPts.emplace_back(
 | |
|         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
 | |
|   } else
 | |
|     assert(BestMapping && "No suitable mapping for instruction");
 | |
|   return *BestMapping;
 | |
| }
 | |
| 
 | |
| void RegBankSelect::tryAvoidingSplit(
 | |
|     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
 | |
|     const RegisterBankInfo::ValueMapping &ValMapping) const {
 | |
|   const MachineInstr &MI = *MO.getParent();
 | |
|   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
 | |
|   // Splitting should only occur for PHIs or between terminators,
 | |
|   // because we only do local repairing.
 | |
|   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
 | |
| 
 | |
|   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
 | |
|          "Repairing placement does not match operand");
 | |
| 
 | |
|   // If we need splitting for phis, that means it is because we
 | |
|   // could not find an insertion point before the terminators of
 | |
|   // the predecessor block for this argument. In other words,
 | |
|   // the input value is defined by one of the terminators.
 | |
|   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
 | |
| 
 | |
|   // We split to repair the use of a phi or a terminator.
 | |
|   if (!MO.isDef()) {
 | |
|     if (MI.isTerminator()) {
 | |
|       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
 | |
|              "Need to split for the first terminator?!");
 | |
|     } else {
 | |
|       // For the PHI case, the split may not be actually required.
 | |
|       // In the copy case, a phi is already a copy on the incoming edge,
 | |
|       // therefore there is no need to split.
 | |
|       if (ValMapping.NumBreakDowns == 1)
 | |
|         // This is a already a copy, there is nothing to do.
 | |
|         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // At this point, we need to repair a defintion of a terminator.
 | |
| 
 | |
|   // Technically we need to fix the def of MI on all outgoing
 | |
|   // edges of MI to keep the repairing local. In other words, we
 | |
|   // will create several definitions of the same register. This
 | |
|   // does not work for SSA unless that definition is a physical
 | |
|   // register.
 | |
|   // However, there are other cases where we can get away with
 | |
|   // that while still keeping the repairing local.
 | |
|   assert(MI.isTerminator() && MO.isDef() &&
 | |
|          "This code is for the def of a terminator");
 | |
| 
 | |
|   // Since we use RPO traversal, if we need to repair a definition
 | |
|   // this means this definition could be:
 | |
|   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
 | |
|   //    uses of a phi.), or
 | |
|   // 2. Part of a target specific instruction (i.e., the target applied
 | |
|   //    some register class constraints when creating the instruction.)
 | |
|   // If the constraints come for #2, the target said that another mapping
 | |
|   // is supported so we may just drop them. Indeed, if we do not change
 | |
|   // the number of registers holding that value, the uses will get fixed
 | |
|   // when we get to them.
 | |
|   // Uses in PHIs may have already been proceeded though.
 | |
|   // If the constraints come for #1, then, those are weak constraints and
 | |
|   // no actual uses may rely on them. However, the problem remains mainly
 | |
|   // the same as for #2. If the value stays in one register, we could
 | |
|   // just switch the register bank of the definition, but we would need to
 | |
|   // account for a repairing cost for each phi we silently change.
 | |
|   //
 | |
|   // In any case, if the value needs to be broken down into several
 | |
|   // registers, the repairing is not local anymore as we need to patch
 | |
|   // every uses to rebuild the value in just one register.
 | |
|   //
 | |
|   // To summarize:
 | |
|   // - If the value is in a physical register, we can do the split and
 | |
|   //   fix locally.
 | |
|   // Otherwise if the value is in a virtual register:
 | |
|   // - If the value remains in one register, we do not have to split
 | |
|   //   just switching the register bank would do, but we need to account
 | |
|   //   in the repairing cost all the phi we changed.
 | |
|   // - If the value spans several registers, then we cannot do a local
 | |
|   //   repairing.
 | |
| 
 | |
|   // Check if this is a physical or virtual register.
 | |
|   unsigned Reg = MO.getReg();
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|     // We are going to split every outgoing edges.
 | |
|     // Check that this is possible.
 | |
|     // FIXME: The machine representation is currently broken
 | |
|     // since it also several terminators in one basic block.
 | |
|     // Because of that we would technically need a way to get
 | |
|     // the targets of just one terminator to know which edges
 | |
|     // we have to split.
 | |
|     // Assert that we do not hit the ill-formed representation.
 | |
| 
 | |
|     // If there are other terminators before that one, some of
 | |
|     // the outgoing edges may not be dominated by this definition.
 | |
|     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
 | |
|            "Do not know which outgoing edges are relevant");
 | |
|     const MachineInstr *Next = MI.getNextNode();
 | |
|     assert((!Next || Next->isUnconditionalBranch()) &&
 | |
|            "Do not know where each terminator ends up");
 | |
|     if (Next)
 | |
|       // If the next terminator uses Reg, this means we have
 | |
|       // to split right after MI and thus we need a way to ask
 | |
|       // which outgoing edges are affected.
 | |
|       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
 | |
|     // We will split all the edges and repair there.
 | |
|   } else {
 | |
|     // This is a virtual register defined by a terminator.
 | |
|     if (ValMapping.NumBreakDowns == 1) {
 | |
|       // There is nothing to repair, but we may actually lie on
 | |
|       // the repairing cost because of the PHIs already proceeded
 | |
|       // as already stated.
 | |
|       // Though the code will be correct.
 | |
|       assert(false && "Repairing cost may not be accurate");
 | |
|     } else {
 | |
|       // We need to do non-local repairing. Basically, patch all
 | |
|       // the uses (i.e., phis) that we already proceeded.
 | |
|       // For now, just say this mapping is not possible.
 | |
|       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| RegBankSelect::MappingCost RegBankSelect::computeMapping(
 | |
|     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
 | |
|     SmallVectorImpl<RepairingPlacement> &RepairPts,
 | |
|     const RegBankSelect::MappingCost *BestCost) {
 | |
|   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
 | |
| 
 | |
|   if (!InstrMapping.isValid())
 | |
|     return MappingCost::ImpossibleCost();
 | |
| 
 | |
|   // If mapped with InstrMapping, MI will have the recorded cost.
 | |
|   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
 | |
|   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
 | |
|   assert(!Saturated && "Possible mapping saturated the cost");
 | |
|   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
 | |
|   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
 | |
|   RepairPts.clear();
 | |
|   if (BestCost && Cost > *BestCost) {
 | |
|     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
 | |
|     return Cost;
 | |
|   }
 | |
| 
 | |
|   // Moreover, to realize this mapping, the register bank of each operand must
 | |
|   // match this mapping. In other words, we may need to locally reassign the
 | |
|   // register banks. Account for that repairing cost as well.
 | |
|   // In this context, local means in the surrounding of MI.
 | |
|   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
 | |
|        OpIdx != EndOpIdx; ++OpIdx) {
 | |
|     const MachineOperand &MO = MI.getOperand(OpIdx);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!Reg)
 | |
|       continue;
 | |
|     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
 | |
|     const RegisterBankInfo::ValueMapping &ValMapping =
 | |
|         InstrMapping.getOperandMapping(OpIdx);
 | |
|     // If Reg is already properly mapped, this is free.
 | |
|     bool Assign;
 | |
|     if (assignmentMatch(Reg, ValMapping, Assign)) {
 | |
|       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
 | |
|       continue;
 | |
|     }
 | |
|     if (Assign) {
 | |
|       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
 | |
|       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
 | |
|                                                 RepairingPlacement::Reassign));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Find the insertion point for the repairing code.
 | |
|     RepairPts.emplace_back(
 | |
|         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
 | |
|     RepairingPlacement &RepairPt = RepairPts.back();
 | |
| 
 | |
|     // If we need to split a basic block to materialize this insertion point,
 | |
|     // we may give a higher cost to this mapping.
 | |
|     // Nevertheless, we may get away with the split, so try that first.
 | |
|     if (RepairPt.hasSplit())
 | |
|       tryAvoidingSplit(RepairPt, MO, ValMapping);
 | |
| 
 | |
|     // Check that the materialization of the repairing is possible.
 | |
|     if (!RepairPt.canMaterialize()) {
 | |
|       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
 | |
|       return MappingCost::ImpossibleCost();
 | |
|     }
 | |
| 
 | |
|     // Account for the split cost and repair cost.
 | |
|     // Unless the cost is already saturated or we do not care about the cost.
 | |
|     if (!BestCost || Saturated)
 | |
|       continue;
 | |
| 
 | |
|     // To get accurate information we need MBFI and MBPI.
 | |
|     // Thus, if we end up here this information should be here.
 | |
|     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
 | |
| 
 | |
|     // FIXME: We will have to rework the repairing cost model.
 | |
|     // The repairing cost depends on the register bank that MO has.
 | |
|     // However, when we break down the value into different values,
 | |
|     // MO may not have a register bank while still needing repairing.
 | |
|     // For the fast mode, we don't compute the cost so that is fine,
 | |
|     // but still for the repairing code, we will have to make a choice.
 | |
|     // For the greedy mode, we should choose greedily what is the best
 | |
|     // choice based on the next use of MO.
 | |
| 
 | |
|     // Sums up the repairing cost of MO at each insertion point.
 | |
|     uint64_t RepairCost = getRepairCost(MO, ValMapping);
 | |
| 
 | |
|     // This is an impossible to repair cost.
 | |
|     if (RepairCost == std::numeric_limits<unsigned>::max())
 | |
|       return MappingCost::ImpossibleCost();
 | |
| 
 | |
|     // Bias used for splitting: 5%.
 | |
|     const uint64_t PercentageForBias = 5;
 | |
|     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
 | |
|     // We should not need more than a couple of instructions to repair
 | |
|     // an assignment. In other words, the computation should not
 | |
|     // overflow because the repairing cost is free of basic block
 | |
|     // frequency.
 | |
|     assert(((RepairCost < RepairCost * PercentageForBias) &&
 | |
|             (RepairCost * PercentageForBias <
 | |
|              RepairCost * PercentageForBias + 99)) &&
 | |
|            "Repairing involves more than a billion of instructions?!");
 | |
|     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
 | |
|       assert(InsertPt->canMaterialize() && "We should not have made it here");
 | |
|       // We will applied some basic block frequency and those uses uint64_t.
 | |
|       if (!InsertPt->isSplit())
 | |
|         Saturated = Cost.addLocalCost(RepairCost);
 | |
|       else {
 | |
|         uint64_t CostForInsertPt = RepairCost;
 | |
|         // Again we shouldn't overflow here givent that
 | |
|         // CostForInsertPt is frequency free at this point.
 | |
|         assert(CostForInsertPt + Bias > CostForInsertPt &&
 | |
|                "Repairing + split bias overflows");
 | |
|         CostForInsertPt += Bias;
 | |
|         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
 | |
|         // Check if we just overflowed.
 | |
|         if ((Saturated = PtCost < CostForInsertPt))
 | |
|           Cost.saturate();
 | |
|         else
 | |
|           Saturated = Cost.addNonLocalCost(PtCost);
 | |
|       }
 | |
| 
 | |
|       // Stop looking into what it takes to repair, this is already
 | |
|       // too expensive.
 | |
|       if (BestCost && Cost > *BestCost) {
 | |
|         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
 | |
|         return Cost;
 | |
|       }
 | |
| 
 | |
|       // No need to accumulate more cost information.
 | |
|       // We need to still gather the repairing information though.
 | |
|       if (Saturated)
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::applyMapping(
 | |
|     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
 | |
|     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
 | |
|   // OpdMapper will hold all the information needed for the rewritting.
 | |
|   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
 | |
| 
 | |
|   // First, place the repairing code.
 | |
|   for (RepairingPlacement &RepairPt : RepairPts) {
 | |
|     if (!RepairPt.canMaterialize() ||
 | |
|         RepairPt.getKind() == RepairingPlacement::Impossible)
 | |
|       return false;
 | |
|     assert(RepairPt.getKind() != RepairingPlacement::None &&
 | |
|            "This should not make its way in the list");
 | |
|     unsigned OpIdx = RepairPt.getOpIdx();
 | |
|     MachineOperand &MO = MI.getOperand(OpIdx);
 | |
|     const RegisterBankInfo::ValueMapping &ValMapping =
 | |
|         InstrMapping.getOperandMapping(OpIdx);
 | |
|     unsigned Reg = MO.getReg();
 | |
| 
 | |
|     switch (RepairPt.getKind()) {
 | |
|     case RepairingPlacement::Reassign:
 | |
|       assert(ValMapping.NumBreakDowns == 1 &&
 | |
|              "Reassignment should only be for simple mapping");
 | |
|       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
 | |
|       break;
 | |
|     case RepairingPlacement::Insert:
 | |
|       OpdMapper.createVRegs(OpIdx);
 | |
|       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
 | |
|         return false;
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Other kind should not happen");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Second, rewrite the instruction.
 | |
|   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
 | |
|   RBI->applyMapping(OpdMapper);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::assignInstr(MachineInstr &MI) {
 | |
|   LLVM_DEBUG(dbgs() << "Assign: " << MI);
 | |
|   // Remember the repairing placement for all the operands.
 | |
|   SmallVector<RepairingPlacement, 4> RepairPts;
 | |
| 
 | |
|   const RegisterBankInfo::InstructionMapping *BestMapping;
 | |
|   if (OptMode == RegBankSelect::Mode::Fast) {
 | |
|     BestMapping = &RBI->getInstrMapping(MI);
 | |
|     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
 | |
|     (void)DefaultCost;
 | |
|     if (DefaultCost == MappingCost::ImpossibleCost())
 | |
|       return false;
 | |
|   } else {
 | |
|     RegisterBankInfo::InstructionMappings PossibleMappings =
 | |
|         RBI->getInstrPossibleMappings(MI);
 | |
|     if (PossibleMappings.empty())
 | |
|       return false;
 | |
|     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
 | |
|   }
 | |
|   // Make sure the mapping is valid for MI.
 | |
|   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
 | |
| 
 | |
|   // After this call, MI may not be valid anymore.
 | |
|   // Do not use it.
 | |
|   return applyMapping(MI, *BestMapping, RepairPts);
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
 | |
|   // If the ISel pipeline failed, do not bother running that pass.
 | |
|   if (MF.getProperties().hasProperty(
 | |
|           MachineFunctionProperties::Property::FailedISel))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
 | |
|   const Function &F = MF.getFunction();
 | |
|   Mode SaveOptMode = OptMode;
 | |
|   if (F.hasFnAttribute(Attribute::OptimizeNone))
 | |
|     OptMode = Mode::Fast;
 | |
|   init(MF);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Check that our input is fully legal: we require the function to have the
 | |
|   // Legalized property, so it should be.
 | |
|   // FIXME: This should be in the MachineVerifier.
 | |
|   if (!DisableGISelLegalityCheck)
 | |
|     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
 | |
|       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
 | |
|                          "instruction is not legal", *MI);
 | |
|       return false;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   // Walk the function and assign register banks to all operands.
 | |
|   // Use a RPOT to make sure all registers are assigned before we choose
 | |
|   // the best mapping of the current instruction.
 | |
|   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
 | |
|   for (MachineBasicBlock *MBB : RPOT) {
 | |
|     // Set a sensible insertion point so that subsequent calls to
 | |
|     // MIRBuilder.
 | |
|     MIRBuilder.setMBB(*MBB);
 | |
|     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
 | |
|          MII != End;) {
 | |
|       // MI might be invalidated by the assignment, so move the
 | |
|       // iterator before hand.
 | |
|       MachineInstr &MI = *MII++;
 | |
| 
 | |
|       // Ignore target-specific instructions: they should use proper regclasses.
 | |
|       if (isTargetSpecificOpcode(MI.getOpcode()))
 | |
|         continue;
 | |
| 
 | |
|       if (!assignInstr(MI)) {
 | |
|         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
 | |
|                            "unable to map instruction", MI);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   OptMode = SaveOptMode;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| //                  Helper Classes Implementation
 | |
| //------------------------------------------------------------------------------
 | |
| RegBankSelect::RepairingPlacement::RepairingPlacement(
 | |
|     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
 | |
|     RepairingPlacement::RepairingKind Kind)
 | |
|     // Default is, we are going to insert code to repair OpIdx.
 | |
|     : Kind(Kind), OpIdx(OpIdx),
 | |
|       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
 | |
|   const MachineOperand &MO = MI.getOperand(OpIdx);
 | |
|   assert(MO.isReg() && "Trying to repair a non-reg operand");
 | |
| 
 | |
|   if (Kind != RepairingKind::Insert)
 | |
|     return;
 | |
| 
 | |
|   // Repairings for definitions happen after MI, uses happen before.
 | |
|   bool Before = !MO.isDef();
 | |
| 
 | |
|   // Check if we are done with MI.
 | |
|   if (!MI.isPHI() && !MI.isTerminator()) {
 | |
|     addInsertPoint(MI, Before);
 | |
|     // We are done with the initialization.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Now, look for the special cases.
 | |
|   if (MI.isPHI()) {
 | |
|     // - PHI must be the first instructions:
 | |
|     //   * Before, we have to split the related incoming edge.
 | |
|     //   * After, move the insertion point past the last phi.
 | |
|     if (!Before) {
 | |
|       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
 | |
|       if (It != MI.getParent()->end())
 | |
|         addInsertPoint(*It, /*Before*/ true);
 | |
|       else
 | |
|         addInsertPoint(*(--It), /*Before*/ false);
 | |
|       return;
 | |
|     }
 | |
|     // We repair a use of a phi, we may need to split the related edge.
 | |
|     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
 | |
|     // Check if we can move the insertion point prior to the
 | |
|     // terminators of the predecessor.
 | |
|     unsigned Reg = MO.getReg();
 | |
|     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
 | |
|     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
 | |
|       if (It->modifiesRegister(Reg, &TRI)) {
 | |
|         // We cannot hoist the repairing code in the predecessor.
 | |
|         // Split the edge.
 | |
|         addInsertPoint(Pred, *MI.getParent());
 | |
|         return;
 | |
|       }
 | |
|     // At this point, we can insert in Pred.
 | |
| 
 | |
|     // - If It is invalid, Pred is empty and we can insert in Pred
 | |
|     //   wherever we want.
 | |
|     // - If It is valid, It is the first non-terminator, insert after It.
 | |
|     if (It == Pred.end())
 | |
|       addInsertPoint(Pred, /*Beginning*/ false);
 | |
|     else
 | |
|       addInsertPoint(*It, /*Before*/ false);
 | |
|   } else {
 | |
|     // - Terminators must be the last instructions:
 | |
|     //   * Before, move the insert point before the first terminator.
 | |
|     //   * After, we have to split the outcoming edges.
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Before) {
 | |
|       // Check whether Reg is defined by any terminator.
 | |
|       MachineBasicBlock::iterator It = MI;
 | |
|       for (auto Begin = MI.getParent()->begin();
 | |
|            --It != Begin && It->isTerminator();)
 | |
|         if (It->modifiesRegister(Reg, &TRI)) {
 | |
|           // Insert the repairing code right after the definition.
 | |
|           addInsertPoint(*It, /*Before*/ false);
 | |
|           return;
 | |
|         }
 | |
|       addInsertPoint(*It, /*Before*/ true);
 | |
|       return;
 | |
|     }
 | |
|     // Make sure Reg is not redefined by other terminators, otherwise
 | |
|     // we do not know how to split.
 | |
|     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
 | |
|          ++It != End;)
 | |
|       // The machine verifier should reject this kind of code.
 | |
|       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
 | |
|     // Split each outcoming edges.
 | |
|     MachineBasicBlock &Src = *MI.getParent();
 | |
|     for (auto &Succ : Src.successors())
 | |
|       addInsertPoint(Src, Succ);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
 | |
|                                                        bool Before) {
 | |
|   addInsertPoint(*new InstrInsertPoint(MI, Before));
 | |
| }
 | |
| 
 | |
| void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
 | |
|                                                        bool Beginning) {
 | |
|   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
 | |
| }
 | |
| 
 | |
| void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
 | |
|                                                        MachineBasicBlock &Dst) {
 | |
|   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
 | |
| }
 | |
| 
 | |
| void RegBankSelect::RepairingPlacement::addInsertPoint(
 | |
|     RegBankSelect::InsertPoint &Point) {
 | |
|   CanMaterialize &= Point.canMaterialize();
 | |
|   HasSplit |= Point.isSplit();
 | |
|   InsertPoints.emplace_back(&Point);
 | |
| }
 | |
| 
 | |
| RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
 | |
|                                                   bool Before)
 | |
|     : InsertPoint(), Instr(Instr), Before(Before) {
 | |
|   // Since we do not support splitting, we do not need to update
 | |
|   // liveness and such, so do not do anything with P.
 | |
|   assert((!Before || !Instr.isPHI()) &&
 | |
|          "Splitting before phis requires more points");
 | |
|   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
 | |
|          "Splitting between phis does not make sense");
 | |
| }
 | |
| 
 | |
| void RegBankSelect::InstrInsertPoint::materialize() {
 | |
|   if (isSplit()) {
 | |
|     // Slice and return the beginning of the new block.
 | |
|     // If we need to split between the terminators, we theoritically
 | |
|     // need to know where the first and second set of terminators end
 | |
|     // to update the successors properly.
 | |
|     // Now, in pratice, we should have a maximum of 2 branch
 | |
|     // instructions; one conditional and one unconditional. Therefore
 | |
|     // we know how to update the successor by looking at the target of
 | |
|     // the unconditional branch.
 | |
|     // If we end up splitting at some point, then, we should update
 | |
|     // the liveness information and such. I.e., we would need to
 | |
|     // access P here.
 | |
|     // The machine verifier should actually make sure such cases
 | |
|     // cannot happen.
 | |
|     llvm_unreachable("Not yet implemented");
 | |
|   }
 | |
|   // Otherwise the insertion point is just the current or next
 | |
|   // instruction depending on Before. I.e., there is nothing to do
 | |
|   // here.
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::InstrInsertPoint::isSplit() const {
 | |
|   // If the insertion point is after a terminator, we need to split.
 | |
|   if (!Before)
 | |
|     return Instr.isTerminator();
 | |
|   // If we insert before an instruction that is after a terminator,
 | |
|   // we are still after a terminator.
 | |
|   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
 | |
| }
 | |
| 
 | |
| uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
 | |
|   // Even if we need to split, because we insert between terminators,
 | |
|   // this split has actually the same frequency as the instruction.
 | |
|   const MachineBlockFrequencyInfo *MBFI =
 | |
|       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
 | |
|   if (!MBFI)
 | |
|     return 1;
 | |
|   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
 | |
| }
 | |
| 
 | |
| uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
 | |
|   const MachineBlockFrequencyInfo *MBFI =
 | |
|       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
 | |
|   if (!MBFI)
 | |
|     return 1;
 | |
|   return MBFI->getBlockFreq(&MBB).getFrequency();
 | |
| }
 | |
| 
 | |
| void RegBankSelect::EdgeInsertPoint::materialize() {
 | |
|   // If we end up repairing twice at the same place before materializing the
 | |
|   // insertion point, we may think we have to split an edge twice.
 | |
|   // We should have a factory for the insert point such that identical points
 | |
|   // are the same instance.
 | |
|   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
 | |
|          "This point has already been split");
 | |
|   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
 | |
|   assert(NewBB && "Invalid call to materialize");
 | |
|   // We reuse the destination block to hold the information of the new block.
 | |
|   DstOrSplit = NewBB;
 | |
| }
 | |
| 
 | |
| uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
 | |
|   const MachineBlockFrequencyInfo *MBFI =
 | |
|       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
 | |
|   if (!MBFI)
 | |
|     return 1;
 | |
|   if (WasMaterialized)
 | |
|     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
 | |
| 
 | |
|   const MachineBranchProbabilityInfo *MBPI =
 | |
|       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
 | |
|   if (!MBPI)
 | |
|     return 1;
 | |
|   // The basic block will be on the edge.
 | |
|   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
 | |
|       .getFrequency();
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
 | |
|   // If this is not a critical edge, we should not have used this insert
 | |
|   // point. Indeed, either the successor or the predecessor should
 | |
|   // have do.
 | |
|   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
 | |
|          "Edge is not critical");
 | |
|   return Src.canSplitCriticalEdge(DstOrSplit);
 | |
| }
 | |
| 
 | |
| RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
 | |
|     : LocalFreq(LocalFreq.getFrequency()) {}
 | |
| 
 | |
| bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
 | |
|   // Check if this overflows.
 | |
|   if (LocalCost + Cost < LocalCost) {
 | |
|     saturate();
 | |
|     return true;
 | |
|   }
 | |
|   LocalCost += Cost;
 | |
|   return isSaturated();
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
 | |
|   // Check if this overflows.
 | |
|   if (NonLocalCost + Cost < NonLocalCost) {
 | |
|     saturate();
 | |
|     return true;
 | |
|   }
 | |
|   NonLocalCost += Cost;
 | |
|   return isSaturated();
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::MappingCost::isSaturated() const {
 | |
|   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
 | |
|          LocalFreq == UINT64_MAX;
 | |
| }
 | |
| 
 | |
| void RegBankSelect::MappingCost::saturate() {
 | |
|   *this = ImpossibleCost();
 | |
|   --LocalCost;
 | |
| }
 | |
| 
 | |
| RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
 | |
|   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
 | |
|   // Sort out the easy cases.
 | |
|   if (*this == Cost)
 | |
|     return false;
 | |
|   // If one is impossible to realize the other is cheaper unless it is
 | |
|   // impossible as well.
 | |
|   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
 | |
|     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
 | |
|   // If one is saturated the other is cheaper, unless it is saturated
 | |
|   // as well.
 | |
|   if (isSaturated() || Cost.isSaturated())
 | |
|     return isSaturated() < Cost.isSaturated();
 | |
|   // At this point we know both costs hold sensible values.
 | |
| 
 | |
|   // If both values have a different base frequency, there is no much
 | |
|   // we can do but to scale everything.
 | |
|   // However, if they have the same base frequency we can avoid making
 | |
|   // complicated computation.
 | |
|   uint64_t ThisLocalAdjust;
 | |
|   uint64_t OtherLocalAdjust;
 | |
|   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
 | |
| 
 | |
|     // At this point, we know the local costs are comparable.
 | |
|     // Do the case that do not involve potential overflow first.
 | |
|     if (NonLocalCost == Cost.NonLocalCost)
 | |
|       // Since the non-local costs do not discriminate on the result,
 | |
|       // just compare the local costs.
 | |
|       return LocalCost < Cost.LocalCost;
 | |
| 
 | |
|     // The base costs are comparable so we may only keep the relative
 | |
|     // value to increase our chances of avoiding overflows.
 | |
|     ThisLocalAdjust = 0;
 | |
|     OtherLocalAdjust = 0;
 | |
|     if (LocalCost < Cost.LocalCost)
 | |
|       OtherLocalAdjust = Cost.LocalCost - LocalCost;
 | |
|     else
 | |
|       ThisLocalAdjust = LocalCost - Cost.LocalCost;
 | |
|   } else {
 | |
|     ThisLocalAdjust = LocalCost;
 | |
|     OtherLocalAdjust = Cost.LocalCost;
 | |
|   }
 | |
| 
 | |
|   // The non-local costs are comparable, just keep the relative value.
 | |
|   uint64_t ThisNonLocalAdjust = 0;
 | |
|   uint64_t OtherNonLocalAdjust = 0;
 | |
|   if (NonLocalCost < Cost.NonLocalCost)
 | |
|     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
 | |
|   else
 | |
|     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
 | |
|   // Scale everything to make them comparable.
 | |
|   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
 | |
|   // Check for overflow on that operation.
 | |
|   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
 | |
|                                            ThisScaledCost < LocalFreq);
 | |
|   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
 | |
|   // Check for overflow on the last operation.
 | |
|   bool OtherOverflows =
 | |
|       OtherLocalAdjust &&
 | |
|       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
 | |
|   // Add the non-local costs.
 | |
|   ThisOverflows |= ThisNonLocalAdjust &&
 | |
|                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
 | |
|   ThisScaledCost += ThisNonLocalAdjust;
 | |
|   OtherOverflows |= OtherNonLocalAdjust &&
 | |
|                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
 | |
|   OtherScaledCost += OtherNonLocalAdjust;
 | |
|   // If both overflows, we cannot compare without additional
 | |
|   // precision, e.g., APInt. Just give up on that case.
 | |
|   if (ThisOverflows && OtherOverflows)
 | |
|     return false;
 | |
|   // If one overflows but not the other, we can still compare.
 | |
|   if (ThisOverflows || OtherOverflows)
 | |
|     return ThisOverflows < OtherOverflows;
 | |
|   // Otherwise, just compare the values.
 | |
|   return ThisScaledCost < OtherScaledCost;
 | |
| }
 | |
| 
 | |
| bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
 | |
|   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
 | |
|          LocalFreq == Cost.LocalFreq;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
 | |
|   if (*this == ImpossibleCost()) {
 | |
|     OS << "impossible";
 | |
|     return;
 | |
|   }
 | |
|   if (isSaturated()) {
 | |
|     OS << "saturated";
 | |
|     return;
 | |
|   }
 | |
|   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
 | |
| }
 |